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1 Introduction

Vitiligo is a chronic skin disorder characterized by the selective loss of melanocytes,
resulting in the development of depigmented patches on the skin (1). Recent
epidemiological studies estimate the global prevalence of vitiligo to be approximately
0.36–0.40%, with higher prevalence in adults than children, and notable geographical
variation (2, 3). Although the past decade of research has established vitiligo as a disease of
autoimmune origin, the underlying pathogenic mechanisms are not fully understood, and
no definitive cure currently exists (4, 5). Furthermore, new areas of research, such as the
relationship between the skin and gut microbiome, are emerging; however, the data remain
inconclusive due to variability in methodologies and sample sizes (6). Despite advances
in therapeutic approaches, vitiligo patients often suffer from delayed diagnosis due to a
scarcity of dermatological resources and expertise (7, 8). Since many vitiligo therapies are
most effective in the early stages of disease (9, 10), this diagnostic gap underscores the need
for innovative solutions that can enhance the accuracy and accessibility of clinical care.

In recent years, technological innovations utilizing artificial intelligence (AI) and
computer vision models have begun to reshape the dermatological landscape, offering the
potential to enhance diagnostic precision and support clinical decision-making (11). These
tools hold particular promise for vitiligo, where the monitoring of disease progression
and treatment response has historically been difficult to standardize (12). Recently,
Abdolahnejad et al. proposed an AI-driven mobile application that enables patients to
remotely assess and track the progression of their vitiligo (13). While this approach is
encouraging, it also invites questions about clinical utility, generalizability, and readiness
for integration into routine care. It is also necessary to consider the broader clinical
applications of vitiligo tools, such as their potential role in psychosocial support and
holistic patient care (14, 15). In this opinion paper, we place this proof-of-concept study in
the context of the broader technological landscape for vitiligo, discussing both emerging
and established tools, and reflecting on their potential to improve clinical outcomes
and access to care. Here, we define clinical utility to mean a demonstrated, measurable
benefit to patient care or workflow (e.g., improved diagnostic agreement, reduced time-
to-treatment, or more reliable VASI/T-VASI change detection). We define generalizability
to mean stable performance across Fitzpatrick skin types I–VI, anatomic sites, capture
contexts (clinic cameras and mobile), and across care settings (specialist, primary care,
and teledermatology).
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2 Existing vitiligo tools

Vitiligo is primarily diagnosed through clinical examination,
based on the presence of white macules with or without
depigmented hairs (leukotrichia) in affected areas of the skin (1,
16). Diagnosis can be supported by Wood’s lamp examination,
dermoscopy, punch biopsy, and molecular testing to rule out other
causes of hypopigmentation (10, 17). The most common tool used
to assess vitiligo is the Wood’s lamp, which emits ultraviolet (UV)
light at wavelengths between 320 and 400 nm, with a peak at
365 nm (10, 18). Under the Wood’s lamp, vitiligo appears as bright
bluish-white patches, often with sharp demarcations (18, 19). This
enables clinicians to detect subtle depigmentation in fair-skinned
individuals and identify spreading vitiligo that may not be visible in
natural light (17, 18). Therefore, in addition to its diagnostic value,
the Wood’s lamp can also be used to non-invasively monitor active
disease progression and repigmentation after treatment (17, 20).

Vitiligo assessment and monitoring can also be supported by
other imaging modalities, including dermoscopy and reflectance
confocal microscopy (RCM) (21, 22). Though less commonly used,
RCM is primarily a diagnostic technique used to visualize the
epidermis and superficial dermis at near-histological resolution
(23). Although RCM can also support monitoring of disease
activity and treatment response, its clinical use is limited by the
need for specialized equipment and training (24–26). In contrast,
dermoscopy provides clinicians with an illuminated, magnified
view of the epidermis and papillary dermis, enabling visualization
of abnormalities in the pigmentary network, as well as perifollicular
and perilesional changes (27, 28). While some dermoscopic features
used to differentiate stable from unstable vitiligo are inconsistently
reported in the literature (27–30), a recent study has found that
dermoscopy and Wood’s lamp are equally helpful, with dermoscopy
demonstrating a slightly higher agreement with clinical assessments
(31). However, both methods only demonstrate fair agreement
(κ = 0.33 for Wood’s lamp and κ = 0.40 for dermoscopy)
with clinical evaluations (31). Therefore, correlating dermoscopic
findings with other tools may improve diagnostic accuracy and
clinical confidence (21, 22).

