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Introduction: Accurate and timely diagnosis of central nervous system infections 
(CNSIs) is critical, yet current gold-standard techniques like lumbar puncture 
(LP) remain invasive and prone to delay. This study proposes a novel noninvasive 
framework integrating handcrafted radiomic features and deep learning (DL) to 
identify cerebrospinal fluid (CSF) alterations on magnetic resonance imaging 
(MRI) in patients with acute CNSI.
Methods: Fifty-two patients diagnosed with acute CNSI who underwent LP 
and brain MRI within 48 h of hospital admission were retrospectively analyzed 
alongside 52 control subjects with normal neurological findings. CSF-related 
signals were segmented from the ventricular system and sub-lentiform nucleus 
parenchyma, including perivascular spaces (PVSs), using semi-automated 
methods on axial T2-weighted images. Two hybrid models (DenseASPP-
RadFusion and MobileASPP-RadFusion), fusing radiomics and DL features, were 
developed and benchmarked against base DL architectures (DenseNet-201 and 
MobileNet-V3Large) via 5-fold nested cross-validation. Radiomics features were 
extracted from both original and Laplacian of Gaussian–filtered MRI data.
Results: In the sub-lentiform nucleus parenchyma, the hybrid DenseASPP-
RadFusion model achieved superior classification performance (accuracy: 
78.57 ± 4.76%, precision: 84.09 ± 3.31%, F1-score: 76.12 ± 6.86%), outperforming 
its corresponding base models. Performance was notably lower in ventricular 
system analyses across all models. Radiomics features derived from fine-scale 
filtered images exhibited the highest discriminatory power. A strict, clinically 
motivated patient-wise classification strategy confirmed the sub-lentiform 
nucleus region as the most reliable anatomical target for distinguishing infected 
from non-infected CSF.
Discussion: This study introduces a robust and interpretable MRI-based deep 
learning–radiomics pipeline for CNSI classification, with promising diagnostic 

OPEN ACCESS

EDITED BY

Deepti Deshwal,  
Maharaja Surajmal Institute of Technology, 
India

REVIEWED BY

Neeraj Kumar Pandey,  
Graphic Era University, India
Weiwei Jiang,  
Beijing University of Posts and 
Telecommunications (BUPT), China
Bo Kyu Choi,  
Yonsei University College of Medicine, 
Republic of Korea

*CORRESPONDENCE

Gökalp Tulum  
 gokalptulum@topkapi.edu.tr  

Jawad Rasheed  
 jawad.rasheed@izu.edu.tr

RECEIVED 04 July 2025
ACCEPTED 08 August 2025
PUBLISHED 20 August 2025

CITATION

Cüce F, Tulum G, Isik MI, Jalili M, Girgin G, 
Karadaş Ö, Baş N, Özcan B, Savaşci Ü, Şakir S, 
Karadaş AÖ, Teomete E, Osman O and 
Rasheed J (2025) A novel MRI-based deep 
learning–radiomics framework for evaluating 
cerebrospinal fluid signal in central nervous 
system infection.
Front. Med. 12:1659653.
doi: 10.3389/fmed.2025.1659653

COPYRIGHT

© 2025 Cüce, Tulum, Isik, Jalili, Girgin, 
Karadaş, Baş, Özcan, Savaşci, Şakir, Karadaş, 
Teomete, Osman and Rasheed. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  20 August 2025
DOI  10.3389/fmed.2025.1659653

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1659653&domain=pdf&date_stamp=2025-08-20
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://orcid.org/0000-0003-1831-3868
https://orcid.org/0000-0003-1906-0401
https://orcid.org/0000-0002-2132-8457
https://orcid.org/0009-0002-4235-4416
https://orcid.org/0000-0002-6077-9824
https://orcid.org/0000-0003-0457-3722
https://orcid.org/0000-0003-3663-2053
https://orcid.org/0009-0003-5260-3145
https://orcid.org/0000-0003-3427-1207
mailto:gokalptulum@topkapi.edu.tr
mailto:jawad.rasheed@izu.edu.tr
https://doi.org/10.3389/fmed.2025.1659653
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1659653


Cüce et al.� 10.3389/fmed.2025.1659653

Frontiers in Medicine 02 frontiersin.org

potential. The proposed framework may offer a noninvasive alternative to LP in 
selected cases, particularly by leveraging CSF signal alterations in PVS-adjacent 
parenchymal regions. These findings establish a foundation for future multicenter 
validation and integration into clinical workflows.

