
fmed-12-1661091 September 8, 2025 Time: 16:55 # 1

TYPE Original Research 
PUBLISHED 11 September 2025 
DOI 10.3389/fmed.2025.1661091 

OPEN ACCESS 

EDITED BY 

Gunnar Piho, 
Tallinn University of Technology, Estonia 

REVIEWED BY 

A. Anil Sinaci, 
Software Research and Development 
Consulting, Türkiye 
Amnon Shvo, 
International Academy of Health Sciences 
Informatics, Israel 

*CORRESPONDENCE 

Stefan Beyer 
stefan.beyer@ait.ac.at 

RECEIVED 07 July 2025 
ACCEPTED 01 September 2025 
PUBLISHED 11 September 2025 

CITATION 

Beyer S, Tanjga N, Kleinoscheg G, Hayn D, 
Donsa K, Kreiner K and Schreier G (2025) 
Preparing for the European Health Data 
Space: an open-source compiler for fast, 
transparent, and portable health data 
transformations. 
Front. Med. 12:1661091. 
doi: 10.3389/fmed.2025.1661091 

COPYRIGHT 

© 2025 Beyer, Tanjga, Kleinoscheg, Hayn, 
Donsa, Kreiner and Schreier. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms. 

Preparing for the European 
Health Data Space: an 
open-source compiler for fast, 
transparent, and portable health 
data transformations 
Stefan Beyer1,2*, Nikola Tanjga1,2,3 , Gabriel Kleinoscheg3 , 
Dieter Hayn1 , Klaus Donsa1 , Karl Kreiner1 and Günter Schreier1,2 

1 Center for Health & Bioresources, AIT Austrian Institute of Technology, Vienna, Austria, 2 Institute 
of Neural Engineering, Graz University of Technology, Graz, Austria, 3 ELGA GmbH, Vienna, Austria 

Introduction: Healthcare systems generate vast amounts of data in diverse 

and often incompatible formats. Efficient conversion between these formats is 

essential to ensure interoperability and enable secondary data use, particularly 

in the context of the European Health Data Space (EHDS) and the proposed 

Austrian Health Data Donation Space (AHDDS). While standards such as HL7 

FHIR aim to facilitate interoperability, inconsistencies in implementation persist. 

Electronic health record (EHR) providers, including Austria’s ELGA, continue to 

face challenges in this area. The FHIR mapping language (FML) offers a promising 

solution for format translation, but current tools for executing FML mappings 

are limited, especially in terms of processing speed. To address this gap, there 

is a pressing need for a compiler that translates FML mappings into efficient, 

executable code. 

Materials and methods: We developed the Mapping Language Compiler for 

Health Data (MaLaC-HD), which compiles FML code into Python. To assess 

performance, we benchmarked the compiler using a large ELGA document 

on a typical end-user device, comparing execution speed with existing FML 

tools. Baseline overhead was measured using an empty mapping. Conformance 

was manually evaluated by comparing the output of a wide range of 

example mappings and input data against the Java reference implementation. 

Additionally, we analyzed the structure and correctness of the generated Python 

code to assess functional completeness. 

Results: After adjusting for overhead, MaLaC-HD achieved execution speeds 

nearly 100 times faster than existing tools. The output closely matched that of 

the reference implementation, with only minor discrepancies. The generated 

Python code met all functional requirements and demonstrated the compiler’s 

ability to support complex transformations. MaLaC-HD is publicly available 

under the LGPL license. 

Frontiers in Medicine 01 frontiersin.org 

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1661091
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1661091&domain=pdf&date_stamp=2025-09-11
mailto:stefan.beyer@ait.ac.at
https://doi.org/10.3389/fmed.2025.1661091
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1661091/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 2

Beyer et al. 10.3389/fmed.2025.1661091 

Conclusion: MaLaC-HD can serve a wide array of use cases and has the 

potential to integrate with existing platforms for secondary data use to support 

large-scale health data research across Europe and beyond. MaLaC-HD could 

provide the EHR community with a powerful, efficient tool for accelerating data 

transformation, an essential capability for the success of the EHDS initiative. 

KEYWORDS 

electronic health record (EHR), interoperability, standards, data transformation, FHIR, 
FHIR mapping language (FML), MaLaC-HD, European Health Data Space (EHDS) 

1 Introduction 

Health data is continuously generated across diverse global 
contexts, including clinical settings, personal health devices, and 
manual data entry through forms (1). A significant challenge 
arises from the use of heterogeneous and often incompatible data 
exchange formats, with some datasets lacking any standardization 
altogether (2–4). These incompatibilities may stem from the 
absence of common standards, the use of proprietary formats, 
or inconsistencies in data representations. While such issues 
are observed across various domains, they are particularly 
pronounced in healthcare. Due to regulatory requirements related 
to data protection, scalability limitations, and prevailing clinical 
workflows, health data is frequently stored and processed locally 
(5). Consequently, this results in fragmented data silos that are 
either weakly interconnected or entirely isolated. 

Addressing the challenges of fragmented health data systems 
requires seamless communication, eÿcient data exchange, and 
eective collaboration across heterogeneous environments, all 
while ensuring security, scalability, and operational eÿciency. 
Enhanced interoperability is anticipated to not only improve 
patient outcomes, reduce clinical errors, and facilitate collaborative 
healthcare delivery in primary care settings, but also to enable 
secondary data use for research and policy-making purposes 
in the longer term (6–8). Interoperable infrastructures may be 
implemented at regional or national scales, such as the proposed 
Austrian Health Data Donation Space (AHDDS) (9), or expanded 
to European initiatives like the forthcoming European Health Data 
Space (EHDS) (10) and potentially even to global frameworks. To 
support this goal, HL7 International introduced the FHIR mapping 
language (FML) (11) alongside the corresponding StructureMap 
resource (12). These standards aim to enable the definition and 
exchange of data transformation mappings in a consistent, reusable 
format, and are supported by tools executable in both local 
and cloud environments, such as FHIRPath Lab (13). Currently, 
FHIRPath Lab supports three transformation engines: HAPI FHIR 
(14), Matchbox (15), and a .NET-based implementation (16). The 
HAPI FHIR and Matchbox engines derive from the original Java 
implementation developed by Grahame Grieve (17), which was 
subsequently ported to .NET by Brian Postlethwaite. For secondary 
data use, several tools provide partial or full support for FML 
functionalities. Examples include Microsoft’s FHIR Anonymization 
Tool (18), which leverages the FHIRPath submodule (19), and the 
FHIR to OMOP Implementation Guide (IG) (20), developed under 

the HL7 Vulcan Accelerator initiative (21), which facilitates the 
full FML engine. 

However, preliminary evaluations indicate that existing 
tools for executing FML transformations exhibit suboptimal 
performance, often requiring several seconds to process 
large EHR documents on contemporary end-user hardware. 
This latency presents a significant limitation for scenarios 
involving high-throughput environments, such as linking national 
infrastructures like Austria’s ELGA system with the EHDS. The 
performance bottleneck is likely attributable to the fact that 
current implementations rely exclusively on interpreters, which 
appear unable to meet the required execution speed. While the 
development of a low-level virtual machine or bytecode compiler 
could address these limitations, it is widely acknowledged, 
including by the developers of existing tools, that such an approach 
would incur substantial implementation and maintenance costs. 
Compiler-based solutions demand sophisticated optimizations 
and complex low-level code generation techniques to achieve 
acceptable runtime performance (22, 23). In the context of a 
proprietary product, these requirements would likely translate into 
significant financial barriers, rendering the solution inaccessible 
for many implementers or researchers within the EHDS ecosystem. 
Conversely, there is limited incentive to develop and sustain 
a high-performance open-source engine, given the long-term 
commitment required to ensure functional correctness and 
cybersecurity resilience, even for large organizations. Transparency 
is also a critical requirement for ensuring traceability, fostering 
trust, and supporting good research practices in health data 
processing. However, based on our experience and discussions 
with experts in this area, current tools often lack suÿcient 
transparency, as their internal mechanisms are typically obscure 
and diÿcult to understand. Existing FML engines also exhibit 
limited flexibility with respect to input and output data formats, 
as they all depend on the availability of structure definitions 
(24), a specific metadata format, for all involved models. This 
introduces considerable overhead, requiring substantial manual 
eort for the specification and maintenance of metadata models, 
which becomes particularly burdensome when they are subject 
to frequent changes. Despite its potential, FML also remains 
diÿcult to adopt for individuals and smaller organizations, as our 
experience suggests. 