Traditionally, vitiligo progression and treatment response are
evaluated by combining photographic documentation with clinical
scoring systems (10, 17). Common systems that assess the size and
extent of depigmentation include the Vitiligo Area Scoring Index
(VASI), its facial (F-VASI) and total body (T-VASI) variants (32–
34), the Vitiligo European Task Force assessment (VETFa) (35), and
the Vitiligo Extent Score (VES) (36, 37). Although these systems
are validated and generally considered reliable, they are inherently
subjective and susceptible to inter-observer variability (17, 35, 38).
Proper assessment can also be time-consuming in clinical practice,
and dependent on the expertise of the assessor (17). Therefore,
effective vitiligo management is contingent on access to clinicians
with the tools and expertise to monitor the condition.

3 Artificial intelligence and vitiligo

In practice, the diagnosis and treatment of vitiligo are often
limited by healthcare system constraints, cost barriers, and a
shortage of specialists (7, 39). As a result, there is a growing need for

data-driven technologies that can provide accurate and objective
assessments for vitiligo patients. These innovations are especially
important for advancing equitable care in geographically remote or
underserved populations.

To address these challenges, many researchers have begun
exploring artificial intelligence as a means of supporting vitiligo
diagnosis and monitoring. Although machine learning and artificial
intelligence have only recently gained widespread prominence,
predictive artificial neural network (ANN) models for vitiligo
were described as early as 2009 (40). Over the past decade, deep
learning models, such as convolutional neural networks (CNNs),
have become central to many high-performing dermatological
AI systems (41–44). These multi-layered systems are trained on
large datasets of labeled images, and can automatically extract key
hierarchical features to make predictions (42, 45).

The architecture of a CNN determines how its layers are
arranged and connected, and it plays a critical role in how a
model processes images and generates outputs (45, 46). In the
context of vitiligo, deep learning models are typically designed
to either identify vitiligo (classification) or measure and quantify
depigmentation (segmentation). Depending on the task, modern
CNN models often adopt architectures from the ResNet, DenseNet,
EfficientNet, YOLO, Inception, and U-Net families (43, 45, 46).
These model families are most clinically useful when mapped
to: (i) differential diagnosis (vitiligo vs. mimickers such as
pityriasis alba or tinea versicolor), and (ii) burden quantification to
complement VASI/T-VASI for treatment decisions. Segmentation
models directly support serial burden tracking and re-pigmentation
analysis, while detection models help standardize photography
by localizing lesions and proposing consistent fields of view
for follow-up.

For classification tasks, ResNet (42, 47), DenseNet (42,
48), EfficientNet (13, 47), and Inception (49, 50) architectures
have been successfully applied by various groups to distinguish
vitiligo from other skin conditions and/or healthy skin. These
architectures are typically responsible for feature extraction and
serve as the backbone of a CNN model. In contrast, architectures
such as U-Net (51), PSPNet (52), and fully convolutional
neural networks (FCNNs) (53) have been used to perform
segmentation tasks for vitiligo lesions. Traditional machine
learning algorithms, including K-means clustering, have also been
used in combination with deep learning systems for vitiligo
segmentation (13, 54). Practically, backbones support diagnosis
vs. mimickers, segmentation nets support extent/re-pigmentation
tracking, and detection models support standardized image capture
for longitudinal care.

Architectures in the You Only Look Once (YOLO) family
are object detection frameworks that can be adapted for vitiligo
lesion classification and localization (52). Instead of performing
classification on entire images, YOLO models can be trained
to rapidly detect and draw bounding boxes around skin lesions
(55). In 2023, Guo et al. proposed a hybrid deep learning model
for vitiligo that integrated the YOLO v3 architecture for lesion
detection and a U-Net++ architecture for segmentation (52). This
system achieved a lesion detection sensitivity of 92.91% and a
segmentation Jaccard index of 0.79 (52). Clinically, fast lesion
localization can improve site selection for phototherapy and enable
consistent recapture of vitiligo lesions across visits.
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TABLE 1 Landscape of vitiligo applications.

Name Purpose AI features? User
feedback?

Patient support
tools?

Available?

Vitiligo diagnostic assistance
(Vi-DA) (62)

Vitiligo lesion segmentation
√ √

MiDerm (65) Informational, behavioral,
and peer support for patients

√ √

Skinopathy vitiligo (13) Vitiligo lesion segmentation
and tracking

√ √

While CNN-based systems remain the foundation of most
current models, recent advances in transformer-based architectures
suggest new possibilities for even greater performance and
generalizability (56, 57). Transformers are deep learning
architectures that use self-attention mechanisms to model
complex relationships within input data (57). In 2024, Zhong
et al. demonstrated that shifted window (Swin) transformers
outperformed CNN ResNet models in the classification of vitiligo,
with top accuracies of 93.82% vs. 89.26% (58). For clinicians,
these systems may translate into improved early change detection
(e.g., perifollicular repigmentation) and potential “second-reader”
support in uncertain cases.

