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This study aimed to establish a novel diagnostic approach based on a circulating 
microRNA (miRNA) panel to reliably distinguish pulmonary tuberculosis (PTB) from 
lung cancer (LC), particularly in patients presenting with overlapping radiographic 
features. A total of 592 participants were enrolled. In the discovery phase, miRNA 
expression profiles from 284 individuals, including PTB patients, LC patients, and 
healthy controls (HC), were analyzed to screen potential biomarkers. Candidate 
miRNAs were subsequently validated in an independent cohort of 308 plasma 
samples. The analysis revealed significant upregulation of hsa-miR-342-3p, hsa-
miR-199a-3p, and hsa-miR-199b-3p in PTB compared with LC. A diagnostic panel 
incorporating these three miRNAs demonstrated robust performance, achieving an 
area under the receiver operating characteristic curve (AUC) of 0.911 (95% confidence 
interval [CI]: 0.852–0.952) in the training set and 0.886 (95% CI: 0.780–0.953) in 
the validation set, with a sensitivity of 0.879. This miRNA panel outperformed the 
World Health Organization -endorsed Xpert MTB/RIF assay, effectively identifying 
early-stage PTB cases without cavity formation. These findings underscore the 
potential of miRNA–based diagnostics as a non-invasive and highly accurate tool 
for differentiating PTB from LC in patients with comparable imaging presentations, 
addressing a critical gap in pulmonary disease management.
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Highlights

	•	 Existing diagnostic approaches for PTB and lung cancer LC are limited by overlapping 
radiographic manifestations, reliance on invasive procedures, and suboptimal sensitivity.

	•	 Plasma analysis revealed increased overexpression of hsa-miR-342-3p, hsa-miR-199a-3p, 
and hsa-miR-199b-3p in patients with PTB compared with those with LC.

	•	 A diagnostic model incorporating these three miRNAs achieved high discriminatory 
power (training cohort AUC 0.911, validation cohort AUC 0.886), supporting its 
application for accurate, early, and non-invasive detection of PTB.
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Introduction

Tuberculosis (TB) remains a pressing global health challenge and 
is still the leading cause of death from a single infectious agent. PTB, 
the most common clinical form, poses considerable diagnostic 
difficulties because its radiographic manifestations often overlap with 
those of LC. This similarity, combined with the limitations of existing 
non-invasive diagnostic techniques, usually leads to the misdiagnosis 
of PTB as LC (1–5). Accurate differentiation between PTB and LC, 
particularly in patients with comparable imaging features, is therefore 
crucial for timely treatment initiation and improved clinical outcomes.

Conventional non-invasive diagnostic methods, such as sputum 
smear microscopy and culture, are hampered by low sensitivity and 
long turnaround times. The Xpert MTB/RIF assay offers greater 
diagnostic accuracy; however, its high cost restricts its widespread use, 
especially in low-resource settings (6). Invasive procedures such as 
tissue biopsy can provide a definitive diagnosis but are not always 
accessible in resource-limited healthcare systems (7). These limitations 
underscore the urgent need for a rapid, reliable, and cost-effective 
non-invasive diagnostic strategy for PTB.

MicroRNAs, a class of small non-coding RNAs approximately 
20–25 nucleotides in length, have emerged as highly stable biomarkers 
detectable in plasma and other body fluids, making them attractive 
candidates for non-invasive diagnostics (8, 9). Circulating miRNAs 
have shown diagnostic potential across multiple diseases, including 
malignancies and infectious conditions (10–12). Specific miRNAs are 
linked to the molecular pathogenesis of both LC and TB. For instance, 
hsa-miR-21–5p and hsa-miR-196b-5p have been implicated in the 
progression of LC, while hsa-miR-495 and hsa-miR-543 contribute to 
LC invasiveness (13–15). In TB, miRNAs such as hsa-miR-342, 
hsa-miR-222-3p, hsa-miR-431-3p, and hsa-miR-1303 play essential 
roles in regulating host innate immune responses (16, 17).

