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The advantages of NK cell
vaccines in solid carcinoma
clinical trials: conducted by
various biology strategy and
technology

Yizhe Hu, Limei Leng, Bing Li and Qiang Qiao*

Ansteel Group General Hospital, Anshan, China

This review systematically discusses the latest clinical progress and challenges
of natural killer (NK) cell vaccines in the treatment of solid tumors. By searching
databases such as ClinicalTrials.gov and PubMed (2019-2025), we focused on
preclinical studies and Phase I/1l/1ll registration trials in the past 2—3 years to dissect
the mechanism of action and efficacy data of different vaccine platforms. The study
illustrated: Dendritic cell-based vaccine platforms (e.g., ilixadencel), cytokine-based
vaccine platforms (e.g., ALT-803), NK receptor agonist antibodies (e.g., AFM24)
and mRNA/LNP-based vaccine platforms (e.g., BNT116) It has shown early efficacy
in solid tumors such as non-small cell lung cancer, triple-negative breast cancer,
and glioblastoma (with partial ORR of 30-50% and DCR of 80-100%), and the
safety is comparatively manageable (the incidence of grade >3 adverse events is
less compared to T-cell therapy). However, complex manufacturing procedures,
inhibition of the tumor microenvironment, and low targeted delivery efficiency
remain the main obstacles to transformation. In the future, combinatorial regimens
(e.g., sequential application of PD-1 inhibitors) need to be optimized, an iPSC-NK
universal platform developed, and perioperative application scenarios explored.
NK vaccines, by reshaping the immune microenvironment, will be an attractive
strategy to break the bottlenecks in the treatment of solid tumors.
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1. Mechanisms of Action of NK Cell Vaccines
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1 Introduction

Immunotherapy of solid tumors faces several challenges. The
by the
microenvironment (TME): Components such as cancer-associated

initial challenge is immunosuppression tumor
fibroblasts (CAFs), regulatory T cells (Tregs), and myeloid-derived
suppressor cells (MDSCs) inhibit T cell and NK cell infiltration and
activity by secreting factors such as TGF-f and IL-10 (1). When
TGEF-p binds to the surface receptors of NK cells, SMAD2/3 is
phosphorylated. The phosphorylated SMAD2/3 forms a complex with
SMAD4 and moves into the nucleus, which can inhibit the expression
of proliferation-related genes and cytotoxicity-related genes in NK
cells, thereby reducing the cytotoxicity of NK cells (2). Meanwhile,
tumor heterogeneity (as manifested by differences in immune cell
spatial distribution, antigen loss via clonal evolution) and defects in
antigen presentation (e.g., MHC-I down-regulation) still hinder the
efficacy of T-cell therapy (3). Clinical trials demonstrate that PD-1/
CTLA-4 inhibitors have low response rates in solid tumors such as
pancreatic cancer and glioblastoma (4), and CAR-T cells are not able
to initiate long-lasting anti-tumor activities due to problems such as
poor homing and suppression by the TME.

In such conditions, Natural killer cells (NK cells) overcome the
limitations of T cell-based therapies and demonstrate unique anti-
tumor value. NK cells can directly destroy tumor cells and virus-
infected cells without previous activation. It effectively supplements
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the blind spot of T-cell therapy by targeting the tumor cells with low
expression of MHC-I through the “missing self” mechanism. This
characteristic endows NK cells with a selective killing advantage for
drug-resistant tumors with MHC-I down-regulation through immune
editing (5). The functionality of NK cells is intrinsically linked to the
immune microenvironment, wherein numerous factors can exert
influence, such as genomic stability. Genomic stability serves as a
pivotal determinant in maintaining genomic integrity, and its
alterations may significantly impact the activation and functional
capacity of NK cells (6, 7). Furthermore, the infiltration ratio of
immune cells also affects the immune function of NK cells, such as
macrophages and CD8 + T lymphocytes. Macrophages influence the
activity of NK cells through the secretion of cytokines and direct
phagocytosis (8, 9), while CD8 + T lymphocytes work in synergy with
NK cells to enhance the anti-tumor immune response and jointly
regulate the immune response in the tumor microenvironment (10).
Based on these biological characteristics, NK cell therapy has been one
of the key strategies to break through the predicament of solid tumor
treatment in recent years, and it mainly includes adoptive NK cell
infusion and NK cell vaccines. Adoptive NK cell infusion directly
exerts its anti-tumor function through the expansion of NK cells or
genetic modification in vitro and reinfusion into patients, but its
activity is hampered by the short survival time of the cells in vivo and
immunosuppression by the TME. In contrast, NK cell vaccines aim to
stimulate, expand, or guide the patient’s own NK cells in vivo through
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an active immune strategy, which not only enhances the tumor-
targeting ability of NK cells but also potentially induces long-term
immune memory, thereby destroying the inhibitory shield of the
TME. The NK cell vaccine has demonstrated unique advantages in
clinical trials for solid tumors, offering good tolerance, strong anti-
tumor activity and flexible treatment strategies, bringing new hope to
patients (11).

