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Background: Lung function impairment, a hallmark of chronic airway diseases
like chronic obstructive pulmonary disease (COPD), is often underdiagnosed
in China. Preserved Ratio Impaired Spirometry (PRISm) may represent an early,
subclinical stage of this process. However, a comprehensive understanding of
their clinical phenotypes, effective predictive strategies for early identification in
large populations, and the role of systemic inflammation remains underexplored,
particularly in the Chinese context. This study aimed to describe the clinical
phenotypes of lung function impairment, identify predictive factors using
machine learning, and explore associated systemic inflammation in a large-
scale population screening.

Methods: A prospective cross-sectional study was conducted in Hongtong
County, China (2021-2024). Participants were classified into airflow obstruction,
PRISm, and normal groups via portable spirometry. Using demographic, clinical,
and laboratory data, we developed and validated several machine learning (ML)
models to predict lung function impairment. Model performance was evaluated
by the area under the receiver operating characteristic curve (AUC). Serum
cytokines were measured by ELISA in matched sub-cohorts to assess systemic
inflammation.

Results: Among 9,284 enrolled adults, 51.0% had airflow obstruction, 6.7% had
PRISm, and 42.3% were normal. We identified distinct phenotypes: the PRISm
group was predominantly female with lower smoking rates but a higher risk
of coronary heart disease. The airflow obstruction group was characterized by
classical risk factors (older age, male sex, lower BMI, smoking) and specific renal
and cerebrovascular comorbidities. The ML models identified older age, male
sex, lower BMI, respiratory symptoms (cough, dyspnea), and higher creatinine
and hemoglobin as key predictors, demonstrating modest performance with
an AUC of 0.635 in the validation set. Immunologically, individuals with airflow
obstruction or PRISm showed significantly lower serum IL-2 and higher IL-5 and
IL-17A levels compared to controls.
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Conclusion: In a large-scale screening, individuals with airflow obstruction
and PRISm present with distinct clinical phenotypes. A predictive model using
simple clinical variables can help identify individuals at higher risk for lung
function impairment, despite modest performance. Serum IL-2, IL-5, and IL-17A
are potential biomarkers for the early recognition and understanding of airflow

limitation.
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lung function impairment, preserved ratio impaired spirometry (PRISm), predictive
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1 Introduction

Lung function impairment represents a fundamental physiological
aberration common to numerous chronic airway diseases, such as
(COPD),
bronchiectasis, and tuberculosis-ravaged lung. COPD remains a

chronic obstructive pulmonary disease asthma,
critical global health burden, ranking as the third leading cause of
mortality worldwide (WHO, 2020) (1, 2). Updated 2023 data indicate
COPD accounts for 6.4% of global deaths (1), with prevalence among
Chinese adults >40 years reaching 13.7% (2012-2015) (3). Alarmingly,
due to relatively low socioeconomic status and insufficient public
awareness, especially in rural regions of China, less than 30% of cases
are diagnosed early, and approximately 65% exhibit irreversible lung
function decline at initial diagnosis (4). This high burden and low
diagnosis rate highlight an urgent need for effective early identification
and risk stratification strategies tailored for this vulnerable population.

In recent years, increased focus has been directed towards
individuals who do not meet the spirometric criteria for persistent
airflow obstruction yet display respiratory symptoms or diminished
lung function. A noteworthy subgroup in this regard is Preserved Ratio
Impaired Spirometry (PRISm), characterized by a preserved FEV1/FVC
ratio (>0.70) alongside a reduced FEV1 (<80% predicted) (5). PRISm
is relatively common and has been linked to increased respiratory
symptoms, exacerbations, cardiovascular comorbidities, and mortality
compared to individuals with normal spirometry; however, its long-
term progression and optimal management remain poorly understood
(6-8). Several studies suggest that PRISm may signify an early stage of
COPD or represent a distinct clinical phenotype (9-13).

Despite these advancements, a comprehensive understanding of
the clinical heterogeneity of lung function impairment across its
spectrum (from normal to PRISm and established obstruction), and
the development of effective, practical predictive strategies for early
identification in large populations, remains largely underexplored.
Particularly, in high-prevalence, under-diagnosed rural populations
like those in China, a systematic “comprehensive atlas” detailing
distinct clinical phenotypes, associated predictive factors, and
underlying biological mechanisms is still urgently needed. While
conventional spirometry is the gold standard for diagnosis, its logistical
impracticality and time-consuming nature present a significant barrier
for large-scale population screening. To overcome this, the advent and
validation of portable spirometers offer a crucial solution, enabling
robust and feasible data collection in community settings (14).