Overall, deep learning systems reported in the literature
consistently demonstrate strong performance, with classification
accuracies ranging from 66% to 97% (47, 50) and segmentation
accuracies between 93% and 97% (54, 59). Notably, the model
developed by Liu et al., which reported the lowest classification
accuracy (66%), was found to be non-inferior to dermatologists
and outperformed both primary care physicians and nurse
practitioners in diagnostic accuracy (50). These direct comparisons
with healthcare professionals underscore the clinical relevance
of deep learning systems for vitiligo assessment and highlight
their potential to enhance the accessibility and consistency of
vitiligo care.

4 AI applications for vitiligo patients

Although research into dermatological AI is rapidly advancing,
few models have successfully translated into practical clinical
or patient-facing applications (Table 1). This slow adoption is
largely due to valid concerns around data privacy, trust, regulatory
hurdles, and the need for robust external validation (60, 61). In
practice, patient-facing tools can support self-monitoring, enable
teledermatology triaging, and offer standardized photography to
improve the reliability of detecting changes. While some mobile
applications allow users to upload images and manually track their
vitiligo, there are currently no widely adopted tools that leverage AI
to quantitatively monitor disease progression.

One of the earliest patient-facing tools described in the
literature is Vitiligo Diagnostic Assistance (Vi-DA), a prototype
Android application introduced by Nugraha et al. in 2018 (62). Vi-
DA was developed using traditional image processing algorithms
and unsupervised machine learning for the segmentation of
vitiligo lesions. The segmentation algorithm employed Fuzzy C-
Means (FCM) clustering and yielded similar results to alternative

segmentation models (62). However, formal performance metrics
were not reported, and evaluations were limited to qualitative
comparisons with images captured under normal lighting. Notably,
the authors also assessed the usability of Vi-DA with vitiligo
patients, who expressed generally positive feedback, but concerns
about long processing times (62). Despite this early exploration, the
Vi-DA application remained at the prototype stage and was never
released for public use.

More recently, Abdolahnejad et al. introduced a proof-of-
concept mobile application that applies deep learning techniques
to detect and monitor vitiligo (13). The AI system is embedded in
a mobile interface and performs classification, segmentation, and
colorimetric analysis on user-submitted images. Vitiligo detection
is carried out by a CNN based on the EfficientNet-B7 architecture,
which achieved a reported accuracy of 95.0% (13). Following lesion
identification, segmentation is performed using K-means clustering
and Boundary Attention Mapping (BAM), a technique that utilizes
activation maps from the CNN to refine lesion boundaries
(13, 63). The system also performs colorimetric analysis on
segmented regions by extracting pixel-level color data, providing
users with an assessment of vitiligo severity and depigmentation.
While quantitative performance metrics for segmentation and
colorimetry were not reported, qualitative comparisons between
AI segmentations and images taken under the Wood’s lamp
demonstrated close visual alignment (13).

Despite promising technical results, further large-scale clinical
validation studies are needed to evaluate the generalizability of
these deep learning systems. These studies can offer valuable
insights into the performance of AI models across diverse patient
populations, skin tones, and lighting conditions (64). As interest in
AI-based tools for vitiligo continues to grow, future work should
address both technical improvements and broader considerations
for clinical adoption. Implementation strategies and mechanisms
for clinician oversight will also be essential to support the safe and
effective use of AI tools in real-world settings.

While AI-based vitiligo applications primarily focus on
clinically relevant features, it is equally important to recognize
the value of holistic digital tools that support patients beyond the
clinic. One proposed tool is MiDerm, which is an application that
provides education, self-management resources, and peer support
for patients living with different skin conditions, including vitiligo
(65). Although the application is currently under development,
preliminary qualitative studies have highlighted the significant
psychological burden associated with vitiligo and the unmet
need for additional support (65). By targeting aspects of quality
of life that extend beyond physical symptoms, these tools
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highlight the value of integrating medical and psychosocial
support into digital platforms. Therefore, the most impactful
patient-facing applications for vitiligo will combine clinically
useful AI functionalities with holistic support features, offering a
comprehensive approach to disease management.