NK vaccines function through four basic mechanisms, including:
(1) Indirect stimulation of NK cells by presenting tumor antigens and
adjuvants through antigen-presenting cells (APCs); (2) Local or
systemic administration of specific immune-stimulating cytokines to
create a highly activated microenvironment of immunity to stimulate
NK cells; (3) Direct targeting of the activation receptors on NK cells
(e.g., NKG2D, CD16) to enhance their killing function; (4) By
delivering mRNA for tumor antigens, cytokines or NK receptor
agonists encapsulated in lipid nanoparticles (LNP) to cells and
expressing the target molecules, the NK cells are stimulated and their
killing function is enhanced. These strategies represent a new
breakthrough direction for the treatment of solid tumors and can
be expected to exert synergistic effect in combination with other
immunotherapies, i.e., PD-1 inhibitors. This review aims to give a
systematic update on the latest progress of NK vaccines for treating
solid tumors, with emphasis on the analysis of clinical trial platforms,
data, challenges for clinical translation, and prospects.

2 Mechanisms of action of natural
killer (NK) cell vaccines

2.1 NK vaccines based on dendritic cells
(DC)

Dendritic Cells (DC), as professional antigen-presenting cells,
play important roles in linking innate immunity and adaptive
immunity. Dc-based NK vaccines, with loaded tumor antigens and
stimulated adjuvants, mature and reinfused into the patient, activate
NK cells directly and recruit them to move into the tumor
microenvironment (TME), and also create long-term immune
memory (12), having the ability for synergy and enhancement of
effectiveness (13). The major mechanisms are: mature DCS secrete
IL-12, IL-15, IL-18, which directly induce NK cell proliferation and
killing; DC surface antigens engage with NK receptors to provide
co-stimulatory signals; DCS secrete CXCL9/CXCL10 to recruit NK
cells (14) and inhibit inhibitors such as TGF-f and PGE2. Based on
these mechanisms, several DC-NK vaccines are in the clinical trial
phase for solid tumors.

Ilixadencel, which is derived from healthy donor cells, has the
ability to rapidly stimulate the patient’s native DC cells upon injection
into the tumor and thus induce an anti-cancer immune response
(15-17). A Phase II clinical trial called MERECA (NCT02432846)
proved that in patients with advanced renal cell carcinoma (mRCC),
Ilixadencel combined with the anti-cancer drug sunitinib was better
than sunitinib alone: More people had reduced tumor size (higher
than doubling overall response rate), more people had complete
disappearance of the tumor (higher complete response rate), and the
effect lasted longer (18).

DCVax-L would generally load its own DC cells using the patient’s
own tumor fragments (lysates). DCVax-L will potentially initiate the
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polyclonal T cell response, indirectly boost NK cell function (by cross-
activation via cytokines like IFN-y), and obtain a broad-spectrum
anti-tumor immunity, hailing new hope for glioblastoma treatment.
The most recent Phase III clinical trial (NCT00045968) indicates that
DCVax-L can successfully extend the survival time of glioblastoma
patients and has favorable safety (19).

2.2 Cytokine-based vaccines

Cytokine vaccines achieve their antitumor activity against solid
cancers via induction of a strongly immunostimulatory milieu in vivo
following the local or systemic administration of single cytokines (and
their combinations, fusion proteins, sustained-release formulations),
straightaway augmenting the growth, activation, and cytotoxicity
enhancement of the endogenous NK cells and their trafficking and
infiltration into tumor tissues. Amongst these common cytokines are
1L-2, IL-12, IL-15, IL-18, IL-21, etc. (20), and some related clinical
trials are already evaluating their possibility of use. Alt-803, for
example, is an IL-15 analogue that induces activation, expansion, and
growth of NK and CD8+ + T cells. In the first Phase I human trial
(NCT01885897), 19 percent of blood cancer patients were found to
enjoy clinical benefit after their first dose of ALT-803 (21).

2.3 Agonist antibodies targeting NK cell
receptors

Agonist antibodies augment the cytotoxic activity of NK cells
directly or exert cytotoxic activity against tumors by binding
specifically to activated surface receptors of NK cells (e.g., NKG2D,
CD16, NKp30, NKp46). Agonist antibodies are divided into two
classes based on design strategy: single-target agonist antibodies and
bispecific/trispecific antibodies, promoting anti-tumor efficacy by
activating a single NK receptor pathway. Prototypic targets are
NKG2D receptor agonists, CD16 (FcyRIIla) agonists, and NKp30/
NKp46 agonists. Bispecific/trispecific antibodies enable tumor-
specific recruitment and activation of NK cells by interacting with
tumor-associated antigens (TAA) on one side and NK-activating
receptors (CD16, NKp30, etc.) on the other side.