A potential alternative involves translating FML mappings into 
an established general-purpose programming language, thereby 
leveraging the performance, maturity, and ongoing security 

Frontiers in Medicine 02 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 3

Beyer et al. 10.3389/fmed.2025.1661091 

auditing of existing runtime environments. Modern programming 
languages benefit from active development communities, frequent 
security updates, and relatively stable language specifications, 
which help minimize maintenance costs and promote long-term 
stability. Additionally, their advanced debugging capabilities can 
be facilitated, in contrast to the limited debugging support existing 
tools currently oer. Furthermore, by statically compiling the 
generated code, the risk of runtime vulnerabilities can be mitigated. 
Executing simple, transparent mapping code that clearly reflects 
the original FML definitions, can also support technical verification 
and validation processes. Also, it is feasible to use readily available 
resources to automatically generate the necessary input and output 
models, instead of relying on the manual creation of structure 
definitions. In generated code, missing functionality that is not 
covered by FML might also be easily added and even extending 
the code generation to multiple programming languages should be 
feasible. This would overcome the limited flexibility and portability 
of current tools, that are typically bound to a single technology stack 
and do not support custom logic. Thus, translating FML mappings 
to a general-purpose language may oer a pragmatic path toward 
developing a more eÿcient and sustainable mapping engine. 

To mitigate the current interoperability issues in healthcare, the 
present paper concerns the development of a mapping language 
compiler that generates fast, transparent and portable code from 
a standardized mapping language, such as FML. 

2 Materials and methods 

To demonstrate the feasibility of developing an FML compiler, 
we implemented the Mapping Language Compiler for Health Data 
(MaLaC-HD) in Python. This prototype was developed following 
the minimum viable product (MVP) methodology (25) and serves 
as an FML to Python compiler. The source code is publicly available 
in the oÿcial repository: https://gitlab.com/cdehealth/malac-hd. 

2.1 Architecture 

Figure 1 outlines the overall process of translating and 
executing mappings. Initially, the FML mappings are compiled 
into executable Python code. Pre-generated model classes supply 
the required type information for the source and target data 
structures. This compilation step is performed only once, provided 
the underlying mapping logic remains unchanged. Subsequently, 
the generated Python code utilizes the models to parse the 
input document, specifically a CDA instance, and performs 
a direct transformation into the designated target structure, 
namely a FHIR Bundle. Figure 2 illustrates the typical interaction 
between the individual components during the translation of 
FML code to Python. The compiler also supports the translation 
of StructureMap resources and individual ConceptMap resources 
(26). ConceptMap resources define the mappings between concepts 
from distinct terminologies, which is essential when transforming 
health data between formats that utilize dierent coding systems, 
such as LOINC (27) or SNOMED CT (28). A StructureMap 
may contain embedded ConceptMap resources or reference 
external ConceptMap resources. Conversely, FML supports the 

representation of simple concept maps within a StructureMap 
and allows references to external ConceptMaps, thereby providing 
flexible mechanisms for terminology mapping within data 
transformations. Internally, the compiler only implements the 
latest FHIR version for the StructureMap generator. However, by 
utilizing pre-generated transformers, created using the compiler 
itself and derived from oÿcial mappings, it can parse FML 
and/or StructureMap resources across multiple FHIR versions. 
Presently, the compiler supports versions R4 and R5. Support 
for newer versions might be added by incrementally porting the 
existing codebase and incorporating transformers from previously 
supported versions into the subsequent releases. 

For the evaluation of FHIRPath expressions, the StructureMap 
generator employs another dedicated Python generator. Since 
StructureMap resources retain raw FHIRPath expressions as 
strings, these expressions are parsed only at this stage. We have 
successfully implemented a single-pass approach that generates 
concise, optimized Python code expressions on-the-fly during 
the parsing of each FHIRPath string, thereby improving both 
readability and execution eÿciency. 

Finally, the generated Python code can be executed directly 
as a standalone script or integrated as a module within existing 
Python applications. 

2.2 Implementation 

As initial use cases, we selected the conversion from CDA to 
FHIR, as well as transformations between FHIR versions R4 and 
R5. This choice is motivated by the fact that several national EHR 
providers within the European Union, including Austria’s ELGA 
system, currently utilize CDA for medical data representation (29). 
Conversely, the European Health Data Space (EHDS) regulation 
promotes FHIR for newly defined document types, necessitating 
data transformations to FHIR in multiple jurisdictions in the 
near future (30). Even in settings where FHIR is already adopted, 
interoperability challenges persist due to the coexistence of dierent 
FHIR versions, requiring reliable mechanisms for version-to-
version data conversion. 

2.2.1 MVP methodology 
The development of all MaLaC-HD components adhered to the 

MVP methodology, iteratively applying the build-measure-learn 
cycle. MVPs were rapidly constructed to evaluate key hypotheses, 
including improved execution speed and enhanced debuggability. 
Early feedback collection prior to implementing additional features 
allowed for timely assessment of progress toward these objectives, 
minimizing resource expenditure. This iterative process facilitated 
continuous learning through empirical insights, enabling rapid 
identification and integration of improved solutions as necessary. 

2.2.2 Data models and parsers 
We employed established tools such as generateDS (31) to 

automatically generate source and target data structures as native 
Python classes. The oÿcial XML schemas for CDA and FHIR 
served as input for this process. To resolve data types that could 
not be inferred directly from the mapping code, we utilized 
Python’s code introspection capabilities on the generated classes. 

Frontiers in Medicine 03 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://gitlab.com/cdehealth/malac-hd
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 4

Beyer et al. 10.3389/fmed.2025.1661091 

FIGURE 1 

Overall translation process of MaLaC-HD. 

FIGURE 2 

Data and control flow between the components of MaLaC-HD, based on (54). 

This required augmenting the generated code with type hints, 
a feature not originally supported by generateDS. Additional 
enhancements included resolving conflicts arising from identical 
namespace prefixes used in included and imported schemas, as 
well as introducing aliases for elements belonging to namespaces 
dierent from the default namespace. 

The FML parser was introduced subsequently as an optional 
component of the compiler, given that it is not central to our 
primary hypothesis, as alternative tools are available to convert 
FML into StructureMap resources. Nevertheless, because FML may 

contain embedded FHIRPath expressions, which are preserved 
in their raw form within StructureMap resources, an additional 
parser was required. Oÿcial ANTLR4 grammar files for both 
FML and FHIRPath were available (32), and required only 
minor modifications to enable Python code generation using 
the standard toolchain. Specifically, certain grammar rules were 
adjusted with regards to certain keywords and escape sequences, 
ensuring accurate parsing of all tested FML files. Leveraging these 
existing grammar definitions facilitated rapid implementation 
of both parsers. 

