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Objective: This study aims to develop a predictive model for tracheal tube
sizes in adult double-lumen endotracheal intubation using radiomics and
artificial intelligence (AI) technologies to enhance the safety and efficiency of
intubation procedures.
Methods: A retrospective study design was adopted. Computed tomography
(CT) imaging data of the neck and chest from 500 adult patients were collected,
and radiomic features were extracted. After a rigorous screening, 390 patients
were included in the analysis. Radiomics techniques were applied to analyze CT
images and extract features related to tracheal tube size selection. Predictive
models were constructed using AI algorithms, including random forests, decision
tree, support vector machines, and Baidu Wenxin ERNIE.
Major results: Among the models constructed, the Baidu Wenxin ERNIE model
exhibited the best predictive performance, achieving an accuracy of 0.77 on the
test set. Primary evaluation metrics, including accuracy, precision, recall, and
F1-score, were compared to determine the optimal predictive model.
Conclusions: This study successfully developed a predictive model for tracheal
tube sizes in adult double-lumen endotracheal intubation based on radiomics
and AI, demonstrating high predictive accuracy. This model has the potential
to provide clinicians with a convenient, rapid, and efficient method of airway
assessment, thereby enhancing the safety and efficiency of double-lumen
endotracheal intubation.

KEYWORDS

radiomics, artificial intelligence, double-lumen endotracheal intubation, tracheal tube
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Introduction

Double-lumen endotracheal tubes are a pivotal instrument in thoracic surgery, where
their dual-lumen configuration effectively partitions diseased and healthy lung segments
to enable single-lung ventilation, thereby accommodating diverse surgical requirements
(1). However, the precise selection of appropriately dimensioned tubes has emerged
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as a determinant of procedural success. Excessively large
tubes increase the risk of airway trauma; bronchospasm; and
postoperative complications such as laryngeal edema (2),
pneumothorax, or tracheal rupture (3). On the other hand,
undersized tubes may compromise airway sealing, precipitating
ventilation leakage, contralateral lung contamination, hypoxemia,
or surgical discontinuation. Consequently, anesthesiologists
face a formidable challenge in optimizing double-lumen tube
(DLT) sizing, necessitating the synthesis of clinical acumen with
patient-specific anatomical, physiological, and procedural variables
to harmonize surgical efficacy with patient safety (4).

Traditional selection methods that rely solely on physician
experience or simple anatomical parameters (e.g., height and
bronchial diameter measurements) have significant limitations,
particularly when encountering anatomical variations, emergency
surgeries, or unusual patient positioning, where the risk of
misjudgment increases sharply. Although recent studies suggest
that ultrasonic airway measurements can assist in DLT selection
with improved accuracy (5, 6), computed tomography (CT)
offers distinct advantages such as minimal measurement error,
superior depiction of air-tissue interfaces, and avoidance of
airway distortion artifacts (7). Consequently, CT remains the gold
standard method for airway anatomical assessment because of
its unparalleled precision and reliability in delineating critical
respiratory structures (8). However, anesthesiologists may
have limitations in interpreting CT images, particularly when
identifying complex anatomical structures. When determining
the size of double-lumen endotracheal tubes, it is necessary
to process multiparameter data such as airway diameter,
bronchial angle, and other relevant measurements. This process
is cumbersome and time-consuming and requires high data
processing abilities and spatial imagination from physicians.
To ensure accurate selection, doctors often need to repeatedly
measure and compare data and comprehensively consider
their experience, which inadvertently increases the time and
effort required for preoperative preparation. Therefore, there
is an urgent need for a more convenient, rapid, and accurate
assessment method.

Radiomics is an interdisciplinary research direction in
medicine and computer science that refers to the extraction
of a large amount of imaging information from images (such
as CT, MRI, and PET) and assisting physicians in making the
most accurate diagnosis by means of deeper mining, prediction,
and analysis of massive imaging data information (9). With the
powerful algorithmic advantages of artificial intelligence, it is
possible to achieve in-depth mining of massive radiomics data,
thereby constructing effective predictive models.

