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Mediastinal infections present significant diagnostic and therapeutic challenges, 
contributing to highly variable mortality. Diagnostic dilemmas arise from complex 
anatomy and radiographic similarities to malignancies. Endobronchial Ultrasound-
guided Transbronchial Needle Aspiration (EBUS-TBNA) and cultures are constrained 
by small samples, architectural distortion, low sensitivity, and slow results in 
special circumstances. Therapeutic obstacles include antibiotic resistance, poor 
antimicrobial penetration due to altered vascularity, and high surgical morbidity. 
Endobronchial ultrasound-guided transbronchial mediastinal cryobiopsy (EBUS-
TMC) provides larger histologically preserved specimens; metagenomic next-
generation sequencing (mNGS) achieves rapid sensitive pathogen detection; 
advanced imaging (Dual Energy Computed Tomography, DECT; Positron Emission 
Tomography/Computed Tomography, PET/CT) enhances lesion differentiation 
and intervention planning; while minimally invasive drainage, nanocarrier-based 
targeted antimicrobial delivery, and reconstructive techniques collectively reduce 
complications and improve therapeutic efficacy. Multidisciplinary integration of 
these innovations is advancing precision medicine approaches.
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1 Introduction

Mediastinal infections represent a challenging category of clinical disease, posing 
significant difficulties throughout the diagnostic and therapeutic process with 1.8–33.1% 
mortality (1, 2). Diagnostically, the complex anatomy of the mediastinum complicates lesion 
localization, while the frequent radiographic overlap between different pathologies—such as 
infectious mediastinitis and neoplastic lesions—creates substantial diagnostic dilemmas (3). 
Although traditional diagnostic methods like EBUS-TBNA offer some value, their utility is 
limited by often yielding insufficient sample volume and compromised tissue architecture, 
which impacts pathological diagnostic accuracy (4). Microbiological diagnosis faces similar 
hurdles, particularly for deep-seated fungal infections like invasive pulmonary aspergillosis, 
where conventional cultures suffer from low positivity rates and prolonged turnaround 
times (4).

The spectrum of mediastinal infections is diverse, encompassing primary or secondary 
lymphoproliferative diseases, postoperative infections (bacterial/fungal), inflammatory diseases, 
and more (5, 6). The pathogens are primarily fungi (especially Candida species) and bacteria 
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(gram-positive/gram-negative bacteria), with viruses and specific 
pathogens (such as Pneumocystis) being less common (6–8). The 2017 
expert consensus of the European Association for Cardio-Thoracic 
Surgery points out that the key to the treatment of mediastinitis lies in 
the early administration of broad-spectrum antibiotics and promptly 
correcting drug use based on drug sensitivity (9). Therapeutic 
management encounters three major obstacles: First, antibiotic options 
are increasingly constrained by the emergence of drug-resistant 
pathogens (e.g., methicillin-resistant Staphylococcus aureus), rendering 
traditional regimens ineffective. Regional variations in antibiotic 
resistance pose significant challenges to the treatment of mediastinal 
infections (10, 11). Second, compromised antibiotic penetration into 
the mediastinum, attributed to its sparse vascularity and adipose-rich 
composition, frequently leads to therapeutically insufficient drug levels 
at infected foci—particularly in post-sternotomy cases with 
devascularized tissues. Finally, surgical intervention carries significant 
risks, as patients with post-sternotomy mediastinitis often present with 
tissue necrosis, and debridement procedures can further compromise 
chest wall stability (7). Collectively, these factors contribute to the 
persistently high mortality rates associated with mediastinal infections.

Recent years have witnessed the emergence of several innovative 
diagnostic and therapeutic strategies. In diagnostics, EBUS-TMC has 
significantly improved the diagnosis rate of rare mediastinal tumors 
like lymphoma (achieving diagnostic rates up to 89.8%) by procuring 
larger, more architecturally preserved tissue sample (3). Nanomaterial 
technology offers new possibilities for non-invasive diagnosis, with 
functionalized nanoparticles enabling highly sensitive detection of 
biomarkers within the infectious microenvironment (12). Targeted 
drug delivery systems, such as folate receptor-modified nanoparticles, 
demonstrate the ability to overcome the blood-tissue barrier, 
enhancing antibiotic concentration at the infection focus. Additionally, 
multidisciplinary team (MDT) approaches, integrating molecular 
diagnostics, image-guided navigation, and personalized 
pharmacotherapy, are transforming the landscape from traditional 
empirical treatment toward more precise management (13).