In this study, plasma miRNA profiles from 308 participants were 
analyzed, and a diagnostic classifier was developed using binary 
logistic regression to differentiate PTB from LC. The miRNA panel 
demonstrated higher sensitivity compared with conventional 
diagnostic methods, including Xpert MTB/RIF, sputum smear 
microscopy, and culture. These findings highlight the potential of 
miRNA–based assays as a precise, non-invasive strategy for improving 
early and accurate differentiation of PTB and LC.

Methods

Patient recruitment and sample collection

A total of 308 peripheral blood samples were collected from 
patients at Weifang No. 2 People’s Hospital between March 2021 and 
March 2024. Blood was drawn into EDTA-K2 anticoagulant tubes and 
centrifuged at 3000 rpm for 15 min at room temperature. The plasma 
fraction was then carefully separated and stored for subsequent RNA 
extraction. In addition to these clinical samples, miRNA expression 
profiles were obtained from publicly available datasets in the Gene 
Expression Omnibus (GEO) database, including GSE1165421, 
GSE31568, and GSE61741 (18, 19).

1  https://www.ncbi.nlm.nih.gov/geo/

Reverse transcription-quantitative 
polymerase chain reaction

Total RNA was isolated from plasma samples using TRIzol™ LS 
Reagent (Thermo Fisher Scientific, Waltham, MA, United States) in 
accordance with the manufacturer’s instructions. Complementary 
DNA (cDNA) was synthesized from the extracted RNA using the 
PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara Bio, Shiga, 
Japan). Quantitative real-time PCR (qRT-PCR) was then conducted 
under the following thermal cycling conditions: initial denaturation 
at 95 °C for 30 s, followed by 40 amplification cycles consisting of 
denaturation at 95 °C for 5 s and annealing/extension at 60 °C for 30 s.

Primers specific for U6 small nuclear RNA (used as the 
endogenous control) and the three target miRNAs were synthesized 
by Sangon Biotech (Shanghai, China). Relative expression levels of 
miRNAs were calculated using the 2−ΔCt method, where ΔCt = Ct 
(miRNA) – Ct (U6).

The target miRNA sequences, sourced from the miRDB database, 
were as follows:

	•	 hsa-miR-342-3p (23 bp): 5′-TCTCACACAGAAATCGCACC 
CGT-3′.

	•	 hsa-miR-199a-3p (22 bp): 5′-ACAGTAGTCTGCACATTGG 
TTA-3′.

	•	 hsa-miR-199b-3p (22 bp): 5′-ACAGTAGTCTGCACATTGG 
TTA-3′.

Verification against the GenBank database identified Mus 
musculus U6 small nuclear RNA-RnU6 (GeneID: 19862, 107 bp):

5′-GTGCTCGCTTCGGCAGCACATATACTAAAATTGGAAC 
GATACAGAGAAGATTAGCATGGCCCCTGCGCAAGGATGACA 
CGCAAATTCGTGAAGCGTTCCATATTTTT-3′.

Identification of candidate miRNA 
biomarkers

Differentially expressed miRNAs were identified using the GEO2R 
online analysis tool.2 For the LC group, the selection threshold was set at 
|log₂ fold change (FC)| ≥ 0, whereas for the PTB group, the threshold 
was |log₂FC| ≥ 1 with a significance level of p ≤ 0.05. Here, FC represents 
the ratio of the mean gene expression level in patients compared with 
HC. To maximize the inclusion of potentially informative biomarkers, 
no false discovery rate (FDR) adjustment or other multiple-testing 
corrections were applied during the initial screening, and statistical 
significance was defined as p ≤ 0.05. Furthermore, candidate miRNAs 
were required to show opposing expression patterns between the PTB 
and LC groups to enhance their diagnostic relevance.

Diagnostic performance and clinical net 
benefit analysis

A binary logistic regression model was established using SPSS 
software, version 27.0.1 (IBM Corp., Armonk, NY, USA). The 

2  https://www.ncbi.nlm.nih.gov/geo/geo2r/
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diagnostic performance of the model was assessed by generating 
receiver operating characteristic (ROC) curves and calculating the 
AUC with MedCalc Statistical Software, version 20.022 (MedCalc 
Software bvba, Ostend, Belgium). Similarly, decision curve analysis 
(DCA) was conducted using R software, version 3.5.0 (R Development 
Core Team, Vienna, Austria), to evaluate the clinical net benefit of the 
predictive model.