Frontiers in Medicine 04 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 5

Beyer et al. 10.3389/fmed.2025.1661091 

To support JSON serialized FHIR resources, we extended 
generateDS with a generic JSON export functionality. By 
introducing several additional method overloads in the generated 
code, we achieved a fast and standards-compliant FHIR JSON 
serialization. For JSON import, dynamic code introspection was 
employed to parse the JSON data and instantiate the corresponding 
data classes in memory. 

2.2.3 Code generators 
The code generator was divided into two components: the 

StructureMap generator, implemented initially, and the FHIRPath 
generator, introduced subsequently. This modular approach 
enabled incremental testing of our hypotheses. Initially, we focused 
exclusively on FML code without embedded FHIRPath expressions. 
Where necessary, a prototypical FHIRPath translation was 
incorporated, substituting a limited set of well-known FHIRPath 
expressions with equivalent Python code. Given that most 
commonly used FML expressions are relatively straightforward 
to implement, this strategy facilitated early validation of our 
hypotheses without the immediate need for comprehensive 
FHIRPath support. 

For the initial implementation of the FHIRPath generator, 
we produced verbose but semantically equivalent Python code, 
incorporating helper functions to avoid bloated code. Subsequently, 
to enhance code readability and reduce verbosity, we introduced 
optimizations that identify and replace common subexpression 
patterns with more eÿcient alternatives during code generation. 
This approach enabled single-pass Python code generation without 
requiring an intermediate representation. Maintaining a simple 
generator design was a deliberate choice to facilitate future 
extensions, allowing straightforward adaptation for additional 
target programming languages. 

The FML generator underwent iterative refinement throughout 
development. Substantial eort was dedicated to enhancing type 
handling. To avoid reliance on an additional intermediate data 
model, as employed by other tools, we directly managed the 
mapping of various XML data types to corresponding CDA and 
FHIR types during the translation process. This remains an ongoing 
eort aimed at achieving comprehensive type support across 
all supported CDA, FHIR, and XML data types. Furthermore, 
compatibility with alternative data models, such as OMOP and 
JSON, was explored to demonstrate the compiler’s extensibility 
and adaptability. 

2.3 Evaluation 

The desired properties of the compiler were evaluated using 
a diverse set of test mappings. Performance and conformance 
assessments primarily centered on the laboratory report example. 
For the evaluation of other properties, additional mappings were 
employed to demonstrate their feasibility. 

2.3.1 Conformance 
The Java implementation employed by HAPI and Matchbox 

was used as the gold standard for conformance evaluation. 
Conformity was assessed by comparing test outputs using di 
tools, permitting only valid dierences such as automatically 

generated random identifiers, whitespace variations, and other 
minor discrepancies arising from imprecise specifications. 

To achieve broad coverage of mappings, we developed several 
mappings internally and incorporated multiple publicly available 
mappings with corresponding example documents. Initially, 
we created a simple handcrafted FML map, followed by an 
early version of the CDA to FHIR conversion for the ELGA 
laboratory report (33), utilizing the oÿcial example report (34), 
and building upon HL7 Suisse’s work (35). Additionally, we 
incorporated the publicly available Italian and Swiss CDA models 
and transformations (36–38), with the latter including FHIR-
to-CDA conversions. Subsequently, we integrated R4 and R5 
conversions from the FHIR specification (39), which required 
some corrections and adaptations to function properly. These 
conversions also maintained compatibility with R4 input maps, 
after our migration of the core system to R5 during development. 
For the FHIRPath submodule, we incorporated the oÿcial test 
suites for both R4 and R5 (40), which cover complex features such 
as functions, aggregations and type coercion. As our focus was on 
the transformation process rather than validation, all tests were 
conducted using valid FML maps and input data. 

2.3.2 Performance 
Performance testing of the mappings was conducted 

locally, with the execution speed of Matchbox serving as 
the reference benchmark. The laboratory report maximum 
example provided by ELGA was selected due to its complexity 
and realistic representation. Additionally, a minimal example 
lacking transformation instructions was created to estimate 
baseline overheads. 

Benchmark executions were performed on a standard Dell 
Latitude 5450 laptop with the following specifications: 

• Intel R  CoreTM Ultra 7 165H 3.80 GHz CPU 
• 32,0 GB 5600MHz RAM 
• BG6 KIOXA 1024GB SSD 

The benchmarks were conducted within the Windows 
Subsystem for Linux (WSL) running an Ubuntu environment. 
The Matchbox server was deployed in a Docker container. The 
following software versions were utilized: 

• Windows 10 Enterprise, 22H2, Build 19045.5737 
• WSL Ubuntu 22.04.5 LTS 
• Docker version 28.1.1, build 4eba377 
• OpenJDK Runtime Environment (build 21.0.7+6-Ubuntu-

0ubuntu122.04) 
• Python 3.10.12 

The following versions of the FML tools were used to run the 
benchmarks: 

• MaLaC-HD 1.1.0 dev build 
721d0623ad350ae19825841ac2ebb4e0da3289ad 

• Matchbox v4.0.4 with-cda container configuration 

The benchmarking protocol included a warm-up phase of 
five cycles, followed by a test phase comprising fifty cycles. 

Frontiers in Medicine 05 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 6

Beyer et al. 10.3389/fmed.2025.1661091 

The corresponding source code is available in a dedicated 
repository (41). 

To account for potential overheads, such as garbage collection 
cycles, spawning new MaLaC-HD processes, or establishing HTTP 
connections via Matchbox’s FHIR REST API, we designed a 
minimal baseline test. This test involved loading and sending 
input data without performing any transformations. Additionally, 
the MaLaC-HD benchmark was conducted in multiple modes: 
running within the same process as the benchmarking script 
(inproc), including an explicit full garbage collection cycle during 
transformation (inproc-gc), and spawning a new child process for 
each run (exec). 

To assess potential dierences between the two supported 
output formats (JSON and XML), each benchmark was executed 
twice, once for each format. 

2.3.3 Flexibility 
To demonstrate the flexibility of our methodology and assess 

its applicability to the OMOP CDM, we employed PostgreSQL 
(42). It was chosen for its open-source license and its capability 
to export XML schemas as well as XML data from standard 
database tables. The tables were created based on the oÿcial OMOP 
CDM version 5.4 SQL schema (43). Subsequently, we exported 
the schema and table data as XML. Due to limitations in the 
PostgreSQL version used, it was not possible to export all tables 
simultaneously within the tablespace. Therefore, only a subset of 
tables relevant to the available test code was exported. We utilized 
test cases from the Vulcan FHIR to OMOP Implementation Guide 
(IG), supplemented with an additional test for observations (44), 
reflecting a use case in the Smart FOX project. Following the model 
class generation, some adjustments were necessary to the data 
type handling logic. However, we successfully produced compliant 
OMOP data outputs. Given the limited number of SQL data types, 
we anticipate that extending support to all OMOP tables, and more 
broadly, to various SQL-based databases from dierent vendors, 
will require minimal additional eort. 

2.3.4 Platform-independence 
To demonstrate the compiler’s ability to generate platform-

independent code, we executed the generated mappings directly 
within a web browser. This was implemented as part of the VIDi 
project (45), which provides an intuitive visualization for the 
international patient summary (IPS) (46). The VIDi FML code 
defines rules that specify how display elements and text from 
the source FHIR bundle should be arranged within the output 
JavaScript code. The FML can be modified directly to accommodate 
specific requirements, such as adapting to national IPS variants 
or adding new features. Traditional transformation methods, 
including XSLT or preprocessing with Java or Python, as previously 
employed by ELGA, often raised security concerns. To mitigate 
these issues, we leveraged PyScript, an in-browser Python runtime, 
to securely process the VIDi FML. This approach enables users to 
drag and drop files into any modern web browser and instantly 
visualize IPS data without the need for additional software. 