KEYWORDS

central nervous system infection, cerebrospinal fluid, brain MRI, Radiomics, deep 
learning, lumbar puncture, perivascular spaces

1 Introduction

Central nervous system infections (CNSIs) are neurological 
emergencies that demand prompt and accurate diagnosis to reduce 
morbidity and mortality. The gold standard for confirming CNSI 
involves isolating the microbial agent or detecting its antigen in 
cerebrospinal fluid (CSF), typically via culture or polymerase chain 
reaction (PCR) analysis following lumbar puncture (LP) (1, 2). 
However, in clinical practice, the turnaround time for these methods 
is often inadequate for urgent decision-making. As such, CSF 
pleocytosis observed on microscopy is frequently used as a proxy to 
initiate empirical therapy with antibiotics, antivirals, or antifungals 
(3). Yet, reactive or false-positive pleocytosis may occur—particularly 
following initial LPs or in immunocompromised patients—raising 
concerns about overtreatment and diagnostic uncertainty (1).

Furthermore, LP is an invasive procedure with contraindications, 
including the presence of intracranial mass lesions, bleeding diathesis, 
spinal malformations, or local infections at the puncture site (2). These 
factors highlight the need for reliable, noninvasive, and rapid 
diagnostic tools to support or replace traditional CSF sampling in 
specific clinical contexts.

MRI plays a vital complementary role in the evaluation of 
CNSI. Certain imaging patterns—such as asymmetric involvement of 
the temporal lobe, insula, and cingulum in herpes encephalitis; 
leptomeningeal enhancement in meningitis; or abscess formation and 
tuberculous granulomas—may suggest an infectious etiology (4). 
Nonetheless, normal MRI findings do not exclude infection, and the 
sensitivity of MRI for viral and bacterial meningitis ranges between 
67.4 and 83.3% (5–7). Therefore, neuroimaging alone is insufficient, 
and there is an urgent demand for advanced image analysis tools that 
can extract diagnostic information beyond the visual capabilities 
of radiologists.

Radiomics addresses this gap by converting conventional medical 
images into high-dimensional quantitative data, capturing subtle 
image patterns such as intensity, texture, shape, and spatial 
relationships (8–10). These handcrafted features have shown promise 
in multiple domains, but their performance can be enhanced when 
fused with deep learning (DL)–derived features. DL models can 
automatically learn abstract, hierarchical representations from 
imaging data, offering complementary insights into disease  
phenotypes.

Recent studies have demonstrated the efficacy of DL–radiomics 
fusion models specifically within neurology, such as multimodal 
neuroimaging feature learning for Alzheimer’s disease diagnosis (11), 
deep radiomic analysis of MRI data for Alzheimer’s disease 
classification (12), and fusion of MRI and cognitive assessments for 
mild cognitive impairment diagnostics (13). Similarly, these 
approaches have shown promise in distinguishing multiple sclerosis 

lesions (14) and differentiating Parkinson’s disease patients from 
healthy individuals using radiomic features from MRI (15) and PET 
imaging (16). Additionally, deep learning radiomic frameworks have 
been effectively used for predicting hemorrhage progression in 
intracerebral hemorrhage (17), forecasting outcomes after acute 
ischemic stroke (18), and diagnosing temporal lobe epilepsy through 
FDG-PET imaging (19).

Despite the growing interest in end-to-end deep learning 
pipelines, current evidence suggests that combining DL with 
handcrafted radiomics yields more interpretable and robust results 
especially in datasets with limited sample sizes (20–22). Consequently, 
standardization initiatives now recommend best practices for 
preprocessing, feature selection, and model validation to improve 
reproducibility across institutions (23).

In this study, we propose a hybrid DL–radiomics framework for 
classifying infected versus non-infected CSF regions in patients with 
suspected CNSI. We focus on two anatomical targets: the ventricular 
system and the sub-lentiform nucleus parenchyma, including the 
perivascular spaces (PVSs), which are implicated in glymphatic CSF 
circulation. We hypothesize that the fusion of radiomic descriptors 
and DL-based spatial features can enable noninvasive discrimination 
of CSF infection patterns, thereby supporting earlier diagnosis and 
potentially reducing the reliance on lumbar puncture.

2 Methods and materials

2.1 Patient

The local ethics committee approved this retrospective study, and 
written consent was waived.