DF1001 is a trispecific antibody targeting NKG2D, HER2 (cancer
marker), and CD16a simultaneously. Targeting HER2 as an anchor to
modulate adaptive and innate immunity can redirect NK and CD8 T
cells to target tumors, reshaping the tumor microenvironment and
making “cold” tumors “hot” tumors (NCT04143711) (22).

Another new bispecific EGFR/CD16A bispecific antibody,
AFM24, kills tumor cells directly by activating NK cells and
macrophages. Good tolerance and early anti-tumor activity
(NCT04259450) were demonstrated in Phase I trials in patients with
advanced solid tumors expressing epidermal growth factor receptor
(EGFR) (23).

SAR443579 is a dual-specific antibody against the CD123 antigen,
which simultaneously binds to NKp46 and CD16a on NK cells,
enabling cytotoxic synapse establishment between NK cells and
CD123-expressing tumor cells. NK cell activation and tumor killing
were well-tolerated in phase 1/2 trials (NCT05086315) in r/r AML,
B-cell acute lymphoblastic leukemia, or high-risk myeloproliferative
neoplasms patients, and clinical activity was observed (24).
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2.4 NK vaccines based on mRNA/LNP

NK vaccines that use mRNA and lipid nanoparticles (LNP) are
designed by encapsulating mRNA that codes for tumor antigens,
cytokines, or NK receptor activators within lipid nanoparticles. These
tiny lipid particles protect the mRNA from breakdown by enzymes in
our bodies, help it stay stable, and make sure it gets into cells
effectively. Once inside, the mRNA instructs the cells to produce
specific molecules that activate natural killer (NK) cells and boost
their ability to attack tumors. For example, a special imidazole-based
lipid platform can deliver IL-2 mRNA to NK cells with very low
toxicity, which could lead to better cancer treatments (25). Also,
GSDMBNT mRNA®@LNPs can attract NK cells to the tumor area.
When activated, these NK cells release toxic substances like perforin
and granzyme, directly killing cancer cells (26). This kind of lipid
nanoparticle shows a lot of promise for future clinical use (Table 1).

3 Focus on ongoing clinical trials:
indications and preliminary results

3.1 Organize the discussion by solid tumor
type

3.1.1 Lung cancer (NSCLC, SCLC)

Lung cancer is one of the most common and deadliest cancers
worldwide. While traditional treatments (surgery, chemotherapy,
radiotherapy) can prolong life, they have their own drawbacks, such
as surgery cannot completely eliminate the tumor, chemotherapy has
significant side effects, and radiotherapy can also harm normal tissue.
In the last couple of years, the introduction of immunotherapy has
brought a ray of hope in the management of lung cancer. NK cell
immunotherapy is gradually moving into the limelight of research.
DCVAC/LuCa is an autologous dendritic cell-loaded lung cancer cell
lysis product for first-line treatment of stage IV non-squamous
non-small cell lung cancer (NSCLC) (NCT02669719) with ORR
31.82% and median PFS of 8.0 months (27). BNT116 is an LNP that
delivers mRNA for six antigens of lung cancer (NY-ESO-1, MAGE-C2,
etc.), activates antigen-specific T cells, and indirectly recruits/activates
NK cells through the inflammatory microenvironment. Combined
with the PD-1 inhibitor simiprimab in PD-LI-positive advanced
NSCLC patients (who had previously received <2 lines of therapy),
ORR was 10%, DCR was 80%, and median PFS was 5.5 months
(NCT05142189) (28). In the phase 2b/3 trial of TG4010 vaccine,
vaccine activity was more apparent in patients with non-squamous
tumors and low TrPAL. In patients with non-squamous tumors, the
TG4010 arm increased ORR by 9.7% and PFS by 1.8 months; In
patients with low TrPAL, PES was prolonged by 2.3 months
(NCT01383148) (29).

3.1.2 Breast cancer (TNBC, HER2+, etc.)

Current breast cancer clinical trials of NK cell vaccines focus
mainly on three strategies: cytokine adjuvant vaccines, oncolytic
virus-NK combination therapy, and NK receptor agonist antibodies.
In patients with initial HER2-negative breast cancer, adding a
dendritic cell vaccine to neoadjuvant chemotherapy (preoperative
chemotherapy) (NCT01431196) significantly increased the percentage
of pathological complete response (pCR, or disappearance of the

Frontiers in Medicine

10.3389/fmed.2025.1656570

tumor after surgery) to 26.3% and reduced tumor stage (surgical
downstaging) in 13% of patients (30). Another dendritic cell vaccine
with WT1 protein mRNA (NCT01291420) showed striking tumor
reduction (ORR) in 50% of 40 hormone receptor-negative/HER2-
negative metastatic breast cancer (HR—/HER2 — MBC) patients at
6 months posttreatment. Condition was controlled in all the patients
(DCR 100%) in this single-arm study (31).

