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Serum VEGF and ANGPT1 as
angiogenesis markers may predict
the outcomes of older adults with
hip fractures

Yuan Yao, Yachang Xing, Zhibang Zhao, Wenliang Fan and
Qingbo Chu*

Emergency Trauma Center, Nanyang Second People’s Hospital, Nanyang, Henan, China

Objective: This study aims to investigate the potential of serum Vascular
Endothelial Growth Factor (VEGF) and Angiopoietin 1 (ANGPT1) as angiogenesis
markers to predict the outcomes of older adults with hip fractures.

Methods: An observational study was conducted at the Emergency Trauma
Center of Nanyang Second People’s Hospital. Serum VEGF and ANGPT1 were
measured on the first morning after surgery. Patients were followed up for 1 year
to assess survival status and the ability to walk freely at 3, 6, and 12 months
post-surgery. Receiver operating characteristic (ROC) curves were constructed
to determine the predictive power of these markers, and propensity score
matching (PSM) was performed to account for confounding factors. Multivariate
Cox regression and logistic regression models were used to further analyze the
prognostic roles of these markers.

Results: The study cohort included 380 patients, with a mean age of
7571 + 8.58 years and a mortality rate of 17.11% within 1 year. Kaplan—Meier
survival analysis revealed that low levels of VEGF and ANGPT1 were significantly
associated with decreased survival probability. Multivariate Cox regression
models indicated that low VEGF and ANGPT1 were independent risk factors for
one-year mortality, while ANGPT2 did not show significant prognostic value.
Conclusion: Elevated serum levels of VEGF and ANGPT1 are associated
with improved outcomes in older adults with hip fractures, highlighting the
importance of angiogenesis in fracture healing.
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Introduction

Hip fractures are a major health concern among older adults (1). These fractures are
primarily caused by falls or low-impact trauma and are often associated with age-related bone
density reduction, osteoporosis, and underlying health conditions (2). The mortality rate
within 1 year following a hip fracture or surgery ranges from 17 to 25% (2, 3). Most of these
deaths are due to complications during fracture healing, such as pneumonia, pressure ulcers,
and thromboembolism (4). Identifying risk factors for hip fracture prognosis is crucial for
improving patient outcomes and reducing mortality rates (5). This is not only important for
guiding clinical interventions and resource allocation, but also for developing effective
prevention and treatment strategies.
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Bone healing is a complex and dynamic process that involves
multiple stages, including inflammation, repair, and remodeling (6). In
the case of hip fractures, the process of bone healing is particularly
critical due to the weight-bearing nature of the hip joint and the
potential for complications such as nonunion or delayed union (7). The
inflammatory phase initiates the healing cascade, with the formation of
a hematoma and the recruitment of inflammatory cells to the site of
injury (8). This is followed by the repair phase, during which granulation
tissue forms and osteoblasts begin to produce new bone matrix. Finally,
the remodeling phase continues for months to years, during which
woven bone is converted into lamellar bone. Angiogenesis plays a vital
role in this process by providing necessary nutrients and oxygen to the
healing site and removing metabolic waste, thereby promoting the
proliferation and differentiation of osteoblasts and the formation of new
bone tissue (9, 10). However, if the process of fracture healing is
disrupted, it may lead to various complications, which in turn affect the
functional recovery and quality of life of patients.

Previous studies have found that angiogenesis-related markers are
elevated following hip fractures, which may be a compensatory
response of the body (11). Individual differences in angiogenesis
markers may have the potential to predict the prognosis of hip
fractures. In this study, we selected Vascular Endothelial Growth
Factor (VEGF), Angiopoietin 1 (ANGPT1), and Angiopoietin 2
(ANGPT2) as angiogenesis markers and followed up on elderly
patients after hip fracture surgery to verify their predictive power
for outcomes.