2 Limitations of traditional diagnostic 
and therapeutic approaches

The management of mediastinal infection faces multiple challenges: 
1, Traditional microbial culture methods exhibit insufficient sensitivity, 
with blood or pus cultures often yielding false-negative results (14), 
making detection of rare or fastidious microorganisms difficult (15); 2, 
Computed tomography (CT) features of mediastinal abscesses overlap 
with those of malignancies (16), and invasive biopsy remains the gold 
standard for evaluating lymph node infection (17); 3, Conventional 
surgical debridement carries high risks for patients with comorbidities, 
while systemic antibiotics demonstrate poor local penetration (18). 
Leonardi et al. reported that 71% of descending mediastinitis cases 
require combined cervicothoracic incision, associated with high 
complication rates (19); 4, Culture of nontuberculous mycobacteria 
requires several weeks (20), and potassium hydroxide smear 
microscopy plus culture for fungal infections also suffer from low 
sensitivity and prolonged turnaround times (21); 5、Fungal 
mediastinitis in immunocompetent individuals may be overlooked due 
to atypical presentations (15), and conventional investigations often fail 
to trace the origin of hematogenously disseminated infections (22).

3 Advances in mediastinal abscess 
diagnosis

3.1 Pivotal role of CT in diagnosing 
mediastinal abscesses

Contrast-enhanced CT specifically delineates the enhancement 
pattern of the abscess wall and identifies potential complications, such 
as aortic aneurysm. Additionally, CT-guided interventions, potentially 
combined with endoscopic ultrasound (EUS), provide precise 
targeting of deep abscess cavities. This significantly enhances the 
success rate of drainage procedures and paves the way for subsequent 
surgical intervention (23). In terms of differential diagnosis, 
Multidetector Computed Tomography (MDCT) leverages its 
volumetric anatomical data to effectively distinguish abscesses from 
other space-occupying lesions, such as teratomas and T-lymphoblastic 
lymphoma, and to identify characteristic imaging signs (e.g., 
alterations in fat planes and gas shadows) (24). Furthermore, serial CT 
follow-up is paramount for therapeutic monitoring, as it enables both 
dynamic assessment of abscess size evolution and treatment response 
(25), and early detection of abscess formation resulting from the 
spread of deep neck infections into the mediastinum, thereby 
providing timely warning of recurrence or complications (25).

3.2 Emerging imaging biomarkers

Emerging imaging biomarkers refer to novel biological markers 
extracted through advanced imaging techniques (such as AI-based 
radiomics, molecular imaging, and functional imaging), primarily 
used for early disease diagnosis and disease progression monitoring. 
In the realm of imaging, DECT utilizes material decomposition 
algorithms to generate quantitative biomarkers, enabling noninvasive 
discrimination between benign and malignant anterior mediastinal 
masses (26). Furthermore, 18F-FDG PET/CT aids in differential 
diagnosis by assessing inflammatory metabolic activity; however, 
caution is warranted regarding potential false positives due to 
postoperative inflammation, and definitive diagnosis still requires 
histological confirmation (27, 28). For surgical planning, advanced 
MRI techniques, such as cine-MRI for evaluating cardiac dynamic 
involvement and high-resolution T1 turbo spin-echo (T1 TSE) 
sequences, clearly delineate tumor infiltration into critical mediastinal 
structures, thereby optimizing surgical decision-making (29, 66). 
Despite the proven utility of imaging biomarkers in diagnosing 
mediastinal infections, the field currently lacks a closed-loop pathway 
converting technical outputs into clinical decisions, with no established 
framework for translating biomarker data to therapeutic actions.

