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Background: Scarring represents a persistent clinical and psychosocial

challenge, with considerable variability in treatment response among patients.

While both clinical and morphologic factors can influence outcomes, robust,

individualized prediction of scar treatment efficacy remains elusive.

Objective: To develop and validate an integrated predictive model for scar

treatment outcomes using a combination of clinical and image-derived features

in a Chinese cohort, and to translate this model into a web-based calculator for

practical clinical application. This model requires validation in other ethnicities.

Methods: We retrospectively analyzed 117 Chinese patients with scars treated

at a single center, dividing them into a training (n = 83) and validation

cohort (n = 34). Clinical data (including age, scar height) and quantitative

features extracted from standardized scar photographs (solidity and mean

saturation [S_mean]) were used to construct clinical, image-based, and

combined predictive models. Feature selection was performed via LASSO

regression, and models were developed using multivariate logistic regression.

Model performance was evaluated using area under the receiver operating

characteristic curve (AUC), calibration metrics (Brier score, log loss, HL test),

and decision curve analysis (DCA). Net reclassification improvement (NRI) and

integrated discrimination improvement (IDI) were calculated. A user-friendly

web calculator was subsequently developed.

Results: Scar height and age (clinical factors) as well as solidity and

S_mean (image-derived metrics) were identified as independent predictors

of poor treatment outcome. The combined model demonstrated superior

discrimination (AUC 0.970 [training], 0.908 [test]), calibration, and clinical

utility compared to clinical or image-based models alone. Calibration curves

and metrics indicated excellent agreement between predicted and observed

probabilities for the combined model. DCA, NRI, and IDI analyses further

highlighted the incremental value and net benefit of the integrated approach.

A web-based calculator was developed to enable individualized outcome

prediction and support clinical decision-making.

Conclusion: Integration of clinical and image-derived features enables robust,

individualized prediction of scar treatment outcomes in this Chinese cohort. Our
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validated combined model, accessible via an easy-to-use web-based calculator, 

may enhance treatment planning, risk stratification, and patient counseling in 

scar management. Validation in diverse ethnic populations is essential. 

KEYWORDS 

scars, prediction, image analysis, clinical features, web calculator 

Introduction 

Scarring represents a significant clinical challenge, aecting 
millions worldwide and leading to substantial physical, 
psychological, and social morbidity (1, 2). Scars can cause 
pain, itching, restricted movement, and disfigurement, impacting 
patients’ quality of life and self-esteem (3–5). Current treatment 
options for scars are diverse, ranging from topical agents and 
minimally invasive procedures to surgical interventions (6–8). 
However, the eectiveness of these treatments varies widely, and 
predicting individual patient response remains a major challenge 
(9–11). Clinical factors such as scar type, location, and patient age 
have been shown to influence treatment outcomes (5, 12), but these 
factors alone are often insuÿcient for accurate prediction (13). 

The advent of radiomics and image analysis has opened new 
avenues for non-invasive assessment of tissue characteristics and 
prediction of treatment response in various medical fields (14– 
17). Image-derived features can capture subtle morphological 
and textural information that is not readily apparent on clinical 
examination, potentially providing valuable insights into the 
underlying biology of scars and their response to treatment (18, 19). 

Despite the growing interest in radiomics, the application 
of image analysis to predict scar treatment outcomes remains 
limited (20). Few studies have explored the potential of integrating 
clinical and image-derived features to improve predictive accuracy. 
Furthermore, there is a lack of user-friendly tools to translate these 
predictive models into clinical practice. 

Therefore, the primary objective of this study was to develop 
and validate a predictive model for scar treatment outcomes 
based on the integration of clinical and image-derived features 
in a Chinese cohort. We hypothesized that a combined model 
incorporating both types of data would provide superior predictive 
accuracy compared to models based on either clinical or image data 
alone. A secondary objective was to develop a web-based calculator 
to facilitate the clinical application of our predictive model. By 
addressing these objectives, we aim to improve treatment planning 
and patient counseling in the management of scars. However, the 
findings from this Chinese population require validation in other 
ethnicities to ensure broader applicability. 

Methods and patients 

Study design and patient population 

This retrospective study included 117 Chinese patients treated 
for scars at Union Hospital, Fujian Medical University between 
2020.01.01 and 2024.01.01. The study protocol was approved by 

the Union Hospital, Fujian Medical University Review Board (IRB) 
(protocol number: [2024-05-02]) and adhered to the principles 
of the Declaration of Helsinki. A waiver of informed consent 
was granted due to the retrospective nature of the study and the 
anonymized use of patient data. 

Patients were eligible for inclusion if they had: (1) a clinical 
diagnosis of scar; (2) available clinical data, including age, sex, scar 
location, scar etiology, treatment course, and treatment dose; (3) 
standardized digital photographs of the scar region taken before 
treatment; and (4) documented treatment outcomes (Recovery 
vs. Scar) based on clinical assessment at 2025.01.01. Patients 
were excluded if they had incomplete clinical data or lacked pre-
treatment photographs (Figure 1). 