VEGEF is rapidly up-regulated by hypoxia-inducible factors in the
fracture hematoma, where it triggers endothelial proliferation and
directs capillary ingrowth. ANGPT1, secreted by peri-vascular cells,
subsequently binds Tie-2 receptors to stabilize nascent vessels, reduce
permeability, and prevent endothelial apoptosis (12). This VEGF-
ANGPT1 sequence converts fragile capillary sprouts into a mature,
perfused network that delivers oxygen and anabolic factors required
for osteoblast differentiation and mineral deposition (13). Disruption
of either signal impairs neovascularization and is associated with
delayed union, non-union, and increased post-operative mortality
(14). By quantifying these specific ligands, we therefore aimed to
capture the functional integrity of the angiogenic response and test
whether circulating levels forecast long-term survival and mobility
after hip fracture.

We hypothesize that these markers may serve as valuable indicators
for assessing the risk of adverse outcomes in hip fracture patients. By
understanding the role of angiogenesis in fracture healing and the
potential predictive value of these markers, we aim to provide a scientific
basis for early intervention and improved patient management. This
research not only contributes to the understanding of the biological
mechanisms underlying fracture healing but also offers a practical
approach to enhance the prognosis of hip fracture patients.

Methods
Study design

This study was carried out as an observational investigation at the
Emergency Trauma Center of Nanyang Second People’s Hospital,

Nanyang, Henan Province, China. The research complied with the
ethical principles outlined in the Declaration of Helsinki and received
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approval from the Ethics Committee of Nanyang Second People’s
Hospital (ID: 2020 Research Review No. 13). The study cohort
consisted of older patients with hip fractures admitted to our
department from January 2021 to January 2023. Eligibility for
inclusion required patients to meet the following criteria: a. aged
60 years or older; b. low-energy fractures; c. provision of informed
consent. Patients were excluded if they had: a. pathological fractures;
b. no surgical procedures conducted; c. loss to follow up; d. unavailable
data. After applying the inclusion and exclusion criteria, the final
study group was established (Figure 1). Robust protocols were put in
place to ensure patient confidentiality, and all participants provided
explicit written consent prior to their involvement in the study.

Baseline data

The baseline characteristics of participants were obtained from
our hospital’s electronic medical records. These included age, sex,
BMLI, fracture history, and smoking and alcohol use history, as well as
comorbidities, electrocardiogram findings, and chest X-ray results.
The Charlson comorbidity index (CCI) was calculated to assess the
impact of comorbid conditions (15). Upon admission, RBC, Hb, GLU,
and ALB levels were measured in the laboratory department using
routine hospital equipment (Sysmex XE-2100, Kehua Bio-engineering
Co., Ltd., Shanghai, China; TBA-120FR, Toshiba Co., Ltd., Tokyo,
Japan), with data recorded in the electronic medical records.

Elisa

Serum VEGE, ANGPT1, and ANGPT?2 were measured on the first
morning after the surgery using a human VEGF ELISA kit (PV963,
Beyotime), ANGPT1 ELISA kit (JL10166-96 T, Jonlnbio), and ANGPT2
ELISA kit (JL10504-96 T, Jonlnbio) following the manufacturer’s
protocols. Briefly, blood samples from participants were collected and
processed following the kit’s instructions to ensure they were free from
contaminants that could interfere with the assay. The samples were
added to antibody-coated plates. After incubation and washing, bound
VEGE ANGPT1, and ANGPT?2 were detected using HRP-conjugated
antibodies and a colorimetric substrate. The absorbance was measured,
and the concentrations of these markers were determined from a
standard curve constructed with known concentrations of VEGE
ANGPTI, and ANGPT2. Laboratory staff performing the assays were
blinded to all clinical outcomes and survival data.

Follow-up and outcomes

Patients were followed up for a duration of 1 year. For those who
regularly attended our outpatient clinic, their health status was
recorded by our medical staff. As for other patients, we conducted
follow-up via telephone. In our study, survival time was defined as the
interval from the date of surgery to the date of death due to any disease.
Patients who survived for over 1 year were categorized as censored
data. Patients who could independently perform daily activities without
assistance were considered to have the ability to walk freely. The
outcomes under investigation in this study included survival status and
the ability to walk freely at 3 months, 6 months, and 1 year post-surgery.
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admitted to our department
between January 2021 and
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Loss to follow up (n=49)
Individuals enrolled (n=380) Unavailable data (n=81)
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FIGURE 1
Flowchart of our study.