Clinically, distinguishing between individuals with normal lung
function, PRISm (subclinical), and advanced airflow obstruction is
vital for implementing targeted prevention and management
strategies. Although spirometry is fundamental, its results can
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be influenced by subjective factors. For instance, elderly individuals
may have difficulty cooperating with lung function testing, while
younger individuals are often unwilling to complete this time-
consuming procedure. This variability underscores the need to find
simpler, non-invasive factors correlated with lung function
impairment. Integrating readily available blood test indicators with
comorbidity metrics represents a crucial step toward developing
effective predictive models. However, a more comprehensive
understanding and robust risk stratification require moving beyond
these isolated factors to incorporate multidimensional data, including
demographic information, clinical history, laboratory markers, and
environmental exposures (15-17). Analyzing such intricate and high-
dimensional datasets presents a significant challenge, making machine
learning techniques particularly well-suited for identifying complex
patterns and constructing generalizable predictive models (18, 19).

Furthermore, the pathophysiology of lung function decline is
deeply rooted in chronic inflammation (20). Neutrophilic inflammation
was regarded as the key process in the pathogenesis of COPD. Systemic
and airway-localized Th2 inflammation is characterized in a subgroup
of COPD, usually with eosinophilia, served as a indicator for the usage
of inhaled corticosteroid in the long-term management of COPD (21).
While systemic inflammation is a known feature of COPD, its specific
signature in the PRISm state, which may represent a transitional or
distinct biological entity, remains poorly characterized (22).
Investigating systemic inflammatory markers could therefore provide
crucial insights into the processes that differentiate these early
phenotypes from both normal lung function and established disease,
thereby contributing to a more complete understanding of disease
progression and guiding potential therapeutic targets.

Therefore, leveraging the feasibility of large-scale population
screening using portable spirometry in a high-burden region of
Shanxi Province, China, this study aimed to (1) comprehensively
characterize the distinct clinical phenotypes of airflow obstruction
and PRISm, (2) identify key clinical and laboratory predictive factors
for lung function impairment using machine learning, and (3) explore
associated systemic inflammatory profiles. By doing so, we seek to
contribute to the early recognition and improved management
strategies for chronic airway diseases in high-risk populations.

2 Methods and materials
2.1 Study design and population

This cross-sectional study was conducted between January 2021
and July 2024 as part of a large-scale epidemiological survey in the
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rural regions of Hongtong County, Linfen City, Shanxi Province,
China. All adult residents aged 18 years and older were invited to
participate. Participants were excluded if they met any of the following
criteria: (1) inability to perform spirometry or failure to produce
acceptable and repeatable results (quality grade below A’ or ‘B’); (2)
presence of an acute respiratory infection at the time of assessment;
(3) current pregnancy; or (4) incomplete data, defined as >20%
missing values for key variables.

Clinical data were systematically collected using an electronic
questionnaire. This included demographic information [age, sex, Body
Mass Index (BMI)], lifestyle factors (smoking status, biofuel and dust
exposure), self-reported symptoms (chronic cough, sputum
production, dyspnea, and chest pain), and the history of self-reported
respiratory diseases and comorbidities (hypertension, chronic
bronchitis, emphysema, COPD, asthma, lung cancer, other
malignancies, tuberculosis, coronary heart disease, arrhythmia,
diabetes mellitus, hyperthyroidism, and cerebrovascular disease). The
study was approved by the ethics committee of Linfen Central
Hospital (Ethics Approval No. 2021-1-1) and adhered to the principles
of the Declaration of Helsinki. Informed consent was obtained from
all participants prior to their involvement.

2.2 Spirometry and group classification

Given the nature of this large-scale population screening, all
classifications were based on pre-bronchodilator spirometry.
Pre-bronchodilator spirometry was performed on all participants
using portable spirometry devices (BreathHome, Inc., China). To
ensure quality control, all spirometry results were independently
reviewed by two experienced pulmonologists. The following
parameters were recorded: FEV1/FVC, FEV1, FVC, FEV1% predicted,
FVC% predicted, forced expiratory flow at 25, 50, and 75% of FVC
(FEF25, FEF50, FEF75), Forced Expiratory Time (FET), and FEF25-
75. Quality grade of ‘A’ or ‘B’ was regarded to be eligible, which were
defined as acceptable data in at least 2 repeated tests with repeatability
difference less than 15%. Optimal results in repeated tests were
utilized for further analysis. Based on these pre-bronchodilator results,
participants were classified into three distinct groups:

« Airflow Obstruction Group: FEV1/FVC < 0.70
o PRISm Group: FEV1/FVC > 0.70 and FEV1 < 80% predicted
o Normal Group: FEV1/FVC > 0.70 and FEV1 > 80% predicted