5 Recommendations for future
applications

Although promising AI tools for vitiligo are emerging, few have
undergone the rigorous development, validation, and integration
necessary for widespread clinical adoption. To ensure that these
technologies can effectively support patient care and meet the
standards of clinical practice, future efforts should prioritize
strategies that address the needs and concerns of both clinicians
and patients. The following recommendations highlight key
considerations that may help guide the development of future
vitiligo AI applications.

I. Clinical validation: large-scale clinical studies are essential
to evaluate the effectiveness of AI applications in routine
practice. Performance should be assessed not only in
comparison to dermatologists but also across different
care settings and patient demographics. Utility should be
reported by task-specific endpoints (e.g., �VASI minimal
detectable change, triage accuracy vs. dermatologist, and time-
to-treatment) and generalizability should be demonstrated
through pre-specified analyses across various Fitzpatrick skin
types (I–VI), devices, lighting conditions, and anatomic sites.
The inclusion of outcome metrics such as diagnostic accuracy,
user adherence, and patient-reported satisfaction will improve
credibility and clinical relevance.

II. Ethical considerations and data security: applications
should adhere to stringent data protection protocols and
explicitly address ethical concerns. This includes compliance
with local privacy regulations, as well as transparent policies
on data ownership and informed consent.

III. Scalability and integration: for clinical adoption, the
application should integrate into the existing digital health
infrastructure. This may include compatibility with electronic
medical record (EMR) systems, interoperability with clinical
workflows, and support for remote care models. Practical
guidance for real-world implementation should be considered
early in the development process. These would include
device/lighting robustness checks, guidance for image quality
controls, and EMR/teledermatology integration hooks (e.g.,
Fast Healthcare Interoperability Resources (FHIR) data
formatting standards and VASI fields) to ensure performance
transfers from research to practice.

IV. User-centered design: applications should prioritize patient
usability through iterative user testing, intuitive design,
and accessibility features. Incorporating structured feedback
from diverse patient populations will improve engagement,
adherence, and trust in the system. The evaluation of interface
design alongside clinical performance is critical for real-
world adoption.

6 Limitations and future directions

While AI holds significant promise for the future of
dermatological care, it is essential to acknowledge the limitations
of machine learning models. Data availability is the most obvious
obstacle. Deep learning systems are highly dependent on the
quality and diversity of the data they are trained on. However,
many research groups rely on relatively small, homogenous
datasets that do not reflect the broad spectrum of real-world
patients. To address this gap, the Diverse Dermatology Images
(DDI) dataset was created in 2022 to provide researchers with
a publicly available, curated dataset with diverse skin tones
(64). When three state-of-the-art dermatology models were tested
on the DDI dataset, performance declined significantly—ROC-
AUC scores dropped from ranges of 0.88–0.94 to 0.56–0.67
(64). Furthermore, in the context of vitiligo, even commonly
used clinical tools such as the Wood’s lamp have been reported
to produce false-negative results in darker skin tones (12).
Therefore, both the diversity of training datasets and the clinical
benchmarks used for evaluation must be carefully considered
during model development. Future studies should prioritize
endpoints that reflect clinical utility and include stratified analyses
that demonstrate generalizability across skin tones and image
capture conditions.

It is also important to recognize the technical limitations
of image-based detection and segmentation systems. As with
clinical photography, standardized image capture procedures are
essential for accurate tracking of vitiligo by machine learning
models. Controlling factors such as lighting, positioning, and
background contrast enable both clinicians and AI models to
collect comparable images over time (66). The two-dimensional
nature of images presents additional challenges, as AI systems
often struggle to assess lesions on curved or complex anatomical
surfaces (67). Natural artifacts, such as hair or shadows,
can further interfere with model performance (67). However,
emerging solutions, such as 3D imaging, image preprocessing
techniques, and calibration tools, may help address these
limitations (67, 68).

Ultimately, the advancement of AI for vitiligo will depend
not only on technological improvements but also on ethical and
inclusive implementation. Future models should be trained on
large and diverse datasets that reflect variations in skin tone, age,
and anatomical location. The inclusion of quality-of-life measures
in patient-facing applications can also support a more holistic
approach to vitiligo care. When designed with clinical and patient-
centered perspectives in mind, AI has the potential to enhance
diagnosis, support early intervention, and promote equitable care
for individuals living with vitiligo. Realizing this potential will
require close collaboration between researchers, clinicians, patients,
and policymakers to ensure that AI tools are accurate, accessible,
and trustworthy.
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