Statistical analyses

Continuous variables are expressed as mean * standard deviation,
and categorical variables as counts with percentages. For continuous
variables, data following a normal distribution were analyzed using
independent Student’s t-tests, while non-normally distributed data
were assessed with Wilcoxon rank-sum tests. Categorical variables were
examined using Chi-squared tests or Fisher’s exact test, as appropriate.

Baseline characteristics of patients grouped by one-year survival
status were summarized and compared. Then, a 1:1 propensity score
matching (PSM) with a caliper of 0.2 was performed to reduce the
influence of confounding factors. Post-matching baseline features
were also re-examined to ensure comparability between groups.
Receiver operating characteristic (ROC) curves were established to
assess the role of each marker in outcomes of hip fractures and identify
the optimal cutoff values based on the Youden index. Patients were
grouped into normal and high marker levels according to these
cutoffs, and outcomes were compared between these groups. Cox and
Logistic regression models were constructed to further elucidate the
predictive roles of VEGE, ANGPT1, and ANGPT?2 while accounting
for co-variables. A p value of less than 0.05 was considered significant.
All statistical analyses were conducted using R software version 4.2.2
(R Foundation for Statistical Computing, Vienna, Austria).

Results
General characteristics

Ultimately, 380 patients were enrolled, of whom 65 died within
1 year. The baseline characteristics of populations before and after PSM
were summarized in Table 1 and Supplementary Table 1. Among all the
patients, 250 (65.79%) were female and 130 (34.21%) were male; the
average age was 75.71 + 8.58 years, with a BMI of 21.91 + 4.31. Two
hundred and five patients (53.95%) had femoral neck fractures, while
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175 patients (46.05%) had intertrochanteric fractures. When comparing
the baseline characteristics between patients who died within 1 year and
survivors, significant differences were found in age, sex, and GLU levels
(Table 1), prompting the use of propensity score matching (PSM). After
PSM, 124 patients (62 pairs) were included, and no significant differences
were observed in their baseline characteristics (Supplementary Table 1).

Predictive abilities of angiogenesis markers

To further elucidate the predictive capacity of angiogenesis markers,
we constructed ROC curves to assess the ability of VEGE, ANGPT1, and
ANGPT2 to predict one-year mortality and free walking ability
(Figure 2). In the unmatched cohort, the areas under the ROC curve
(AUROC) for one-year mortality were 0.587 for VEGE 0.705 for
ANGPT1, and 0.536 for ANGPT2 (Figure 2A). For one-year free
walking ability, the AUROC values were 0.587 for VEGE, 0.509 for
ANGPT1, and 0.610 for ANGPT?2. Similarly, in the matched cohort, the
AUROC values for one-year mortality were 0.580 for VEGE, 0.742 for
ANGPT1, and 0.529 for ANGPT2, while for free walking ability, the
values were 0.535 for VEGE, 0.612 for ANGPT1, and 0.528 for ANGPT2.
Based on the ROC curves and Youden index in the matched population,
we determined the optimal cutoff values for these markers. VEGF levels
below 181.55 pg./mL were classified as low VEGE, ANGPT1 levels
below 32.72 ng/mL were classified as low ANGPT1, and ANGPT2 levels
below 2.22 ng/mL were classified as low ANGPT2.

Outcomes

To further investigate the predictive capacity of angiogenesis markers,
we divided the population into groups based on the cutoff values of
VEGE ANGPT1, and ANGPT2. Kaplan-Meier (KM) curves were
constructed (Figure 3). Patients with low VEGF (log-rank p = 0.002) and
low ANGPT1 (log-rank p < 0.001) showed significantly lower survival
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TABLE 1 Baseline characteristics of populations included in our study.