2.3 Laboratory test parameters

Routine assays of complete blood count, liver function, renal
function, lipid profiles, and fasting glucose were performed for all the
participants. Additionally, serum cytokine levels, including interleukin
(IL)-2 (cat. no. 10353), IL-4 (cat. no. 10375), IL-5 (cat. no. 10376),
IL-10 (cat. no. 13626), IL-17A (cat. no. 10344), and IL-22 (cat. no.
10356), were quantified by ELISA (LunChangShuoBiotech Inc.,
China) in matched cohorts. In consideration of IL-2 representing for
Th1 inflammation, IL-4 and IL-5 for Th2 inflammation, IL-17A and
IL-22 for Th17 pathway and neutrophil inflammation, and IL-10 for
regulatory T cells, a comprehensive immunologic status can
be evaluated. From the complete blood count data, several composite
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inflammatory indices were calculated: the neutrophil-to-lymphocyte
ratio (NLR), neutrophil-to-eosinophil ratio (NER), systemic immune-
inflammation index (SII = neutrophil X platelet/lymphocyte), systemic
inflammation response index (SIRI = neutrophil x monocyte/
lymphocyte), and the platelet-to-lymphocyte ratio (PLR).

2.4 Statistical analysis

All statistical analyses were performed using R software (version
4.4.1). Continuous variables with a normal distribution were presented
as mean + standard deviation (SD), while nonparametric variables
were presented as median and interquartile range (IQR, 25th and 75th
percentiles). Student’s ¢-test and analysis of variance with a post hoc
Tukey HSD test were used for continuous parametric data, while
continuous nonparametric data were analyzed using the Kruskal-
Wallis test. Categorical variables were presented as counts
(percentages) and were compared using the chi-square test or Fisher’s
exact test, as appropriate.

In the training cohort, various multivariate modeling approaches
were initially employed to identify predictive factors for airflow
obstruction and PRISm. Specifically, LASSO regression with 10-fold
cross-validation for optimal lambda selection, random forest (500
trees, max_depth = 15, min_samples_leaf = 5), and gradient boosting
machine (1,000 boosting stages, learning_rate = 0.01, max_depth = 3)
were used. Concurrently, adjusted odds ratios (ORs) with 95%
confidence intervals (CIs) were provided by conventional logistic
regression. Subsequently, using the selected features, four supervised
learning algorithms were implemented to classify individuals with
impaired versus normal lung function. These included logistic
regression (L2 regularization, C = 1.0), random forest (1,000 trees,
min_samples_split = 10), gradient boosting (2000 estimators,
learning_rate = 0.005, with early stopping), and XGBoost (max_
depth = 6, eta = 0.1, gamma = 0.5). Model performance was evaluated
through stratified 5-fold cross-validation to ensure robustness.

A two-sided p value <0.05 was considered statistically significant.

3 Results

3.1 Comparison of clinical characteristics
among individuals with airflow obstruction,
PRISm and normal control

A total of 16,962 participants were enrolled. After checking for
missing data, a total of 9,284 participants were included in the final
analysis, comprising 4,738 (51.0%) in the airflow obstruction group,
621 (6.7%) in the PRISm group, and 3,925 (42.3%) in the normal
spirometry group (Figure 1).

Table 1 summarizes the important demographic and clinical
characteristics of the study participants across the three groups.
Participants with airflow obstruction were strikingly older [median
(IQR): 62 (55-68) years] than both PRISm [55 (49-63) years] and
normal groups [57 (50-63) years] (both p < 0.001). Furthermore, a
significantly higher proportion of males characterized the airflow
obstruction group compared to the other two groups. Participants in
the airflow obstruction group exhibited a lower BMI than both the
PRISm and normal groups.
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16,962 participants were assessed for eligibility —

7,678 were excluded — 9,284 participants were finally included

4,566 had invalid spirometry

3,112 had >20% missing data
results

4,738 in airflow obstruction group 621 in PRISm group 3,925 in normal control group

FIGURE 1
The flowchart of patient enrollment and follow-up classification.

TABLE 1 Baseline Characteristics among airflow obstruction, PRISm and normal groups.