Functional enrichment analysis of miRNA 
target mRNAs

Putative mRNA targets of the selected miRNAs were predicted 
using three publicly available databases: TargetScan version 7.23, 
miRWalk4, and miRDB.5 Functional enrichment analyzes of the 
predicted target genes were then performed using Gene Ontology 
(GO) annotations and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis via the Sangerbox online platform.6

Statistical analysis

An independent t-test was applied to evaluate differences between 
two groups, whereas one-way analysis of variance (ANOVA) was used 
for comparisons involving more than two groups. Sensitivity 
comparisons among diagnostic methods were performed according 
to the following criteria: when the sample size was n ≥ 40 and all 
expected frequencies (T) were ≥ 5, Pearson’s chi-square test was used; 
when n ≥ 40 with at least one expected frequency of 1 ≤ T < 5, the 
continuity-corrected chi-square test was applied; and when n < 40 or 
any expected frequency was T < 1, Fisher’s exact test was employed. 
All statistical analyzes and graphical visualizations were conducted 
using GraphPad Prism software, version 8.0.2 (GraphPad Software, 
San Diego, CA, United  States), and R software, version 3.5.0 (R 
Development Core Team, Vienna, Austria). A p-value of < 0.05 was 
considered statistically significant.

Results

Study participants and characteristics

A total of 308 participants were initially recruited for this study, 
comprising 128 patients with PTB, 109 patients with LC, and 71 
HC. PTB cases were identified based on clinical symptoms and chest 
imaging findings consistent with tuberculosis. Among these, 86 
patients were confirmed by positive results from Mycobacterium 
tuberculosis (MTB) culture, acid-fast bacilli (AFB) smear 
microscopy, the TB-LAMP assay, or the Xpert MTB/RIF test. The 
remaining 42 PTB cases were diagnosed based on clinical 
presentation, chest radiographic features, and a favorable response 
to anti-TB therapy, in accordance with the Chinese Clinical 

3  https://www.targetscan.org/vert_72/

4  http://mirwalk.umm.uni-heidelberg.de/

5  http://www.mirdb.org/

6  http://sangerbox.com/

Guideline for Diagnosis of PTB (WS 288-2017). LC cases were 
confirmed primarily through histological and/or cytological 
examination, supplemented by clinical evaluation when necessary. 
The HC group included individuals without respiratory symptoms 
and those with normal chest imaging results obtained within 
3 months before enrollment. None of the participants had a history 
of PTB or other malignancies, and all were free from medical 
treatment within the 4 weeks preceding recruitment.

To minimize potential confounding, all participants were screened 
to exclude co-infections such as HIV and hepatitis B virus. Plasma 
samples that were hemolyzed or failed to meet RNA quality control 
criteria were excluded, resulting in 272 eligible samples for 
downstream analysis. The sample selection process is outlined in 
Figure 1, and the demographic and clinical characteristics of the 272 
included participants are summarized in Table 1.

Identification of a 3-miRNA signature

The primary objective of this study was to identify a robust miRNA 
signature capable of distinguishing PTB from LC. In the current study, 
GEO datasets were analyzed, and 50 differentially expressed miRNAs 
were identified in a PTB dataset, along with 75 and 192 in two 
independent LC datasets. Comparative analysis revealed six overlapping 
candidates: hsa‑miR‑199a‑3p, hsa‑miR‑199b‑3p, hsa‑miR‑342‑3p, 
hsa‑miR‑502‑3p, hsa‑miR‑361‑5p, and hsa‑miR‑423‑5p. Because 
hsa-miR‑502‑3p, hsa‑miR‑361‑5p, and hsa‑miR‑423‑5p were consistently 
upregulated in both PTB and LC, they lacked discriminatory specificity 
and were excluded. Therefore, hsa‑miR‑342‑3p, hsa‑miR‑199a‑3p, and 
hsa‑miR‑199b‑3p were selected as the candidate biomarker panel 
(Figure 2).