Treatment protocol 

Patients presenting to the outpatient clinic with scars 
underwent a comprehensive evaluation by a physician. Treatment 
decisions were individualized based on several factors, including 
patient age, scar duration, anatomical location, scar thickness, and 
prior treatment history. Based on these factors, a treatment dose 
ranging from 5 to 30 Gy was prescribed. The specific dose was 
selected based on the physician’s clinical judgment, with higher 
doses generally reserved for thicker, more recalcitrant scars. 

Prior to treatment, all patients provided written informed 
consent after a thorough discussion of the risks and benefits 
of strontium-90 brachytherapy. Patients were then scheduled for 
treatment in the brachytherapy suite. 

During treatment planning, a radiation therapist delineated the 
target volume, which encompassed the entire scar. For smaller 
scars requiring a single field, the surrounding normal skin was 
protected with adhesive tape. Larger scars were divided into 
multiple treatment fields to ensure uniform coverage. 

Treatment was delivered using a strontium-90 ophthalmic 
applicator with a 2.5 cm × 2.5 cm active area. The applicator 
was placed in direct contact with the scar surface, and the 
prescribed dose was administered by controlling the application 
time. The reported dose represents the total dose delivered to each 
2.5 cm × 2.5 cm treatment field. 

Outcome assessment 

Scar treatment outcomes were assessed at 3, 6, and 12 months 
post-treatment by trained evaluators who were blinded to patient 
demographics, clinical data, and treatment parameters to reduce 
assessment bias. Treatment response was categorized as either 
“Recovery” or “Scar” based on a combination of standardized 
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FIGURE 1 

Patient inclusion flow. The patient cohort was randomly divided into a training set (n = 83) and a validation set (n = 34). Baseline characteristics were 
compared between the training and validation sets to ensure comparability. 

clinical and patient-reported outcomes. To standardize outcome 
assessment, the following validated scar assessment scales were 
utilized: Patient and Observer Scar Assessment Scale (POSAS) 
(21): The POSAS is a widely used scale that combines patient 
and observer ratings of scar characteristics, including pain, itching, 
color, thickness, and surface area. 

Definition of treatment outcomes 

Recovery outcome 
A reduction of at least 50% in the total POSAS 

score from baseline. 
Patient satisfaction with the treatment outcome, as indicated by 

a score of ≤30. 
Clinical assessment indicating significant improvement in scar 

appearance, including reduced thickness, improved color, and 
increased pliability. 

Scar outcome 
Failure to meet the criteria for a “Recovery Outcome.” 
Worsening of scar symptoms (e.g., increased pain, itching). 
Development of complications (e.g., ulceration, infection). 
Patient dissatisfaction with the treatment outcome, as indicated 

by a score of >30. 

Clinical data collection 

Clinical data were extracted from electronic medical records, 
including patient demographics (age, sex), height, weight, BMI, 
scar characteristics (location, etiology, length, width, height, 

duration), treatment parameters (course, dose), and treatment 
outcome (Recovery vs. Scar). Treatment outcome was defined as 
“Recovery” and “Scar.” 

Image acquisition and feature extraction 

Standardized digital photographs of the scar region were 
acquired using a Canon EOS 70D digital camera with consistent 
lighting and magnification (1:1 macro lens, ISO 200, f/8 aperture). 
Images were preprocessed to ensure consistent orientation 
and scale using Adobe Photoshop. Regions of interest (ROIs) 
encompassing the scar area were manually delineated by a 
trained dermatologist blinded to treatment outcomes using ImageJ 
software (version 1.53k, National Institutes of Health, Bethesda, 
MD, USA). Image-derived features were extracted from the ROIs 
using Python with scikit-image library. 

Feature selection and model 
development 

To identify the most predictive image-derived metrics, Least 
Absolute Shrinkage and Selection Operator (LASSO) regression 
was performed on the training set using R. The regularization 
parameter (λ) was selected using 10-fold cross-validation to 
minimize the cross-validation error. 

Three predictive models were developed: 
Clinical Model: Incorporating age and scar height. 
Image Model: Incorporating Solidity and S_mean. 
Combined Model: Incorporating age, scar height, 

Solidity, and S_mean. 
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TABLE 1 All patients information. 

Variable Total Training Validation Statistic P_value 

Recovery 81 (69.2%) 57 (68.7%) 24 (70.6%) 0 1 

Scar 36 (30.8%) 26 (31.3%) 10 (29.4%) 

Female 71 (60.7%) 51 (61.4%) 20 (58.8%) 0 0.96 

Male 46 (39.3%) 32 (38.6%) 14 (41.2%) 

Face 10 (8.5%) 6 (7.2%) 4 (11.8%) 1.15 0.56 

Arm and leg 17 (14.5%) 11 (13.3%) 6 (17.6%) 