The purpose of this study was to extract the radiomic features
of the trachea from adult CT imaging data and establish a
predictive model using artificial intelligence (machine learning)
algorithms to leverage the powerful algorithmic advantages of
artificial intelligence, thereby achieving intelligent prediction of
double-lumen endotracheal tube sizes. This approach is simpler
and faster than traditional manual measurements and achieves
higher accuracy. A detailed flowchart of the research is shown in
Figure 1.

Methods

Data acquisition

In the data acquisition phase, we meticulously collected
CT plain scan images (in DICOM format) of the neck and
chest from 500 patients aged 18 years or above at the Second
Affiliated Hospital of Guangxi Medical University. Simultaneously,
we comprehensively obtained the basic information of these
patients, including multiple key indicators, such as age, sex, height,
and weight.

Upon in-depth analysis of the 500 collected imaging data, we
observed a pronounced imbalance in the judged catheter sizes. The
number of patients judged to have a 28F catheter size was relatively
large, while the number of patients judged to have a 41F catheter
size was comparatively small. In machine learning modeling, such
an imbalanced dataset poses significant challenges. Specifically,
when modeling is based on this imbalanced dataset, the predictive
results tend to be biased toward the majority class with a larger
sample size. Consequently, samples from the minority class with a
smaller sample size are more prone to misclassification than those
from the majority class, which severely affects the model’s predictive
performance and accuracy (10).

Given that this study aimed to accurately predict most double-
lumen catheter sizes, the excessive number of patients with a
32F catheter size in the collected data further exacerbated the
data imbalance, adversely affecting the accuracy of the model. To
effectively address this issue, we employed a random sampling
method. From the final dataset, we selected 65 patients for each
judged double-lumen catheter size. After rigorous screening, 390
patients were included in this study. Statistical analysis of the
patient baseline characteristic data was performed using the Pandas
library in Python.

Ethics

Ethical approval for this study [Protocol No. 2024 - KY (1063)]
was provided by the Medical Ethics Committee of the Second
Affiliated Hospital of Guangxi Medical University, Guangxi, China
(Chairperson: Prof. Xuyong Sun) on December 13, 2024.

Study dates

The study was conducted from September 2024 to June 2025.

Determination method for double-lumen
endobronchial tube sizes

The anatomical characteristics of the right main bronchus make
it prone to obstruction of the right upper lobe ventilation during
intubation, while the structure of the left main bronchus facilitates
the positioning and ventilation of the left-sided DLT. Thoracic

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2025.1657138
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ming et al. 10.3389/fmed.2025.1657138

FIGURE 1

Flowchart of the research process.

surgeries often require left-sided one-lung ventilation, with the left-
sided DLT being easier to position and having fewer complications,
along with its extensive clinical application and a solid research
foundation. Therefore, this study focused on the left-sided DLT as
the research object.

We referred to the ISO 16628:2022 standard for specific
parameters of the double-lumen endotracheal tubes. The use
of right-sided DLTs may lead to an increased incidence of
complications, such as intraoperative hypoxemia and postoperative
atelectasis, due to the potential obstruction of the orifice of
the right upper lobe bronchus. In contrast, left-sided DLTs are
generally considered to have a higher safety profile and are thus
the preferred choice for thoracic anesthesia (11). Therefore, in
this study, we aimed to predict the appropriate size for left-sided
DLTs. In a study conducted by Mathew et al., the accuracy of
predicting the size of left-sided DLTs by measuring the transverse
diameter of the cricoid cartilage using CT was 97.5%, which
was significantly superior to the 75% accuracy achieved using
traditional methods based on height and gender (12). Other studies
have indicated that the diameter of the left bronchus is also of
significant importance in predicting the appropriate size of left-
sided DLTs (13). In this study, we predicted the size of left-sided
DLTs in patients by measuring the transverse diameter at the
level of the cricoid cartilage (TD-C) on CT scans and calculating
the equivalent circular diameter (ED-C) of the left bronchus. We
followed the measurement methodology outlined by Shiqing et al.
(14) in which anesthesiologists trained by radiologists utilized
the MPR module of the Carestream PACS software to perform
multiplanar reconstruction and measurements of the patients’

trachea using axial, sagittal, and coronal slices. The inclination of
the cricoid cartilage and left bronchus was adjusted to obtain strictly
orthogonal slices (Figures 2, 3).