3.1.3 Colorectal cancer

In the context of colorectal cancer, NK cell-targeted therapies have
shown multi-dimensional advancement: CAR-NK cells targeting
NKG2D (NCT05213195) noted 100% control of disease following
local infusion (32); CF33-hNIS oncolytic virus monotherapy or
pembrolizumab combination considerably increased NK activity,
achieving an 86% DCR (32, 33); While the CEA-DC vaccine indirectly
activates NK cells, a Phase II clinical trial for a dendritic cell vaccine
in MSI-type CRC is underway, but currently has good safety and
tolerability (NCT01885702) (34). Despite the striking long-term anti-
relapse effectiveness of autologous NK infusion (100% REFS at 3 years),
its ‘vaccine’ status also needs to be established further.

3.1.4 Ovarian cancer

Several technical avenues of NK cell vaccine strategies in ovarian
NEODOC dendritic cell (NCT05773859)
demonstrates good initial safety and induces a strong immune

cancer. vaccine
response by immunizing autologous tumor antigens with
chemotherapy (35); Cytokine vector IMNN-001 significantly
prolonged OS to 40.5 months in the Phase II study with first-line
chemotherapy because of the IL-12-induced NK/T cell activation
effect (35% risk reduction of death vs. control, HR =0.65)
(NCT03393884) (36). In platinum-resistant patients, MVP-S
polypeptide vaccine combined with the immunomodulator
cyclophosphamide achieved a 63% disease control rate
(NCT02785250) (37). Novel mRNA vaccines (e.g., mCM10-L against
MICA/B) and viral adjuvant vaccines have been demonstrated in
preclinical models to synergize with PD-1 inhibitors to enable NK cell
killing activity, which requires confirmation in clinical translation as
a high priority (38).

3.1.5 Glioblastoma

Current clinical trials of NK vaccines in GBM are based chiefly on
cell infusion (e.g., CYNK-001 NCT04489420) (39) and antigen
delivery platforms (e.g., RNA-LPA, GlioVax (40)), which first establish
safety and immune activation capability; PD-1 inhibitors in
combination can significantly improve the ORR (e.g., RNA-LPA by
50%), but the long-term PES benefits are yet to be established with
expansion of sample size. Of interest is the local delivery method used
(lumbar puncture/Ommaya capsule) may maximize tumor
microenvironment infiltration as a new avenue toward bridging the
immunosuppressive barrier.

3.1.6 Solid cancers other than mentioned
(pancreatic cancer, liver cancer, gastric cancer,
melanoma, etc.)

Current clinical research involving NK vaccines in solid tumors
primarily focuses on the combination with immune checkpoint
inhibitors to bypass tumor microenvironment suppression. In cancer
of the liver, mRNA vaccine GNOS-PV02 combined with PD-1
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TABLE 1 Overview of NK cell vaccine platforms, their mechanisms, advantages, and challenges.

Vaccine

platfom

Dendritic cell (DC-
based)

Core mechanism

Mature DCs loaded with tumor
antigens:

o Secrete IL-12/IL-15/L-18 to

Main advantages

o Activates innate and
adaptive immunity

« Induces long-term

Main disadvantage/
Challenges

High cost and
lengthy preparation

Complex

Representative
product/Companies

« Ilixadencel (allogeneic DC)
» DCVax-L(autologous DC)

Cinical trial phase (NCT
Number)

« Ilixadencel:Phase II(NCT02432846)
o DCVax-L:Phase III(NCT00045968)

Targeted solid tumor

types

« Metastatic Renal Cell
Carcinoma(mRCC)

« Glioblastoma

promote NK proliferation Immune memory personalized manufacturing
and cytotoxicity « Clinically validated « TME immunosuppression
« Provide co-stimulatory signals survival benefit may limit efficacy
via surface molecules
o Secrete CXCL9/CXCLI10 to
recruit NK cells to TME
Cytokine-based Administration of cytokines « Direct action, « Systemic toxicity (e.g., ALT-803(IL-15 mimetic) Phase 1 (NCT01885897) Hematological

(IL-2,IL-12,IL-15,IL-18,IL-21): rapid effect cytokine release syndrome) malignancies®(solid tumor
« Directly promote NK expansion |« Systemic or « Short half-life requiring potential)
and activation local administration frequent dosing
« Enhance cytotoxic function « High potential for » May activate regulatory
o Recruit NK cells to tumor sites combination therapies immune cells
Agonist antibodies | Single-target antibodies: Activate  Precise tumor targeting |« Tumor antigen heterogeneity | « DF10D1 (HER2/ o DF1001:Phasel(NCT04143711) « Advanced solid

encoding tumor antigens/

cytokines/NK receptor agonists:

« Delivers genetic instructions
to cells

« Activates NK cells

« Enhances cytotoxic function

antigen design

o LNP protects mRNA
and enables
efficient delivery

« Potential for

engineering NK cells

needs optimization
LNPs may cause
inflammatory responses

Limited long-term safety data

lipid platform
+ GSDMBNT mRNA@LNPs

targeting NK cell NK receptors(NKG2D,CD16,NKp |« Bi/tri-specifics redirect may cause escape NKG2D/CD16) o AFM24:Phasel(NCT04259450) tumors(e.g. HER2+/EGFR+)
receptors 30,NKp46) immune cells o Risk of off-target toxicity o AFM24(EGFR/CD16A) o SAR443579:Phase I/II(NCT05086315) « Hematological
Bi/tri-specific antibodies: Bind « Convert "cold « Requires affinity optimization | « SAR443579 (CD123/ tumors(SAR443579)
tumor antigens with one arm and tumors to hot" NKp46/CD16)
NK receptors with the other
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antibody yielded an ORR of 30.6% (NCT04251117) (41); Pancreatic
cancer neoantigen vaccine BNT122 profoundly prolonged recurrence-
free survival (HR = 0.08) (42). Although efficacy for gastric cancer and
melanoma is yet to come, the early trials showed that the safety of
related therapies (e.g., EVM16 without severe dose-limiting toxicity)
is manageable. New vectors, including bacterially based vaccines, have
been promising to be more effective in laboratory models.

3.2 Combination therapy approach

NK vaccines reprogram the immune microenvironment of
tumors (TME) through the activation of endogenous NK cell
activity. While NK cell vaccines show promise for the treatment of
solid tumors, the therapeutic effect is limited in monotherapy, but
combining with other treatments can significantly enhance the anti-
tumor activity. The major approaches are the use of immune
checkpoint inhibitors (PD-1/PD-L1) in combination. The highly
expressed PD-LI in the tumor microenvironment can inhibit the
cytotoxicity of NK cells (through the PD-1/NKp30 signal).
Promoting the upregulation of NKGZD expression on the surface of
NK cells significantly increases the secretion level of IFN-y in tumor
tissues, thereby continuously enhancing the efficacy of tumor
immunotherapy. ICI blocks the PD-1/PD-L1 pathway to prevent NK
cell inhibition and enhance vaccine-induced NK cell activation and
infiltration (43). The Ib/II phase study data of Nectin-4 ADC
9 MW2821 combined with PD-1 antibody Toripalimab in patients
with locally advanced or metastatic urothelial carcinoma (la/mUC)
showed an ORR of 80%; The disease control rate (DCR) was 92.5%
(NCT06079112) (44), and the objective response rate (ORR) was
83%. Clinical trial data on AFM13 and pembrolizumab combination
yielded an objective response rate (ORR) of 83% (NCT02665650) in
relapsed/refractory Hodgkin’s lymphoma (45). Additionally, NK cell
vaccines with chemotherapy or radiotherapy induce danger signals
and antigens by inducing immunogenic cell death, killing immune-
suppressive cells, increasing the tumor microenvironment, and
potentially increasing the sensitivity of tumor cells to NK cell killing.
This strategy turns cytotoxic therapy into an “in situ vaccine,
repolarizing the immunosuppressive TME into a pro-immunity
microenvironment, significantly enhancing NK cell recruitment,
survival, and killing function (e.g., NKG2D-L DNA vaccine +
TMZ + radiotherapy NCT04290858 (46, 47)). As far as combined
targeted therapy is concerned, modulation of antibody-dependent
cytotoxicity (ADCC) effect (NK cells with target antibodies) or
direct bridging and activation of NK cells by bispecific antibodies/
agonists is the main mechanism for tumor cell killing. Combined
targeted antibodies (e.g., anti-EGFR /HER2) can greatly enhance NK
cell cytotoxicity for tumors (e.g., SNKOI + AFM24, NCT05099549
(48)). Some targeted agents (e.g., HDAC inhibitors) can upregulate
the expression of the activating ligand of tumor NK cells. Bispecific
antibodies/adaptors can specifically connect NK cells to cancer cells,
highly activate and redirect NK cells [e.g., AFM24 + allogeneic NK
cells (49, 50)]. In addition to the above therapies, other
immunotherapies can be combined, such as combined cell therapy
(MUCI-NK/T vaccine NCT04011033) in pancreatic cancer (51);
The oncolytic viruses (OV) could be combined with direct lysis of
cancer cells

to release antigens and be equipped with
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immune-stimulating factors (such as IL-15/IL-18), initiating a
cascade activation effect with the NK vaccine. Activated NK cells can
directly lyse OV-infected cancer cells and modulate antiviral
immunity (52) (Table 2).