This retrospective study included patients diagnosed with CNSI 
who underwent brain MRI as part of their routine clinical work-up 
between 2017 and 2024. Fifty-two patients in the infection group were 
diagnosed with acute bacterial, viral and aseptic meningitis based on 
a combination of clinical presentation (e.g., fever, headache, neck 
stiffness), CSF analysis, and microbiological testing. Importantly, none 
of the included patients met the diagnostic criteria for encephalitis or 
meningoencephalitis, and there were no findings suggestive of 
parenchymal involvement (such as diffusion restriction, edema, or 
signal abnormalities and contrast enhancement in the brain 
parenchyma) on MRI. Mild to moderate leptomeningeal enhancement 
was observed in the majority of cases on post-contrast T1-weighted 
images, which was consistent with active meningeal inflammation. No 
significant ventriculitis, abscess formation, or hydrocephalus was 
detected. Clinically, patients presented primarily with headache and 
fever, and none exhibited focal neurological deficits, altered mental 
status, or seizures at the time of imaging. This strict inclusion criterion 
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ensured a clinically and radiologically homogeneous infection cohort, 
thereby allowing a focused evaluation of CSF-related signal features 
in isolated meningitis and minimizing potential confounding from 
parenchymal disease.

All patients diagnosed with CNSI underwent an LP on the day of 
admission and had brain MRIs performed within the first 48 h after 
being admitted to the hospital. We excluded patients who did not 
undergo LP, had no brain MRI, had MRIs taken more than 48 h after 
treatment commenced.

The control group consisted of 52 patients with chronic headaches 
with normal neurological examinations and normal brain MRI 
reports. A total of 104 patients, including both the patient and control 
groups, were included in the analysis.

2.2 Imaging parameters

All brain MRIs were performed on a Philips 3 T imaging system 
with a dedicated head coil. All studies included axial plane 
fat-saturated fast spin eco T2-weighted sequence with time repetition 
(TR): 2,600–5,600 millisecond (ms), time echo (TE): 70–90 ms, echo 
train length (ETL):10–12. The slice thickness was 5 millimeters (mm). 
To accurately evaluate subtle cerebrospinal fluid (CSF)-specific signal 
alterations and to minimize inadvertent segmentation errors arising 
from CSF flow artifacts, pre-contrast T2-weighted images were 
exclusively utilized in this study. T2-weighted imaging was selected 
for its inherent sensitivity and superior contrast resolution regarding 
fluid characteristics, enabling precise and artifact-aware segmentation 
of CSF regions. On the other hand, sequences such as T1-weighted, 
post-contrast T1-weighted, FLAIR, and diffusion-weighted images 
(DWI) were deliberately excluded. T1-weighted and post-contrast 
sequences primarily emphasize anatomical structures and contrast-
enhanced parenchymal or meningeal lesions, providing limited utility 
in isolated CSF analysis without parenchymal involvement. Likewise, 
FLAIR imaging suppresses CSF signals, inherently limiting its 
applicability for dedicated CSF signal assessment. DWI is particularly 
sensitive to acute parenchymal lesions, but since our study specifically 
excluded patients with parenchymal abnormalities, its inclusion was 
not considered beneficial. Since no 3D modeling was employed in our 
study, the slice thickness of 5 mm did not constitute a significant 
limitation for our analysis. This selective approach ensured 
methodological consistency and enhanced reliability in analyzing 
isolated CSF-related radiomic and deep learning features.

2.3 Semi-automated segmentation 
procedure

Upon consensus, two independent radiologists determined the 
slices in the axial planes of T2-weighted images. Subsequently, MRI 
images were stored in the DICOM file format and imported to the 
ManSeg (v.2.7d) software (24). Initially, the radiologists focused on 
segmenting the CSF signal in both the upper and posterior sections of 
the lateral ventricles’ lumen, avoiding areas with visible flow artifacts. 
Next, to reduce the risk of missing any subtle, instantaneous changes 
in the normal CSF flow signal, they separately segmented the 
parenchyma of the sub-lentiform nucleus, which includes the 
perivascular spaces (PVSs) supplied by the lenticulostriate arteries. 

Sub-lentiform nucleus parenchyma with the PVSs would effectively 
represent the features of the CSF, including its contents. For each 
patient, the lateral ventricles’ lumen and the parenchyma of the 
sub-lentiform nucleus were segmented bilaterally. For the 
segmentation of suspicious regions, the radiologists roughly delineated 
the boundaries of the regions of interest independently, and the 
segmentation process was then performed automatically using the 
active contour algorithm (25). Final consensus segmentation masks 
were obtained after resolving discrepancies through joint review. 
Inter-observer agreement was assessed retrospectively on a randomly 
selected subset of 10 patients. Mean Dice similarity coefficients were 
0.92 ± 0.03 for ventricular regions and 0.91 ± 0.04 for sub-lentiform 
parenchyma. Figure 1 depicts samples of infected CSF and normal 
CSF on T2-weighted images, respectively.