Airway measurements corresponding to the selection of
endotracheal tube sizes from other studies (15, 16) are presented
in Table 1.

Delineating the region of interest (ROI)

The region of interest (ROI), a designated image area
marked within an image, served as the primary focus of
subsequent analyses. Further in-depth analytical processing could
be conducted by fixing this region. In this study, the ROI was
localized within the mid-airway structures of the tracheobronchial
tree. Specifically, it encompassed the entire segment of the tracheal
lumen from the inferior border of the cricoid cartilage to the carina,
as well as the proximal portions of both the main bronchi.

We employed a semi-automatic approach using 3DSlicer 4.11
(17) to delineate the ROI. The detailed steps are as follows.

(1) We initiated the drawing process at the subglottic cricoid
cartilage level using a level-tracing tool. This tool allows the
generation of a contour within a plane by moving the mouse;
all pixels on this contour share the same grayscale value as the
pixel at the location of the mouse. Five consecutive planes were
drawn in this manner (Figure 4A).

(2) Subsequently, we used the Fast Marching module within the
SegmentEditorExtraEffects plugin to fill the drawn planes. We
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FIGURE 2

Scanning the left bronchus using multi-planar reconstruction (MPR) in Carestream PACS software. MPR of the cricoid cartilage was performed using
(A) axial, (B) sagittal, and (C) coronal slices. The oblique angle of the transverse diameter of the cricoid cartilage was corrected in three dimensions to
obtain strictly orthogonal cuts along the axis of the cricoid cartilage. The transverse diameter of the cricoid cartilage (TD-C) was measured using
electronic calipers on the MPR image at the lower border of the cricoid ring (D).

FIGURE 3

Scanning the left main bronchus (LMB) using Multi-Planar Reconstruction (MPR) in CarestreamPACS software to measure its diameter. MPR was
performed using (A) axial, (B) sagittal, and (C) coronal slices. On the MPR image at 1 cm below the carina, the anteroposterior internal diameter of the
left main bronchus (APD-LMB) and the transverse internal diameter of the left main bronchus (TD-LMB) were measured (D). The equivalent circular
diameter (ED-C) was calculated using the formula for the perimeter of an ellipse, π[3(a + b) – ([a + 3b] [3a + b])½], where a is the larger radius and b
is the smaller radius, and the formula for the circumference of a circle.

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2025.1657138
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ming et al. 10.3389/fmed.2025.1657138

set the maximum parameter to 1% and selected a segment
volume within a range of 3%−10%.

Following these steps, a three-dimensional ROI of the
subglottic tracheal and bronchial airways was constructed
(Figure 4B).

Radiomics feature extraction

Based on the manual approach for tracheal tube selection,
which indicates that the choice of tracheal tube is closely related
to the tracheal shape rather than other radiomic features, we
exclusively extracted radiomic features associated with shape,
namely, shape3D (representing the 3D shape of the ROI and
shape2D (denoting the 2D shape of the ROI). For other parameter
settings, we adopted the software’s default values: [Binwidth = 25
(for calculating and returning grayscale values) and Rsampledvoxel
size = 1, 1, 1 (for specifying the output image spacing)].

As a result, we obtained the following 14 feature datasets:
SurfaceVolumeRatio (the ratio of surface area to volume),
Maximum2DDiameterColumn (the maximum 2D diameter in
the column direction), Sphericity (a measure of how closely
the shape resembles a sphere), MinorAxisLength (the length

TABLE 1 Selection criteria for left double-lumen tubes (LDLTs) based on
transverse diameter of the cricoid cartilage (TD-C) and equivalent circular
diameter (ED-C) of the left bronchus.

LDLT size TD-C (mm) ED-C (mm)

28F <12.5 <9

32F ≥12.5 ≥9

35F ≥14 ≥10

37F ≥15 ≥10.5

39F ≥16 ≥11.5

41F ≥18 ≥12.5

The final selection is the smallest size that accommodates both criteria.

of the minor axis), SurfaceArea (the total surface area),
Maximum2DDiameterSlice (the maximum 2D diameter in
the slice direction), VoxelVolume (the volume of each voxel),
Maximum2DDiameterRow (the maximum 2D diameter in the row
direction), Elongation (a measure of how elongated the shape is),
Flatness (a measure of how flat the shape is), Maximum3DDiameter
(the maximum 3D diameter), MajorAxisLength (the length
of the major axis), LeastAxisLength (the length of the least
axis), and MeshVolume (the volume calculated from the
mesh representation).