To establish a rapid, non‑invasive diagnostic model, the plasma 
expression levels of these three miRNAs were quantified by 
RT‑qPCR. Significant differences were observed in expression levels 
between PTB patients (n = 77) and LC patients (n = 68), as well as 
between PTB patients and healthy controls (HC, n = 65) (Figure 3), 
supporting their potential clinical applicability.

Establishment and validation of a 
diagnostic model of the 3-miRNA panel

The diagnostic model was trained on the cohort using binary 
logistic regression analysis [n = 145 (77 PTB and 68 LC)]. The 
diagnostic score for each case was calculated using the 
following equation:

	
( )− − + − − + − − + − −

=

+ 1.646 0.462·miR 342 3p 4.193·miR 199a 3p 5.023·miR 199b 3p

miRNA risk score
1

1 e

The diagnostic model demonstrated excellent performance in 
plasma samples from patients with PTB, yielding an AUC of 0.911 
(95% CI: 0.852–0.952, p < 0.001; Figure 4A), with a sensitivity of 0.974 
and a specificity of 0.765. Based on these findings from the training 
cohort, the model was further evaluated for robustness and accuracy 
in an independent validation cohort (n = 62; 33 patients with PTB and 
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29 patients with LC). Validation testing confirmed the strong 
diagnostic application of the model, with an AUC of 0.886 (95% CI: 
0.780–0.953, p < 0.001), a sensitivity of 0.879, and a specificity of 0.759 
(Figure 4B).

For comparison, models constructed using only two miRNAs 
were also assessed; however, their AUC values were lower than those 
of the three-miRNA model, as summarized in Supplementary Table 1.

MiRNA panel: significant benefit in clinical 
practice

The clinical utility of any diagnostic tool depends on its ability to 
maximize accurate detection while minimizing the risks associated with 
misdiagnosis. In suspected LC cases, invasive procedures are often 
necessary, and both false-positive and false-negative results can lead to 
severe clinical consequences. To assess the practical applicability of the 
three-miRNA panel, DCA was performed (Figure 4C). In the test cohort, 
the DCA demonstrated that the miRNA panel consistently provided a 
higher net clinical benefit across all threshold probabilities compared with 
the default strategies of treating all patients or treating none. These results 
suggest that the panel may offer tangible clinical advantages by reducing 
the need for unnecessary invasive procedures and lowering the risk of 
diagnostic errors.

Age-related impact on miRNA expression 
and diagnostic performance

To examine the potential influence of age on miRNA expression 
and its implications for diagnostic accuracy, correlations between age 

and the expression levels of the three selected miRNAs were analyzed 
in patients with PTB. A negative correlation was observed, with 
expression levels decreasing as age increased (Figures 5A–C). The 
correlation coefficients were R = −0.45 (p = 0.008) for hsa-miR-
342-3p, R = −0.45 (p = 0.009) for hsa-miR-199a-3p, and R = −0.48 
(p = 0.005) for hsa-miR-199b-3p.

To further assess the effect of age on diagnostic performance, 
participants were stratified into two groups: younger (≤ 50 years) 
and older (≥ 51 years). The ROC curve analysis indicated improved 
diagnostic performance in the younger group, with an AUC of 
0.950, compared with an AUC of 0.834  in the older group 
(Figures 5D,E). These results suggest that the diagnostic application 
of the miRNA panel may be  particularly enhanced in 
younger individuals.

High sensitivity and early recognition in 
PTB compared to conventional methods

Early detection of PTB is critical for improving clinical outcomes. 
In the validation cohort, patients were initially stratified into early or 
late stages according to the presence or absence of pulmonary cavities. 
Recognizing that this single parameter has inherent limitations and 
may not adequately reflect the overall disease status, additional 
severity-related clinical indicators, including monocyte count, 
hemoglobin (Hb) levels, C-reactive protein (CRP), and erythrocyte 
sedimentation rate (ESR), were also evaluated to provide a more 
comprehensive assessment (20–24).