2.4 Feature extraction

Radiomics features were extracted from the segmented 
regions on both the native T2-weighted MRI images and three 
Laplacian-of-Gaussian (LoG)–filtered counterparts generated 
with kernel sizes of 3 × 3 × 1 (fine), 5 × 5 × 2 (medium), and 
7 × 7 × 3 (coarse). While 2D morphological features were derived 
solely from the original T2 images, both first-order and second-
order statistical features, including those from gray level 
co-occurrence matrix (GLCM), gray level size zone matrix 
(GLSZM), gray level run length matrix (GLRLM), neighboring 
gray-tone difference matrix (NGTDM), and gray level 
dependence matrix (GLDM) were extracted from all image 
sources. A comprehensive list of the extracted features is 
presented in Table 1, comprising a total of 378 features.

2.5 Classification methodology

First, the region of interest (ROI) images and their corresponding 
radiomics features were imported. For the deep-learning analysis, 
each segmented region was centrally cropped into a 32 × 32 pixel 
patch, which was then resized to 224 × 224 pixels using bicubic 
interpolation. A patient-based 5-fold cross-validation (CV) approach 
was employed, ensuring that each patient’s ROI images and associated 
radiomics data remained grouped during the splitting process. 
One-fold was allocated as the test set, while the remaining folds were 
used for training and validation. Feature selection was conducted 
solely on the radiomics features derived from the training and 
validation sets. From a total of 378 radiomics features, the top 50 most 
discriminative features were selected using a filter-based approach. 
Subsequently, the training and validation sets were split into an 
internal 3-fold cross-validation (CV) to divide them into training and 
validation subsets further. Data augmentation techniques, including 
rotation, zooming, translation, and flipping, were applied to enhance 
the diversity of the training data.

In our preliminary analyses, we  evaluated several advanced 
architectures, including Swin Transformer, Vision Transformer (ViT), 
and attention-based networks. However, these approaches yielded 
poor performance and instability due to the relatively limited size of 
our dataset. Therefore, DenseNet-201 and MobileNet-V3Large were 
selected as robust baseline architectures, given their known ability to 
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generalize well on smaller datasets and their compatibility with our 
hybrid feature fusion strategy.

Model training was conducted in two phases. For the first 
outer fold, both the customized models DenseASPP-RadFusion 
and MobileASPP-RadFusion and the base models DenseNet-201 
(26) and MobileNet-V3Large (27) were initialized from scratch. 
For the remaining folds, the weights from the previous fold were 
loaded to continue training. During the initial training phase, the 
learning rate was set to 1e-4 with a reduction factor of 0.5 and a 
minimum learning rate of 1e-7. Training proceeded for up to 200 
epochs, with early stopping implemented after 10 epochs. During 
the fine-tuning phase, the learning rate was reduced to 1e-5, and 
the first 70% of the layers were frozen. Training was conducted 
for 20 epochs, with early stopping triggered after five epochs. 
These hyperparameters were empirically determined based on 
iterative experimentation within the internal training-validation 
splits to minimize overfitting. No hyperparameter tuning was 
performed on the external test sets. Throughout the process, 
training and validation loss, as well as accuracy metrics, were 
monitored. At the end of each fold, model weights and 
performance metrics were saved. During the testing phase, the 
feature selection obtained from the outer fold was applied to the 
test set, and model performance was evaluated using standard 
metrics, including accuracy, precision, recall, and F1-score. 
Finally, the results from all five folds were reported as mean ± 

standard deviation for each performance metric. Figure 2 depicts 
the flowchart of the classification process.

In the baseline architecture, models such as DenseNet-201 and 
MobileNet-V3Large were employed as feature extractors. These base 
models processed the input MRI images to generate feature maps, 
which were subsequently passed through a global average pooling 
layer, followed by a fully connected layer with 256 neurons and a 
dropout layer (rate = 0.3), leading directly to the classification output. 
In contrast, the proposed fusion models were designed to integrate 
both deep image features and handcrafted radiomics features. In the 
image branch of the proposed models, the backbone feature map was 
processed through five parallel paths. Four of these paths constituted 
the Atrous Spatial Pyramid Pooling (ASPP) module, employing 3 × 3 
convolutions with dilation rates of 1, 6, 12, and 18, each followed by 
batch normalization and ReLU activation, producing four parallel 
7 × 7 × 512 feature maps. The fifth path was designed to inject global 
contextual information by applying global average pooling to the 
backbone feature map (resulting in 1 × 1 × 1920), followed by a 1 × 1 
convolution with 512 filters, and then bilinear upsampling to reach a 
size of 7 × 7 × 512. All five outputs were concatenated to form a 
unified representation of size 7 × 7 × 2,560 and then compressed via 
a 1 × 1 convolution with 512 filters.

In parallel to the image pathway, radiomics features were 
processed through a separate branch. A total of 378 radiomics features 
were extracted and reduced to 50 using filter-based feature selection. 