We consolidated all extracted features into a matrix, in which
each row corresponded to a patient case and each column
represented a radiomic feature. Given that Python requires the
outcome variable to be of integer type, we converted the previously
determined tracheal tube sizes (28F, 32F, 35F, 37F, 39F, 41F) into
integer form, assigning the numbers 1, 2, 3, 4, 5, and 6, respectively.
Subsequently, we incorporated the tracheal tube size into the last
column of the matrix. We utilized the SlicerRadiomics (18) plugin
within 3DSlicer 4.11 to extract the radiomic features.

Quality control

Fifty CT images were randomly selected from the 390 CT
images acquired in this study. Two senior radiologists (Radiologists
A and B) independently segmented the airway lumen from the
glottis to the carina and extracted shape-related radiomic features.

First, Radiologist A performed airway segmentation twice
consecutively with a 1-week interval between the two sessions.
Radiomic features were then extracted from each of the two
segmentations, and the consistency of the extracted features was
evaluated. Subsequently, Radiologist B independently segmented
the airway and extracted the radiomic features. A consistency
analysis was conducted between the radiomic features extracted
by Radiologist B and those extracted by Radiologist A in the
first session.

The intraclass correlation coefficient (ICC) was used for the
consistency analysis. The following criteria were used to interpret

FIGURE 4

Extraction of the Region of Interest (ROI). (A) We utilize a horizontal tracing tool to delineate a single axial plane of the trachea. (B) The complete
extracted ROI.
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TABLE 2 Baseline characteristic data of 390 patients in this study.

Variables 28F (n = 65) 32F (n = 65) 35F (n = 65) 37F (n = 65) 39F (n = 65) 41F (n = 65)

Age (years) 55.71 ± 11.64 51.02 ± 13.59 50.54 ± 14.74 53.43 ± 14.20 57.86 ± 11.29 35.74 ± 14.82

Height (cm) 156.6 ± 8.23 160.78 ± 7.75 166.77 ± 9.14 169.12 ± 5.67 172.95 ± 5.44 181.86 ± 3.86

Sex

Male 5(7.7%) 29(44.6%) 61(93.9%) 65(100.00%) 63(96.9%) 65(100.00%)

Female 60(92.3%) 36(55.4%) 4(6.1%) 0(0%) 2(3.1%) 0(0%)

CT model Philips brilliance ICT 128-slice, Dual source CT

Continuous variables are presented as mean ± SD, and categorical variables are presented as percentages.

the ICC values: an ICC value in the range of 0.81–1.00 indicated
extremely high consistency; 0.61–0.80 denoted high consistency;
0.41–0.60 suggested moderate consistency; 0.21–0.40 implied poor
consistency; and 0–0.20 indicated virtually no consistency (19). ICC
calculations were performed using the Pingouin library in Python.

Model construction and evaluation

Finally, using the split function in Python, the matrix data
were randomly partitioned into training and test sets, with 70%
of the data allocated to the training set and 30% to the test set for
subsequent model construction and evaluation.

Subsequently, model construction was performed using
random forests, decision tree, support vector machine (SVM), and
Baidu Wenxin ERNIE models (20), respectively. During the model
evaluation phase, various metrics including accuracy, precision,
recall, and F1 score were calculated for each model. In addition,
confusion matrices and receiver operating characteristic (ROC)
curves, along with their areas under the curve, were plotted.
To ensure the reliability of the model evaluation results, each
model was run 10 times independently, and the run with the
best performance was selected as the final model. Random forests,
decision tree, and convolutional neural network models were
established using Python, whereas the Baidu Wenxin ERNIE model
was built on the EasyDL platform (21) (https://ai.baidu.com/
easydl/).

Results

The baseline characteristics of the 390 patients are shown in
Table 2. For 50 randomly selected images, the ICC values for the
radiomic feature extraction performed twice by Physician A ranged
from 0.85 to 0.90. The ICC values comparing the radiomic features
extracted by Physician A in the first round with those extracted by
Physician B ranged from 0.80 to 0.86. These results indicated a high
level of consistency in radiomic feature extraction between the two
extractions performed by the same physician and between the two
different physicians.

