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Personalized prediction model
for scar response after
radionuclide therapy:
development and validation in a
Chinese cohort

Jinzhao Su't, Jingbin Chen?, Tianrong Wang?, Tingwu Song?,
Haibin Xu?!, Shunshun Lin! and Tiansheng Lin'*

!Department of Nuclear Medicine, Fujian Medical University, Union Hospital, Fuzhou, China,
2Physiotherapy Department, Datian County General Hospital, Sanming, Fujian, China

Background: Scarring represents a persistent clinical and psychosocial
challenge, with considerable variability in treatment response among patients.
While both clinical and morphologic factors can influence outcomes, robust,
individualized prediction of scar treatment efficacy remains elusive.

Objective: To develop and validate an integrated predictive model for scar
treatment outcomes using a combination of clinical and image-derived features
in a Chinese cohort, and to translate this model into a web-based calculator for
practical clinical application. This model requires validation in other ethnicities.

Methods: We retrospectively analyzed 117 Chinese patients with scars treated
at a single center, dividing them into a training (n = 83) and validation
cohort (n = 34). Clinical data (including age, scar height) and quantitative
features extracted from standardized scar photographs (solidity and mean
saturation [S_mean]) were used to construct clinical, image-based, and
combined predictive models. Feature selection was performed via LASSO
regression, and models were developed using multivariate logistic regression.
Model performance was evaluated using area under the receiver operating
characteristic curve (AUC), calibration metrics (Brier score, log loss, HL test),
and decision curve analysis (DCA). Net reclassification improvement (NRI) and
integrated discrimination improvement (IDI) were calculated. A user-friendly
web calculator was subsequently developed.

Results: Scar height and age (clinical factors) as well as solidity and
S_mean (image-derived metrics) were identified as independent predictors
of poor treatment outcome. The combined model demonstrated superior
discrimination (AUC 0.970 [training], 0.908 [test]), calibration, and clinical
utility compared to clinical or image-based models alone. Calibration curves
and metrics indicated excellent agreement between predicted and observed
probabilities for the combined model. DCA, NRI, and IDI analyses further
highlighted the incremental value and net benefit of the integrated approach.
A web-based calculator was developed to enable individualized outcome
prediction and support clinical decision-making.

Conclusion: Integration of clinical and image-derived features enables robust,
individualized prediction of scar treatment outcomes in this Chinese cohort. Our
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validated combined model, accessible via an easy-to-use web-based calculator,
may enhance treatment planning, risk stratification, and patient counseling in
scar management. Validation in diverse ethnic populations is essential.
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scars, prediction, image analysis, clinical features, web calculator

Introduction

Scarring represents a significant clinical challenge, affecting

millions worldwide and leading to substantial physical,

psychological, and social morbidity (I, 2). Scars can cause
pain, itching, restricted movement, and disfigurement, impacting
patients’ quality of life and self-esteem (3-5). Current treatment
options for scars are diverse, ranging from topical agents and
minimally invasive procedures to surgical interventions (6-8).
However, the effectiveness of these treatments varies widely, and
predicting individual patient response remains a major challenge
(9-11). Clinical factors such as scar type, location, and patient age
have been shown to influence treatment outcomes (5, 12), but these
factors alone are often insufficient for accurate prediction (13).

The advent of radiomics and image analysis has opened new
avenues for non-invasive assessment of tissue characteristics and
prediction of treatment response in various medical fields (14-
17). Image-derived features can capture subtle morphological
and textural information that is not readily apparent on clinical
examination, potentially providing valuable insights into the
underlying biology of scars and their response to treatment (18, 19).

Despite the growing interest in radiomics, the application
of image analysis to predict scar treatment outcomes remains
limited (20). Few studies have explored the potential of integrating
clinical and image-derived features to improve predictive accuracy.
Furthermore, there is a lack of user-friendly tools to translate these
predictive models into clinical practice.

Therefore, the primary objective of this study was to develop
and validate a predictive model for scar treatment outcomes
based on the integration of clinical and image-derived features
in a Chinese cohort. We hypothesized that a combined model
incorporating both types of data would provide superior predictive
accuracy compared to models based on either clinical or image data
alone. A secondary objective was to develop a web-based calculator
to facilitate the clinical application of our predictive model. By
addressing these objectives, we aim to improve treatment planning
and patient counseling in the management of scars. However, the
findings from this Chinese population require validation in other
ethnicities to ensure broader applicability.

Methods and patients

Study design and patient population

This retrospective study included 117 Chinese patients treated
for scars at Union Hospital, Fujian Medical University between
2020.01.01 and 2024.01.01. The study protocol was approved by
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the Union Hospital, Fujian Medical University Review Board (IRB)
(protocol number: [2024-05-02]) and adhered to the principles
of the Declaration of Helsinki. A waiver of informed consent
was granted due to the retrospective nature of the study and the
anonymized use of patient data.