FIGURE 1

Segmented anatomical regions from the ventricular system and the sub-lentiform nucleus in both right and left hemispheres. The top row illustrates 
two representative cases from the control group with normal CSF, while the bottom row presents two cases from the CNSI group with infected CSF. 
Red-highlighted regions indicate the manually segmented areas used for radiomics feature extraction. The bounding boxes were generated as 
standardized input patches for deep learning models. All images are derived from T2-weighted MRI sequences. CNSI, Central Nervous System 
Infection; CSF, Cerebrospinal fluid.
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TABLE 1  The description and the total number of radiomics features.

Image Type Feature Class Number of features Total number of features

Original image

1. First order statistics 17

102

2. 2D shape features 9

3. Gray level co-occurrence matrix (GLCM) features 24

4. Gray level size zone matrix (GLSZM) features 16

5. Gray level run length matrix (GLRLM) features 16

6. Neighboring gray tone difference matrix (NGTDM) 

features
5

7. Gray level dependence matrix (GLDM) features 14

Log filter (FINE, MEDIUM, 

COARSE PATTERNS)

1. First order statistics 51

276

2. Gray level co-occurrence matrix (GLCM) features 72

3. Gray level size zone matrix (GLSZM) features 48

4. Gray level run length matrix (GLRLM) features 48

5. Neighboring gray tone difference matrix (NGTDM) 

features
15

6. Gray level dependence matrix (GLDM) features 42

FIGURE 2

Overview of the proposed classification framework.
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FIGURE 3

Schematic representation of the baseline and proposed model architectures.

These selected features passed through two fully connected layers 
[Dense (128) and Dense (512)] with dropout, reshaped into a 
1 × 1 × 512 tensor and then upsampled to 7 × 7 × 512 to match the 
spatial resolution of the image features. Finally, the outputs from both 
the image and radiomics branches were concatenated along the 
channel axis, forming a 7 × 7 × 1,024 fused representation. This 
combined feature map was subjected to global average pooling, 
followed by a Dense (256) layer with dropout, and terminated with a 
softmax classification layer. This architecture effectively captured both 
spatial and contextual information from MRI data, enriched by 
complementary radiomics descriptors. As illustrated in Figure 3, the 
proposed model architecture integrates both ASPP-enhanced image 
features and spatially fused radiomics features. The implementation 
code for the proposed MRI-based deep learning–radiomics 
framework is publicly available at: https://github.com/
DrGokalpTulum/MRI-Based-Deep-Learning-Radiomics-Framework- 
for-Evaluating-Cerebrospinal-Fluid-Signal-.git.

3 Results

In the CNSI group, 55.7% (n = 29) of the patients were male, 
44.3% (n = 23) were female, and the mean age was 43.5 ± 22.5 years. 
In the control group, 33.9% (n = 18) of the patients were male, 66.1% 
(n = 34) were female, and the mean age was 46.7 ± 11 years.

The CSF analysis was performed on the patient’s admission to the 
health institution. The macroscopic appearance of the CSF, the amount 

of CSF glucose and protein, pleocytosis in microscopy, and the presence 
of microorganisms in the Gram stain were evaluated. High CSF protein, 
low glucose, leukocyte count of 100 or more cells/mm3, and neutrophil 
predominance are evaluated as bacterial meningitis; normal CSF glucose, 
borderline high protein levels, and lymphocytes being the predominant 
cell in the cell count were evaluated as viral meningitis; normal CSF 
findings were accepted as aseptic meningitis.

According to early biochemical and microscopy results, bacterial 
meningitis was observed in 37 patients, viral meningitis in 14 
patients, and CSF findings of 1 patient were evaluated as aseptic 
meningitis. While no culture medium growth was detected in the 
CSF of 24 patients, Streptococcus was detected in 5 patients, E. coli 
in 3 patients, Brucella in 2 patients, Acinetobacter in 1 patient, 
Neisseria in 1 patient, and Proteus in 1 patient, according to CSF 
culture results. Varicella Zoster Virus PCR positivity was detected in 
the CSF of two patients. Based on clinical and laboratory results in 
the patient group, antimicrobial treatment for CNSI was empirically 
started. After the diagnosis of the agent was confirmed by culture, 
PCR, and serology, treatment revision was performed with 
de-escalation in three patients.

During the 5-fold outer cross-validation, a total of 378 radiomics 
features were subjected to feature selection, and the top 50 features 
were retained in each fold. Across all folds, a total of 92 unique features 
were selected. Among these, 20 features were consistently selected in 
all five folds, indicating strong discriminative capacity. These high-
frequency features primarily originated from the Laplacian of 
Gaussian (LoG) filtered MRI with fine kernels (2 mm). In particular, 
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features such as Energy, Maximum, Range, Long Run Emphasis, and 
High Gray Level Zone Emphasis repeatedly appeared across all folds.