3.3 The groundbreaking value and 
challenges of mNGS in pathogen diagnosis 
of mediastinal infections

mNGS significantly enhances the diagnostic efficacy for pathogens 
in mediastinitis by virtue of its culture-independent nature. Crucially, 
it enables precise identification of potential pathogens in culture-
negative cases, providing critical evidence for targeted antibiotic 
selection and improved prognosis. Compared to traditional bacterial 
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culture, this novel microbiological diagnostic technology offers 
multifaceted advantages (30). 1, mNGS overcomes the limitation of 
high false-negative rates associated with conventional culture, 
successfully detecting pathogens in culture-negative mediastinitis and 
significantly increasing the detection rate, with a reported sensitivity 
of 79.5% (31). 2, It bypasses the need for culture, thereby enabling the 
direct detection of fastidious or difficult-to-culture pathogens. 3, 
mNGS dramatically shortens the diagnostic time compared to 
conventional culture (days/weeks) and even techniques like qPCR, 
reducing the detection cycle to mere hours (32, 33). 4, mNGS provides 
unbiased, pan-pathogen screening, simultaneously detecting bacteria, 
viruses, fungi, and parasites (34). While mNGS offers diagnostic 
benefits for infectious diseases, its implementation in routine 
mediastinal infection management may be constrained by substantial 
sequencing costs (29).

3.4 Interventional diagnostics: precision 
sampling beyond non-invasive imaging

EBUS-TBNA, as a minimally invasive technique, plays a critical 
role in diagnosing mediastinal infections. Compared to traditional 
mediastinoscopy, EBUS-TBNA offers significant advantages, including 
reduced invasiveness and fewer complications (35). However, while 
EBUS-TBNA demonstrates high diagnostic accuracy for malignancies, 
its utility in infectious diseases is limited. These limitations primarily 
stem from the small tissue sample volume obtained, which may 
compromise microbial culture yield, and the potential risk of rare 
postoperative mediastinal infections (e.g., mediastinal abscess due to 
bronchial wall microperforation) (35, 36). To enhance its diagnostic 
value in mediastinal infections, researchers have developed modified 
techniques. EBUS-TBNA demonstrates superior diagnostic yield for 
mediastinal malignancies such as lymphoma (sensitivity >89%), 
followed by infection diseases (9.9%) (37). However, in infectious 
mediastinal pathologies (e.g., granulomatous infections), current 
evidence remains limited to small retrospective series. Its use should 
therefore be  considered investigational, reserved for cases where 
conventional microbiological sampling fails to establish a diagnosis 
(37). Research has found that in addition to its high safety profile, 
EBUS-TMC achieves a diagnostic accuracy rate of 89.59% (38), and 
EBUS-guided transbronchial forceps biopsy as a complementary 
method for increased tissue yield. Beyond diagnosis, EBUS-TBNA 
holds therapeutic potential for drainage (39). EBUS-TMC 
demonstrates superior diagnostic performance for rare mediastinal 
diseases. However, its procedure requires adjunctive cryobiopsy 
techniques, demands greater operator expertise, and relies on 
specialized equipment, potentially limiting its adoption in resource-
limited settings (3, 40).

4 Limitations of traditional 
interventions

4.1 Challenges of antibiotic therapy in 
mediastinal infections

The effective management of mediastinal infections with 
antibiotics faces several significant challenges. Firstly, accurately 

identifying the causative pathogens is difficult due to the deep-
seated location and complex microbial ecology of the 
mediastinum, often necessitating invasive sampling. Moreover, 
achieving adequate antibiotic penetration into infected 
mediastinal tissues and abscesses is frequently suboptimal, leading 
to insufficient drug concentrations at the infection site (41). 
Research showed the concentration of aminoglycosides in 
mediastinal abscess is only 18% of serum (42). Furthermore, the 
increasing prevalence of multidrug-resistant organisms poses a 
substantial therapeutic hurdle (43). Additionally, the formation of 
biofilms on infected tissues or foreign materials significantly 
reduces antibiotic efficacy. Finally, determining the optimal 
duration of therapy remains controversial, as prolonged courses 
carry risks of toxicity and antimicrobial resistance, while 
insufficient duration risks treatment failure; standardized 
regimens are lacking. Therefore, successful antibiotic therapy for 
mediastinal infections requires a multifaceted approach. This 
includes meticulous microbiological diagnosis guided by culture 
and susceptibility testing (when feasible), careful selection of 
agents with optimal penetration profiles (potentially at higher 
doses), consideration of combination therapy for resistant 
pathogens or biofilms, individualized treatment duration based on 
clinical response and infection type, and close monitoring for 
efficacy and adverse effects.