Strunk 90 (76.9%) 66 (79.5%) 24 (70.6%) 1.15 0.56 

Trauma 6 (5.1%) 5 (6%) 1 (2.9%) 2.64 0.27 

Operation 21 (17.9%) 12 (14.5%) 9 (26.5%) 2.64 0.27 

Unknow 90 (76.9%) 66 (79.5%) 24 (70.6%) 2.64 0.27 

Age (year) 27 [23, 35] 27 [23, 35] 28 [23, 34.75] 0.12 0.73 

Height (m) 1.64 [1.58, 1.72] 1.65 [1.58, 1.72] 1.63 [1.58, 1.74] 0.26 0.61 

Weight (kg) 56 [50, 62] 56 [50.5, 62] 56.5 [50.25, 65] 0.13 0.72 

BMI 20.32 [19.23, 21.88] 20.15 [18.95, 21.95] 21.17 [19.68, 21.76] 0.95 0.33 

Course 3 [2, 5] 3 [2, 4] 2.5 [2, 5] 0.09 0.77 

Dose (Gy) 80 [60, 120] 85 [60, 120] 62.5 [60, 142.5] 0.27 0.6 

Scarlong (mm) 20 [14, 35] 20 [13.5, 31] 27 [14, 39.25] 1.39 0.24 

Scarshort (mm) 9 [6, 12] 9 [6, 12.5] 8 [5.25, 11.75] 0.41 0.52 

Scarheight (mm) 2 [1, 3] 2 [2, 3] 2 [1, 3] 0.01 0.94 

Scartime (month) 60 [24, 120] 48 [24, 114] 60 [19.5, 120] 0 0.96 

FIGURE 2 

Forest plots of univariate and multivariate logistic regression analyses for clinical variables in the training set. (A) Univariate analysis showing odds 
ratios (OR) with 95% confidence intervals (CI) for each variable on a log scale (0.01 to 10.00), ordered by increasing OR. Arrows indicate CIs 
extending beyond axis limits. Scarheight demonstrates the strongest positive association with poor outcome. (B) Multivariate analysis for selected 
variables (p < 0.1 in univariate), with scarheight as the primary risk factor. Log-scaled x-axis (0.01 to 10.00); arrows for extended CIs. 

Multivariate logistic regression was used to develop the clinical, 
image, and combined models. The models were trained on the 
training set and evaluated on the validation set. 

Model evaluation and validation 

The performance of the models was evaluated using the area 
under the receiver operating characteristic curve (AUC), sensitivity, 
specificity, positive predictive value (PPV), negative predictive 

value (NPV), and accuracy. Calibration curves were generated to 

assess the reliability of the predicted probabilities. The Brier score, 
Log Loss, Hosmer-Lemeshow statistic, Mean Squared Error (MSE), 
and Mean Absolute Error (MAE) were calculated to quantify 

calibration performance. 
Decision curve analysis (DCA) was performed to assess the 

clinical utility of the models. Net reclassification improvement 
(NRI) and integrated discrimination improvement (IDI) were 

calculated to quantify the incremental value of adding clinical or 

image information to the combined model. 
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FIGURE 3 

(A) LASSO cross-validation error vs. log(Lambda) this sub-figure depicts the relationship between the mean cross-validation (CV) error and the 
logarithm of the regularization parameter λ in the LASSO regression. The x-axis represents log(λ) ranging from – 8 to 7, and the y-axis shows the 
mean CV error. The minimum mean CV error occurs at λminλmin, and 1seλ is the largest λ within one standard error of the minimum error. This 
analysis helps in determining the optimal λ that balances model complexity and prediction error. (B) Log lambda vs. coefficients here, we present 
how the coefficients of the variables change as log(λ) varies. As log(λ) increases, the coefficients of many variables shrink toward zero. The number 
of non-zero coefficients decreases with increasing log(λ), demonstrating the variable selection property of the LASSO method. (C) Selected features 
and their clinical implications the LASSO regression selected “solidity” and “S_mean” as relevant image features for further analysis. Other features 
such as R_std (standard deviation of red - channel pixel values), B_std (standard deviation of blue - channel pixel values), and B_kurtosis (kurtosis of 
the blue - channel) were also considered in the initial analysis. R_std and B_std reflect the dispersion of red and blue intensities, respectively, and 
higher values may indicate an active or proliferative scar. B_kurtosis describes the sharpness of the blue - channel brightness distribution and can 
help identify abnormal scar patterns related to high - density tissue or calcification. 

FIGURE 4 

SHAP Summary plot of feature importance for prediction of scar outcome using random forest. The SHAP beeswarm plot ranks the top four 
predictors according to their overall impact on model output. Each point represents an individual case, with horizontal position denoting the SHAP 
value (the impact of the variable on the predicted outcome) and color indicating the feature value [from low (blue) to high (red)]. Solidity and 
S_mean show negative SHAP values for higher feature values, indicating protective effects against poor outcome. In contrast, higher scar height and 
age are associated with increased SHAP values, reflecting greater risk of poor prognosis. These findings confirm the importance and independent 
contributions of both image-based and clinical features in predicting scar treatment response. 

Web calculator development 

A user-friendly web-based calculator was developed using 
Python with Streamlit to estimate the probability of treatment 
failure based on the combined model. 

Statistical analysis 

Statistical analyses were performed using R4.1.3, 
and Python3.1.1. Continuous variables were presented 
as median [interquartile range (IQR)] and compared 
using Mann-Whitney U test. Categorical variables were 
presented as frequencies (percentages) and compared 
using chi-square test. A p-value < 0.05 was considered 
statistically significant. 

Result 

Basic information in all patients 

This study included 117 Chinese patients, with a training set of 
83 and a validation set of 34, to evaluate the eÿcacy of a treatment 
for scars. The majority of patients experienced recovery (69.2%), 
while 30.8% had persistent scars. The cohort was predominantly 
female (60.7%). Most scars were located on the trunk (76.9%), with 
a smaller proportion on the face (8.5%) and limbs (14.5%). The 
most common cause of scarring was unknown (76.9%), followed 
by operation (17.9%) and trauma (5.1%). 