Patients were eligible for inclusion if they had: (1) a clinical
diagnosis of scar; (2) available clinical data, including age, sex, scar
location, scar etiology, treatment course, and treatment dose; (3)
standardized digital photographs of the scar region taken before
treatment; and (4) documented treatment outcomes (Recovery
vs. Scar) based on clinical assessment at 2025.01.01. Patients
were excluded if they had incomplete clinical data or lacked pre-
treatment photographs (Figure 1).

Treatment protocol

Patients presenting to the outpatient clinic with scars
underwent a comprehensive evaluation by a physician. Treatment
decisions were individualized based on several factors, including
patient age, scar duration, anatomical location, scar thickness, and
prior treatment history. Based on these factors, a treatment dose
ranging from 5 to 30 Gy was prescribed. The specific dose was
selected based on the physician’s clinical judgment, with higher
doses generally reserved for thicker, more recalcitrant scars.

Prior to treatment, all patients provided written informed
consent after a thorough discussion of the risks and benefits
of strontium-90 brachytherapy. Patients were then scheduled for
treatment in the brachytherapy suite.

During treatment planning, a radiation therapist delineated the
target volume, which encompassed the entire scar. For smaller
scars requiring a single field, the surrounding normal skin was
protected with adhesive tape. Larger scars were divided into
multiple treatment fields to ensure uniform coverage.

Treatment was delivered using a strontium-90 ophthalmic
applicator with a 2.5 cm x 2.5 cm active area. The applicator
was placed in direct contact with the scar surface, and the
prescribed dose was administered by controlling the application
time. The reported dose represents the total dose delivered to each
2.5cm x 2.5 cm treatment field.

Outcome assessment

Scar treatment outcomes were assessed at 3, 6, and 12 months
post-treatment by trained evaluators who were blinded to patient
demographics, clinical data, and treatment parameters to reduce
assessment bias. Treatment response was categorized as either
“Recovery” or “Scar” based on a combination of standardized
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Patients assessed for eligibility(n = 142)

Excluded:No pre-treatment

photographs(n = 12)

< Patients included in analysis(n= 117) )

Su et al.
Excluded:Incomplete clinical data
(n=13)
Training set(n=83)
FIGURE 1

Validation set(n=34)

Patient inclusion flow. The patient cohort was randomly divided into a training set (n = 83) and a validation set (n = 34). Baseline characteristics were

compared between the training and validation sets to ensure comparability.

clinical and patient-reported outcomes. To standardize outcome
assessment, the following validated scar assessment scales were
utilized: Patient and Observer Scar Assessment Scale (POSAS)
(21): The POSAS is a widely used scale that combines patient
and observer ratings of scar characteristics, including pain, itching,
color, thickness, and surface area.

Definition of treatment outcomes

Recovery outcome

A reduction of at least 50% in the total POSAS
score from baseline.

Patient satisfaction with the treatment outcome, as indicated by
a score of <30.

Clinical assessment indicating significant improvement in scar
appearance, including reduced thickness, improved color, and

increased pliability.

Scar outcome
Failure to meet the criteria for a “Recovery Outcome.”
Worsening of scar symptoms (e.g., increased pain, itching).
Development of complications (e.g., ulceration, infection).
Patient dissatisfaction with the treatment outcome, as indicated
by a score of >30.

Clinical data collection
Clinical data were extracted from electronic medical records,

including patient demographics (age, sex), height, weight, BMI,
scar characteristics (location, etiology, length, width, height,
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duration), treatment parameters (course, dose), and treatment
outcome (Recovery vs. Scar). Treatment outcome was defined as
“Recovery” and “Scar.”

Image acquisition and feature extraction

Standardized digital photographs of the scar region were
acquired using a Canon EOS 70D digital camera with consistent
lighting and magnification (1:1 macro lens, ISO 200, f/8 aperture).
Images were preprocessed to ensure consistent orientation
and scale using Adobe Photoshop. Regions of interest (ROIs)
encompassing the scar area were manually delineated by a
trained dermatologist blinded to treatment outcomes using Image]
software (version 1.53k, National Institutes of Health, Bethesda,
MD, USA). Image-derived features were extracted from the ROIs
using Python with scikit-image library.

Feature selection and model
development

To identify the most predictive image-derived metrics, Least
Absolute Shrinkage and Selection Operator (LASSO) regression
was performed on the training set using R. The regularization
parameter (A) was selected using 10-fold cross-validation to
minimize the cross-validation error.

Three predictive models were developed:

Clinical Model: Incorporating age and scar height.

Image Model: Incorporating Solidity and S_mean.

Combined Model:
Solidity, and S_mean.

Incorporating age, scar height,
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TABLE 1 All patients information.