3.3 Safety overview

NK cell vaccines (e.g., autologous/allogeneic NK adoptive
therapy, CAR-NK, etc.) will be tolerable in solid tumor therapy by
2025. Most of the treatment schemes are marked with low-grade
adverse events (TRAEs) and have much fewer grade >3 events than
those with T-cell therapy. Typical TRAEs are injection site reactions
(pain, redness, swelling), flu-like syndrome (transient fever,
fatigue), and minor abnormalities in liver function tests, which can
be treated symptomatically to a large extent. Some SAEs and some
toxicities are as follows: The incidence of cytokine release syndrome
(CRS) is lower than that of CAR-T therapy, and it is also less severe
(< grade 2). Studies reported that CRS in allogeneic CAR-T therapy
of hematologic malignancies happened in 5-10%, while in solid
tumors, it was lower. Closely observe IL-6 and C-reactive protein,
and treat with tocilizumab when necessary. There are no certain
reports of NK cell therapy resulting in classic ICANS presentations
(i.e., epilepsy, brain edema). In studies targeting children, the
incidence of ICANS with CAR-NK was significantly lower than
with CAR-T (incidence <1% vs. 44%), and this might be explained
by the fact that the pathway of activation in NK cells is not
dependent on the T cell pathway (53). Off-target toxicity
occasionally occurs in EGFR/HER2 CAR-NK therapy as reversible
lung injury or liver enzyme elevation, which can be prevented by
gene editing for knockout of inhibitory receptors (e.g., NKG2A) or
target affinity modification. The incidence of grade >3 immune-
related adverse events (irAEs) is about 4 to 10%, ranging from
immune pneumonia to hypothyroidism and hematotoxicity (e.g.,
thrombocytopenia). Be vigilant of asynchronous onset of more than
one system irAEs (63% of patients do not present simultaneously),
and screening at baseline and dynamic monitoring of organ
function for autoantibodies is recommended (54).

Present day clinical management strategies are: preinfusion with
antihistamines/antipyretic analgesics and preventive measures to
avoid symptoms of influenza; typing of NK cells that are allogeneic
for HLA to reduce the risk of GVHD (55): Graded treatment, 1-2
grade irAEs managed with local/oral glucocorticoids, >3 grade
requires stopping the treatment and initiating methylprednisolone
shock (1-2 mg/kg/d): There is no clear report of resistance at present,
but the problem of decreased persistence of effector cells upon
repeated infusions must be watched out for. The 3-year follow-up
results showed that autologous NK cells were not linked to delayed
toxicity, and the quality of life score did not change (56). In general,
NK cell vaccine safety can be controlled, but the synergistic risk of
toxicity due to combination regimens (e.g., PD-1 inhibitors) is yet to
be established by expanding the sample size. It is recommended to
establish specific toxicity grading criteria for solid tumors (such as
the modified ASTCT scale) and further enhance safety through
maximal optimization of CAR structure by CRISPR technology
(Table 3).
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TABLE 2 Selected ongoing clinical trials of NK cell-based therapies in solid tumors.

. ] : Status and
: NK Platform/ Target solid . Primary Estimated -
NCT number  Title Treatment regimen : : preliminary
Product tumor(s) endpoint(s) completion
results
Locally advanced/
Phase Ib/II Study of .
metastatic
9IMW2B21(Nectin-4 Non-NK vaccine 9MW2821(Nectin-4 ADC) Active; ORR80%,
NCT06079112 b/l urothefial ORR, DCR Pending
ADC)+Toripalimab in la/ (Combination) +Toripalimab(PD-1 antibody) DCR92.5% (35)
carcinoma (la/
mUC
mUC)
AFM13+ Pembrolizumab Bispecific NK Relapsed/refractory = AFM13(CD30/CD16A bispecific
ispecific
NCT02665650 for R/R Hodgkin /1 P (AEM13) Hodgkin antibody)+ Pembrolizumab(PD-1 ORR, Safety Dec 2026 Active; ORR83% (36)
engager|
Lymphoma 88 lymphoma antibody)
NKG2D-L DNA Vaccine +
Recruiting; Preclinical
Temozolomide+ NKG2D ligand DNA NKG2D-L DNA vaccine Safety, immune
NCT04290858 /1 Glioblastoma Jun 2025 synergy demonstrated
Radiotherapy for Newly vaccine Temozolomide(TMZ)+ Radiotherapy response, PFS (37, 38)
7
Diagnosed Glioblastoma
SNKO1(Autologous NK
EGFR+soid tumors Active; Preclinical
Cells)+AFM24 (EGFR Autologous NK SNKO01+AFM24 (EGFR/CD16A-
NCT05099549 1 (e.g., colorectal Safety, MTD Dec 2024 ADCC enhancement
Bispecific Antibody)for cells(SNKO01) ) targeting bispecific antibody) (39)
cancer,
Advanced Solid Tumors
MUCI-Targeted NK/T MUCI1-CAR-NK/T vaccine Recruiting:
MUCI1-CARNK/T cell Safety, Immune
NCT04011033 Cell Vaccine for Pancreatic 1 . Pancreatic cancer +Chemotherapy(Nab-paclitaxel/ Mar 2025 Mechanistic synergy
vaccine response
Ductal Adenocarcinoma Gemcitabine) shown (42)
ANKTIVA (IL-15
Superagonist) + PD
CAR-NK(PD-L1 Metastatic ANKTIVA+PDLI1 t-haNK +Standard OS, Lymphopenia Active; RMAT
NCT04390399 L1 t-haNK for Metastatic I Jun 2026
t-haNK) pancreatic cancer chemotherapy reversal designation (3, 40)
Pancreatic Cancer
(QUILT-88)
PD-L1 t-haNK+NK Cell PD-L1
CAR-NK (PD-L1 Non-small cell lung Active; Preliminary
NCT03228667 Activator for NSCLC I t-haNK+ANKTIVA + Checkpoint ORR, Safety Dec 2025
t-haNK) cancer (NSCLC) survival benefit (3, 41)
(QUILT-3.055) inhibitors
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TABLE 3 Safety overview of NK cell vaccines in solid tumors.