Airflow obstruction (n = 4,738)  PRSIm (n = 621) Normal (n = 3,925) p value

Age (IQR) 62 (55,68) 55 (49,63) 57 (50,63) <0.001
Sex <0.001
Male (%) 1988 (42.0%) 133 (21.4%) 1,154 (29.4%)
Female (%) 2,750 (58.0%) 488 (78.6%) 2,771 (70.6%)
BMI (IQR) 24.7 (22.6,27.0) 25.5(23.7,27.8) 25.5(23.5,27.7) <0.001
Smoking status <0.001
Never (%) 2,886 (64.2%) 471 (83.1%) 2,729 (77.2%)
Current (%) 1,262 (28.1%) 75 (13.2%) 642 (18.2%)
Former (%) 348 (7.7%) 21 (3.7%) 164 (4.6%)
Biofuel exposure (%) 2,768 (61.6%) 349 (61.6%) 2076 (58.7%) 0.031
Dust exposure (%) 524 (11.7%) 34 (6.1%) 322 (9.0%) <0.001
Symptoms
Chronic cough and sputum production (%) 1,097 (24.9%) 140 (24.4%) 814 (22.5%) 0.033
Dyspnea (%) 734 (16.3%) 68 (12.0%) 328 (9.3%) <0.001
Chest pain (%) 169 (3.8%) 16 (2.8%) 133 (3.8%) 0.519
Self-reported disease
Chronic bronchitis (%) 276 (6.1%) 21 (3.7%) 57 (1.6%) <0.001
Emphysema (%) 69 (1.5%) 0 (0.0%) 6(0.2%) <0.001
COPD (%) 17 (0.4%) 0 (0.0%) 3(0.1%) 0.013
Asthma (%) 186 (4.1%) 7 (1.2%) 22 (0.6%) <0.001
Comorbidities
Hypertension (%) 1,352 (30%) 180 (31.5%) 1,105 (31.1%) 0.497
Lung cancer (%) 10 (0.2%) 0 (0.0%) 0 (0.0%) 0.01
Former TB infection (%) 75 (1.7%) 2(0.4%) 25 (0.7%) <0.001
CHD (%) 188 (4.2%) 26 (4.6%) 92 (2.6%) <0.001
Arrhythmia (%) 141 (3.1%) 16 (2.8%) 103 (2.9%) 0.813
Malignancy other than lung cancer (%) 14 (0.3%) 2(0.4%) 5(0.1%) 0.268
Diabetes (%) 284 (6.3%) 47 (8.3%) 229 (6.5%) 0.199
Cerebral infarction (%) 499 (11.1%) 47 (8.3%) 263 (7.4%) <0.001

BMI: Body Mass Index; COPD: Chronic Obstructive Pulmonary Disease; CHD: Coronary Heart Disease.
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Regarding lifestyle factors, the prevalence of current and former
smoking was highest in the airflow obstruction group. Notably, the
current smoking rate in airflow obstruction group (28.1%) was double
that of the PRISm group (13.2%, p < 0.001). Dust exposure was also
most prevalent in airflow obstruction group (11.7%), significantly
high than in the PRISm (6.1%) and normal (9.0%) groups (p < 0.001).

Dyspnea was the predominant differentiating symptom, showing
a clear gradient in prevalence: highest in the airflow obstruction
group, followed by the PRISm group, and lowest in the normal group.

A significant discrepancy was observed between objective
spirometry findings and self-reported diagnoses of respiratory
diseases. Strikingly, only 0.4% of participants in the airflow obstruction
group reported a prior diagnosis of COPD. The prevalence of self-
reported asthma was highest in the airflow obstruction group
compared to the other two groups.

Individuals with airflow obstruction exhibited a higher prevalence
of self-reported prior tuberculosis and cerebrovascular diseases
compared to the other groups. Coronary heart disease rates were also
elevated in both the airflow obstruction (4.2%) and PRISm (4.6%)
groups compared to the normal group (2.6%) (p < 0.001).

Higher counts of WBC and neutrophils were observed in both the
airflow obstruction and PRISm group compared to the normal group.
The highest levels of eosinophils and hemoglobin was shown in the
airflow obstruction group. While the calculated inflammatory indices
were less effective in discriminating between the impaired lung
function groups, systemic inflammatory markers, including the NLR

10.3389/fmed.2025.1657151

and SII, were significantly elevated in the airflow limitation group
compared to the normal spirometry group (both p<0.001).
Furthermore, the airflow obstruction group exhibited higher levels of
Blood Urea Nitrogen (BUN) and creatinine, and lower levels of
Alanine Aminotransferase (ALT) and triglycerides than the other two
groups. (Table 2).

As expected from the group definitions, spirometric parameters
showed a gradient of decline from the normal group to the PRISm and
airflow obstruction groups. This trend was particularly evident in
parameters of small airway function (FEF25, FEF50, and FEF75),
which demonstrated a more pronounced stepwise deterioration across
the groups. These small airway parameters also exhibited better
sensitivity for identifying lung function impairment compared to
conventional parameters such as FEV1/FVC, FEV1, and FVC
(Table 3).

3.2 Predictive model for subclinical and
advanced lung function impairment

To identify meaningful predictive factors for the early and precise
recognition of lung function impairment, we combined the airflow
obstruction group (representing advanced impairment) and the
PRISm group (representing subclinical impairment) into a single
“lung function impairment” entity (Group 1). This combined group
was then compared against the normal control group (Group 2). The

TABLE 2 Laboratory test parameters among airflow obstruction, PRISm and normal groups.