10.3389/fmed.2025.1654448

Variables Unmatched populations (n = 380)
Overall Survival > 1 year Survival < 1 year
(n = 380) (n = 315) (n = 65)

Age (years) 75.71 £ 8.58 75.21 + 8.64 78.11 £7.88 0.011
BMI (kg/m?) 2191 £4.31 21.95+4.39 21.68 £3.92 0.678
Sex (female) 250 (65.79%) 217 (68.89%) 33 (50.77%) 0.005
Fractures history (yes) 46 (12.11%) 37 (11.75%) 9 (13.85%) 0.636
Smoking history (yes) 39 (10.26%) 34 (10.79%) 5 (7.69%) 0.453
Alcoholism history (yes) 24 (6.32%) 17 (5.40%) 7 (10.77%) 0.18
Location of fracture (femoral neck) 205 (53.95%) 164 (52.06%) 41 (63.08%) 0.105
Surgical procedures (arthroplasty) 189 (49.74%) 151 (47.94%) 38 (58.46%) 0.122
Anesthesia (spinal) 4 (1.05%) 4 (1.27%) 0(0.00%) >0.999
CClI score (>4) 90 (23.68%) 73 (23.17%) 17 (26.15%) 0.607
Electrocardiogram (abnormal) 216 (56.84%) 180 (57.14%) 36 (55.38%) 0.794
Chest radiograph (abnormal) 191 (50.26%) 159 (50.48%) 32 (49.23%) 0.855
Hypertension (yes) 225 (59.21%) 191 (60.63%) 34 (52.31%) 0.214
Polytrauma (yes) 55+ 14.47 42 +13.33 13 +20.00 0.164
Time from injury to surgery (Days) 4.89 +0.94 4.88 +0.93 4.92+0.97 0.502
RBC (10A12/L) 4.63 £0.71 4.65 £ 0.70 4.53 £0.78 0.315
Hb (g/L) 96.93 + 15.07 96.64 + 14.85 98.35 £ 16.09 0.371
ALB (g/L) 38.08 +£8.78 38.04 £8.78 38.27 £ 8.86 0.887
GLU (mmol/L) 6.36+1.43 6.43 +1.41 6.03 £1.49 0.038
VEGF (pg/mL) 159.36 + 55.25 162.20 + 56.85 145.58 + 44.56 0.027
ANGPT1 (ng/mL) 31.01 £12.84 32.61 £12.43 23.25+12.03 <0.001
ANGPT2 (ng/mL) 3.35+1.05 338+1.10 3.19+0.78 0.366

Continuous variables were expressed as mean * standard deviation and categorical variables were presented as count (percent). BMI, body mass index; CCI, Charlson comorbidity index; Hb,
Hemoglobin; RBC, red blood count; GLU, blood glucose; ALB, albumin; VEGE, vascular endothelial growth factor; ANGPT1, angiopoietin 1; ANGPT2, angiopoietin 2.

probability than the normal group. No significant difference in mortality
probability was observed between the two groups divided by ANGPT2.
Moreover, the outcomes of patients in different groups were compared.
Consistent with the KM curves, low VEGF and ANGPT1 were associated
with low 6-month (VEGF p = 0.001, ANGPT1 p < 0.001; Table 2) and
1-year (VEGF p = 0.002, ANGPT1 p < 0.001, Table 2) mortality rates, but
not with free walking ability. ANGPT2 showed no significant association
with any of the outcomes (Supplementary Table 2).

Multivariate analyses

To further reduce bias from confounding variables, we established
multivariable models. Initially, we conducted univariate Cox regression
(Supplementary Table 3) to examine the relationship between each
variable and mortality risk. Variables significant in univariate analysis
were included in the multivariable Cox regression. Both continuous and
dichotomized forms of VEGF and ANGPT1 were significantly associated
with reduced mortality risk in the multivariable model (Table 3), while
ANGPT?2 showed no significant association. Similarly, univariate and
(Table 4;
Supplementary Table 4). Consistent with Cox regression results,
continuous and dichotomized VEGF and ANGPT1 effectively predicted

multivariate logistic ~regression were performed
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6-month and 1-year mortality (Table 3), whereas ANGPT2 did not.
Notably, continuous ANGPT2 was a significant predictor of 6-month and
1-year free walking ability in multivariate models, while VEGF and
ANGPT1 were not.

Discussion

This study aimed to evaluate the prognostic role of angiogenesis
markers, including VEGE, ANGPT1, and ANGPT?2, in older adults
with hip fractures. Our results showed that elevated levels of VEGF
and ANGPT1 were associated with reduced mortality risk, while
ANGPT2 did not exhibit significant predictive value. Notably,
continuous ANGPT?2 levels could predict free walking ability at
6 months and 1 year. These findings highlight the complex roles of
angiogenesis markers in fracture healing and functional recovery.