In PTB patients with cavitary disease, ESR, CRP, and monocyte 
counts were elevated compared with non-cavitary cases, whereas 
hemoglobin levels were significantly reduced (Figures 6A–E). These 

FIGURE 1

Flow diagram illustrating the sample screening process. PTB, pulmonary tuberculosis; LC, lung cancer; HC, healthy control.
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results underscore apparent clinical differences between cavitary and 
non-cavitary stages of PTB. The diagnostic utility of the three-miRNA 
panel was then compared with conventional methods. Across PTB 
subgroups, the panel consistently demonstrated high sensitivity. In 
cavitary PTB, it significantly outperformed smear microscopy and 

culture in detection sensitivity (p < 0.05). For non-cavitary PTB, the 
panel achieved sensitivity comparable to culture, although it did not 
surpass Xpert MTB/RIF (p < 0.05). When all PTB cases were assessed 
together, the miRNA panel showed higher sensitivity than Xpert 
MTB/RIF, smear microscopy, and culture (p < 0.05). These findings 

TABLE 1  Characteristics of the study populations.

Characteristics Category/Measure Study population

PTB (n = 110) LC (n = 97) HC (n = 65)

Age at sampling Mean±SEM 44.32 ± 1.82 61.18 ± 0.99 41.23 ± 2.12

Gender–counts Male/Female 80/30 54/43 45/20

Clinical symptoms

Fever 21 3 0

Fatigue and night sweats 4 1 0

Cough 78 72 0

Expectoration 67 66 0

Haemoptysis 18 11 0

Chest pain 10 13 0

Asymptomatic 23 23 65

Presence of cavities
Positive 38 NA NA

Negative 72

AFB smear

Positive 25 NA NA

Negative 60

NA 25

TB-LAMP

Positive 39 NA NA

Negative 28

NA 43

X-pert

Positive 58 NA NA

Negative 37

NA 15

Culture

Positive 57 NA NA

Negative 42

NA 11

SEM, standard Error of Measurement; PTB, pulmonary tuberculosis; n, number; LC, lung cancer; HC, healthy control; SEM, Standard Error of the Mean; TB, tuberculosis; NA, not available; 
AFB, acid-fast bacteria.

FIGURE 2

miRNA panel selection. PTB, pulmonary tuberculosis; LC, lung cancer.
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suggest that the panel may serve as a viable diagnostic alternative in 
clinical practice, with performance matching or, in some cases, 
exceeding that of Xpert (Figure 6F).

Functional and pathway analysis of 
hsa-miR-342-3p and hsa-miR-199a/b-3p

To investigate the potential biological roles of the selected 
miRNAs in TB, GO enrichment analysis was conducted on their 
predicted target mRNAs. Target genes were identified based on the 
intersecting results from three prediction databases: TargetScan 7.2, 
miRWalk, and miRDB.

The GO analysis revealed that target genes of hsa-miR-342-3p 
were significantly enriched in biological processes, including positive 
regulation of gene expression, transcriptional regulation by RNA 

polymerase II, and RNA metabolic regulation (Figure 7A). Similarly, 
target genes of hsa-miR-199a/b-3p were associated with pathways 
involved in positive regulation of gene expression, macromolecule 
metabolic processes, and overall metabolic regulation (Figure 7B).

Then, KEGG pathway enrichment analysis was performed to identify 
signaling pathways that these miRNAs may regulate. Genes targeted by 
hsa-miR-342-3p were mainly enriched in the Ras, TGF-β, and Jak–STAT 
signaling pathways (Figure 7C). However, target genes of hsa-miR-199a/
b-3p showed significant enrichment in the PI3K-Akt, thyroid hormone, 
and sphingolipid signaling pathways (Figure 7D).

Discussion

In clinical practice, distinguishing PTB from LC in patients with 
overlapping radiological presentations remains a significant challenge, 

FIGURE 4

Training and validation of the miRNA panel. (A,B) The area under the ROC curve of the training (PTB, n = 77, LC, n = 68) and validation cohorts (PTB, 
n = 33, LC, n = 29). (C) Decision curve analysis for evaluating the performance of the 3-miRNA panel.