Airflow obstruction PRSIm (n = 621) Normal (n = 3,925) p value
(n =4,738)

WBC x 10°/L (IQR) 5.99 (5.07,7.11) 6.01 (4.96,7.01) 5.81 (4.90, 6.84) <0.001
Neutrophil x 10°/L (IQR) 3.33(2.67,4.14) 3.31(2.66,4.12) 3.18 (2.60, 3.96) <0.001
Eosinophil x 10°/L (IQR) 0.11 (0.07, 0.18) 0.11 (0.07, 0.16) 0.10(0.07, 0.16) <0.001
Valid counts (%)’ 4,650 (98.1) 607 (97.7) 3,850 (98.1)

<0.1 x 10°/L (%) 1837 (39.5%) 262 (43.2%) 1738 (45.1%)

0.1 ~0.3x 10°/L (%) 2,410 (51.8%) 310 (51.1%) 1858 (48.3%)

>0.3 x 10°/L (%) 403 (8.7%) 35 (5.8%) 254 (6.6%)
Basophil x 10°/L (IQR) 0.03 (0.02, 0.04) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) <0.001
Hemoglobin, g/L (IQR) 140 (130, 151) 136 (127, 144) 137 (128, 148) <0.001
PLT x 10°/L (IQR) 236 (199, 278) 249 (207, 292) 239 (204, 281) <0.001
SII (IQR) 390.85 (288.72, 530.83) 374.25 (287.74, 524.57) 379.94 (280.52, 512.09) 0.016
SIRI (IQR) 0.62 (0.43, 0.88) 0.62 (0.44, 0.89) 0.59 (0.42, 0.86) 0.040
PLR (IQR) 116.79 (92.52, 146.79) 120.10 (96.59, 151.89) 119.62 (95.97, 150.74) <0.001
ALT, U/L (IQR) 18.90 (14.30, 26.20) 21.10 (15.40, 30.95) 20.10 (15.20, 28.50) <0.001
Glucose, mmol/L (IQR) 4.79 (4.36, 5.36) 4.89 (4.51,5.50) 4.81 (4.40, 5.35) <0.001
BUN, mmol/L (IQR) 5.44 (4.65, 6.43) 5.06 (4.26, 6) 5.22 (4.43, 6.16) <0.001
Creatinine, pmol/L (IQR) 59.40 (51.70, 69.00) 55.20 (48.00, 63.35) 57.40 (50.60, 66.50) <0.001
Triglyceride, mmol/L (IQR) 1.42 (1.04, 1.98) 1.57 (1.18, 2.20) 1.50 (1.09, 2.12) <0.001

‘Valid counts for eosinophil subgroups are shown. Percentages for these subgroups are calculated based on the number of participants with available eosinophil data, not the total group

number.

Percentages may not sum to 100% due to rounding.
WBC, White Blood Cell; PLT, Platelets; SII, Systemic Immune-Inflammation Index; SIRI, Systemic Inflammation Response Index; PLR, Platelet-to-Lymphocyte Ratio; ALT, Alanine

Aminotransferase; BUN, Blood Urea Nitrogen.
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TABLE 3 Spirometry Parameters among airflow obstruction, PRISm and normal groups.

Airflow obstruction
(n = 4,738)

PRSIm (n = 621)

Normal (n = 3,925)

p value

FEV1/FVC (IQR) 61.92 (53.83, 66.46) 74.04 (71.87, 76.76) 75.21 (72.73,78.18) <0.001
FEV1, L/s (IQR) 2.00 (1.57,2.43) 1.85 (1.61, 2.09) 2.46 (2.16,2.88) <0.001
FVC, L/s (IQR) 332 (2.73,4.09) 246 (2.17,2.78) 324 (2.84,3.82) <0.001
FEF25, L/s (IQR) 3.2(2.16,4.21) 3.91(3.2,4.71) 5.1 (4.33,6.08) <0.001
FEF50, L/s (IQR) 1.43(0.95,1.91) 2.05 (1.71,2.41) 2.88 (2.38, 3.46) <0.001
FEF75, L/s (IQR) 03 (0.21,0.43) 0.45 (0.35,0.58) 0.65 (0.48, 0.85) <0.001
FEF25-75, L/s (IQR) 0.93 (0.61, 1.28) 1.46 (1.18, 1.76) 2.08 (1.7, 2.55) <0.001

FEV1, Forced Expiratory Volume in 1 s; FVC, Forced Vital Capacity; FEF25, Forced Expiratory Flow at 25% of FVC; FEF50, Forced Expiratory Flow at 50% of FVC; FEF75, Forced Expiratory

Flow at 75% of FVC; FEF25-75, Forced Expiratory Flow between 25 and 75% of FVC.

entire cohort was randomly divided into a training set and a validation
set at a 70:30 ratio.