Variable

10.3389/fmed.2025.1655302

S ot g Valdaton | Ststic—Pvalue |
0 1

Recovery 81 (69.2%) 57 (68.7%) 24 (70.6%)
Scar 36 (30.8%) 26 (31.3%) 10 (29.4%)
Female 71 (60.7%) 51 (61.4%) 20 (58.8%) 0 0.96
Male 46 (39.3%) 32 (38.6%) 14 (41.2%)
Face 10 (8.5%) 6 (7.2%) 4(11.8%) 1.15 0.56
Arm and leg 17 (14.5%) 11 (13.3%) 6 (17.6%)
Strunk 90 (76.9%) 66 (79.5%) 24 (70.6%) 1.15 0.56
Trauma 6 (5.1%) 5 (6%) 1(2.9%) 2.64 0.27
Operation 21 (17.9%) 12 (14.5%) 9 (26.5%) 2.64 0.27
Unknow 90 (76.9%) 66 (79.5%) 24 (70.6%) 2.64 0.27
Age (year) 27 [23,35] 27 [23, 35] 28 [23, 34.75] 0.12 0.73
Height (m) 1.64 [1.58,1.72] 1.65 [1.58, 1.72] 1.63 [1.58, 1.74] 0.26 0.61
Weight (kg) 56 [50, 62] 56 [50.5, 62] 56.5 [50.25, 65] 0.13 0.72
BMI 20.32 [19.23, 21.88] 20.15 [18.95, 21.95] 21.17 [19.68, 21.76] 0.95 0.33
Course 31[2,5] 31[2,4] 2.5[2,5] 0.09 0.77
Dose (Gy) 80 [60, 120] 85 [60, 120] 62.5 [60, 142.5] 0.27 0.6
Scarlong (mm) 20 [14, 35] 20 [13.5,31] 27 [14, 39.25] 1.39 0.24
Scarshort (mm) 91[6,12] 9[6,12.5] 8[5.25, 11.75] 0.41 0.52
Scarheight (mm) 2[1,3] 2(2,3] 2[1,3] 0.01 0.94
Scartime (month) 60 [24, 120] 48 [24, 114] 60 [19.5, 120] 0 0.96
. B
Univariate Logistic Regression Forest Plot Multivariate Logistic Regression Forest Plot
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FIGURE 2
Forest plots of univariate and multivariate logistic regression analyses for clinical variables in the training set. (A) Univariate analysis showing odds
ratios (OR) with 95% confidence intervals (Cl) for each variable on a log scale (0.01 to 10.00), ordered by increasing OR. Arrows indicate Cls
extending beyond axis limits. Scarheight demonstrates the strongest positive association with poor outcome. (B) Multivariate analysis for selected
variables (p < 0.1 in univariate), with scarheight as the primary risk factor. Log-scaled x-axis (0.01 to 10.00); arrows for extended Cls.

Multivariate logistic regression was used to develop the clinical,
image, and combined models. The models were trained on the
training set and evaluated on the validation set.

Model evaluation and validation

The performance of the models was evaluated using the area
under the receiver operating characteristic curve (AUC), sensitivity,
specificity, positive predictive value (PPV), negative predictive
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value (NPV), and accuracy. Calibration curves were generated to
assess the reliability of the predicted probabilities. The Brier score,
Log Loss, Hosmer-Lemeshow statistic, Mean Squared Error (MSE),
and Mean Absolute Error (MAE) were calculated to quantify
calibration performance.

Decision curve analysis (DCA) was performed to assess the
clinical utility of the models. Net reclassification improvement
(NRI) and integrated discrimination improvement (IDI) were
calculated to quantify the incremental value of adding clinical or

image information to the combined model.
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(A) LASSO cross-validation error vs. log(Lambda) this sub-figure depicts the relationship between the mean cross-validation (CV) error and the
logarithm of the regularization parameter ) in the LASSO regression. The x-axis represents log(\) ranging from — 8 to 7, and the y-axis shows the
mean CV error. The minimum mean CV error occurs at Aminkmin, and 1sel is the largest X within one standard error of the minimum error. This
analysis helps in determining the optimal A that balances model complexity and prediction error. (B) Log lambda vs. coefficients here, we present
how the coefficients of the variables change as log()) varies. As log()\) increases, the coefficients of many variables shrink toward zero. The number
of non-zero coefficients decreases with increasing log(x), demonstrating the variable selection property of the LASSO method. (C) Selected features
and their clinical implications the LASSO regression selected “solidity” and “S_mean” as relevant image features for further analysis. Other features
such as R_std (standard deviation of red - channel pixel values), B_std (standard deviation of blue - channel pixel values), and B_kurtosis (kurtosis of
the blue - channel) were also considered in the initial analysis. R_std and B_std reflect the dispersion of red and blue intensities, respectively, and
higher values may indicate an active or proliferative scar. B_kurtosis describes the sharpness of the blue - channel brightness distribution and can
help identify abnormal scar patterns related to high - density tissue or calcification.
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FIGURE 4

SHAP value (impact on model output)

SHAP Summary plot of feature importance for prediction of scar outcome using random forest. The SHAP beeswarm plot ranks the top four
predictors according to their overall impact on model output. Each point represents an individual case, with horizontal position denoting the SHAP
value (the impact of the variable on the predicted outcome) and color indicating the feature value [from low (blue) to high (red)]. Solidity and
S_mean show negative SHAP values for higher feature values, indicating protective effects against poor outcome. In contrast, higher scar height and
age are associated with increased SHAP values, reflecting greater risk of poor prognosis. These findings confirm the importance and independent
contributions of both image-based and clinical features in predicting scar treatment response.