10.3389/fmed.2025.1656570

Safety overview of natural killer (NK) cell vaccines for solid tumors

Adverse event type

Incidence/severity

Clinical manifestations Management strategies

Injection site reaction High (>60%), Grade 1-2

Local cold compress, NSAIDs for
Redness, pain, itching symptomatic relief

Flu-like symptoms High (50-70%), Grade 1-2

Prophylactic antipyretics
Fever, fatigue, myalgia
(acetaminophen), hydration support

Immune-related pneumonitis Low-Moderate (5-15%), >Grade 3 in 3-5%

Treatment pause, glucocorticoid
Cough, dyspnea, radiographic infiltrates
therapy (oral or IV)

Thyroid dysfunction Moderate (10-20%). >Grade 3 rare

Hypo/hyperthyroidism symptoms, TSH Endocrinology consult, hormone

abnormalities replacement therapy

Cytokine release syndrome (CRS) Low(<10%),Severe(2Grade 3) rare

Fever, hypotension, multi-organ Tocilizumab, glucocorticoids for severe

dysfunction cases

Hepatotoxicity Low-Moderate (5-15%), >Grade 3 in 2-4%

Transaminase elevation, bilirubin Treatment pause, hepatoprotectants

elevation (glutathione), glucocorticolds if needed

Off-target toxicity Low (<5%), severe cases rare

Non-target organ damage(e.g., lung, liver) = Targeting strategy adjustment, CAR

optimization via gene editing

4 Challenges in clinical translation

Clinical translation of NK cell vaccines in treating solid tumors
faces many challenges, which mainly include complex manufacturing
processes, ineffective delivery, heterogeneity in patient response, and
difficulties in optimization of combination regimens, with an urgent
need for breakthroughs through multidisciplinary approaches
(57-59).

There are challenges in manufacturing NK cell vaccines. Air
pollutants can disrupt the NF-«kB pathway, thereby leading to immune
dysregulation and immune diseases. Similarly, the influence of
environmental factors on the immune system is also reflected in the
research on NK cell vaccines. The effectiveness of these vaccines may
be regulated by the body’s inflammatory state and the activation of
immune pathways, which suggests that when designing and evaluating
clinical trials of NK cell vaccines, we need to comprehensively
consider the potential impact of environmental factors on the immune
system (60). Autologous NK cells have limited expansion capability,
long preparation cycle (usually 2-3 weeks), and are costly; Allogeneic
sources (for example, umbilical cord blood or IPSC-differentiated NK
cells) are suitable for the generation of “off-the-shelf” products, but
cell stability and persistence of activity are challenging to maintain
(61), whereas functional impairment is likely to occur after in vitro
expansion (59, 61, 62). Nowadays, standardization of quality control
of vaccines has not been achieved; gene editing (for example, CAR-NK
or IL-15 autocrine modification) needs to be carried out under good
manufacturing practice (GMP) conditions, but there are no consistent
types,
cryopreservation, and recovery, and potency. This hinders large-scale

standards for homogeneity of cell viability after
clinical application (62, 63).

There are also many problems with vaccine delivery and tumor
targeting. The physical density of the tumor tissue, i.e., fibrotic
interstitium, hinders NK cell infiltration; Regulatory T cells (Treg),
hypoxia, and metabolites (LysoPS) in the immunosuppressive
microenvironment (TME) directly suppress NK cell function through

receptor GPR34 (56, 64, 65). If the tumor specificity of the vaccine is
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not high, it will also harmlessly damage normal tissues, as tumor-
associated antigens (TAAs) may also be expressed at low levels in
normal tissues. While new designs, e.g., the multi-module DNA
nanodevice MODERN, can achieve spatially selective imaging of
granzyme A in tumors, targeted delivery in vivo systems still need to
be optimized (58, 66).