Univariate analysis of the training set was shown in Table 4.
Group 1 exhibited a higher prevalence of tobacco and dust exposure,
increased rates of chronic cough, sputum production, and dyspnea,
and a greater proportion of individuals reporting a history of chronic
respiratory diseases. Spirometry results revealed FEV1 and small
airway functions parameters were distinguishable between Group 1
and Group 2, whereas FVC showed less discriminatory power.

To identify robust predictive factors for lung function impairment,
several machine learning algorithms for modeling were employed,
including logistic regression, Random Forest (RF), Gradient Boosting
Machine (GBM) and XGBoost. The validation set was served as an
independent external validation for model performance.

Multivariable logistic regression analysis identified multiple
predictive factors, including older age, male sex, lower BMI, chronic
cough and sputum, dyspnea, a history of chronic bronchitis and
asthma, higher creatinine, and higher hemoglobin level (Table 5;
Figure 2). The logistic model was evaluated to be the optimal model
rather than RF, GBM and xgb models, with an area under the curve
(AUCQ) of 0.615 in the training set and 0.635 in the validation set
(Figure 3).

3.3 Comparison of systemic inflammation
among lung function groups

After matching for age, sex and smoking status, we quantified six
key cytokines in a sub-cohort consisting of 202 participants with
airflow obstruction, 202 participants in PRISm, and 209 participants
in normal group (Table 6).

While statistically significant differences were observed for all
measured cytokines across the three groups, some did not demonstrate
a clear or clinically relevant gradient. Upon pairwise comparison, IL-2
levels showed a significant gradient, with the lowest levels in the
airflow obstruction group, intermediate levels in the PRISm group,
and the highest levels in the normal group (airflow obstruction <
PRISm < Normal). Notably, the levels of IL-5 and IL-17A were
significantly elevated in the combined lung function impairment
group (Group 1: airflow obstruction and PRISm) compared to the
normal control group (Group 2). These findings suggest that IL-2, IL-5
and IL-17A could serve as potential biomarkers for the identification
of lung function impairment.

Frontiers in Medicine

4 Discussion

This large-scale, real-world population screening characterized
the distinct clinical, metabolic, and inflammatory phenotypes of
airflow obstruction and PRISm in rural China, a region with a
significant COPD burden (3). We identified a high prevalence of
undiagnosed lung function impairment (51.0% airflow obstruction;
6.7% PRISm), reflecting a profound discrepancy between objective
spirometric abnormalities and self-reported disease. Only 0.4% of
participants with airflow obstruction reported a prior COPD
diagnosis, highlighting the critical need for population-based
screening initiatives. The diagnosis of chronic bronchitis, COPD,
asthma and bronchiectasis was widely confounded in the
underdeveloped regions of China. Therefore, simplified predictive
model in our study which could be easily obtained from questionnaire
and regular blood tests can prompt the identification of population
with airflow limitation. Recommendations for these high-risk or
undiagnosed individuals can be made for further spirometry, CT scan
and other clinical examinations to define the accurate diagnosis of
chronic airway diseases.

Our study provides an in-depth characterization of PRISm as a
distinct clinical entity. Unlike the airflow obstruction group, PRISm
was more prevalent in females, associated with lower smoking and
dust exposure rates, and exhibited symptom burden intermediate to
normal and obstructed groups. Notably, PRISm showed a unique
comorbidity pattern, including an elevated risk of coronary heart
disease and a characteristic atherogenic lipid profile (higher
triglycerides), suggesting intrinsic metabolic dysregulation as a
potential underlying mechanism that warrants further investigation.
In contrast, the airflow obstruction group presented with a classical
risk profile tied to smoking and dust exposure, a higher burden of
respiratory symptoms, and comorbidities like tuberculosis and
cerebrovascular disease.

We identified several readily available clinical and laboratory
markers with predictive value for lung function impairment,
consistent with some previous literature (11, 23-25). The predictive
associations with metabolic (e.g., lower ALT, higher creatinine) and
hematological indices (e.g., higher hemoglobin) reinforce the
systemic nature of these conditions, suggesting that metabolic
dysfunction and chronic hypoxia may be key pathophysiological
drivers. Immunologically, individuals with lung function
impairment (airflow obstruction or PRISm) exhibited elevated
serum IL-5 and IL-17A, alongside lower IL-2 levels. This cytokine
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TABLE 4 Univariate analysis of the training set.