2 4 6

Web calculator development

A user-friendly web-based calculator was developed using
Python with Streamlit to estimate the probability of treatment
failure based on the combined model.

Statistical analysis

were R4.1.3,

presented

Statistical ~ analyses
and Python3.1.1.
as median

performed
variables  were

(IQR)] and
Categorical

using
Continuous
[interquartile range compared
variables
compared

< 0.05 was considered

using Mann-Whitney U test. were
presented  as (percentages) and

using chi-square test. A p-value

frequencies

statistically significant.
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Result

Basic information in all patients

This study included 117 Chinese patients, with a training set of
83 and a validation set of 34, to evaluate the efficacy of a treatment
for scars. The majority of patients experienced recovery (69.2%),
while 30.8% had persistent scars. The cohort was predominantly
female (60.7%). Most scars were located on the trunk (76.9%), with
a smaller proportion on the face (8.5%) and limbs (14.5%). The
most common cause of scarring was unknown (76.9%), followed
by operation (17.9%) and trauma (5.1%).

The median age of the patients was 27 years [IQR: 23, 35], with
a median height of 1.64 meters [IQR: 1.58, 1.72] and a median
weight of 56 kg [IQR: 50, 62], resulting in a median BMI of
20.32 kg/m2 [IQR: 19.23, 21.88]. The median treatment course
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FIGURE 5

Nomogram for predicting the probability of poor treatment outcome. The nomogram incorporates age, scar height, solidity, and S_mean to predict
the probability of a poor treatment outcome. To use the nomogram, assign points for each variable based on its value, sum the points to obtain a
“total points” score, and then determine the corresponding probability of a poor outcome.
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performance.

ROC curves of different models in training and test cohorts. (A) Training cohort ROC curves the combined model demonstrates the best
performance, with an AUC of 0.970 (95% confidence interval: 0.937-0.997), indicating high accuracy in distinguishing between good and poor scar
prognoses. The clinical model has an AUC of 0.676 (95% Cl: 0.545-0.790), and the image model has an AUC of 0.661 (95% Cl: 0.519-0.802). The
AUC values are accompanied by their respective 95% confidence intervals, providing an indication of the reliability of the model performance.

(B) Test cohort ROC curves the combined model still shows excellent performance, with an AUC of 0.908 (95% ClI: 0.783-1.000). The clinical model
has an AUC of 0.644 (95% Cl: 0.400-0.848), and the image model has an AUC of 0.579 (95% CI: 0.356-0.827). The performance of the combined
model in the test cohort indicates its good generalization ability, while the clinical and image models show relatively lower and less stable
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was 3 sessions [IQR: 2, 5] with a median dose of 80 units [IQR:
60, 120]. The median scar length was 20 mm [IQR: 14, 35], the
median scar width was 9 mm [IQR: 6, 12], and the median scar
height was 2 mm [IQR: 1, 3]. The median duration of the scar was
60 months [IQR: 24, 120].

Statistical analysis revealed no significant differences between
the training and validation sets for any of the baseline

characteristics (all p > 0.05) (Table 1). This suggests that the
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two groups were well-matched and suitable for evaluating the
treatment’s performance.

Information in the training set

To identify potential predictors of treatment outcome (defined
as Recovery vs. Scar) in our Chinese cohort, we performed
univariate analyses on a range of clinical variables within the
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TABLE 2 Performance of different models in training and test cohort.
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The combined model shows superior performance across all metrics compared to clinical or image models alone, with notably higher AUC, sensitivity, and accuracy in both cohorts.
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training set (n = 83) using logistic regression to calculate odds ratios
(OR), 95% confidence intervals (CI), and p-values for each variable.
The results are visualized in a forest plot (Figure 2A). In the
univariate analysis, scar height exhibited the strongest association
with poor treatment outcome, with a high OR indicating increased
risk of scar persistence. Other variables such as sex, course,
scarshort, BMI, age, weight, height, scartime, dose, and scarlong
also showed positive associations (OR > 1), suggesting potential
predictive value. Categorical variables like location (levels 2 and
3), reason (levels 3 and 4) had ORs closer to or below 1,
indicating weaker or protective effects. Notably, scar height, course,
and scarshort appeared as prominent risk factors based on their
distance from the null line (OR = 1).

