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VM-CAGSeq: a vessel
structure-aware state space
model for coronary artery
segmentation in angiography
Images
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1School of Artificial Intelligence and Digital Economy Industry, Guangzhou Institute of Science and
Technology, Guangzhou, China, 2Department of Cardiology, Second Affiliated Hospital of Nanchang
University, Nanchang, China

Coronary artery segmentation in X-ray angiography is clinically critical for
percutaneous coronary intervention (PCl), as it offers essential morphological
guidance for stent deployment, stenosis assessment, and hemodynamic
optimization. Nevertheless, inherent angiographic limitations, including complex
vasculature, low contrast, and fuzzy boundaries, persist as significant challenges.
Current methodologies exhibit notable shortcomings, including fragmented
output continuity, noise susceptibility, and computational inefficiency. This
study proposes VM-CAGSeg, a novel U-shaped architecture integrating vessel
structure-aware state space modeling, to address these limitations. The
framework introduces three key innovations: (1) A Vessel Structure-Aware State
Space (VSASS) block that synergizes geometric priors from a Multiscale Vessel
Structure-Aware (MVSA) module with long-range contextual modeling via
Kolmogorov—-Arnold State Space (KASS) blocks. The MVSA module enhances
tubular feature representation through Hessian eigenvalue-derived vesselness
measures. (2) A Cross-Stage Feature Interaction Fusion (CSFIF) module that
replaces conventional skip connections with cross-stage feature fusion
strategies to enhance the variability of learned features, preserving long-range
dependencies and fine-grained details. (3) A unified architecture that integrates
the Vessel Structure-Aware State Space (VSASS) block and the Cross-Stage
Feature Interaction Fusion (CSFIF) module to achieve comprehensive vessel
segmentation by synergizing multiscale geometric awareness, long-range
dependency modeling, and cross-stage feature refinement. Experiments
demonstrate that VM-CAGSeg achieves state-of-the-art performance,
surpassing CNN-based (e.g., UNet++), transformer-based (e.g., MISSFormer),
and state space model (SSM)-based (e.g., H_vmunet) methods, with a Dice
similarity coefficient (DSC) of 88.15%, mloU of 79.19%, and a 95% Hausdorff
distance (HD95) of 13.68 mm. The framework significantly improved boundary
delineation, reducing HD95 by 49.8% compared to UNet++ (27.15mm) and
by 16.6% compared to TransUNet (15.85mm). While its sensitivity (90.05%)
was marginally lower than that of TransUNet (90.33%), the model's balanced
performance in segmentation accuracy and edge precision confirmed its
robustness. These findings validate the effectiveness of integrating multiscale
vessel-aware modeling, long-range dependency learning, and cross-stage
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feature fusion, making VM-CAGSeg a reliable solution for clinical vascular
segmentation tasks that require fine-grained detail preservation. The proposed
method is available as an open-source project at https://github.com/GIT-HYQ/

VM-CAGSeg.

KEYWORDS

vessel structure-aware state space model, coronary angiography, vessel segmentation,
cross-stage feature interaction fusion, Kolmogorov-Arnold state space, Frangi filter

1 Introduction

Vessel segmentation in coronary angiography can provide

valuable clinical information for percutaneous coronary

intervention (PCI). Invasive X-ray coronary angiography
plays a crucial role in the diagnosis and treatment of coronary
heart disease (1). Vascular segmentation can extract coronary
artery morphology from complex angiographic images, eliminate
the interference of surrounding tissues, and clearly display the
location, length, and morphological characteristics of vascular
stenosis, calcifications, and bifurcation lesions (2). In preoperative
planning, vascular segmentation can help cardiologists predict the
path of the guidewire, select the length and diameter of the stent,
and determine the strategy for balloon expansion. Intraoperative
navigation and vascular segmentation combined with real-time
imaging can assist in adjusting the catheter angle to reduce the
difficulty of instrument passage due to vascular distortion. The
results of vessel segmentation can be combined with flow reserve
fraction (FFR) or quantitative coronary angiography (QCA) to
quantify the effect of stenosis on blood flow (3, 4). After operation,
the lumen diameter and blood flow velocity before and after
stenosis are divided and compared to verify the effect of stent
adhesion and expansion. In complex scenarios, such as bifurcation
lesions, vascular segmentation can fuse multi-angle angiographic
data, reconstruct three-dimensional vascular paths, and identify
microchannels or collateral circulation. A three-dimensional
vascular model combined with intravascular ultrasound (IVUS)
and optical coherence tomography (OCT) enables multi-modal
image fusion and improves the pre-treatment accuracy of
calcification lesions (5). Clinical applications demand anatomically
precise vessel delineation that is robust to pathological alterations
across diverse vascular structures and imaging modalities. Surgical
navigation requires temporally stable segmentation enabling
real-time instrument tracking and seamless integration with
intraoperative imaging workflows.