FIGURE 3

Profiling of blood miRNA expression in the clinical cohort. The clinical cohort consisted of a training group (PTB, n = 77; LC, n = 68) and an HC group 
(n = 65). PTB, pulmonary tuberculosis; LC, lung cancer; ns, no significance; **** p < 0.0001.
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as conventional non-invasive diagnostic methods are often limited by 
prolonged turnaround times and insufficient sensitivity. An effective 
diagnostic tool should ideally be rapid, affordable, and non-invasive, 
enabling the timely and accurate differentiation of conditions. 
Addressing the limitations of current strategies necessitates the 
development of innovative approaches that improve diagnostic 
precision. Although recent efforts in non-invasive rapid detection 
have primarily concentrated on advancements in radiological 
techniques (25), their diagnostic accuracy remains inadequate and 
requires further refinement.

In this context, molecular biomarker-based detection 
strategies are gaining increasing attention as a promising 
alternative. Extensive evidence suggests that miRNAs play a 
crucial role as key regulators in both infectious immune responses 
and tumor progression. The biological functions of the miRNA 
panel identified in this study are closely aligned with these 
pathological processes. For instance, the predicted target genes of 
hsa-miR-342-3p are highly enriched in pathways regulating gene 
expression, particularly the TGF-β and JAK–STAT signaling 
cascades, which is consistent with its established roles in 
tuberculosis and cancer biology. In PTB, hsa-miR-342-3p 
enhances host defense by targeting SOCS6, a negative regulator of 
the JAK–STAT pathway, promoting the secretion of 
pro-inflammatory cytokines and inducing macrophage apoptosis 
(16, 26). It’s observed that upregulation in PTB may therefore 
represent a host-protective response. By contrast, in NSCLC and 

other solid tumors, hsa-miR-342-3p functions as a tumor 
suppressor, inhibiting oncogenic drivers such as AGR2 and 
FOXQ1, while its association with the TGF-β pathway suggests a 
role in modulating the tumor microenvironment (27, 28). The 
frequent downregulation of hsa-miR-342-3p in cancer is likely 
attributable to the immunosuppressive conditions of the tumor 
microenvironment, which attenuate its tumor-suppressive activity.

Members of the hsa-miR-199 family (hsa-miR-199a-3p and 
hsa-miR-199b-3p) display enrichment in metabolic regulation and 
cancer-associated pathways. In models of septic acute kidney 
injury, these miRNAs modulate cellular homeostasis by 
suppressing Nrf2-mediated antioxidant gene expression (29, 30). 
Given the elevated oxidative stress associated with TB infection, 
this mechanism may contribute to the pathophysiology of 
PTB. The upregulation of hsa-miR-199a/b-3p in PTB serum likely 
reflects a compensatory host response aimed at curbing excessive 
inflammation while maintaining Nrf2-dependent antioxidant 
defenses. In NSCLC, the hsa-miR-199 family acts as a tumor 
suppressor primarily by inhibiting the Rheb-mTOR axis, a central 
pathway governing metabolic homeostasis and biosynthesis (31). 
Its downregulation in cancer may similarly result from the 
immunosuppressive tumor microenvironment, which impairs 
tumor-suppressive signaling.

The miRNA panel assessed in this study demonstrated robust 
diagnostic accuracy for distinguishing PTB from LC across both 
training and validation cohorts, with sensitivity and specificity 

FIGURE 5

Correlation analysis and ROC curves. (A–C) Spearman correlation analysis between miRNA relative expression levels and age (PTB, n = 33). (D,E) The 
area under the ROC curve of the younger (PTB, n = 20, LC, n = 4) and older group (PTB, n = 13, LC, n = 25).
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comparable to, and in some instances superior to, those of several 
commonly used biomarkers. In comparison with cell-free DNA 
(cfDNA)-based detection methods, the panel showed higher 
sensitivity, largely because cfDNA released from tuberculous 
necrotic foci often overlaps with tumor-derived cfDNA, reducing 
the discriminative value of quantitative cfDNA analysis (32). 
Regarding circular RNAs (circRNAs), their application in 
differential diagnosis remains mainly exploratory. Currently, no 
reliable circRNA markers with stable and consistently opposite 
expression patterns between PTB and LC have been identified. 
Furthermore, the complexity and high cost of circRNA detection 
further limit their clinical applicability at the primary care level 
(33). Furthermore, when compared with combined tumor marker 
detection, miRNA expression offers distinct advantages, as it is less 
influenced by inflammation and demonstrates greater stability and 
reproducibility in clinical samples (34). These attributes 
underscore the superior overall performance and translational 
potential of the identified miRNA panel.