Additionally, 16 features appeared in four folds and five features 
in three folds, most of which stemmed from LoG-filtered MRI with 
medium kernels (4 mm) or original T2-weighted images. These 
consistently selected features highlight the critical role of multiscale 
texture descriptors in capturing the heterogeneity of cerebrospinal 
fluid regions. Detailed feature selection results, including Feature 
Name, Image Source, Feature Class, and Frequency, are provided in 
the Supplementary file.

Upon investigating the classification results, the proposed fusion 
models (DenseASPP-RadFusion and MobileASPP-RadFusion) 
demonstrate improvements over their corresponding base architectures 
(DenseNet-201 and MobileNet-V3Large) in the sub-lentiform nucleus 
parenchyma region. DenseASPP-RadFusion achieved the highest mean 
accuracy (78.57 ± 4.76%) and precision (84.09 ± 3.31%), with relatively 
low standard deviations, indicating both high performance and 
consistency across folds. Although MobileASPP-RadFusion yielded the 
highest mean recall (77.05 ± 14.82%), the associated standard deviation 
was relatively large, suggesting instability in sensitivity across different 
validation folds.

In contrast, none of the models showed strong classification 
capability in the ventricular system. Accuracy values remained 
between 57.26 and 60.52%, while F1-scores were notably lower, 
particularly for DenseASPP-RadFusion (53.46 ± 11.04%) and 
DenseNet-201 (49.37 ± 15.32%). Moreover, the standard deviations in 
recall for all models were high (ranging from 12.94 to 20.66%), 
indicating a lack of reliability in detecting true positives in ventricular-
level CSF signals.

The results show that the sub-lentiform nucleus parenchyma with 
PVSs provides more stable and discriminative information for 
classification tasks compared to the ventricular system. The 
performance of the models was statistically significantly different 
(p < 0.05). Detailed performance metrics for all models and 
anatomical regions are presented in Table 2, while the corresponding 
ROC curves are illustrated in Figure 4.

To complement the fold-level evaluation, patient-wise 
classification performance was also assessed under clinically motivated 
assumptions. To assess patient-level diagnostic performance under 
clinical assumptions, strict patient-wise accuracy was calculated 
separately for each class (infection and control) across all outer folds. 
Since each patient had two separate ROIs from the right and left 

sub-lentiform nucleus levels, the following decision rules were applied: 
for infection cases (class 1), a prediction was considered correct if at 
least one of the two ROIs was classified as infected, reflecting a 
clinically cautious approach to minimize false negatives. Conversely, 
for control cases (class 0), a prediction was deemed correct only if 
both ROIs were classified as non-infected, ensuring stricter criteria for 
healthy labeling. This binary patient-wise accuracy was computed per 
case and averaged within each fold for all models.

Figure 5 presents box plots illustrating the distribution of strict 
patient-wise accuracy values for each model, separately for the 
sub-lentiform nucleus parenchyma and ventricular system. In the 
sub-lentiform nucleus parenchyma with PVSs, the proposed model 
DenseASPP-RadFusion yielded the most stable and accurate 
performance, with infection class accuracies tightly clustered within 
the 80 to 90% interquartile range and control accuracies between 70 
and 80%, both showing low interfold variability. Similarly, DenseNet-
201 achieved high median values, though with a slightly wider spread 
in the control group. Notably, both models exhibited limited presence 
of outliers, suggesting consistency in predictions across patient subsets.

On the other hand, MobileNet-V3Large exhibited high variability 
and lower median accuracy, particularly for control patients. Its 
control group performance distribution dropped to a lower 
interquartile range (below 60%) and revealed several outliers, 
reflecting instability across folds. MobileASPP-RadFusion 
demonstrated acceptable median accuracy but higher dispersion, 
particularly in control cases, indicating less consistent generalization 
across folds.

In the ventricular system, all models demonstrated lower and 
more dispersed accuracy distributions, indicating reduced reliability 
in this anatomical region. For instance, although MobileNet-V3Large 
achieved reasonable infection accuracy, its control classification 
remained weak and inconsistent. MobileASPP-RadFusion and 
DenseNet-201 exhibited moderate accuracy with noticeably higher 
standard deviations, particularly in control predictions, highlighting 
the challenge of robust CSF signal interpretation in ventricular 
regions. The broader interquartile ranges and frequent outliers in the 
ventricular plots underscore the inconsistency of model behavior in 
this region. These findings further reinforce that the sub-lentiform 
nucleus parenchyma with PVSs provides a more clinically reliable 
classification, both at the level of the fold and the patient.