The median age of the patients was 27 years [IQR: 23, 35], with 
a median height of 1.64 meters [IQR: 1.58, 1.72] and a median 
weight of 56 kg [IQR: 50, 62], resulting in a median BMI of 
20.32 kg/m2 [IQR: 19.23, 21.88]. The median treatment course 
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FIGURE 5 

Nomogram for predicting the probability of poor treatment outcome. The nomogram incorporates age, scar height, solidity, and S_mean to predict 
the probability of a poor treatment outcome. To use the nomogram, assign points for each variable based on its value, sum the points to obtain a 
“total points” score, and then determine the corresponding probability of a poor outcome. 

FIGURE 6 

ROC curves of different models in training and test cohorts. (A) Training cohort ROC curves the combined model demonstrates the best 
performance, with an AUC of 0.970 (95% confidence interval: 0.937–0.997), indicating high accuracy in distinguishing between good and poor scar 
prognoses. The clinical model has an AUC of 0.676 (95% CI: 0.545–0.790), and the image model has an AUC of 0.661 (95% CI: 0.519–0.802). The 
AUC values are accompanied by their respective 95% confidence intervals, providing an indication of the reliability of the model performance. 
(B) Test cohort ROC curves the combined model still shows excellent performance, with an AUC of 0.908 (95% CI: 0.783–1.000). The clinical model 
has an AUC of 0.644 (95% CI: 0.400–0.848), and the image model has an AUC of 0.579 (95% CI: 0.356–0.827). The performance of the combined 
model in the test cohort indicates its good generalization ability, while the clinical and image models show relatively lower and less stable 
performance. 

was 3 sessions [IQR: 2, 5] with a median dose of 80 units [IQR: 

60, 120]. The median scar length was 20 mm [IQR: 14, 35], the 

median scar width was 9 mm [IQR: 6, 12], and the median scar 

height was 2 mm [IQR: 1, 3]. The median duration of the scar was 

60 months [IQR: 24, 120]. 

Statistical analysis revealed no significant dierences between 

the training and validation sets for any of the baseline 

characteristics (all p > 0.05) (Table 1). This suggests that the 

two groups were well-matched and suitable for evaluating the 
treatment’s performance. 

Information in the training set 

To identify potential predictors of treatment outcome (defined 
as Recovery vs. Scar) in our Chinese cohort, we performed 
univariate analyses on a range of clinical variables within the 

Frontiers in Medicine 06 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1655302
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1655302 October 8, 2025 Time: 18:21 # 7

Su et al. 10.3389/fmed.2025.1655302 

T
A
B
LE

 2
 
P
er
fo
rm

an
ce

 o
f 
d
if
fe
re
n
t 
m
o
d
el
s 
in

 t
ra
in
in
g

 a
n
d

 t
es
t 
co

h
o
rt
. 

M
o

d
e

l_
g

ro
u

p
A

U
C

A
U

C
_

C
I_

lo
w

A
U

C
_

C
I_

h
ig

h
Se

n
si

ti
vi

ty
Sp

e
ci

fi
ci

ty
P

P
V

N
P

V
A

cc
u

ra
cy

C
lin

ic
al

_t
ra

in
0.

67
6

0.
54

5
0.

79
0.

46
7

0.
77

4
0.

53
8

0.
71

9
0.

66
3

C
lin

ic
al

_t
es

t
0.

64
4

0.
4

0.
84

8
0.

37
5

0.
65

4
0.

25
0.

77
3

0.
58

8

Im
ag

e_
tr

ai
n

0.
66

1
0.

51
9

0.
80

2
0.

15
4

0.
96

5
0.

66
7

0.
71

4
0.

71
1

Im
ag

e_
te

st
0.

57
9

0.
35

6
0.

82
7

0.
4

0.
91

7
0.

66
7

0.
78

6
0.

76
5

C
om

bi
ne

d_
tr

ai
n

0.
97

0.
93

7
0.

99
7

0.
76

9
0.

96
5

0.
90

9
0.

90
2

0.
90

4

C
om

bi
ne

d_
te

st
 

0.
90

8 
0.

78
3 

1 
0.

9 
0.

91
7 

0.
81

8 
0.

95
7 

0.
91

2 

Th
e 

co
m

bi
ne

d 
m

od
el

 sh
ow

s s
up

er
io

r p
er

fo
rm

an
ce

 a
cr

os
s a

ll 
m

et
ri

cs
 c

om
pa

re
d 

to
 c

lin
ic

al
 o

r i
m

ag
e 

m
od

el
s a

lo
ne

, w
ith

 n
ot

ab
ly

 h
ig

he
r A

U
C

, s
en

si
tiv

ity
, a

nd
 a

cc
ur

ac
y 

in
 b

ot
h 

co
ho

rt
s. 

training set (n = 83) using logistic regression to calculate odds ratios 
(OR), 95% confidence intervals (CI), and p-values for each variable. 
The results are visualized in a forest plot (Figure 2A). In the 
univariate analysis, scar height exhibited the strongest association 
with poor treatment outcome, with a high OR indicating increased 
risk of scar persistence. Other variables such as sex, course, 
scarshort, BMI, age, weight, height, scartime, dose, and scarlong 
also showed positive associations (OR > 1), suggesting potential 
predictive value. Categorical variables like location (levels 2 and 
3), reason (levels 3 and 4) had ORs closer to or below 1, 
indicating weaker or protective eects. Notably, scar height, course, 
and scarshort appeared as prominent risk factors based on their 
distance from the null line (OR = 1). 