To determine independent predictors, we performed
multivariate logistic regression, including variables with p < 0.1
from univariate analysis (age, BMI, course, dose, scarlong,
scarshort, scarheight, scartime). The results are shown in Figure 2B.
After adjustment, scar height remained the dominant independent
predictor with a markedly elevated OR, followed by course and age.
Scarshort, scartime, scarlong, dose, and BMI had ORs nearer to 1
or wider ClIs, reflecting reduced independent impact. Consistent
with initial findings, only scar height (high OR, p = 0.001) and age
(OR~1.18, p = 0.003) were statistically significant.

Based on these findings, we incorporated scar height and
age into subsequent analyses to refine our predictive models and
explore interactions with other variables.

LASSO feature selection of
image-derived metrics

To identify the most predictive image-derived metrics for
treatment outcome, we performed LASSO regression on features
extracted from JPG images of the scar region (Figure 3). This
analysis selected two key features: Solidity and S_mean (mean
saturation).

Solidity, defined as the ratio of the scar area to its convex hull
area, reflects the scar’s shape regularity and structural compactness.
A higher solidity suggests a more regular and tightly packed
scar structure. S_mean, representing the average color saturation,
indicates the color concentration within the scar region. Lower
saturation values suggest a more gray or white appearance,
potentially indicative of reduced pigmentation and lower activity.

The LASSO model assigned a negative coefficient to Solidity
and S_mean, suggesting it acts as a protective factor. This implies
that scars with higher solidity and S_mean, indicating a more
regular and compact structure, are associated with better treatment
outcomes. These findings suggest that image analysis can provide
valuable insights into scar characteristics that are predictive of
treatment response. Solidity and S_mean, reflecting structural
integrity and color maturity, respectively, may serve as useful
imaging biomarkers for predicting treatment outcomes.

SHAP bee-swarm

To further validate the importance and directionality of key
predictors, we applied a random forest model with SHAP (SHapley
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FIGURE 7
Calibration curves for predicting treatment outcome. Calibration curves for the clinical model, image model, and combined model in the training (A)
and test (B) cohorts. Calibration curves plot observed probability versus predicted probability, with a perfectly calibrated model following the
diagonal line.

TABLE 3 Calibration performance of different model in training and test cohort.

Dataset Brier score Log loss HL_stat HL_p-value
Clinical Train 0.198 0.582 72.354 <0.01 0.198 0.400
Clinical Test 0.163 0505 84.241 <0.01 0.163 0.372
Tmage Train 0.200 0.589 79.223 <0.01 0.200 0.405
Image Test 0.193 0.576 65.189 <0.01 0.193 0.408
Combined Train 0.075 0.156 10.27 0.246 0.075 0.181
Combined Test 0.012 0.172 5.825 0.666 0.101 0219

The combined model exhibits the best calibration, with lower brier scores, log loss, MSE, and MAE, and non-significant HL p-values, indicating reliable probability estimates.

Additive exPlanations) analysis. The resulting SHAP summary
(beeswarm) plot demonstrated that Solidity and S_mean were the
influential protective features for predicting favorable treatment
outcome, with higher values of these variables associated with lower
risk of poor prognosis. Conversely, scar height and age were the
top-ranking risk factors, as greater scar thickness and older age
were linked to an increased probability of suboptimal response. The
consistency of these results, in which both image-derived (Solidity
and S_mean) and clinical (scar height and age) features dominate
model performance, highlights their robust predictive value and
complementary roles in assessing scar prognosis (Figure 4).

Nomogram

To facilitate clinical application of our findings, we constructed
a nomogram (Figure 5) incorporating the four key predictors
of treatment outcome identified by both LASSO regression and
SHAP analysis: age, scar height, Solidity, and S_mean. The
nomogram allows for individualized prediction of the probability
of a poor outcome based on a patient’s specific values for these
variables. To use the nomogram, a vertical line is drawn from
each variable’s axis to the “Points” axis to determine the points
assigned for that variable. The points for all four variables are
then summed to obtain a “Total Points” score. Finally, a vertical
line is drawn from the “Total Points” axis to the “Probability of
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Poor Outcome” axis to estimate the individual’s probability of a
poor treatment outcome. The nomogram provides a user-friendly
tool for clinicians to integrate these predictive factors into their
decision-making process.