10.3389/fmed.2025.1657151

Group 1 Group 2
(n =2,743) (n =2,493)
Age (IQR) 56 (50, 61) 54 (48, 59) <0.001
Sex <0.001
Male (%) 985 (35.91%) 672 (26.96%)
Female (%) 1758 (64.09%) 1821 (73.04%)
BMI (IQR) 25.10 (23.05, 27.34) 25.61 (23.71,27.77) <0.001
Smoking status <0.001
Never (%) 1907 (69.52%) 1943 (77.94%)
Current (%) 683 (24.90%) 459 (18.41%)
Former (%) 153 (5.58%) 91 (3.65%)
Biofuel exposure (%) 1611 (58.73%) 1417 (56.84%) 0.166
Dust exposure (%) 332 (12.10%) 234 (9.39%) 0.002
Symptoms
Chronic cough and sputum production (%) 712 (25.96%) 555 (22.26%) 0.002
Dyspnea (%) 400 (14.58%) 236 (9.47%) <0.001
Chest pain (%) 101 (3.68%) 93 (3.73%) 0.926
Self-reported disease
Chronic bronchitis (%) 138 (5.03%) 30 (1.20%) ‘ <0.001
Comorbidities
Cerebral infarction (%) 219 (8%) 125 (5%) ‘ <0.001
Laboratory examination
WBC x 10°/L (IQR) 5.98 (5.04, 7.09) 5.84 (4.91, 6.88) <0.001
Monocytex10°/L (IQR) 0.39 (0.31, 0.49) 0.36 (0.28, 0.45) <0.001
Eosinophilx10%/L (IQR) 0.11 (0.07,0.18) 0.1 (0.06, 0.16) <0.001
Hemoglobin, g/L (IQR) 139 (129.5, 151) 138 (128, 149) <0.001
NER (IQR) 30.44 (18.58,49.17) 28.82 (18.23,47.29) 0.031
BUN, mmol/L (IQR) 5.25 (4.46, 6.15) 5.1(4.33,6) <0.001
Creatinine, pmol/L (IQR) 57 (50, 66.3) 56 (49.4, 65) 0.034
Triglyceride, mmol/L (IQR) 1.45 (1.04, 2.06) 1.51 (1.09, 2.16) 0.002
Spirometry examination
FEV1/FVC % (IQR) 64.38 (56.97, 68.52) 75.61 (73.15, 78.5) <0.001
FEV1, L/s (IQR) 2.11 (1.74, 2.55) 2.52(2.22,2.95) <0.001
FEF25, L/s (IQR) 3.61 (2.63, 4.56) 5.21 (4.45, 6.16) <0.001
FEF50, L/s (IQR) 1.68 (1.20, 2.18) 2.98 (2.5, 3.55) <0.001
FEF75, L/s (IQR) 0.35(0.25, 0.5) 0.68 (0.51, 0.88) <0.001
FEF25-75, L/s (IQR) 1.13 (0.76, 1.48) 2.18 (1.8, 2.63) <0.001

BMI, Body Mass Index; WBC, White Blood Cell; NER, Neutrophil-to-eosinophil ratio; BUN, Blood Urea Nitrogen; FEV1, Forced Expiratory Volume in 1 s; FVC, Forced Vital Capacity;
FEF25, Forced Expiratory Flow at 25% of FVC; FEF50, Forced Expiratory Flow at 50% of FVC; FEF75, Forced Expiratory Flow at 75% of FVC; FEF25-75, Forced Expiratory Flow between 25

and 75% of FVC.

profile, coupled with cellular findings (elevated neutrophils and
eosinophils in airflow obstruction), suggests the predominance of
Th2 and Th17-driven inflammation over Thl pathways in the
pathogenesis of airflow limitation. These findings contribute to the
complex and heterogeneous landscape of inflammatory pathways in
chronic airway diseases (22, 26-29), highlighting specific targets for
future mechanistic studies.

Frontiers in Medicine

Our study has several limitations. Its cross-sectional design
allows for identification of associations and predictive factors, but
not causality; longitudinal follow-up is required to confirm true
predictors of disease progression. Second, our reliance on
pre-bronchodilator spirometry, while pragmatic for large-scale
screening and supported by its utility for risk stratification (30),
limits our ability to definitively differentiate between reversible

frontiersin.org


https://doi.org/10.3389/fmed.2025.1657151
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ma et al. 10.3389/fmed.2025.1657151

TABLE 5 Predictive factors for lung function impairment using logistic regression modeling.