To evaluate the feasibility of directly generating JavaScript code, 
we tested several JavaScript libraries capable of importing and 
exporting XML-based data structures. Our primary focus was on 
XML import, as the JavaScript output is expected to be JSON-based. 

Promising libraries such as xml-js and xml2js were examined, both 
of which allow XML data import without requiring a schema or 
additional metadata. The main limitation of these libraries is the 
complete lack of built-in validation. However, alternative tools are 
available for this purpose. 

2.3.5 Transparency, adaptability and debuggability 
To demonstrate the correspondence between the original FML 

code and the generated Python code, we utilized an oÿcial 
example transformation converting an ActivityDefinition to a 
SupplyRequest, which encompasses a variety of operations (47). 
As the example contained some discrepancies with respect to the 
latest FML specification, such as missing parameters in the copy 
operation, we made slight adaptations, as illustrated in Figure 3. 
For example, the parameters for the copy operation were added. 
This FML code was subsequently translated into Python using the 
latest version of the compiler, serving as an example to illustrate 
transparency, adaptability, and debuggability. Debuggability was 
also assessed throughout the compiler’s development using various 
FML code examples. To identify common FHIRPath expressions 
suitable for simplification, additional code samples were also 
utilized. 

3 Results 

We successfully created a compiler that can be installed and 
run with just two simple commands using the packaged version 
available on PyPI, assuming the Python environment is already 
configured: 

pip install malac-hd 
and e.g., 
malac-hd -m CdaToBundle.4.map -co 

cdaToBundle.py 
The translated mapping can then be executed in one single 

command, e.g.: 
python cdaToBundle.py -s 

LabReport.at.cda.xml -t bundle.4.fhir.xml 
Setting up the environment on Windows currently involves 

running the standard Python installer provided by the Python 
Software Foundation. On Unix-based systems, setup may vary 
depending on the distribution and typically includes installing the 
necessary Python packages and/or creating a virtual environment. 

To keep the generated mapping code clean and avoid requiring 
installation of the full engine just to execute mappings, we 
separated the runtime dependencies. This approach also enables 
managing the generated models and commonly used pre-generated 
transformations in separate repositories. These packages are named 
malac-models-cda, malac-models-fhir, and malac-transformer-fhir. 

Additionally, we created a package called malac-tools, which 
serves two main purposes. First, it manages FHIR type detection for 
both source and target models, eliminating the need for any logical 
or additional meta models. Second, it helps keep the generated 
FHIRPath code concise and readable by avoiding excessive code 
duplication. Typically, this package is required only during the FML 
translation phase, but it may also be executed dynamically during 
mapping—for example, to handle certain FHIRPath expressions 
involving dynamic typing. It also acts as a fallback when types 
cannot be determined statically during translation. 

Frontiers in Medicine 06 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://cdaToBundle.py


fmed-12-1661091 September 8, 2025 Time: 16:55 # 7

Beyer et al. 10.3389/fmed.2025.1661091 

FIGURE 3 

Adapted example FML code. 

3.1 Conformity 

Except for some tests covering non-essential functions like unit 
conversions, all FHIRPath tests passed successfully and produced 
identical results. Similarly, the FML outputs were consistent with 
the reference implementation. Minor dierences occurred in areas 
where the FML and FHIR specifications lacked clarity, such as 
data type casting. These cases have been documented as issues 
in the repository. 

3.2 Performance benchmarks 

The performance benchmarks were conducted on a single 
piece of hardware, as detailed in the “2 Materials and methods” 
section. When the benchmarks were repeated, the results remained 
consistently stable, as demonstrated below. 

As shown in Table 1, the mean runtimes of MaLaC-HD 
are significantly lower across all execution modes compared to 
the Matchbox server. Additionally, runtime variation is minimal 
when MaLaC-HD runs within the same process. Examining our 
minimal example without any transformations (Table 2) reveals 
notable increases in runtime when forcing a full garbage collection 
cycle or spawning child processes, relative to the other modes. 
Conversely, running MaLaC-HD in the same process results in a 
statistically significant yet minor runtime dierence compared to 
Matchbox. 

Examining the results in Table 1 and factoring in the estimated 
overheads from Table 2, it is evident that compiling mapping 
code into general-purpose programming language code reduces 
the mean execution time for transformations by nearly two orders 
of magnitude. Accounting for overhead, our compiler completes 
the transformation in approximately 0.034 s on average, whereas 
Matchbox requires about 3.433 s for the same task. 

When comparing the two supported output formats of our 
compiler (Figure 4), we observe only insignificant dierences 
between them for both tools, although the variation is higher 
for the XML output in Matchbox, compared to the JSON 
output. 

3.3 Generated code 

Figure 5 depicts an excerpt of the Python code, generated 
from the FML code described in the “2 Materials and methods” 
section (Figure 3). Note that the complete Python code includes 
additional imports and boilerplate code. As shown, the Python 
method is named identically to the corresponding FML group. 
Parameter and variable identifiers are preserved to maintain 
traceability. FHIRPath expressions, such as now() and string 
literals like “routine,” are translated into equivalent Python 
constructs and optimized for conciseness. Specifically, the now 
function is evaluated once per mapping execution to generate a 
single timestamp instance, ensuring deterministic behavior across 
all references within that mapping. String literals are directly 
embedded as Python string objects and utilized within the 
constructors of complex data types or FHIR resources, thereby 
minimizing extraneous code and improving readability. 

The figure further demonstrates that the generated Python 
code is straightforward to adapt and debug. By preserving 
identifier names from the original FML wherever feasible, it 
facilitates easy navigation and correlation between the source 
FML and the corresponding Python code segments. This supports 
targeted insertion of additional code, as well as breakpoints 
during debugging, leveraging standard Python debugging tools to 
eÿciently diagnose issues. Notably, rule names, such as “status” are 
currently excluded from the generated code to illustrate that their 
omission does not compromise traceability. 

4 Discussion 

We have designed and implemented a mapping language 
compiler that translates FML mappings into Python code. 
Based on benchmarking results and insights gained throughout 
development, we have demonstrated that our compiler satisfies the 
following key properties: 

• Fast: On the test system, the execution time for the maximum 
laboratory report example, excluding overhead, was reduced 

Frontiers in Medicine 07 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 8

Beyer et al. 10.3389/fmed.2025.1661091 

TABLE 1 Runtimes in seconds for the laboratory report example. 

Laboratory report Mode Mean Min Max Median Std 

MaLaC-HD inproc 0.079 0.067 0.381 0.071 0.046 

inproc-gc 0.747 0.587 4.239 0.681 0.493 

exec 0.493 0.447 4.002 0.456 0.353 

Matchbox – 3.506 2.976 6.770 3.163 0.980 

The bold values used for comparison are highlighted. 

TABLE 2 Runtimes in seconds for the minimal example to estimate the overheads. 

No transforms Mode Mean Min Max Median Std 

MaLaC-HD inproc 0.045 0.035 0.221 0.037 0.029 

inproc-gc 0.563 0.422 3.965 0.494 0.482 

exec 0.487 0.399 3.941 0.417 0.493 

Matchbox – 0.073 0.036 3.357 0.039 0.330 

The bold values used for comparison are highlighted. 