To determine independent predictors, we performed 
multivariate logistic regression, including variables with p < 0.1 
from univariate analysis (age, BMI, course, dose, scarlong, 
scarshort, scarheight, scartime). The results are shown in Figure 2B. 
After adjustment, scar height remained the dominant independent 
predictor with a markedly elevated OR, followed by course and age. 
Scarshort, scartime, scarlong, dose, and BMI had ORs nearer to 1 
or wider CIs, reflecting reduced independent impact. Consistent 
with initial findings, only scar height (high OR, p = 0.001) and age 
(OR≈1.18, p = 0.003) were statistically significant. 

Based on these findings, we incorporated scar height and 
age into subsequent analyses to refine our predictive models and 
explore interactions with other variables. 

LASSO feature selection of 
image-derived metrics 

To identify the most predictive image-derived metrics for 
treatment outcome, we performed LASSO regression on features 
extracted from JPG images of the scar region (Figure 3). This 
analysis selected two key features: Solidity and S_mean (mean 
saturation). 

Solidity, defined as the ratio of the scar area to its convex hull 
area, reflects the scar’s shape regularity and structural compactness. 
A higher solidity suggests a more regular and tightly packed 
scar structure. S_mean, representing the average color saturation, 
indicates the color concentration within the scar region. Lower 
saturation values suggest a more gray or white appearance, 
potentially indicative of reduced pigmentation and lower activity. 

The LASSO model assigned a negative coeÿcient to Solidity 
and S_mean, suggesting it acts as a protective factor. This implies 
that scars with higher solidity and S_mean, indicating a more 
regular and compact structure, are associated with better treatment 
outcomes. These findings suggest that image analysis can provide 
valuable insights into scar characteristics that are predictive of 
treatment response. Solidity and S_mean, reflecting structural 
integrity and color maturity, respectively, may serve as useful 
imaging biomarkers for predicting treatment outcomes. 

SHAP bee-swarm 

To further validate the importance and directionality of key 
predictors, we applied a random forest model with SHAP (SHapley 
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FIGURE 7 

Calibration curves for predicting treatment outcome. Calibration curves for the clinical model, image model, and combined model in the training (A) 
and test (B) cohorts. Calibration curves plot observed probability versus predicted probability, with a perfectly calibrated model following the 
diagonal line. 

TABLE 3 Calibration performance of different model in training and test cohort. 

Model Dataset Brier score Log loss HL_stat HL_p-value MSE MAE 

Clinical Train 0.198 0.582 72.354 <0.01 0.198 0.400 

Clinical Test 0.163 0.505 84.241 <0.01 0.163 0.372 

Image Train 0.200 0.589 79.223 <0.01 0.200 0.405 

Image Test 0.193 0.576 65.189 <0.01 0.193 0.408 

Combined Train 0.075 0.156 10.27 0.246 0.075 0.181 

Combined Test 0.012 0.172 5.825 0.666 0.101 0.219 

The combined model exhibits the best calibration, with lower brier scores, log loss, MSE, and MAE, and non-significant HL p-values, indicating reliable probability estimates. 

Additive exPlanations) analysis. The resulting SHAP summary 
(beeswarm) plot demonstrated that Solidity and S_mean were the 
influential protective features for predicting favorable treatment 
outcome, with higher values of these variables associated with lower 
risk of poor prognosis. Conversely, scar height and age were the 
top-ranking risk factors, as greater scar thickness and older age 
were linked to an increased probability of suboptimal response. The 
consistency of these results, in which both image-derived (Solidity 
and S_mean) and clinical (scar height and age) features dominate 
model performance, highlights their robust predictive value and 
complementary roles in assessing scar prognosis (Figure 4). 

Nomogram 

To facilitate clinical application of our findings, we constructed 
a nomogram (Figure 5) incorporating the four key predictors 
of treatment outcome identified by both LASSO regression and 
SHAP analysis: age, scar height, Solidity, and S_mean. The 
nomogram allows for individualized prediction of the probability 
of a poor outcome based on a patient’s specific values for these 
variables. To use the nomogram, a vertical line is drawn from 
each variable’s axis to the “Points” axis to determine the points 
assigned for that variable. The points for all four variables are 
then summed to obtain a “Total Points” score. Finally, a vertical 
line is drawn from the “Total Points” axis to the “Probability of 

Poor Outcome” axis to estimate the individual’s probability of a 
poor treatment outcome. The nomogram provides a user-friendly 
tool for clinicians to integrate these predictive factors into their 
decision-making process. 