4.2 Indications and limitations of surgical 
debridement

Radical debridement and drainage constitute the cornerstone of 
management for deep mediastinal infections, including mediastinitis, 
particularly when microbiologically confirmed by culture or gross 
intraoperative evidence of infection (7). In fungal mediastinitis post-
cardiac surgery (e.g., Candida/Aspergillus spp.), adjunctive surgical 
intervention alongside systemic antifungals is essential—despite 
mortality rates approaching 60% in immunocompromised cohorts, 
with survival favoring younger patients (<50 years), those with lower 
BMI (<25), and non-septic presentations (6). Similarly, bacterial 
mediastinitis (notably Staphylococcus aureus) carries a grave 
prognosis, exacerbated by methicillin resistance (9). For infections 
without septicemia, encapsulated foci warrant surgical debridement 
if persistent after 48 h of appropriate antibiotics (e.g., <50% CRP 
decline) (9). Conversely, conservative management remains first-line 
for: (1) superficial sternal wounds, (2) non-necrotizing mediastinal 
lymphadenitis, and (3) chronic fibrosing mediastinitis, barring 
disease progression.

Anterior mediastinal infections invading critical structures (e.g., 
right ventricle, coronary vasculature) often preclude radical resection 
due to inseparable adherence, necessitating image-guided drainage 
and targeted therapy. Concurrently, sternal osteomyelitis with 
mediastinal extension faces technical constraints, where negative-
pressure wound therapy bridges staged reconstruction. VAC therapy 
dominates conventional drainage, providing superior clinical 
outcomes: 39% reduction in reoperation needs, 34% shorter ICU stays 
and 62% lower readmission rates for recurrent infections. In prior 
mediastinal radiotherapy recipients—where tissue friability and 
impaired healing amplify surgical risks—endoscopic approaches may 
offer superior safety over open procedures (44).
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5 Advances in minimally invasive 
management of mediastinitis

5.1 Bronchoscopic therapeutic techniques

Bronchoscopy enables transbronchial access to mediastinal lesions 
via EBUS-guided needle aspiration or transparenchymal navigation, 
providing samples for pathology and microbiology. Furthermore 
bronchoscopy facilitates targeted local drug delivery (e.g., 
vasoconstrictors, antifibrinolytics) to control bleeding or infection (45), 
and the local instillation of antifungal agents (such as amphotericin B) 
for refractory mediastinal infections (46). Despite its minimally invasive 
advantages, several important considerations apply. Firstly, international 
guidelines have not yet established consensus regarding its application in 
severe respiratory infections. Secondly, MDT collaboration is essential 
for appropriate patient selection and indication assessment. Finally, a 
high index of suspicion remains crucial for Aspergillus-related 
mediastinal abscesses, even in immunocompetent patients. While 
valuable for diagnosis and some specific therapeutic applications within 
the airways, its role as a primary therapeutic tool for deep mediastinal 
infections remains unproven and should be  considered highly 
investigational outside specific, carefully documented cases.

5.2 Application of thoracoscopic drainage

Video-assisted thoracoscopic surgery (VATS) for mediastinal 
procedures offers advantages of relative simplicity and minimal 
invasiveness. Compared with traditional surgery, VATS is associated with 
significantly reduced intraoperative blood loss (p  < 0.001), fewer 
postoperative complications (p = 0.048), and shorter durations of chest 
tube drainage and hospital stay (p < 0.001) (47). Additionally, VATS 
drainage reduces the risk of accidental chest tube displacement (3.9% vs. 
10.1%), thereby lowering the risk of treatment failure (48). The key 
technical advantage of VATS lies in its ability to achieve adequate 
debridement and drainage of the mediastinum and pleural cavity 
through small incisions, making it particularly valuable for deep-seated 
infections or complex cases complicated by empyema. However, 
important limitations still exist. VATS can be  restricted by poor 
visualization and limited working space in cases of extensive adhesions 
or major vascular involvement within complex mediastinal infections. 
Therefore, prudent selection of VATS or consideration of hybrid 
procedures (combining VATS with limited open access) is recommended 
for such challenging scenarios.