FIGURE 4 

Runtime comparison of the supported output formats for both tools. 

by approximately two orders of magnitude. To estimate 
overhead, we executed the same example without any 
mapping logic, thereby isolating factors such as network 
latency, operating system and runtime initialization delays, 
and CDA document parsing. Although this approach does 
not reflect the total end-to-end transformation time, it 
eectively removes performance variability unrelated to the 
core mapping logic. Notably, when run within the same 
process, even the highest recorded runtimes, including 
overhead, remained below the Doherty threshold of 400 ms 
(48) for this complex example. These results strongly indicate 
that the generated code is suitable for real-time, on-the-fly 
transformations, consistent with the intended use case of 
ELGA data processing. Furthermore, this performance profile 
supports scalable bulk transformation of large datasets, which 
may be necessary for research or analytical applications. 

• Transparent: The generated Python code maintains a clear 
correspondence with the original FML source, enabling 
straightforward traceability without requiring additional 
metadata. While embedding the original FML code as 

comments could further enhance readability and debugging, 
this feature could be optionally enabled via a compiler flag. 
Although opportunities for code optimization exist, such as 
eliminating redundant conditional statements, some degree 
of duplication is deliberately preserved to keep the generated 
Python closely aligned with the original FML logic, facilitating 
transparency and ease of maintenance. 

• Flexible: Support for CDA and FHIR R4/R5 was implemented 
by utilizing generateDS in conjunction with the oÿcial 
XML schemas. This strategy was selected over the use 
of StructureDefinition resources, commonly employed by 
other FML engines, due to its enhanced flexibility in 
accommodating new or evolving data structures. Whenever 
an XML schema, or a format convertible to XML schema, is 
available, these definitions can be directly leveraged, enabling 
immediate support for CDA without incurring additional 
overhead. Furthermore, the generated data structures proved 
suÿciently versatile to parse the mapping code itself, 
as FML is oÿcially represented in FHIR through the 
StructureMap resource. OMOP support was demonstrated 

Frontiers in Medicine 08 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 9

Beyer et al. 10.3389/fmed.2025.1661091 

FIGURE 5 

Generated Python code without boilerplate code and superfluous imports. 

using a manually exported PostgreSQL XML schema. This 
process can be readily automated via scripting, thereby 
extending applicability to any tabular data format exportable 
from SQL databases. Additionally, a model was developed for 
VIDi, capable of execution within web browsers via PyScript. 

• Easy to debug: Standard debugging techniques, such as setting 
breakpoints, can be employed to analyze the execution of 
the generated code. Because the generated Python code 
closely corresponds to the original FML source, errors 
in the FML mappings can be rapidly identified during 
development. Conversely, reviewing the generated Python 
code enables interoperability experts to refine and optimize 
the original FML code, resulting in more accurate and precise 
transformations. 

• Easily adaptable: We investigated multiple approaches to 
extend mapping functionality without modifying the FML 
compiler itself. Presently, our tool generates procedural 
code, which can be manually adjusted post-generation and 
managed using standard software version control systems. 
Using appropriate branching strategies regeneration of code 
can be facilitated, in case adaptations of the FML code are 
necessary. Implementing support for object-oriented code 
generation is expected to be straightforward by adapting the 
existing procedural code generator. By employing established 
object-oriented design patterns, such as hooks or interceptors, 
software developers could modify the behavior of the 

generated code dynamically, thereby enabling customization 
without altering the generated source directly. 

• Platform-independent: Currently, the compiler exclusively 
generates Python code. However, extending support to Java 
or .NET is anticipated to be straightforward, given that model 
classes with type annotations are already generated from XML 
schemas and both languages oer robust XML processing 
capabilities. Regarding JavaScript, we evaluated several XML 
libraries, some of which appear suitable for handling input 
and output models even without generated model classes. 
Furthermore, adding support for lower-level languages such 
as Rust should be feasible, provided adequate XML processing 
libraries are available. 

Despite promising results, several limitations and areas for 
further investigation remain: 

• Comparative benchmarking: Current performance 
evaluations have only compared MaLaC-HD against 
Matchbox, primarily due to its ease of setup. However, 
other implementations such as HAPI FHIR or the Java 
command line tool may exhibit dierent characteristics and 
runtime overheads. Comprehensive benchmarking across 
multiple implementations is necessary to contextualize our 
performance findings. 

Frontiers in Medicine 09 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 10

Beyer et al. 10.3389/fmed.2025.1661091 

• Runtime variability: The current comparison is based on 
only one Python and Java runtime, respectively. For a 
more comprehensive assessment, it would be beneficial 
to compare against the .NET implementation to account 
for dierences in JIT compilation strategies and runtime 
optimizations. Performance may also vary significantly across 
dierent JVM versions and vendors, e.g., OpenJDK vs. 
Oracle JDK. Future evaluations should systematically explore 
this variability to identify potential performance bottlenecks 
or optimizations. 

• Language and platform constraints: Currently, the compiler 
only generates Python code. Python was chosen for rapid 
prototyping and accessibility and is already able to fulfill 
the performance requirements. Generating lower-level code 
like Rust or platform-native code like JavaScript could yield 
further performance improvements, but would have required 
additional eort. While the generated code might be executed 
on various platforms, the translation process itself depends on 
a Python runtime environment and relies on native extensions 
such as lxml. This precludes compatibility with environments 
like Jython, which lacks support for Python 3 and native 
C extensions. Future work may explore modularization 
strategies to isolate platform-specific components. 

• Model coverage: Although the tool currently supports CDA 
with multiple national extensions and FHIR R4/R5, including 
profiles and extensions, other widely used data models, such 
as OMOP or additional SQL-based schemas, are only partially 
supported or still under development. Also, JSON-based data 
formats are currently only supported if a corresponding XML 
schema is present, which is rarely the case. This should 
be addressed in further iterations of the tool. While CDA 
transformation capabilities are functional, not all features or 
edge cases have been fully validated. Additional empirical 
testing across a wide range of CDA documents, including 
additional extensions, is needed to ensure robustness and 
conformity. 

• Licensing considerations: The current use of the 

LGPL license fosters open-source collaboration while 

permitting integration into commercial systems. 
However, alternative licensing models such as the 

Apache License 2.0 may oer broader industry adoption. 
This trade-o requires further legal and community 
discussion. 

• Evolving debuggability landscape: Although the generated 
Python code is transparent and can be debugged using 
standard tooling, other FML engines are actively improving 
their own introspection capabilities. For instance, ongoing 
work on traceability features in FHIRPathLab may enhance 
the debuggability of competing tools, potentially narrowing 
this advantage. Also, users need to be familiar with 
Python and it’s debugging capabilities, which might not be 
always the case. 

• Adaptability trade-os: While the ability to adapt generated 
procedural code is beneficial for rapid prototyping and 
customization, frequent manual changes can introduce 
maintenance overhead and reduce reproducibility. 
Mechanisms for controlled code extension e.g., through 
hooks, interceptors, or plugin architectures may help mitigate 
this issue in future iterations. 

4.1 Future applications 

Through community feedback collected during the software 
development process, we identified the following non-exhaustive 
list of potential applications: 

• Health data space interoperability: The tool could facilitate 
eÿcient integration of regional or national healthcare 
providers, as well as local EHR systems, with the EHDS. 
By incorporating pseudonymization techniques, such as 
EUPID (49), masketeer (50), or FHIRPath-based methods like 
Microsoft’s Health Data Anonymization tools, it may also 
support secondary uses, including health data research within 
frameworks like the AHDDS. Furthermore, these privacy-
preserving technologies could prove valuable in enabling 
data sharing across international partners subject to diverse 
regulatory jurisdictions. 

• IPS visualization: JavaScript code generation may enable in-
browser visualization of the IPS, facilitating a unified and 
standardized approach to IPS presentation across the EHDS 
and potentially on a global scale. 