ROC

To evaluate the predictive performance of clinical, image-
derived, and combined models, we constructed ROC curves for
both the training and test cohorts (Figure 6). The clinical model,
incorporating age and scar height, achieved an AUC of 0.676 (95%
CI: 0.545-0.790) in the training cohort and 0.644 (95% CI: 0.400-
0.848) in the test cohort. The image model, incorporating Solidity
and S_mean, achieved an AUC of 0.661 (95% CI: 0.519-0.802)
in the training cohort and 0.579 (95% CI: 0.356-0.827) in the
test cohort. Notably, the combined model, incorporating all four
variables (age, scar height, Solidity, and S_mean), demonstrated
significantly improved performance, achieving an AUC of 0.970
(95% CI: 0.937-0.997) in the training cohort and 0.908 (95%
CI: 0.783-1.000) in the test cohort. These results indicate that
the combined model, integrating both clinical and image-derived
information, provides superior predictive accuracy compared to
models based on either clinical or image data alone. The sensitivity,
specificity, PPV, NPV, and accuracy for each model in both cohorts
are detailed in Table 2.
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FIGURE 8

DCA of clinical, image-based, and combined models for predicting poor scar treatment outcomes. (A) DCA curves in the training cohort show that
the combined model consistently yields the highest net benefit across a range of clinically relevant threshold probabilities compared to the clinical
and image models. (B) Similar findings are observed in the test cohort, with the combined model offering superior clinical utility.
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Calibration

To assess the reliability of the predicted probabilities generated
by the clinical, image-derived, and combined models, we evaluated
their calibration in both the training and test cohorts (Figure 7).
Calibration curves plot the observed probability of a poor outcome
against the predicted probability, with a perfectly calibrated model
exhibiting a curve that closely follows the diagonal line. Visual
inspection of the calibration curves revealed that the combined
model exhibited better calibration compared to the clinical and
image models, particularly in the training cohort. This suggests that
the predicted probabilities generated by the combined model are
more closely aligned with the actual observed probabilities.

To quantify the calibration performance, we calculated several
metrics, including the Brier score, Log Loss, Hosmer-Lemeshow
statistic (HL_Stat) and p-value (HL_p-value), Mean Squared
Error (MSE), and Mean Absolute Error (MAE) (Table 3). The
combined model consistently demonstrated lower Brier scores,
Log Loss, MSE, and MAE compared to the clinical and image
models, indicating improved calibration. The Hosmer-Lemeshow
test revealed statistically significant miscalibration for the clinical
and image models in both the training and test cohorts
(HL_p-value < 0.01), suggesting that these models’ predicted
probabilities deviate significantly from the observed outcomes. In
contrast, the combined model did not show statistically significant
miscalibration (HL_p-value > 0.05), further supporting its superior
calibration performance. These results suggest that the combined
model not only provides more accurate predictions but also
generates more reliable probability estimates compared to the
clinical and image models.

DCA

To further assess the clinical utility and added value of each
model, we performed DCA and compared NRI and IDI metrics,
with the combined model used as the reference.
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TABLE 4 Rl and IDI of different model in training and test cohort
(combined as reference).

Model NRI IDI NRI IDI (test)
(training) | (training) (test)

Clinical 0388 0.516 0.558 0471

Image 0.58 0.523 0416 0.46

DCA curves (Figure 8) demonstrated that the combined model
consistently provided the highest net benefit across a wide range of
threshold probabilities compared to the clinical model and image-
based model, in both training and test cohorts. This indicates that
using the combined model for patient risk stratification can lead
to improved decision-making and outcomes in real-world clinical
practice.

Table 4 presents NRI and IDI values quantifying the
incremental predictive value of the combined model over each
single-domain model. Both the clinical and image-based models
showed substantial positive NRI and IDI values when compared to
the combined model in both the training and test sets (e.g., NRI
for clinical: 0.388 in training, 0.558 in test; NRI for image: 0.58
in training, 0.416 in test; all IDIs > 0.46), reflecting significant
improvements in both reclassification and discrimination when
clinical and imaging features are integrated.

Collectively, these decision-analytic and
measures provide robust evidence that the combined model offers

reclassification

greater clinical benefit and superior risk stratification performance
versus models based on clinical or imaging features alone.

Web calculator

To facilitate the clinical application of our predictive model and
improve patient understanding, we developed a user-friendly web-
based calculator, accessible at https://uuekzqcohkn65tbekanosn.
streamlit.app/, that estimates the probability of treatment failure
based on the four key predictors: age, scar height, Solidity, and
S_mean. The calculator allows clinicians and patients to input
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individual values for these variables and obtain an immediate
estimate of the probability of a poor outcome.

Figure 9 illustrates two example scenarios using the web
calculator. In scenario A, a 65-year-old patient with a scar height of
5.00, Solidity of 0.42, and S_mean of 0.10 has a predicted probability
of treatment failure of 100.0%. In contrast, in scenario B, a 25-
year-old patient with a scar height of 2.00, Solidity of 0.85, and
S_mean of 0.40 has a predicted probability of treatment failure of
only 7.2%. These examples demonstrate the calculator’s ability to
provide individualized risk assessments based on a patient’s specific
characteristics, potentially aiding in treatment planning and patient
counseling. Figure 10 presents the actual situations of these two
patients.

Discussion

This study demonstrates the potential of integrating clinical
and image-derived features to predict treatment outcomes in
Chinese patients with scars. Our findings highlight the independent
predictive value of scar height and age (clinical factors) alongside
Solidity and S_mean (image-derived metrics), and the superior
performance of a combined model incorporating all four variables.
The development and validation of a user-friendly web-based
calculator further enhance the clinical translatability of our results.