While VATS is undoubtedly a valuable tool, its application in the 
complex mediastinum requires careful patient selection by experienced 
surgeons, with a clear understanding that its benefits are maximized in 
suitable cases and may be significantly reduced or negated in the very 
scenarios (extensive adhesions, major vascular involvement) where deep 
infections often present.

5.3 Application of the sternocleidomastoid 
(SCM) flap in mediastinal infection 
management

The SCM flap is a valuable option for reconstruction following 
extensive mediastinal surgery due to its anatomical proximity to the 
mediastinum and relative technical ease of harvest. Evidence supports 

that flap reconstruction (including the SCM flap) significantly reduces 
infection rates post-mediastinal surgery. For instance, a study involving 
high-risk patients demonstrated a statistically significant reduction in 
infection rates (p < 0.05) in the flap reconstruction group compared to 
the non-flap group, despite a higher proportion of patients in the flap 
group having undergone radiotherapy (49). Moreover, the SCM flap, 
particularly when combined with negative pressure wound therapy, has 
proven effective as a bridging therapy in the management of deep sternal 
wound infections (50). While historical concerns existed regarding the 
vascular reliability of the SCM flap, its efficacy in mediastinal 
reconstruction is now well-established. However, for complex deep 
infections involving large dead spaces, the SCM flap often requires 
supplementation with larger flaps such as the omental or pectoralis 
major flap for adequate coverage. Should flap necrosis occur, salvage 
reconstruction using free tissue transfer is a viable option. While the 
SCM flap is indeed a valuable tool in the reconstructive armamentarium, 
its presentation here leans toward over-optimism by underplaying its 
drawbacks and over-interpreting the cited evidence concerning its 
specific contribution to infection reduction.

5.4 Local antifungal irrigation

Local irrigation following surgical debridement offers a potential 
solution by removing necrotic tissue and enhancing drug penetration, 
particularly in poorly vascularized abscess regions (51). Evidence 
suggests specific antifungal combinations may be beneficial: Liposomal 
amphotericin B combined with flucytosine is the preferred regimen for 
central nervous system infections and may also be applicable to cases 
with mediastinal extension (52). Furthermore, triple-drug therapy 
(amphotericin B + posaconazole + flucytosine) has demonstrated 
significantly improved survival in Cladophialophora bantiana infections, 
highlighting the value of combination regimens for refractory 
mediastinal infections (52). Therefore, local antifungal irrigation holds 
promise as an adjunctive therapy to surgical intervention and systemic 
treatment in mediastinal infections. However, its clinical application 
necessitates further investigation to validate optimal protocols (including 
agent selection, irrigation concentration/frequency) and synergistic 
effects with systemic antifungals (53). Local irrigation (e.g., voriconazole 
nanomicelles) is suitable for superficial infections, but exhibits limited 
penetration into deep-seated mediastinal infections (such as fungal 
mediastinitis post-cardiac surgery), often necessitating adjunctive 
systemic therapy (54). However, it significantly overreaches by implying 
promise based on evidence that is either from different anatomical sites 
(CNS) or for specific rare pathogens (C. bantiana), which does not 
directly support efficacy in the mediastinum for common fungi. The 
critical limitations regarding penetration depth, lack of protocol 
standardization, unproven synergy, potential risks, and the lack of direct 
clinical evidence for mediastinal irrigation efficacy are substantial.