Angiogenesis, the formation of new blood vessels, is intricately
linked to bone regeneration (16). During bone healing, angiogenesis
supplies the fracture site with essential nutrients and oxygen,
facilitating the survival and function of bone-forming cells like
osteoblasts (17, 18). These new vessels not only nourish the repair site
but also aid in removing debris, supporting the sequential processes
of inflammation, bone formation, and remodeling (19). Furthermore,
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TABLE 2 Outcomes of populations grouped by different angiogenesis markers.

Outcomes Overall Normal Low VEGF  p-value Normal Low p-value
VEGF ANGPT1 ANGPT1
(n = 380) (n = 133) (n = 247) (n =180) (n =200)
3-month mortality 9 (2.37%) 1(0.75%) 8 (3.24%) 0.243 0 (0.00%) 9 (4.50%) 0.011
6-month mortality 29 (7.63%) 2 (1.50%) 27 (10.93%) 0.001 4(2.22%) 25 (12.50%) <0.001
1-year mortality 65 (17.11%) 12 (9.02%) 53 (21.46%) 0.002 10 (5.56%) 55 (27.50%) <0.001
3-month free walking rate 90 (23.68%) 32 (24.06%) 58 (23.48%) 0.899 49 (27.22%) 41 (20.50%) 0.124
6-month free walking rate 219 (57.63%) 69 (51.88%) 150 (60.73%) 0.096 106 (58.89%) 113 (56.50%) 0.638
1-year free walking rate 289 (76.05%) 98 (73.68%) 191 (77.33%) 0427 143 (79.44%) 146 (73.00%) 0.142

VEGE, vascular endothelial growth factor; ANGPT1, angiopoietin 1; ANGPT2, angiopoietin 2.

TABLE 3 Cox models of different angiogenesis markers for 1-year survival.

Variables

HR (95% Cl)

Univariate model

Multivariate model
HR (95% CI)

VEGF (continuous) 0.995 [0.990, 0.999] 0.021 0.995 [0.990, 0.999] 0.03

ANGPT1 (continuous) 0.950 [0.933, 0.968] <0.001 0.947 [0.928, 0.965] <0.001
ANGPT?2 (continuous) 0.859 [0.673, 1.096] 0.221 0.862 [0.675, 1.101] 0.235
Low VEGF 2.616 [1.398, 4.896] 0.003 2.646 [1.410, 4.968] 0.002
Low ANGPT1 5.641 [2.875, 11.068] <0.001 5.756 [2.932, 11.299] <0.001
Low ANGPT2 0.511 [0.205, 1.271] 0.149 0.511 [0.205, 1.277] 0.151

VEGE, vascular endothelial growth factor; ANGPT1, angiopoietin 1; ANGPT2, angiopoietin 2.

TABLE 4 Logistics models of different angiogenesis markers for 6-month and 1-year survival and free walking ability.

Variables 6-month mortality 1-year mortality 6-month free 1-year free walking
walking ability ability

OR (95% CI) p OR (95% Cl) P OR (95% Cl) P OR (95% Cl) P
VEGE (continuous) 0.987 [0.979, 0.995] 0.002 0.994 [0.989, 0.999] 0.03 | 0.997[0.993,1.000] | 0.073 0.998 [0.994, 1.002] 0.366
ANGPT1 (continuous) 0.945[0.915,0.974]  <0.001 0.937 [0.914, 0.959] <0.001 | 1.003[0.987,1.019] | 0.719 1.009 [0.990, 1.028] 0.34
ANGPT?2 (continuous) 1.092 [0.753, 1.548] 0.628 0.823 [0.617, 1.080] 0172 | 1311[1.071,1.617]  0.01 1639 [1.262,2.171]  <0.001
Low VEGF 10.234 [2.870, 66.055]  0.002 2.934 [1.525, 6.065] 0.002 | 1.434[0.935,2.202] | 0.098 1.214[0.733, 1.993] 0.446
Low ANGPT1 6.276 [2.349,21.815] | 0.001 6.980 [3.512,15.255]  <0.001  0.908 [0.602, 1.367] | 0.643 0.711 [0.435, 1.151] 0.168
Low ANGPT2 0.473 [0.074, 1.686] 0.323 0.489 [0.162, 1.202] 0.154 | 0.818[0.451,1.491] | 0.507 0.692 [0.364, 1.363] 0272