Ultimately, Physician A completed the segmentation and
radiomic feature extraction for the remaining 340 images.
Subsequently, the radiomic features extracted from these 340
images were combined with those from the initial 50 images

TABLE 3 Predictive performance of the four models.

Accuracy Precision Recall F1-score

Randomforests 0.62 0.62 0.62 0.61

Decision tree 0.52 0.56 0.52 0.53

Support vector
machine

0.50 0.60 0.50 0.45

Baidu Wenxin
ERNIE

0.77 0.77 0.78 0.77

extracted by Physician A, forming a complete dataset for the
final modeling.

This study employed four different algorithms to build the
models and evaluate their accuracy, precision, recall, and F1
score. Table 3 presents the results of the study. By analyzing these
evaluation results, it can be seen that, among the models built using
the four algorithms, the Baidu Wenxin ERNIE model demonstrated
the best predictive performance.

To conduct a more precise and comprehensive analysis
of the predictive performance of the Baidu Wenxin ERNIE
model across different classification scenarios, this study
employed a multidimensional analytical approach. Specifically,
we meticulously constructed confusion matrices (Figure 5) to
visually depict the predictive accuracy and misclassification rates
of the model for each category. Additionally, we generated ROC
curves (Figure 6) for each classification category to thoroughly
evaluate the discriminatory ability and diagnostic efficacy of
the model across various classification thresholds. Furthermore,
we conducted a ranking analysis of the weights assigned to the
radiomic features (Figure 7) to elucidate the roles and relative
importance of each feature in the model’s predictive process.

Finally, we utilized the EasyDL platform to deploy the model
built based on the Baidu Wenxin ERNIE model. This initiative is
aimed to facilitate other researchers by enabling them to optimize
the model and conduct secondary development. The API endpoint
for the model is as follows: https://aip.baidubce.com/rpc/2.0/ai_
custom/v1/table_infer/4235325.

Discussion

For anesthesiologists, the accurate selection of DLTs using
CT imaging presents several significant challenges. First, there
are substantial technical expertise and specialized training
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FIGURE 5

Confusion matrix plot (Baidu Wenxin ERNIE).

requirements. Anesthesiologists must possess in-depth knowledge
of radiology to accurately interpret CT measurements of airway
parameters such as the TD-C and the ED-C of the left bronchus.
This necessitates a comprehensive understanding of CT imaging
principles, image reconstruction techniques, and airway anatomy.
Furthermore, proficiency in operating CT software for multiplanar
reconstruction and precise measurements requires additional
specialized training and practice, which may extend beyond
conventional anesthesiology training curricula. Second, workflow
complexity poses another hurdle. Post-CT, anesthesiologists must
perform multiplanar reconstructions, meticulously adjust slice
angles to achieve strict orthogonal views, and conduct precise
measurements. These multistep procedures are not only time-
consuming but also increase the overall workload, potentially
disrupting established clinical workflows and impacting patient
throughput, particularly in busy operating room environments.
Therefore, the objective of this study was to develop a convenient
and efficient method for radiographic assessment of DLTs using
radiomics and artificial intelligence. Currently, there are two main
approaches in the field of artificial intelligence-empowered medical
image diagnosis. One is to directly analyze image information
using deep learning algorithms, and the other is to transform
medical images into radiomic features and conduct analysis and
diagnosis based on these features. In this study, we adopted the
second approach, which offers significant advantages by effectively
circumventing the issues of high resource consumption and
sluggish responses that arise when computer systems read images
directly. Specifically, this method can substantially enhance the
speed of image reading and analysis while significantly reducing the
reliance on and consumption of graphics processing unit resources,
demonstrating its immense potential and broad applicability for
widespread deployment in medical settings.