Under this realistic criterion, the proposed fusion models 
demonstrated high stability and accuracy, particularly in the 

TABLE 2  Performance metrics (mean ± std) of all models.

Evaluation Area Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Performance metrics for 

the sub-lentiform 

nucleus parenchyma

DenseASPP-RadFusion 78.57 ± 4.76 84.09 ± 3.31 70.00 ± 10.93 76.12 ± 6.86

MobileASPP-RadFusion 74.40 ± 2.28 73.66 ± 4.41 77.05 ± 14.82 74.42 ± 6.66

DenseNet-201 73.81 ± 8.01 79.72 ± 5.18 62.96 ± 14.04 70.03 ± 10.52

MobileNet-V3Large 52.98 ± 9.20 55.66 ± 13.09 76.14 ± 27.62 60.84 ± 6.49

Performance metrics for 

the ventricular system

DenseASPP-RadFusion 60.52 ± 4.87 64.65 ± 8.03 47.64 ± 17.02 53.46 ± 11.04

MobileASPP-RadFusion 59.07 ± 8.63 58.14 ± 8.86 70.18 ± 26.40 61.58 ± 13.00

DenseNet-201 57.26 ± 7.05 58.54 ± 13.48 44.64 ± 20.66 49.37 ± 15.32

MobileNet-V3Large 59.62 ± 5.06 56.69 ± 4.68 77.36 ± 12.94 65.28 ± 7.26

The upper section presents results for the sub-lentiform nucleus parenchyma with PVSs, while the lower section shows results for the ventricular system. Metrics evaluated across 5-fold cross-
validation for each model.
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FIGURE 4

Mean ROC curves with standard deviation (shaded regions) for each model across the 5-fold cross-validation. The upper plot illustrates results for the 
sub-lentiform nucleus parenchyma with PVSs. The lower plot presents results for the ventricular system. Legend entries include average 
AUC ± standard deviation for each model.
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sub-lentiform nucleus. By contrast, all models showed reduced 
and inconsistent performance in ventricular CSF classification, 
further underscoring the diagnostic limitations of relying solely 
on ventricular analysis. Discordant predictions between left and 
right sub-lentiform nucleus evaluations occurred in 22.6 ± 3.1% 
for DenseASPP-RadFusion, 30.4 ± 6.0% for MobileASPP-
RadFusion, 29.9 ± 4.7% for DenseNet-201, and 39.5 ± 5.9% for 
MobileNet-V3Large, indicating varying levels of stability in 
bilateral predictions.

4 Discussion

In this study, we developed and evaluated a novel MRI-based deep 
learning–radiomics framework to classify CSF signals in patients with 
acute CNSIs. Our findings demonstrate that the fusion of handcrafted 
radiomic descriptors with DL features enables more accurate and 
reliable classification of infected versus non-infected CSF, particularly 
when analyzing the sub-lentiform nucleus parenchyma region. These 
results offer promising evidence for the utility of noninvasive 

FIGURE 5

Box plots illustrating strict clinical patient-wise accuracy for CNSI and control classes across all models, evaluated separately for the sub-lentiform 
nucleus parenchyma (top) and the ventricular system (bottom). CNS, Central nervous system infection.
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imaging-based diagnostics as a potential complement or alternative to 
LP in selected clinical contexts.

Despite their central role in CNSI diagnosis, CSF analyses via LP 
remain invasive and carry procedural risks, including herniation, 
hemorrhage, or infection—especially in patients with intracranial 
mass lesions or bleeding disorders (1–3). Moreover, pleocytosis, often 
used as a surrogate marker of infection, may occasionally yield false-
positive results, especially after repeated LPs or in 
immunocompromised individuals (1). These limitations necessitate 
the development of alternative diagnostic strategies that are rapid, 
noninvasive, and reproducible.

While MRI has proven valuable in detecting certain CNSI patterns—
such as temporal lobe involvement in herpes encephalitis or 
leptomeningeal enhancement in meningitis—it lacks sufficient sensitivity 
to reliably detect all cases, particularly in early or ambiguous 
presentations (4–7). In our study, conventional visual inspection of 
ventricular CSF signals on MRI did not provide sufficient discriminatory 
power to distinguish infected from non-infected fluid. This is likely due 
to the inherent signal homogeneity and dynamic flow of CSF in the 
ventricles, which limits the effectiveness of static image-based analysis.

Indeed, previous AI-based studies evaluating body fluid 
segmentation—such as pleural or synovial effusions—have 
reported promising results (28, 29). However, these studies 
primarily focused on relatively static fluids that exhibit well-
defined boundaries and textural consistency. CSF, on the other 
hand, is in constant motion, and its flow-dependent signal 
properties pose substantial challenges for conventional image 
segmentation and classification.