• FML creation tools: MaLaC-HD could be integrated in 
visualization tools (51), or testing platforms such as 
FHIRPath Lab to enable direct and eÿcient execution of 
mappings on large datasets interactively, thereby providing 
immediate feedback. 

• Patient-reported outcomes: data exports from cloud platforms 
such as Apple Health Kit (52), could be shared directly 
from a web browser or third-party applications, eliminating 
the need for deep integration via SDKs. Pseudonymization 
transformations could be performed locally on users’ devices, 
obviating the requirement for additional app installations. 

• Explainable AI mappings: FML and the underlying 
StructureMap resources could potentially be generated 
using LLMs or other AI-based tools, leveraging example 
data or metadata exports such as XML Schemas. Initially, 
such automatically generated mappings could serve as a 
starting point for interoperability experts, who would refine 
them as necessary. Given that visual representations of FML 
can be interpreted by clinicians, while the corresponding 
generated code is accessible to software engineers, this 
approach could eventually enable semi- or fully automated 
mapping generation with end-to-end traceability. Despite 
the automation, the mapping process would remain 
transparent, debuggable, and adaptable, eliminating the 
need for manual authoring and extensive cross-disciplinary 
collaboration at every step. 

• Commercial applications: By adopting a permissive open-
source license such as the LGPL (53) and ensuring broad 
platform compatibility, the tool may facilitate adoption 
by industry partners. This, in turn, could encourage 
contributions to the ecosystem, whether in the form of 
feedback, financial support, or human resources, while 
maintaining openness and community-driven development. 

As suggested by the use cases outlined above, the developed 
tool presents a wide range of potential applications, many of which 
are directly relevant to the forthcoming EHDS. In particular, with 
the EHDS enabling secondary use of health data, and based on 

Frontiers in Medicine 10 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 11

Beyer et al. 10.3389/fmed.2025.1661091 

preliminary insights gained during the conceptualization of the 
AHDDS, there is strong potential for integrating the tool within 
privacy-preserving infrastructures and explainable AI workflows. 
Embedding MaLaC-HD into such an ecosystem could reinforce 
patients’ rights to data access, privacy, and transparency across 
the European Union, while simultaneously enabling researchers 
to extract actionable insights to enhance clinical care and 
inform health policy. Crucially, the open and transparent nature 
of the transformation process would oer an aordable and 
trustworthy alternative to opaque and potentially unreliable AI-
driven transformation methods. This approach would mitigate the 
risks of data breaches or loss, particularly in the context of sensitive 
and structured health data. 

5 Conclusion 

In this work, we have demonstrated the feasibility of developing 
an open-source mapping language compiler that fulfills a broad 
set of design requirements, including performance, transparency 
and portability. Our implementation, developed in Python 
using the MVP approach, specifically targets the increasingly 
relevant CDA to FHIR conversion scenario, which is central to 
both primary and secondary data use in the EHDS for many 
countries. Benchmarking results confirmed a nearly 100-fold 
reduction in execution time for our test case compared to existing 
solutions, without compromising conformity or correctness. 
A substantial subset of FML operations, including the embedded 
FHIRPath expressions, has been implemented, omitting only a few 
non-essential functions. 

Future work will involve extending the compiler to 
support additional target programming languages such as 
Java, .NET, and JavaScript, conducting more comprehensive 
performance evaluations across a variety of hardware and 
software environments, incorporating support for country-
specific CDA extensions and expanding compatibility with 
alternative input and output formats, such as OMOP. Moreover, 
we aim to explore integration with external services, including 
pseudonymization pipelines, full-text processing tools, and 
AI-assisted mapping generation. 

Data availability statement 

The raw data supporting the conclusions of this article 
will be made available by the authors, without undue 
reservation. 

Author contributions 

SB: Conceptualization, Methodology, Writing – review 
& editing, Validation, Software, Writing – original draft. 
NT: Writing – review & editing, Software, Validation, 
Conceptualization, Methodology. GK: Writing – review & editing, 
Validation. DH: Writing – review & editing. KD: Writing – review 
& editing. KK: Writing – review & editing. GS: Supervision, 
Writing – review & editing. 

Funding 

The authors declare that financial support was received for the 
research and/or publication of this article. The work carried out 
in this manuscript was partly funded by the Austrian Research 
Promotion Agency (FFG) within the flagship project Smart FOX– 
Smart and Federated Open Data eXchange of Citizen-based Data 
Donations for Clinical Research (FN 907741). 

Conflict of interest 

NT, GK were employed by ELGA GmbH. 
The remaining authors declare that the research was conducted 

in the absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest. 

Generative AI statement 

The authors declare that Generative AI was used in the creation 
of this manuscript. ChatGPT version GPT-4o and GPT-4.1-mini 
from chatgpt.com were used for language editing. 

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable eorts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us. 

Publisher’s note 

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their aÿliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher. 

References 

1. Khatiwada P, Yang B, Lin J, Blobel B. Patient-Generated Health Data (PGHD): 
understanding, requirements, challenges, and existing techniques for data security and 
privacy. J Pers Med. (2024) 14:282. doi: 10.3390/jpm14030282 

2. Torab-Miandoab A, Samad-Soltani T, Jodati A, Rezaei-Hachesu P. 
Interoperability of heterogeneous health information systems: a systematic literature 
review. BMC Med Inform Decis Mak. (2023) 23:18. doi: 10.1186/s12911-023-02115-5 

Frontiers in Medicine 11 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://chatgpt.com/
https://doi.org/10.3390/jpm14030282
https://doi.org/10.1186/s12911-023-02115-5
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1661091 September 8, 2025 Time: 16:55 # 12

Beyer et al. 10.3389/fmed.2025.1661091 

3. Colombo F, Oderkirk J, Slawomirski L. Health information systems, electronic 
medical records, and big data in global healthcare: progress and challenges in OECD 
Countries. In: Robin H editor. Handbook of Global Health. Cham: Springer (2020). 
p. 1–31. doi: 10.1007/978-3-030-05325-3_71-1 

4. Reisman, M. EHRs: the challenge of making electronic data usable and 
interoperable. Pharm Ther. (2017) 42:572–5. 

5. Ismail L, Materwala H, Karduck A, Adem A. Requirements of health data 
management systems for biomedical care and research: scoping review. J Med Internet 
Res. (2020) 22:e17508. doi: 10.2196/17508 

6. Dash S, Shakyawar S, Sharma M, Kaushik S. Big data in healthcare: management, 
analysis and future prospects. J Big Data. (2019) 6:54. doi: 10.1186/s40537-019-0217-0 

7. Metsallik J, Draheim D, Sabic Z, Novak T, Ross P. Assessing opportunities and 
barriers to improving the secondary use of health care data at the National Level: 
multicase Study in the Kingdom of Saudi Arabia and Estonia. J Med Internet Res. (2024) 
26:e53369. doi: 10.2196/53369 

8. Vorisek C, Lehne M, Klopfenstein S, Mayer P, Bartschke A, Haese T, et al. Fast 
Healthcare Interoperability Resources (FHIR) for interoperability in health research: 
systematic review. JMIR Med Inform. (2022) 10:e35724. doi: 10.2196/35724 

9. Donsa K, Kreiner K, Hayn D, Rzepka A, Ovejero S, Topolnik M, et al. Smart FOX 
- Enabling Citizen-Based Donation of EHR-standardised data for clinical research in 
Austria. Stud Health Technol Inform. (2024) 316:83–7. doi: 10.3233/SHTI240351 

10. European Commission. Regulation of the European Parliament and of the Council 
on the European Health Data Space. (2025). Available online at: https://eur-lex.europa. 
eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022PC0197 (accessed June 6, 2025). 