ROC 

To evaluate the predictive performance of clinical, image-
derived, and combined models, we constructed ROC curves for 
both the training and test cohorts (Figure 6). The clinical model, 
incorporating age and scar height, achieved an AUC of 0.676 (95% 
CI: 0.545–0.790) in the training cohort and 0.644 (95% CI: 0.400– 
0.848) in the test cohort. The image model, incorporating Solidity 
and S_mean, achieved an AUC of 0.661 (95% CI: 0.519–0.802) 
in the training cohort and 0.579 (95% CI: 0.356–0.827) in the 
test cohort. Notably, the combined model, incorporating all four 
variables (age, scar height, Solidity, and S_mean), demonstrated 
significantly improved performance, achieving an AUC of 0.970 
(95% CI: 0.937–0.997) in the training cohort and 0.908 (95% 
CI: 0.783–1.000) in the test cohort. These results indicate that 
the combined model, integrating both clinical and image-derived 
information, provides superior predictive accuracy compared to 
models based on either clinical or image data alone. The sensitivity, 
specificity, PPV, NPV, and accuracy for each model in both cohorts 
are detailed in Table 2. 
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FIGURE 8 

DCA of clinical, image-based, and combined models for predicting poor scar treatment outcomes. (A) DCA curves in the training cohort show that 
the combined model consistently yields the highest net benefit across a range of clinically relevant threshold probabilities compared to the clinical 
and image models. (B) Similar findings are observed in the test cohort, with the combined model offering superior clinical utility. 

Calibration 

To assess the reliability of the predicted probabilities generated 
by the clinical, image-derived, and combined models, we evaluated 
their calibration in both the training and test cohorts (Figure 7). 
Calibration curves plot the observed probability of a poor outcome 
against the predicted probability, with a perfectly calibrated model 
exhibiting a curve that closely follows the diagonal line. Visual 
inspection of the calibration curves revealed that the combined 
model exhibited better calibration compared to the clinical and 
image models, particularly in the training cohort. This suggests that 
the predicted probabilities generated by the combined model are 
more closely aligned with the actual observed probabilities. 

To quantify the calibration performance, we calculated several 
metrics, including the Brier score, Log Loss, Hosmer-Lemeshow 
statistic (HL_Stat) and p-value (HL_p-value), Mean Squared 
Error (MSE), and Mean Absolute Error (MAE) (Table 3). The 
combined model consistently demonstrated lower Brier scores, 
Log Loss, MSE, and MAE compared to the clinical and image 
models, indicating improved calibration. The Hosmer-Lemeshow 
test revealed statistically significant miscalibration for the clinical 
and image models in both the training and test cohorts 
(HL_p-value < 0.01), suggesting that these models’ predicted 
probabilities deviate significantly from the observed outcomes. In 
contrast, the combined model did not show statistically significant 
miscalibration (HL_p-value > 0.05), further supporting its superior 
calibration performance. These results suggest that the combined 
model not only provides more accurate predictions but also 
generates more reliable probability estimates compared to the 
clinical and image models. 

DCA 

To further assess the clinical utility and added value of each 
model, we performed DCA and compared NRI and IDI metrics, 
with the combined model used as the reference. 

TABLE 4 RI and IDI of different model in training and test cohort 
(combined as reference). 

Model NRI 
(training) 

IDI 
(training) 

NRI 
(test) 

IDI (test) 

Clinical 0.388 0.516 0.558 0.471 

Image 0.58 0.523 0.416 0.46 

DCA curves (Figure 8) demonstrated that the combined model 
consistently provided the highest net benefit across a wide range of 
threshold probabilities compared to the clinical model and image-
based model, in both training and test cohorts. This indicates that 
using the combined model for patient risk stratification can lead 
to improved decision-making and outcomes in real-world clinical 
practice. 

Table 4 presents NRI and IDI values quantifying the 
incremental predictive value of the combined model over each 
single-domain model. Both the clinical and image-based models 
showed substantial positive NRI and IDI values when compared to 
the combined model in both the training and test sets (e.g., NRI 
for clinical: 0.388 in training, 0.558 in test; NRI for image: 0.58 
in training, 0.416 in test; all IDIs > 0.46), reflecting significant 
improvements in both reclassification and discrimination when 
clinical and imaging features are integrated. 

Collectively, these decision-analytic and reclassification 
measures provide robust evidence that the combined model oers 
greater clinical benefit and superior risk stratification performance 
versus models based on clinical or imaging features alone. 

Web calculator 

To facilitate the clinical application of our predictive model and 
improve patient understanding, we developed a user-friendly web-
based calculator, accessible at https://uuekzqcohkn65tbekanosn. 
streamlit.app/, that estimates the probability of treatment failure 
based on the four key predictors: age, scar height, Solidity, and 
S_mean. The calculator allows clinicians and patients to input 
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individual values for these variables and obtain an immediate 
estimate of the probability of a poor outcome. 

Figure 9 illustrates two example scenarios using the web 
calculator. In scenario A, a 65-year-old patient with a scar height of 
5.00, Solidity of 0.42, and S_mean of 0.10 has a predicted probability 
of treatment failure of 100.0%. In contrast, in scenario B, a 25-
year-old patient with a scar height of 2.00, Solidity of 0.85, and 
S_mean of 0.40 has a predicted probability of treatment failure of 
only 7.2%. These examples demonstrate the calculator’s ability to 
provide individualized risk assessments based on a patient’s specific 
characteristics, potentially aiding in treatment planning and patient 
counseling. Figure 10 presents the actual situations of these two 
patients. 