VEGE, vascular endothelial growth factor; ANGPT1, angiopoietin 1; ANGPT2, angiopoietin 2.

the cross-talk between angiogenesis and osteogenesis is underscored
by the presence of shared signaling pathways and cellular interactions
(20). Conversely, bone matrix components can influence vascular
stability and function (21). This dynamic interplay between
angiogenesis and bone regeneration is crucial for the efficient healing
of fractures and the restoration of bone integrity. In hip fractures, the
formation of new blood vessels is essential for removing debris and
supporting bone regeneration (22).

VEGF plays a critical role in bone healing by promoting
angiogenesis, which is essential for the repair and regeneration of bone
tissue (23). During the inflammatory phase of bone healing, VEGF is
concentrated in the fracture hematoma and is induced by hypoxia (16).
It facilitates the release of neutrophils from bone marrow into the
circulation and their recruitment to the injury site (24). Furthermore,
VEGEF is involved in the recruitment of macrophages and the
stimulation of angiogenesis, which are crucial for the repair process
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(25). Our study found that VEGF levels were associated with reduced
mortality risk, consistent with prior research indicating that adequate
VEGF levels are crucial for effective fracture healing. However, the lack
of association between VEGF and functional outcomes suggests that
while VEGF influences survival, its role in functional recovery may
be limited or mediated by other factors.

ANGPT1 was also found to be associated with reduced mortality
risk in our study. ANGPT1 is essential for the stabilization of newly
formed blood vessels during the bone healing process (26). It interacts
with the Tie2 receptor on endothelial cells, promoting cell-cell
adhesion, reducing vascular permeability, and increasing the
osteogenesis ability (27). This helps to form a stable vascular network
that supports nutrient and oxygen delivery to the fracture site (26).
ANGPT1 works in concert with other angiogenic factors like VEGF
(28). While VEGF drives the initial sprouting of new blood vessels,
ANGPTT helps to organize and limit the angiogenic response, ensuring
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that the new vessels are functional and integrated into the existing
vascular network (14, 29). This balance is crucial for efficient bone
repair. “Mechanistically, ANGPT1 constitutively activates Tie-2 on
endothelial cells, tightening cell-cell junctions and reducing vascular
permeability. During fracture healing this stabilizes the immature
neovasculature generated by VEGE, thereby sustaining nutrient delivery
at the hematoma-bone interface (26). Because ANGPT1 is released
primarily by peri-vascular cells, its circulating level may mirror the
global integrity of the revascularization scaffold more closely than
VEGE which is transiently abundant in the inflammatory hematoma
(14, 27, 29) This autocrine stabilizing function could explain why
ANGPT1 showed superior discriminative performance for long-term
survival in our ROC models.

Unlike ANGPT1, continuous or dichotomized ANGPT2 was not
associated with survival in either Cox or logistic models. This neutral
prognostic effect may reflect the context-dependent, bidirectional
activity of ANGPT2. Mechanistically, ANGPT2 is stored in Weibel-
Palade bodies of endothelial cells and is rapidly released upon
stimulation by hypoxia, inflammatory cytokines, or mechanical stress
at the fracture site (30). Once released, ANGPT2 forms oligomers that
can either stabilize or destabilize vessels depending on the local VEGF
concentration (31). ANGPT2 interacts with the TIE2 receptor and plays
a complex role in bone healing (32, 33). At high concentrations,
ANGPT?2 can both activate and inhibit TIE2 (34, 35). It can induce
TEK/TIE2 tyrosine phosphorylation even in the absence of ANGPT1,
thereby activating the PI3K p85 subunit and Akt phosphorylation at
Ser473 (36-38). This process promotes cell survival and proliferation
(39). However, in the absence of angiogenesis inducers like VEGE,
ANGPT2 may induce endothelial cell apoptosis and vascular regression
by loosening cell-matrix contacts (35, 40-42). When acting
synergistically with VEGE, ANGPT2 promotes endothelial cell
migration and proliferation, serving as a permissive angiogenic signal
and participating in lymphangiogenesis regulation (40, 41). During
bone healing, ANGPT2 helps regulate the balance between angiogenesis
and vascular regression, influencing the formation and stability of blood
vessels at the fracture site (32, 33). This affects nutrient and oxygen
supply to healing bone tissue, ultimately impacting bone regeneration.