Our findings demonstrate that scar thickness is an independent
and robust predictor of treatment failure in radionuclide therapy.
In our cohort, greater scar height was significantly associated
with poor therapeutic response (OR 8.313, 95% CI 4.166-12.437,
p =0.001), consistent with the hypothesis that thicker scars impede
uniform radiation penetration and reduce therapeutic efficacy.
This observation aligns with prior studies indicating that reducing
scar thickness through combined modalities—such as tension
reducers and laser therapy—can significantly improve treatment
outcomes. For example, Wang et al. reported that patients
receiving combination therapy exhibited markedly reduced scar
thickness compared to those receiving conventional treatment
alone, correlating with superior clinical improvement (22). These
findings underscore the clinical value of pre-treatment assessment
and modulation of scar thickness to optimize therapeutic
planning in scar management. Thicker scars may represent more
established fibrosis and collagen deposition, potentially limiting the
effectiveness of interventions.

Our study identified patient age as a significant factor
influencing the response to radionuclide therapy in scar treatment.
Specifically, older patients were more likely to exhibit poor
therapeutic outcomes, with logistic regression analysis confirming
age as an independent risk factor (OR 1.181, 95% CI 1.059-
1.318, p = 0.003). This finding is consistent with previous
evidence demonstrating age-related alterations in skin wound
healing capacity and scar remodeling (23). In Wolle’s study, for
each additional year of age, the odds of developing more severe
scarring increased by 6.5% (95% CI: 5.8% to 7.2%) (24). The
pathophysiological basis for this observation likely involves age-
related changes in dermal structure and fibroblast function. Aging
skin demonstrates reduced collagen turnover, diminished fibroblast
proliferation, and impaired neovascularization—all of which are
essential for effective scar remodeling and response to localized
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radionuclide-induced cytotoxicity. Moreover, older individuals
tend to exhibit increased oxidative stress and altered inflammatory
responses, which may hinder the reparative processes required
following radionuclide exposure. These findings echo clinical
observations in other scar treatment modalities. For instance,
studies have shown that younger patients respond more favorably
to laser therapy and surgical scar revision, likely due to their
enhanced regenerative capacity and more dynamic dermal cellular
activity (22). Thus, patient age should be considered a critical factor
in pre-treatment assessment and personalized therapeutic planning
for radionuclide-based scar interventions.

Our analysis identified two key radiomic features—Solidity
and S_mean—as significant predictors of treatment response in
radionuclide-based scar therapy. In our cohort, lower Solidity
was independently associated with poor therapeutic outcome,
suggesting that irregular and infiltrative scar margins might reflect
a more fibrotic or biologically active phenotype less responsive
to localized radionuclide damage. This aligns with previous
radiomic studies in oncologic imaging, where reduced solidity
often correlates with infiltrative or aggressive tissue behavior (25).
Similarly, S_mean, a texture-derived radiomic feature reflecting
the average signal intensity in grayscale, showed a strong inverse
association with response, with lower values predicting treatment
failure. Prior research by Lu et al. demonstrated that reduced
signal intensity heterogeneity may be linked to denser collagen
deposition and reduced vascularity, factors that could impair
radionuclide diffusion and local cytotoxicity (26). Notably, while
their study focused on hepatic fibrosis imaging, the mechanistic
parallels in extracellular matrix remodeling provide biologically
plausible support for our findings. Interestingly, although other
studies in radiomic modeling have found high S_mean values
associated with poor prognosis in hypervascular tumors (e.g.,
gliomas) (27), such trends were not replicated in our scar-based
dataset. This discrepancy likely stems from fundamental differences
in tissue composition: unlike tumors, fibrotic scars lack neovascular
proliferation and exhibit low metabolic activity, leading to different
radiomic signal patterns. Taken together, our results highlight that
Solidity and S_mean capture biologically relevant microstructural
and compositional features that significantly influence therapeutic
response, and may serve as non-invasive imaging biomarkers for
personalized treatment stratification.

This study demonstrates the potential of combining clinical and
image-derived features to predict scar treatment outcomes, offering
a personalized approach to radionuclide therapy (28). Our findings
align with the growing body of evidence supporting the use of
radiomics in predicting treatment response across various medical
domains (29). For instance, a study by Ma et al. found that image
features extracted using self-supervised learning showed promising
internal prediction performance for local control, regional control,
and distant metastasis-free survival in oropharyngeal cancer
patients (30). Similarly, Zhou et al. demonstrated that radiomics
features from (18)F-FDG PET scans have potential added value to
clinical features in predicting treatment response and prognosis
in diffuse large B-cell lymphoma patients (31). In our study,
the combined model’s high AUC (0.970 in training, 0.908 in
validation) indicates excellent discriminative ability, meaning it can
reliably distinguish between patients likely to achieve recovery and
those at risk of persistent scarring, which is crucial for tailoring
treatment plans. The low Brier score (0.075 in training, 0.012
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FIGURE 9

Web-based calculator for predicting treatment failure. The figure illustrates the web-based calculator developed to estimate the probability of
treatment failure based on age, scar height, solidity, and S_mean. (A) Shows an example scenario with a high predicted probability of treatment
failure, while (B) shows an example scenario with a low predicted probability of treatment failure.