11. FHIR. FHIR Mapping Language. (2025). Available online at: https://www.hl7. 
org/fhir/mapping-language.html (accessed June 6, 2025). 

12. FHIR. StructureMap - FHIR v5.0.0. (2025). Available online at: https://www.hl7. 
org/fhir/structuremap.html (accessed June 6, 2025). 

13. Fhirpath Lab. Fhirpath Lab. (2025). Available online at: https://fhirpath-lab.com/ 
fml (accessed June 6, 2025). 

14. Hapi F. Starts with a Better Health Data Platform. (2025). Available online at: 
https://smilecdr.com/ (accessed June 6, 2025). 

15. Matchbox. Matchbox.health. (2025). Available online at: https://www.matchbox. 
health (accessed June 6, 2025). 

16. Postlethwaite B. brianpos/fhir-net-mappinglanguage. (2024). Available online at: 
https://github.com/brianpos/fhir-net-mappinglanguage (accessed June 6, 2025). 

17. hapifhir. StructureMapUtilities. (2025). Available online at: https://github.com/ 
hapifhir/org.hl7.fhir.core/blob/125160f590828c009d575db3b5cd1d194e650fae/org. 
hl7.fhir.r4/src/main/java/org/hl7/fhir/r4/utils/StructureMapUtilities.java (accessed 
June 6, 2025). 

18. Tools for Health Data Anonymization. FHIR Data Anonymization. 
(2025). Available online at: https://github.com/microsoft/Tools-for-Health-Data-
Anonymization/blob/master/docs/FHIR-anonymization.md (accessed June 6, 2025). 

19. FHIR. FHIR v5.0.0. (2023). Available online at: https://www.hl7.org/fhir/ 
fhirpath.html (accessed March 26, 2023). 

20. HL7FHIR. FHIR to OMOP FHIR IG v0.1.0. (2023). Available online at: https: 
//build.fhir.org/ig/HL7/fhir-omop-ig/ (accessed Auguest 29, 2025). 

21. HL7 International. Vulcan | HL7 International. (2007). Available online at: https: 
//www.hl7.org/vulcan/ (accessed June 6, 2025). 

22. Almagor L, Cooper K, Grosul A, Harvey T, Reeves S, Subramanian D, et al. 
Finding eective compilation sequences. SIGPLAN Not. (2004) 39:231–9. doi: 10.1145/ 
998300.997196 

23. Liu J, Fang J, Wang T, Xie J, Huang C, Wang Z. Eÿcient compiler optimization 
by modeling passes dependence. CCF Trans High Perform Comput. (2024) 6:588–607. 
doi: 10.1007/s42514-024-00197-9 

24. HL7FHIR. StructureDefinition - FHIR v5.0.0. (2025). Available online at: https: 
//www.hl7.org/fhir/structuredefinition.html (accessed July 1, 2025). 

25. Stevenson R, Burnell D, Fisher G. The Minimum Viable Product (MVP): 
theory and practice. J Manag. (2024) 50:3202–31. doi: 10.1177/014920632412 
27154 

26. FHIR. Resource ConceptMap - FHIR v5.0.0. (2011). Available online at: https: 
//www.hl7.org/fhir/conceptmap.html (accessed June 6, 2025). 

27. LOINC. The International Standard for Identifying Health Measurements, 
Observations, and Documents. (2025). Available online at: https://loinc.org/ (accessed 
June 6, 2025). 

28. SNOMED. AeHIN and SNOMED International Announce Collaboration 
Agreement Focused on Education and Awareness-Building. (2025). Available online at: 
https://www.snomed.org (accessed June 6, 2025). 

29. Bossenko I, Linna K, Piho G, Ross P. Migration from HL7 Clinical Document 
Architecture (CDA) to Fast Health Interoperability Resources (FHIR) in Infectious 
Disease Information System of Estonia. Proceedings of the 38th ACM/SIGAPP 

Symposium on Applied Computing. SAC ’23. New York, NY: Association for 
Computing Machinery (2023). p. 882–5. doi: 10.1145/3555776.3577836 

30. HL7 Europe. HL7 Europe Advances Specifications For the EHDS at the Madrid 
WGM. (2025). Available online at: https://hl7europe.org/hl7-europe-advances-ehds-
specifications-at-the-madrid-wgm/ (accessed June 29, 2025). 

31. generateds. SourceForge. (2024). Available online at: https://sourceforge.net/ 
projects/generateds/ (accessed June 29, 2025). 

32. HL7 FHIR Mapping Language Grammar. A Potentially Dangerous 
Request.Path value was Detected from the Client. (2025). Available online at: 
hl7.org/fhir/R4/mapping.g4. https://www.hl7.org/fhir/R4/mapping.g4 (accessed June 
29, 2025). 

33. HL7Austria/CDA2FHIR. Maps (FHIR Mapping Language) to transform 
documents from CDA to FHIR. (2025). Available online at: https://github.com/ 
HL7Austria/CDA2FHIR (accessed June 6, 2025). 

34. CDA Beispielbefunde. GitLab. (2025). Available online at: https://gitlab.com/ 
elga-gmbh/cda-beispielbefunde/-/tree/master (accessed June 6, 2025). 

35. hl7ch/cda-fhir-maps. Maps (FHIR Mapping Language) to Transform Documents 
from CDA to FHIR and back. (2025). Available online at: https://github.com/hl7ch/ 
cda-fhir-maps (accessed June 6, 2025). 

36. ministero-salute/it-fse-catalogs. ministero-salute/it-fse-catalogs. (2025). 
Available online at: https://github.com/ministero-salute/it-fse-catalogs (accessed 
June 6, 2025). 

37. hl7ch-cda. eHealthSuisse. (2025). Available online at: https://github.com/hl7ch/ 
hl7ch-cda/tree/master/projects/eHealthSuisse (accessed June 6, 2025). 

38. hl7-it/cda2fhir. HL7 CDA to FHIR maps for HL7 Italy Documents. (2025). 
Available online at: https://github.com/hl7-it/cda2fhir (accessed June 6, 2025) 

39. HL7/fhir-cross-version. FHIR IG that contains a collection of cross-version 
artefacts. (2025). Available online at: https://github.com/HL7/fhir-cross-version 
(accessed June 6, 2025). 

40. FHIR. FHIRPath Normative Release (v2.0.0). (2025). Available online at: https: 
//www.hl7.org/fhirpath/tests.html (accessed June 6, 2025). 

41. GitLab. cdeHealth / benchmarks GitLab. (2025). Available online at: https://gitlab. 
com/cdehealth/benchmarks (accessed June 6, 2025). 

42. The PostgreSQL Global Development Group PostgreSQL. (2025). Available 
online at: https://www.postgresql.org/ (accessed June 6, 2025). 

43. CommonDataModel. Definition and DDLs for the OMOP Common Data Model 
(CDM). (2025). Available online at: https://github.com/OHDSI/CommonDataModel 
(accessed June 6, 2025). 

44. HL7FHIR. Observation - FHIR v5.0.0. (2025). Available online at: https://hl7.org/ 
fhir/R5/observation.html (accessed June 6, 2025). 

45. Tanjga N, Vinatzer H. VIDi - a build-measure-learn honed visualization of 
the international patient summary. Stud Health Technol Inform. (2025) 324:282–91. 
doi: 10.3233/SHTI250202 

46. HL7. International Patient Summary Implementation Guide - FHIR v4.0.1. 
(2025). Available online at: https://www.hl7.org/fhir/uv/ips/ (accessed June 7, 2025). 

47. HL7FHIR. Structuremap-supplyrequest-transform - FHIR v5.0.0. (2025). 
Available online at: http://hl7.org/fhir/structuremap-supplyrequest-transform.html 
(accessed June 7, 2025). 