5.5 Nanocarrier-based targeted drug delivery

Nanocarriers offer a promising strategy for targeted drug delivery in 
mediastinal infections by penetrating complex tissue barriers (such as 
fibrotic or inflamed mediastinal regions) to transport therapeutic agents 
directly to deep-seated infectious foci (55). Crucially, specific nanocarrier 
designs demonstrate potent antimicrobial effects. Preclinical study 
demonstrated that inhalable chitosan-fusogenic nanocarriers (CFusoN) 
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achieve 99.9% bactericidal efficiency in vitro against biofilm-embedded 
MRSA (56). Targeted delivery via nanocarriers enables reduced antibiotic 
dosing and mitigates resistance risks (57). Furthermore, inhalable 
nanocarriers (e.g., liposomes, polymeric nanoparticles) enable the direct 
delivery of drugs to the mediastinum via the respiratory tract, 
significantly reducing the risk of systemic toxicity (58). However, despite 
their considerable potential in managing mediastinal infections, key 
challenges must be addressed before widespread clinical adoption. These 
include mitigating the impact of the protein corona effect, optimizing 
scale-up manufacturing processes, and facilitating successful clinical 
translation. The long-term safety profile of amphotericin B (AmB) 
nanocarriers warrants further validation, while susceptibility of certain 
pathogens (e.g., Candida spp.) to lipid-based formulations remains 
suboptimal (59, 60). Although CFusoN has a 99.9% bactericidal rate 
against MRSA biofilm in vitro, in vivo mediastinal infection models show 
that mediastinal fibrotic tissue reduces nanoparticle diffusion efficiency, 
resulting in a clinical remission rate of only 48%. In addition, 
nanocarriers may accelerate drug resistance evolution.

6 Future research progress

6.1 Potential of artificial intelligence (AI)-
assisted diagnosis in mediastinal infections

AI enhances diagnostic efficiency while rigorously preserving 
patient privacy (61). Notably, these systems utilize deep learning models 
to achieve precise segmentation and classification of mediastinal lesions, 
demonstrating strong generalizability in multi-center validation studies. 
A retrospective, sequential, multireader, multicase study indicates that 
AI assistance significantly improves diagnostic quality by increasing the 
sensitivity of mediastinal abnormality detection from 84.3 to 90.8% (62). 
Artificial intelligence research has the advantages of high data 
standardization, clear commercial value, and strong technology 
compatibility in tumor diagnosis. On the contrary, the application of 
AI-assisted diagnosis in mediastinal infection is still lacking. The main 
causes may be fragmented cases with high heterogeneity of mediastinal 
infections, rapid dynamic changes, and reliance on the gold standard for 
invasive procedures.

Although AI-assisted diagnosis for mediastinal infections remains 
an understudied field, its technical foundation has begun to emerge: 
successful developments in dynamic imaging analysis models for 
pneumonia, and surgical infection monitoring tools have established a 
robust methodological framework for dedicated AI systems targeting 
mediastinal infections (63). Future breakthroughs should prioritize 
dynamic pathological modeling as the core focus, supported by 
multicenter data ecosystem development, ultimately enabling the 
transition from reactive diagnosis to proactive intervention.

6.2 Advancements in molecular diagnostic 
technologies

CRISPR-Cas systems represent the next generation of molecular 
diagnostics. Their advantages, including high specificity, isothermal 
operation, absolute quantitation, rapid detection, and applicability to 
universal DNA/RNA targets, position them as transformative platforms 
(64). Furthermore, overcoming diagnostic challenges posed by 
microbiome interference requires integrating pathogen detection with 

analysis of the host immune response (e.g., transcriptomic profiling, 
immune function assays). Portable integrated platforms, exemplified by 
“lab-on-a-disk” magnetic digital microfluidics, enable fully automated 
sample-to-answer processing, making them suitable for point-of-care or 
emergency settings (65). Addressing false negatives arising from genomic 
variations (e.g., mutations in primer-targeted regions) necessitates 
developing detection methods independent of primer conservation and 
utilizing whole-genome sequencing to monitor escape variants. Finally, 
the convergence of emerging technologies  – such as lipidomics, 
transcriptome analysis, and infrared molecular fingerprinting – holds 
promise for discovering novel diagnostic biomarkers and advancing 
personalized diagnostics.

7 Conclusion

Mediastinal infections carry a high mortality rate, and their 
diagnosis and treatment face three major challenges: difficulty in 
pathogen diagnosis; prominent therapeutic bottlenecks; limitations of 
conventional techniques. Current breakthroughs lie in: (1) mNGS 
technology significantly improving pathogen detection rate and 
timeliness; (2) Innovations in minimally invasive techniques; (3) 
Targeted drug delivery systems. The future requires integrating predictive 
AI modeling and CRISPR-based molecular diagnostics to enable 
precision interventions.
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