To address these limitations, our study focused on the sub-lentiform 
nucleus parenchyma, specifically targeting regions that include 
perivascular spaces (PVSs)—components of the glymphatic system that 
mediate convective CSF flow from penetrating arteries into the interstitial 
space. Unlike the ventricular system, these parenchymal regions are less 
affected by flow artifacts and may reflect more stable and informative 
imaging features. Additionally, inflammation in adjacent brain 
parenchyma during CNSI—though often invisible on routine MRI—
may alter tissue texture and contribute to detectable radiomic changes.

Our results strongly support this hypothesis. The hybrid 
DenseASPP-RadFusion model, which integrates multiscale radiomics 
with spatially resolved DL features, achieved a mean classification 
accuracy of 78.6% in the sub-lentiform nucleus region—substantially 
outperforming both its base architecture (DenseNet-201) and all 
models applied to the ventricular system. Features derived from 
Laplacian of Gaussian (LoG)–filtered images, particularly with fine 
kernels (2 mm), contributed most significantly to model performance, 
suggesting that subtle intensity variations in the CSF-parenchyma 
interface are key discriminative elements.

Furthermore, we applied a clinically grounded, strict patient-wise 
classification strategy, wherein a diagnosis of infection was accepted 
if either hemisphere exhibited an infected CSF pattern, while a control 
classification required bilateral confirmation of non-infection. Under 
this realistic criterion, the proposed fusion models demonstrated high 
stability and accuracy, particularly in the sub-lentiform nucleus. By 
contrast, all models showed reduced and inconsistent performance in 
ventricular CSF classification, further underscoring the diagnostic 
limitations of relying solely on ventricular analysis.

The broader implication of our findings lies in the potential 
of hybrid DL–radiomics frameworks to improve CNSI diagnosis 

in settings where LP is delayed, contraindicated, or inconclusive. 
To our knowledge, this is the first study to apply a deep learning–
radiomics fusion approach to analyze CSF signal patterns in brain 
MRI for the classification of CNSIs. Prior applications of AI to 
fluid-based diagnostics have largely centered around cancer-
related effusions or synovial fluid segmentation in rheumatology 
(28, 29), whereas our study opens new directions for infectious 
disease imaging.

DenseNet-based models consistently outperformed 
MobileNet-based models across most performance metrics, likely 
due to their deeper and densely connected architectures enabling 
effective feature reuse and robust representation learning. 
Conversely, MobileNet’s design prioritizes computational 
efficiency and fewer parameters, potentially limiting its capability 
to capture subtle radiomic patterns. Thus, DenseNet architectures 
may be preferable for tasks demanding detailed representation of 
subtle imaging features, whereas MobileNet remains beneficial 
under computational constraints.

Nevertheless, our study has limitations. The relatively modest 
sample size (n = 104) and single-center design may limit 
generalizability. However, all MRIs were acquired using a uniform 
3 T scanner and standardized imaging protocol, enhancing 
internal consistency. Future research should validate these 
findings using multicenter datasets with larger, more diverse 
populations and include longitudinal evaluation across various 
CNSI subtypes (e.g., bacterial, viral, fungal). Additionally, the 
integration of clinical metadata (e.g., laboratory markers, 
symptoms) with imaging features may further improve 
classification performance. Moreover, we used a slice thickness 
of 5 mm, which is relatively thicker than the thin-cut images 
(≤3 mm) typically preferred in current brain MRI research. 
Although this could potentially limit the segmentation accuracy 
and reliability in studies utilizing 3D modeling approaches, our 
analyses and segmentations were strictly performed on 2D 
images, reducing its impact within our study context. Future 
studies using thinner slice imaging might offer further 
improvements in segmentation detail and predictive performance. 
Future studies could further enhance the clinical impact and 
interpretability of the proposed fusion models by incorporating 
explainable AI (XAI) methodologies to identify and visualize the 
most influential radiomic and deep-learning-derived features. 
Integrating these techniques would significantly strengthen 
model transparency, improve clinical confidence, and facilitate a 
smoother translation into clinical practice.

In conclusion, our study introduces a novel, interpretable, 
and clinically relevant framework for noninvasive CNSI 
assessment using advanced radiomics and deep learning methods. 
The sub-lentiform nucleus parenchyma, inclusive of PVSs, 
emerges as a promising anatomical region for CSF evaluation. 
This approach has the potential to complement traditional 
LP-based diagnostics and support faster, safer, and more accurate 
CNSI management in clinical practice.
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