48. Yablonski J. Doherty Threshold. Laws UX. (2025). Available online at: https: 
//lawsofux.com/doherty-threshold/ (accessed June 7, 2025). 

49. Hayn D, Sandner E, Vengadeswaran A, Taru E, Wilkinson M, Hanauer M, et al. 
Privacy-preserving linkage of distributed pseudonymised datasets in a virtual european 
rare disease platform. In: John M editor. Digital Health and Informatics Innovations 
for Sustainable Health Care Systems. Amsterdam: IOS Press (2024). p. 1442–6. doi: 
10.3233/SHTI240683 

50. Baumgartner M, Kreiner K, Wiesmüller F, Hayn D, Puelacher C, Schreier G. 
Masketeer: an ensemble-based pseudonymization tool with entity recognition for 
german unstructured medical free text. Future Internet. (2024) 16:281. doi: 10.3390/ 
fi16080281 

51. Bossenko I, Piho G, Bondarev R, Ross P. Visual FML Editor for Data 
Transformations by Analysts using TermX. Geneva: CERN (2025). doi: 10.5281/zenodo. 
14608721 

52. Kawu A, Hederman L, Doyle J, O’Sullivan D. Patient generated health data 
and electronic health record integration, governance and socio-technical issues: a 
narrative review. Inform Med Unlocked. (2023) 37:101153. doi: 10.1016/j.imu.2022.10 
1153 

53. GNU Operating System. GNU Lesser General Public License, Version 3. (2025). 
Available online at: https://www.gnu.org/licenses/lgpl-3.0 (accessed June 7, 2025). 

54. MaLaC-Hd Workflow. GitLab. (2025). Available online at: https://gitlab. 
com/cdehealth/malac-hd/-/blob/main/images/workflow.drawio.svg (accessed June 7, 
2025). 

Frontiers in Medicine 12 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1661091
https://doi.org/10.1007/978-3-030-05325-3_71-1
https://doi.org/10.2196/17508
https://doi.org/10.1186/s40537-019-0217-0
https://doi.org/10.2196/53369
https://doi.org/10.2196/35724
https://doi.org/10.3233/SHTI240351
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022PC0197
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022PC0197
https://www.hl7.org/fhir/mapping-language.html
https://www.hl7.org/fhir/mapping-language.html
https://www.hl7.org/fhir/structuremap.html
https://www.hl7.org/fhir/structuremap.html
https://fhirpath-lab.com/fml
https://fhirpath-lab.com/fml
https://smilecdr.com/
https://www.matchbox.health
https://www.matchbox.health
https://github.com/brianpos/fhir-net-mappinglanguage
https://github.com/hapifhir/org.hl7.fhir.core/blob/125160f590828c009d575db3b5cd1d194e650fae/org.hl7.fhir.r4/src/main/java/org/hl7/fhir/r4/utils/StructureMapUtilities.java
https://github.com/hapifhir/org.hl7.fhir.core/blob/125160f590828c009d575db3b5cd1d194e650fae/org.hl7.fhir.r4/src/main/java/org/hl7/fhir/r4/utils/StructureMapUtilities.java
https://github.com/hapifhir/org.hl7.fhir.core/blob/125160f590828c009d575db3b5cd1d194e650fae/org.hl7.fhir.r4/src/main/java/org/hl7/fhir/r4/utils/StructureMapUtilities.java
https://github.com/microsoft/Tools-for-Health-Data-Anonymization/blob/master/docs/FHIR-anonymization.md
https://github.com/microsoft/Tools-for-Health-Data-Anonymization/blob/master/docs/FHIR-anonymization.md
https://www.hl7.org/fhir/fhirpath.html
https://www.hl7.org/fhir/fhirpath.html
https://build.fhir.org/ig/HL7/fhir-omop-ig/
https://build.fhir.org/ig/HL7/fhir-omop-ig/
https://www.hl7.org/vulcan/
https://www.hl7.org/vulcan/
https://doi.org/10.1145/998300.997196
https://doi.org/10.1145/998300.997196
https://doi.org/10.1007/s42514-024-00197-9
https://www.hl7.org/fhir/structuredefinition.html
https://www.hl7.org/fhir/structuredefinition.html
https://doi.org/10.1177/01492063241227154
https://doi.org/10.1177/01492063241227154
https://www.hl7.org/fhir/conceptmap.html
https://www.hl7.org/fhir/conceptmap.html
https://loinc.org/
https://www.snomed.org
https://doi.org/10.1145/3555776.3577836
https://hl7europe.org/hl7-europe-advances-ehds-specifications-at-the-madrid-wgm/
https://hl7europe.org/hl7-europe-advances-ehds-specifications-at-the-madrid-wgm/
https://sourceforge.net/projects/generateds/
https://sourceforge.net/projects/generateds/
https://www.hl7.org/fhir/R4/mapping.g4
https://github.com/HL7Austria/CDA2FHIR
https://github.com/HL7Austria/CDA2FHIR
https://gitlab.com/elga-gmbh/cda-beispielbefunde/-/tree/master
https://gitlab.com/elga-gmbh/cda-beispielbefunde/-/tree/master
https://github.com/hl7ch/cda-fhir-maps
https://github.com/hl7ch/cda-fhir-maps
https://github.com/ministero-salute/it-fse-catalogs
https://github.com/hl7ch/hl7ch-cda/tree/master/projects/eHealthSuisse
https://github.com/hl7ch/hl7ch-cda/tree/master/projects/eHealthSuisse
https://github.com/hl7-it/cda2fhir
https://github.com/HL7/fhir-cross-version
https://www.hl7.org/fhirpath/tests.html
https://www.hl7.org/fhirpath/tests.html
https://gitlab.com/cdehealth/benchmarks
https://gitlab.com/cdehealth/benchmarks
https://www.postgresql.org/
https://github.com/OHDSI/CommonDataModel
https://hl7.org/fhir/R5/observation.html
https://hl7.org/fhir/R5/observation.html
https://doi.org/10.3233/SHTI250202
https://www.hl7.org/fhir/uv/ips/
http://hl7.org/fhir/structuremap-supplyrequest-transform.html
https://lawsofux.com/doherty-threshold/
https://lawsofux.com/doherty-threshold/
https://doi.org/10.3233/SHTI240683
https://doi.org/10.3233/SHTI240683
https://doi.org/10.3390/fi16080281
https://doi.org/10.3390/fi16080281
https://doi.org/10.5281/zenodo.14608721
https://doi.org/10.5281/zenodo.14608721
https://doi.org/10.1016/j.imu.2022.101153
https://doi.org/10.1016/j.imu.2022.101153
https://www.gnu.org/licenses/lgpl-3.0
https://gitlab.com/cdehealth/malac-hd/-/blob/main/images/workflow.drawio.svg
https://gitlab.com/cdehealth/malac-hd/-/blob/main/images/workflow.drawio.svg
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://hl7.org/fhir/R4/mapping.g4

	Preparing for the European Health Data Space: an open-source compiler for fast, transparent, and portable health data transformations
	1 Introduction
	2 Materials and methods
	2.1 Architecture
	2.2 Implementation
	2.2.1 MVP methodology
	2.2.2 Data models and parsers
	2.2.3 Code generators

	2.3 Evaluation
	2.3.1 Conformance
	2.3.2 Performance
	2.3.3 Flexibility
	2.3.4 Platform-independence
	2.3.5 Transparency, adaptability and debuggability


	3 Results
	3.1 Conformity
	3.2 Performance benchmarks
	3.3 Generated code

	4 Discussion
	4.1 Future applications

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References