In terms of algorithm selection, we opted for several widely
used algorithms in the relevant field, namely, random forest,

decision tree, and SVM. Among these, ensemble algorithms
have demonstrated high accuracy in numerous studies related to
radiomics (22–24). Given that random forest is a representative
example of an ensemble algorithm, we incorporated it into our
algorithm framework. One of the most prominent highlights of
this study is the incorporation of the Baidu Wenxin ERNIE
model. Building upon Baidu’s PaddlePaddle deep learning platform
and the Wenxin Knowledge-Enhanced Large Model technology,
this model has demonstrated exceptional capabilities and broad
application potential across multiple cutting-edge fields, including
natural language processing, knowledge graph construction, and
multimodal data processing. Notably, even with the relatively
limited sample size in our study, the Wenxin ERNIE model enabled
us to achieve the highest prediction accuracy. Furthermore, the
EasyDL development platform associated with the Baidu Wenxin
ERNIE model offers an intuitive and fully graphical user interface
that automates the optimization of model parameters and facilitates
the sharing of API interfaces. This feature significantly lowers the
technical barrier, making it highly suitable for medical professionals
to develop and deploy models efficiently. A considerable number
of researchers in the field of Chinese medicine have utilized this
platform to carry out research and achieved relatively satisfactory
results (21, 25).

Based on the results depicted in the confusion matrix of
the Baidu Wenxin ERNIE model, the prediction performance
for the 39F was unsatisfactory, with a notable degree of error
deviation. After a comprehensive analysis, we speculate that
the reasons for this phenomenon are multidimensional. From
a data perspective, the scarcity of the overall sample size in
the training dataset may be the primary factor contributing
to poor prediction outcomes. The limited sample size
restricted the ability of the model to comprehensively learn
the characteristic features of the 39F. Additionally, the 39F
exhibited a high degree of similarity in imaging features
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FIGURE 6

ROC and P–R curves. (A–F) Represent the ROC curves and Precision-Recall (P–R) curves predicted for DLT sizes 28F, 32F, 35F, 37F, 41F, respectively.

and other aspects with the 41F. This makes it difficult for
the model to distinguish between the two, thereby leading
to misclassifications.

To investigate the interpretability of the Baidu Wenxin ERNIE
model, we plotted a feature importance chart. Through an in-depth
analysis, we found that the top three features in terms of weight
were SurfaceVolumeRatio, Maximum2DDiameterColumn, and
Sphericity. Notably, these three features can reflect the thickness-
related characteristics of tubular objects from different perspectives,
which aligns well with our manual method of judging tubular
objects. Therefore, it can be inferred that the model has grasped the
analytical rules for analyzing relevant features, such as the thickness
of the tubular objects.

Although the Baidu Wenxin ERNIE model constructed in this
study achieved an accuracy of 0.77 on the test set, there is still a
gap between this level and the requirements for clinical application.
Therefore, the accuracy of the model must be further improved.
The trachea exhibits a degree of elasticity. In the case of small
errors, the impact on clinical use may not be significant. However,
if the error is large, it may lead to serious problems such as an
inability to intubate smoothly or a poor sealing effect. Therefore,

subsequent research should expand the sample size to enhance the
generalizability and accuracy of the model. Simultaneously, more
professional artificial intelligence experts are required to assist in
the optimization of hyperparameters.

Despite the above-mentioned limitations, this study provides
a feasible approach for the future selection of double-lumen
endotracheal tubes using imaging technology. In addition, the
range of ROI extraction was clearly defined, and the consistency
of multiple extractions was high. This makes it suitable for
combination with ROI automatic extraction software to achieve
one-click extraction and result calculations. Subsequently, it can
be embedded into imaging or anesthesia information systems for
convenience in clinical practice.

Conclusion

In this study, we focused on predicting tracheal tube sizes for
adult double-lumen endotracheal intubation. We innovatively and
precisely extracted the radiomic features of the airway from CT
imaging data. Subsequently, a prediction model was constructed
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FIGURE 7

Ranking of radiomics features (Baidu Wenxin ERNIE).

using the Baidu Wenxin ERNIE intelligent algorithm. The model
demonstrated a favorable predictive performance, achieving an
accuracy of 0.77 on the test set. The findings of this study
provide a solid foundation for the application of this predictive
model in clinical practice. Based on this study, it is anticipated
that a comprehensive and independent modular system will be
developed. This system offers clinicians a simple, rapid, and
efficient method for airway assessment, thereby facilitating the
efficient execution of clinical diagnosis and treatment.
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