Independent var B SE z p value OR [95%Cl]
Constant 1.312 0.466 2.816 0.005

Age 0.027 0.003 7.817 0.000 1.03 [1.02, 1.03]
Female —0.514 0.085 —6.028 0.000 0.6 [0.51,0.71]
BMI —0.045 0.008 —5.353 0.000 0.96 [0.94, 0.97]
Chronic cough and sputum 0.224 0.065 3.429 0.001 1.25[1.1, 1.42]
Dyspnea 0.285 0.091 3.138 0.002 1.33[1.11, 1.59]
Self-reported chronic bronchitis 0.998 0.206 4.850 0.000 2.71 [1.81, 4.06]
Self-reported asthma 1.556 0.307 5.062 0.000 4.74 [2.59, 8.65]
Creatinine —0.006 0.002 —2.435 0.015 0.99 [0.99, 1]
Hemoglobin —0.003 0.002 —1.522 0.128 1[0.99, 1]

BMI, Body Mass Index.
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FIGURE 2
Predictive factors of lung function impairment by multivariable logistic regression analysis.
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FIGURE 3 (Continued)

High Risk Threshold

(e.g., asthma) and persistent (e.g., COPD) airflow limitation. Third,
cytokine measurements were performed on a smaller, matched
sub-cohort, which, while controlled for confounders, limited
statistical power for inclusion in the overall predictive model.

Future research should focus on validating these distinct
phenotypes and the predictive model in diverse independent
cohorts, particularly through prospective longitudinal studies.
Further investigation is also warranted to elucidate the precise
mechanistic roles of serum IL-2, IL-5, and IL-17A in the early
pathogenesis of lung function impairment and their potential as
prognostic biomarkers or therapeutic targets. Finally, exploring the
integration of additional, readily available clinical or biological
parameters, and potentially more advanced machine learning
approaches, could further enhance the predictive power of
such models.

Frontiers in Medicine

5 Conclusion

In summary, this large-scale, real-world screening study
reveals the distinct clinical, metabolic, and inflammatory
landscapes of airflow obstruction and PRISm, highlighting a
substantial burden of undiagnosed lung function impairment.
We established a potential predictive model using simple clinical
history and routine laboratory assays that could help identify high-
risk individuals for targeted, early spirometric screening.
Furthermore, our findings suggest that serum IL-2, IL-5 and
IL-17A may serve as biomarkers for airflow limitation, providing
a deeper understanding of the immunological mechanisms driving
the gradual impairment of lung function. These insights can
inform public health strategies aimed at the early detection and
management of chronic airway diseases.
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regression; RF, random forest; GBM, gradient boosting machine; xgb, XGBoost.

Mean absolute error=0.012 n=2330

TABLE 6 Serum cytokine Levels among airflow obstruction, PRISm and normal groups in matched sub-cohorts.

Cytokines

Airflow obstruction

Normal control

(n = 202)

(n =209)

IL-2 (IQR) 162.52 (106.92, 239) 240.13 (179.35, 296.67) 280.17 (183.36, 372.2) <0.001
IL-4 (IQR) 26.39 (15.88, 33.82) 17.73 (15.86, 25.85) 25.84 (17.67, 33.18) <0.001
IL-5 (IQR) 94.29 (59.5, 163.56) 93.82 (80.59, 108.35) 62.69 (56.89, 69.21) <0.001
1L-10 (IQR) 39.35 (30.01, 47.69) 28.68 (20.92, 37.31) 44.26 (27.8, 54.83) <0.001
IL-17A (IQR) 9.49 (6.77, 13.05) 9.42 (7.05, 13.22) 7.95 (5.81, 10.98) 0.001
IL-22 (IQR) 199.56 (126.38, 265.49) 202.56 (131.1, 286.45) 183.37 (133.37,227.14) 0.03

1L-2, Interleukin-2; IL-4, Interleukin-4; IL-5, Interleukin-5; IL-10, Interleukin-10; IL-17A, Interleukin-17A; IL-22, Interleukin-22.
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Glossary

ALT - Alanine Aminotransferase

BMI - Body Mass Index

BUN - Blood Urea Nitrogen

CHD - Coronary heart disease

COPD - Chronic Obstructive Pulmonary Disease
FEF25 - Forced Expiratory Flow at 25% of FVC
FEF50 - Forced Expiratory Flow at 50% of FVC
FEF75 - Forced Expiratory Flow at 75% of FVC
FEF25-75 - Forced Expiratory Flow between 25 and 75% of FVC
FET - Forced expiratory time

FEV1 - Forced expiratory volume in the first 1.0 s
FVC - Forced vital capacity

IL-2 - Interleukin-2

IL-4 - Interleukin-4
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IL-5 - Interleukin-5

IL-10 - Interleukin-10

IL-17A - Interleukin-17A

IL-22 - Interleukin-22

ML - Machine Learning

NER - Neutrophil-to-eosinophil ratio

NLR - Neutrophil-to-lymphocyte ratio

PLR - Platelet-to-lymphocyte ratio

PLT - Platelets

PRISm - Preserved Ratio Impaired Spirometry
SIRI - Systemic inflammation response index
SII - Systemic immune-inflammation index
TB - Tuberculosis

WBC - White blood cells
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