Our cohort reflects the standardized peri-operative pathway
implemented at Nanyang Second People’s Hospital, which may explain
the lower mean BMI (21.9kgm™) and 17% one-year mortality
compared with many Western registries. All patients underwent surgery
within 48 h of admission (median 24 h), received spinal or combined
anesthesia, and were mobilized by a physiotherapist on the first post-
operative day. Early discharge (median length of stay 5 days) to
community hospitals or home with ongoing nurse-led care is routine,
and total arthroplasty is preferred for displaced femoral-neck fractures.
These factors—together with lower prevalence of severe obesity and
different discharge destinations—may attenuate post-operative
complications and mortality relative to systems with longer acute-care
stays. While this enhances internal validity, it also limits generalizability;
validation in centers with alternative surgical techniques, delayed
mobilization, or higher-intensity inpatient rehabilitation is
therefore warranted.

Beyond prognostication, post-operative VEGF and ANGPT1 levels
could be integrated into existing orthogeriatric care pathways to
personalize management. Patients with low concentrations might
be prioritized for enhanced nutritional support, tighter anemia
correction, or early referral to aggressive rehabilitation protocols, while
those with markedly depressed ANGPT1 could be considered for
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adjunctive pro-angiogenic strategies. A simple blood sample taken on
the first post-operative morning could therefore serve as a rapid,
low-cost triage tool to flag high-risk individuals before complications
become clinically evident, enabling resource allocation and follow-up
intensity to be tailored to biological, rather than purely
chronological, risk.

Our study has several limitations. First, as an observational study,
we cannot establish causality between angiogenesis markers and patient
outcomes. Second, markers were quantified only once (on the first post-
operative morning), which does not reflect the dynamic fluctuations of
angiogenesis during the inflammatory, reparative, and remodeling
phases. Serial measurements of VEGE, ANGPT1, and ANGPT2 will
be incorporated into our ongoing multicenter protocol to model
individual angiogenic trajectories and their association with hip
fractures. Third, our study focused on short-term outcomes (up to
1 year), and the long-term prognostic value of these markers remains to
be determined. We have therefore extended the follow-up phase of our
future project to 5 years, with scheduled clinical, radiographic, and
functional evaluations at 12, 24, 36, and 60 months to determine the
long-term prognostic value of VEGF and ANGPT!1 for implant survival
and joint function. Fourth, our propensity-score analysis was
constrained to 1:1 matching because 1:2 or 1:3 algorithms within a
0.2-SD caliper left too few controls in the common-support region; this
choice reduced residual confounding but at the price of diminished
sample size and statistical power. Additionally, functional outcome was
recorded as a binary ‘free walking’ variable, which does not capture the
spectrum of disability; standardized instruments such as the Barthel
Index or Harris Hip Score would provide a more comprehensive
assessment. In our future protocol, we would replace the binary
endpoint with the Harris Hip Score and Barthel Index, enabling detailed
evaluation of pain, mobility, and activities of daily living. Finally, the
single-center recruitment from Nanyang Second People’s Hospital may
limit generalizability to other ethnic, nutritional, or health-care settings.
Future multicenter studies involving different geographic regions and
racial groups are required to validate the prognostic thresholds
we report.

In conclusion, our study provides evidence that VEGF and
ANGPT1 may serve as prognostic markers for mortality in older adults
with hip fractures, while ANGPT2 may have a role in predicting
functional recovery. These findings underscore the importance of
angiogenesis in fracture healing and suggest potential targets for
therapeutic intervention. Future research should explore the dynamic
changes in angiogenesis markers during fracture healing and their long-
term prognostic significance.
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