Patient stratification and combination strategy of NK vaccines
with other treatments also need to be optimized. No useful predictive
markers of efficacy are available currently. Investigation has identified
NK cell marker gene signatures in pancreatic cancer (for example, the
7-gene prognostic model) that can be correlated with immune
infiltration status, but whether they are clinically universal remains to
be validated (54). NK vaccine + immune checkpoint inhibitors (e.g.,
PD-1 antibodies), oncolytic viruses, or small molecule drugs (HDAC
inhibitors) can enhance efficacy, but the timing of administration
(sequential or synchronous), modulation of dose (e.g., low-dose PD-1
inhibitors lower costs but require adaptation to cancer type), and
mechanism of toxicity superposition are unclear 4,710. GPR34
inhibitors + TIGIT antibodies, for example, are powerfully synergistic
in liver cancer models, but data from human trials are limited (57,
64, 67).

5 Future prospects

Natural killer (NK) cell vaccines, a novel strategy for
immunotherapy of solid tumors, will break the limitations of existing
therapies in the future, especially in individualized design,
technological innovation of engineering platforms, and perioperative
application scenarios. At present, individualized vaccine design based
on tumor-specific antigens is an increasing trend. For example, a UK
group discovered that the XPO1 protein could be a target of NK cell
activation, and its derived peptide, when presented by the HLA-C
molecule, could be specifically recognized by the NK cell surface
receptor KIR2DS2, demonstrating a novel target for the development
of personalized vaccines. These vaccines have the potential to enhance
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the precision of immune responses in very heterogeneous solid
tumors such as liver cancer and head and neck cancer (68-70).

Then, the technology platform for enhancing generality and utility
has been developed. The iPSC-NK universal platform facilitates
genetic modification to enhance cell functions. For instance, by
knocking out inhibitory receptors such as PD-1, the anti-suppression
ability of NK cells in the tumor microenvironment can be enhanced;
and through genetic engineering, specific receptors such as CAR can
be introduced, enabling NK cells to precisely target tumor antigens
and improve their killing efficacy (71). At the delivery and function
enhancement level, TGFf inhibition can be countered by non-viral
vector antibody conjugating techniques (e.g., IBR854 injection) or
gene editing knockout of SMADA4. It can enhance the infiltration and
activity of NK cells in the TME, 68NK vaccine delivery capability and
activity; Combination use, the combination of NK vaccines with PD-1
inhibitors (e.g., pembrolizumab) synergistic enhancement of anti-
tumor immunity achieved an objective response rate of 50% in
chemotherapy-resistant biliary tract cancer patients, and the duration
of effect lasted for 12-18 months (72).

In addition, clinicians ought to pay attention to the role of NK
vaccines in reducing the risk of metastasis after surgery. NK vaccine
administration has been utilized postoperatively for the removal of
circulating tumor cells, reduction of distant metastasis as well as
prevention of recurrence (73). For example, NK vaccine-treated
colorectal cancer patients experienced no local recurrence within
3 years (74); NK cells combined with cetuximab for non-small cell
lung cancer reduced tumor volume dramatically (up to 70%
reduction), which created better conditions for surgery (75);
Cryotherapy combined with NK cells for liver cancer enhanced
disease control to 85.2% and extended median survival to 9.1 months
(76). Furthermore, NK cell vaccines rely on the recognition and
presentation mechanisms of tumor antigens. Clinicians have used the
IP scoring system to evaluate the potential efficacy of NK cell vaccines
in different patient groups, providing new biomarker references that
can help identify patients more likely to benefit from NK cell vaccine
therapy, thereby optimizing clinical trial design and treatment
strategies (77).

NK cell vaccines will revolutionize the treatment of solid tumors
in three ways: innovation targeting, upgrading engineering, and
expansion of clinical application scenarios, especially with the
possibility of becoming a “standard therapy” in perioperative
comprehensive treatment, to provide more convenient and effective
immune protection for patients.

6 Conclusion

Natural killer (NK) cell vaccines, as a new generation of
immunotherapy for solid tumors, have shown great potential to break
through the bottleneck of existing treatments by reshaping the tumor
microenvironment, overcoming antigen presentation barriers, and
targeting MHC-I low-expressing tumors. A large number of ongoing
Phase I/II/III clinical trials (e.g., DC vaccines, mRNA/LNP platforms,
and NK receptor agonist antibodies) constitute the key driving force
for the development of this field. Early evidence shows 30-50%
objective response rates and >80% disease control rates for some
therapies. Sophisticated manufacturing processes, inefficient delivery,
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and an immunosuppressive microenvironment remain the major
translational challenges. There is going to be a need in the future to
expand interdisciplinary collaboration (basic research optimizing
target screening, engineering technology developing carrier design,
clinical medical confirmation integrating strategy, and regulatory
science standardizing) to facilitate clinical translation. Guarded
optimistic expectations are that seminal events can occur in the next
2-3 years: Such as Phase II survival benefit data for HER2/EGFR-
targeting bispecific antibodies (e.g., AFM24), Phase III data for a
universal iPSC-NK vaccine combined with a PD-1 inhibitor, and
conditional approval for the first solid tumor indication (e.g.,
glioblastoma DC vaccine).
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