Beyond these comparisons, the panel’s sensitivity for early PTB 
detection was further evaluated against conventional diagnostic 
methods, including culture, Xpert assay, AFB smear microscopy, and 
LAMP, in clinical settings. For this purpose, patients without 
pulmonary cavities were classified as having early-stage PTB, while 
those with cavities were considered to have late-stage PTB. Across 
both stages, the panel demonstrated diagnostic performance 
comparable to, and in some cases exceeding, that of Xpert, particularly 
in early disease detection, where reliable differentiation is most critical.

Although Xpert remains a widely validated diagnostic 
platform, our results suggest that the proposed approach could 
serve as a valuable complementary tool, particularly in resource-
constrained settings or in scenarios where rapid diagnosis is 
critical. Numerous studies have confirmed the remarkable stability 
of miRNAs under diverse storage conditions: they can remain 
preserved for more than 17 years at −80 °C, remain stable for up 
to 7 days at 4 °C, and exhibit no significant degradation for at least 
24 h at room temperature. These characteristics fulfill the 
stringent criteria required for reliable clinical diagnostics (35, 36). 
In the present study, all plasma samples were either processed for 
immediate miRNA extraction or subjected to a single freeze–thaw 
cycle at −80 °C within 1 hour of collection. Further, stringent 
quality control procedures were implemented throughout all 
pre-analytical stages to minimize technical variation, ensuring 
both analytical precision and reproducibility.

However, several limitations of this study should be acknowledged. 
First, patients with concurrent PTB and LC were excluded due to the 
rarity of such cases; as a result, miRNA expression patterns in this 
subgroup were not evaluated. Second, since LC patients do not typically 
undergo TB-specific diagnostic testing, direct comparisons of TB 
detection specificity across different diagnostic methods could not 
be performed. Moreover, although efforts were made to minimize 
confounding factors during sample selection, such as excluding 
individuals with co-infections, other variables, including concurrent 
infections and age-related differences, may still influence the diagnostic 
accuracy of the miRNA panel in real-world clinical settings.

FIGURE 6

Differences in severity-related indicators and sensitivity comparison of different groups. (A–E) Hb (cavity+, n = 19, cavity−, n = 14), ESR (cavity+, n = 17, 
cavity-, n = 14), CRP (cavity+, n = 11, cavity−, n = 4), monocyte percentage (cavity+, n = 19, cavity−, n = 14) and count (cavity+, n = 19, cavity−, n = 14). 
(F) Comparison of miRNA panel, AFB smear, MTB culture, TB-LAMP, and Xpert assays among patients with or without cavity. ns, no significance.  
* p < 0.05. ** p < 0.01. *** p < 0.001.
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To address these gaps, future studies should expand cohort sizes 
and incorporate more diverse patient populations, while also 
benchmarking the panel against emerging state-of-the-art diagnostic 
technologies. Such investigations will be essential to further validate 
and refine the clinical translational potential of this miRNA-based 
diagnostic strategy.

Conclusion

In summary, this study established a rapid and non-invasive 
diagnostic strategy capable of differentiating PTB from LC in patients 
with overlapping radiological presentations. The identified miRNA 
panel demonstrated higher sensitivity compared to conventional 
methods, including Xpert MTB/RIF, smear microscopy, and culture, 
while also offering a lower cost and greater feasibility. These attributes 
highlight its strong potential for clinical translation, particularly in 
resource-limited settings, where it may serve as a practical and 
effective tool for diagnosing focal pulmonary lesions.
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