FIGURE 10

Representative clinical photographs of scar treatment outcomes. (A) Pre-treatment image of a 65-year-old female patient with a poor response to
radionuclide therapy. (B) Post-treatment image of the same patient, demonstrating minimal improvement. (C) Pre-treatment image of a 25-year-old
female patient with a good response to radionuclide therapy. (D) Post-treatment image of the same patient, showing significant scar reduction.

in validation) reflects strong calibration, ensuring that predicted
probabilities closely match actual outcomes and thus provide
trustworthy risk estimates for patient counseling. Furthermore, the
substantial NRI values (e.g., 0.388-0.58 in training) signify that the
combined model reclassifies a significant proportion of patients
more accurately than single-domain models; for example, an NRI
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of 0.55 implies that approximately 55% of patients are correctly
shifted to higher or lower risk categories, potentially guiding
decisions on whether to pursue aggressive therapies or conservative
management. Similarly, the IDI values (> 0.46) demonstrate
improved discrimination, enhancing the model’s ability to separate
risk groups and supporting better-informed clinical choices in
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real-world settings, such as prioritizing high-risk patients for
adjunctive interventions.

Furthermore, our study highlights the importance of
feature selection in radiomics modeling. We employed
LASSO regression to identify the most relevant image-

derived metrics, while other studies have used different
feature selection methods, such as random forest. The choice
of feature selection method can significantly impact model
performance and generalizability (31). However, our image
analysis was limited to 2D photographs, which may not fully
capture the

characteristics of scar tissue. Advanced imaging modalities,

three-dimensional complexity and subsurface
such as 3D imaging techniques (e.g., stereophotogrammetry),
optical coherence tomography (OCT), or confocal microscopy,
could provide volumetric data, microstructural details (e.g.,
collagen fiber organization and depth of fibrosis), and vascularity
assessments that are not visible in standard 2D images.
Integrating these modalities into future models may further
prediction accuracy by additional
quantitative features, such as scar depth profiling or real-time
tissue perfusion metrics, ultimately leading to more precise

improve incorporating

individualized predictions.

The development of a web-based calculator provides a
practical tool for clinicians to implement our findings in
their daily practice. By simply inputting a patient’s age,
scar height, Solidity, and S_mean,
an individualized estimate of the probability of treatment

clinicians can obtain
failure, potentially aiding in treatment planning and patient
counseling. The calculator also empowers patients to better
understand their individual risk and participate more actively in
treatment decisions.

Limitations

This study has several limitations that should be acknowledged.
First, the retrospective design may be subject to selection bias
and data completeness issues, potentially influencing the reliability
of the findings. Second, the sample size, while adequate for
the analyses performed, is relatively small (n = 117), which
may limit the statistical power and generalizability of the

results. Third, the study was conducted at a single center in
a Chinese population, which may further restrict applicability
to other ethnicities and healthcare settings; external validation
in larger, multicenter, and prospective cohorts is required to
address these issues and confirm the model’s robustness. Fourth,
the definition of “Recovery” and “Scar” was based on clinical
assessment, which may be subjective. Future studies should
incorporate objective measures of scar improvement, such as
Vancouver Scar Scale, Cutometer, skin ultrasound. Fifth, the
image analysis was performed on 2D photographs, which may
not fully capture the complexity of scar tissue. Future studies
should explore the use of 3D imaging techniques, such as optical
coherence tomography, confocal microscopy. Finally, the web-
based calculator has not yet been formally validated in an
independent cohort. Additionally, while our findings demonstrate
predictive value for the identified variables in radionuclide therapy
for scars, these must be validated in other cohorts to confirm their
broader applicability.
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Future directions

Future research should focus on validating our findings
in larger, multi-center prospective studies, including diverse
ethnic populations. Further investigation is needed to explore
the biological mechanisms underlying the associations between
Solidity, S_mean, and treatment outcome. Studies are also needed
to evaluate the cost-effectiveness of using the combined model
and web-based calculator in clinical practice. Additionally, future
research should explore the potential of incorporating other clinical
and image-derived features into the predictive model, such as scar
vascularity, collagen organization.

Conclusion

These findings have the potential to improve treatment
planning and patient counseling in the management of scars.
However, validation in other ethnicities, as well as in larger,
multicenter, and prospective cohorts, is necessary to confirm
generalizability and enhance the model’s clinical utility.
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