Discussion 

This study demonstrates the potential of integrating clinical 
and image-derived features to predict treatment outcomes in 
Chinese patients with scars. Our findings highlight the independent 
predictive value of scar height and age (clinical factors) alongside 
Solidity and S_mean (image-derived metrics), and the superior 
performance of a combined model incorporating all four variables. 
The development and validation of a user-friendly web-based 
calculator further enhance the clinical translatability of our results. 

Our findings demonstrate that scar thickness is an independent 
and robust predictor of treatment failure in radionuclide therapy. 
In our cohort, greater scar height was significantly associated 
with poor therapeutic response (OR 8.313, 95% CI 4.166–12.437, 
p = 0.001), consistent with the hypothesis that thicker scars impede 
uniform radiation penetration and reduce therapeutic eÿcacy. 
This observation aligns with prior studies indicating that reducing 
scar thickness through combined modalities—such as tension 
reducers and laser therapy—can significantly improve treatment 
outcomes. For example, Wang et al. reported that patients 
receiving combination therapy exhibited markedly reduced scar 
thickness compared to those receiving conventional treatment 
alone, correlating with superior clinical improvement (22). These 
findings underscore the clinical value of pre-treatment assessment 
and modulation of scar thickness to optimize therapeutic 
planning in scar management. Thicker scars may represent more 
established fibrosis and collagen deposition, potentially limiting the 
eectiveness of interventions. 

Our study identified patient age as a significant factor 
influencing the response to radionuclide therapy in scar treatment. 
Specifically, older patients were more likely to exhibit poor 
therapeutic outcomes, with logistic regression analysis confirming 
age as an independent risk factor (OR 1.181, 95% CI 1.059– 
1.318, p = 0.003). This finding is consistent with previous 
evidence demonstrating age-related alterations in skin wound 
healing capacity and scar remodeling (23). In Wolle’s study, for 
each additional year of age, the odds of developing more severe 
scarring increased by 6.5% (95% CI: 5.8% to 7.2%) (24). The 
pathophysiological basis for this observation likely involves age-
related changes in dermal structure and fibroblast function. Aging 
skin demonstrates reduced collagen turnover, diminished fibroblast 
proliferation, and impaired neovascularization—all of which are 
essential for eective scar remodeling and response to localized 

radionuclide-induced cytotoxicity. Moreover, older individuals 
tend to exhibit increased oxidative stress and altered inflammatory 
responses, which may hinder the reparative processes required 
following radionuclide exposure. These findings echo clinical 
observations in other scar treatment modalities. For instance, 
studies have shown that younger patients respond more favorably 
to laser therapy and surgical scar revision, likely due to their 
enhanced regenerative capacity and more dynamic dermal cellular 
activity (22). Thus, patient age should be considered a critical factor 
in pre-treatment assessment and personalized therapeutic planning 
for radionuclide-based scar interventions. 

Our analysis identified two key radiomic features—Solidity 
and S_mean—as significant predictors of treatment response in 
radionuclide-based scar therapy. In our cohort, lower Solidity 
was independently associated with poor therapeutic outcome, 
suggesting that irregular and infiltrative scar margins might reflect 
a more fibrotic or biologically active phenotype less responsive 
to localized radionuclide damage. This aligns with previous 
radiomic studies in oncologic imaging, where reduced solidity 
often correlates with infiltrative or aggressive tissue behavior (25). 
Similarly, S_mean, a texture-derived radiomic feature reflecting 
the average signal intensity in grayscale, showed a strong inverse 
association with response, with lower values predicting treatment 
failure. Prior research by Lu et al. demonstrated that reduced 
signal intensity heterogeneity may be linked to denser collagen 
deposition and reduced vascularity, factors that could impair 
radionuclide diusion and local cytotoxicity (26). Notably, while 
their study focused on hepatic fibrosis imaging, the mechanistic 
parallels in extracellular matrix remodeling provide biologically 
plausible support for our findings. Interestingly, although other 
studies in radiomic modeling have found high S_mean values 
associated with poor prognosis in hypervascular tumors (e.g., 
gliomas) (27), such trends were not replicated in our scar-based 
dataset. This discrepancy likely stems from fundamental dierences 
in tissue composition: unlike tumors, fibrotic scars lack neovascular 
proliferation and exhibit low metabolic activity, leading to dierent 
radiomic signal patterns. Taken together, our results highlight that 
Solidity and S_mean capture biologically relevant microstructural 
and compositional features that significantly influence therapeutic 
response, and may serve as non-invasive imaging biomarkers for 
personalized treatment stratification. 

This study demonstrates the potential of combining clinical and 
image-derived features to predict scar treatment outcomes, oering 
a personalized approach to radionuclide therapy (28). Our findings 
align with the growing body of evidence supporting the use of 
radiomics in predicting treatment response across various medical 
domains (29). For instance, a study by Ma et al. found that image 
features extracted using self-supervised learning showed promising 
internal prediction performance for local control, regional control, 
and distant metastasis-free survival in oropharyngeal cancer 
patients (30). Similarly, Zhou et al. demonstrated that radiomics 
features from (18)F-FDG PET scans have potential added value to 
clinical features in predicting treatment response and prognosis 
in diuse large B-cell lymphoma patients (31). In our study, 
the combined model’s high AUC (0.970 in training, 0.908 in 
validation) indicates excellent discriminative ability, meaning it can 
reliably distinguish between patients likely to achieve recovery and 
those at risk of persistent scarring, which is crucial for tailoring 
treatment plans. The low Brier score (0.075 in training, 0.012 
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FIGURE 9 

Web-based calculator for predicting treatment failure. The figure illustrates the web-based calculator developed to estimate the probability of 
treatment failure based on age, scar height, solidity, and S_mean. (A) Shows an example scenario with a high predicted probability of treatment 
failure, while (B) shows an example scenario with a low predicted probability of treatment failure. 

FIGURE 10 

Representative clinical photographs of scar treatment outcomes. (A) Pre-treatment image of a 65-year-old female patient with a poor response to 
radionuclide therapy. (B) Post-treatment image of the same patient, demonstrating minimal improvement. (C) Pre-treatment image of a 25-year-old 
female patient with a good response to radionuclide therapy. (D) Post-treatment image of the same patient, showing significant scar reduction. 

in validation) reflects strong calibration, ensuring that predicted 
probabilities closely match actual outcomes and thus provide 
trustworthy risk estimates for patient counseling. Furthermore, the 
substantial NRI values (e.g., 0.388–0.58 in training) signify that the 
combined model reclassifies a significant proportion of patients 
more accurately than single-domain models; for example, an NRI 

of 0.55 implies that approximately 55% of patients are correctly 
shifted to higher or lower risk categories, potentially guiding 
decisions on whether to pursue aggressive therapies or conservative 
management. Similarly, the IDI values (> 0.46) demonstrate 
improved discrimination, enhancing the model’s ability to separate 
risk groups and supporting better-informed clinical choices in 
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real-world settings, such as prioritizing high-risk patients for 
adjunctive interventions. 

Furthermore, our study highlights the importance of 
feature selection in radiomics modeling. We employed 
LASSO regression to identify the most relevant image-
derived metrics, while other studies have used dierent 
feature selection methods, such as random forest. The choice 
of feature selection method can significantly impact model 
performance and generalizability (31). However, our image 
analysis was limited to 2D photographs, which may not fully 
capture the three-dimensional complexity and subsurface 
characteristics of scar tissue. Advanced imaging modalities, 
such as 3D imaging techniques (e.g., stereophotogrammetry), 
optical coherence tomography (OCT), or confocal microscopy, 
could provide volumetric data, microstructural details (e.g., 
collagen fiber organization and depth of fibrosis), and vascularity 
assessments that are not visible in standard 2D images. 
Integrating these modalities into future models may further 
improve prediction accuracy by incorporating additional 
quantitative features, such as scar depth profiling or real-time 
tissue perfusion metrics, ultimately leading to more precise 
individualized predictions. 

The development of a web-based calculator provides a 
practical tool for clinicians to implement our findings in 
their daily practice. By simply inputting a patient’s age, 
scar height, Solidity, and S_mean, clinicians can obtain 
an individualized estimate of the probability of treatment 
failure, potentially aiding in treatment planning and patient 
counseling. The calculator also empowers patients to better 
understand their individual risk and participate more actively in 
treatment decisions. 

Limitations 

This study has several limitations that should be acknowledged. 
First, the retrospective design may be subject to selection bias 
and data completeness issues, potentially influencing the reliability 
of the findings. Second, the sample size, while adequate for 
the analyses performed, is relatively small (n = 117), which 
may limit the statistical power and generalizability of the 
results. Third, the study was conducted at a single center in 
a Chinese population, which may further restrict applicability 
to other ethnicities and healthcare settings; external validation 
in larger, multicenter, and prospective cohorts is required to 
address these issues and confirm the model’s robustness. Fourth, 
the definition of “Recovery” and “Scar” was based on clinical 
assessment, which may be subjective. Future studies should 
incorporate objective measures of scar improvement, such as 
Vancouver Scar Scale, Cutometer, skin ultrasound. Fifth, the 
image analysis was performed on 2D photographs, which may 
not fully capture the complexity of scar tissue. Future studies 
should explore the use of 3D imaging techniques, such as optical 
coherence tomography, confocal microscopy. Finally, the web-
based calculator has not yet been formally validated in an 
independent cohort. Additionally, while our findings demonstrate 
predictive value for the identified variables in radionuclide therapy 
for scars, these must be validated in other cohorts to confirm their 
broader applicability. 

Future directions 

Future research should focus on validating our findings 
in larger, multi-center prospective studies, including diverse 
ethnic populations. Further investigation is needed to explore 
the biological mechanisms underlying the associations between 
Solidity, S_mean, and treatment outcome. Studies are also needed 
to evaluate the cost-eectiveness of using the combined model 
and web-based calculator in clinical practice. Additionally, future 
research should explore the potential of incorporating other clinical 
and image-derived features into the predictive model, such as scar 
vascularity, collagen organization. 

Conclusion 

These findings have the potential to improve treatment 
planning and patient counseling in the management of scars. 
However, validation in other ethnicities, as well as in larger, 
multicenter, and prospective cohorts, is necessary to confirm 
generalizability and enhance the model’s clinical utility. 
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