Complex vascular structures, low contrast, and fuzzy vascular
boundaries are the key challenges in coronary segmentation, as
shown in Figure 1. First, the coronary artery system exhibits
highly complex morphological characteristics, extending beyond
simple tree-like branching. Coronary arteries branch hierarchically

Abbreviations: VSASS, Vessel Structure-Aware State Space; MVSA,
Multiscale Vessel Structure-Aware; KASS, Kolmogorov—-Arnold
State Space; CSFIF, Cross-Stage Feature Interaction Fusion; KANs,

Kolmogorov—Arnold networks.
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from main trunks into finer vessels, with significant inter-patient
variations in bifurcation patterns. In 2D angiographic projections,
vessels frequently appear crossed or intertwined due to overlapping
perspectives. Cardiac motion and respiration induce non-rigid
deformation of vascular structures across temporal sequences
(6). Second, low contrast refers to the weak grayscale difference
between the coronary arteries and the surrounding tissues. This
arises from non-uniform contrast agent distribution, background
noise interference, and tissue overlap artifacts. Variations in
blood flow velocity lead to insufficient contrast filling in small
vessels or stenotic lesions, resulting in localized low-intensity
signals or apparent vascular discontinuity. High-frequency noise
from bones or catheters in X-ray imaging can mimic vascular
textures (especially in low-dose angiography), causing conventional
threshold-based segmentation to misidentify noise as vessels. In 2D
angiography, overlapping anatomical structures (e.g., myocardium,
valves) generate pseudo-vessel signals (e.g., right coronary artery
overlapping with spinal shadows) (7). Finally, unclear vascular
boundaries further complicate segmentation. This problem results
from motion artifacts, partial volume effects, and pathological
interference. Rapid cardiac systolic motion causes edge smearing,
especially in low-frame-rate angiography systems. Limited imaging
resolution blends boundary pixels of small vessels with adjacent
tissues, creating semi-transparent blurred edges. Local high-
intensity signals from calcified plaques or stent metal artifacts
obscure true vessel walls, while atherosclerotic plaques may cause
irregular lumen boundaries (8).

Addressing coronary segmentation problems is still
challenging. Recent advances in neural network-based coronary
artery segmentation in angiography images can be divided into
three categories: CNN-based approaches, transformer-based
approaches, and state space model (SSM)-based approaches.
The first CNN-based architectures,
primarily U-Net variants and attention-enhanced models. As a

category encompasses

pioneering end-to-end segmentation framework, U-Net (9, 10)
has demonstrated remarkable performance in medical image
analysis. Owing to its simple yet effective structure, high scalability,
and proven segmentation efficacy, numerous subsequent works
have extended this U-shaped architecture through various
enhancements. For example, UNet++ (11) introduces dense
skip connections to replace the original simple connections,
thereby strengthening feature representation and mitigating
information loss during downsampling. Similarly, Attention
U-Net (12) incorporates attention gates to dynamically weight
feature importance, enabling the model to focus adaptively on
target regions. While understanding the global context is essential
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for medical image segmentation, CNN-based architectures are
fundamentally constrained by their local receptive fields, limiting
their ability to capture long-range dependencies. The second
category consists of transformer-based architectures. Transformer-
based architectures have gained significant traction in medical
image segmentation following the success of the vision transformer
(13) in general computer vision tasks. These models address the
inherent limitation of CNN-based architectures in capturing
long-range dependencies by leveraging the global receptive field
of self-attention mechanisms. For instance, TransUNet (14)
pioneered the integration of transformers in medical segmentation,
combining a CNN encoder with a transformer-based decoder
to effectively capture both local and global features. TransFuse
(15) further advanced this paradigm by using a parallel hybrid
encoder, where CNN and ViT branches process local and global
features separately before fusion. Swin-UNet (16) introduced the
first pure transformer-based U-Net, utilizing hierarchical Swin
Transformer (17) blocks for efficient multi-scale representation
learning. To enhance feature diversity, DS-TransUNet (18)
processes multi-scale image patches through dual parallel Swin
Transformer encoders. Meanwhile, OCT?Former (19) proposes a
hierarchical hybrid transformer to refine boundary details, while
MISSFormer (20) optimizes long-range modeling with cross-scale
self-attention for improved organ segmentation. Despite their
superior modeling of global relationships, transformer-based
approaches suffer from quadratic computational complexity
relative to input size, imposing significant memory and processing
demands. The third category, SSM-based architectures, offers
a promising alternative to CNNs and transformers for medical
image segmentation. Mamba’s linear-time sequence modeling
capability and input-dependent state transition mechanism
address the computational limitations of transformers while
maintaining global receptive fields. Subsequent improvements led
to VMamba (21), which introduced cross-scanning mechanisms to
better capture 2D spatial relationships in medical images. Several
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medical segmentation approaches have adapted these SSM-based
designs. VM-UNet (22) pioneered the integration of Mamba
blocks into U-Net architectures, demonstrating efficient long-
range modeling for medical image segmentation. H_vmunet (23)
enhanced hierarchical feature learning through high-order spatial
interactions, achieving superior vessel segmentation. SegMamba
(24), a hybrid SSM-CNN model, has begun to demonstrate the
potential of SSM-based models in medical image segmentation.

SSM-based
coronary angiography have

frameworks
First,
inadequate geometric modeling of tubular structures fails to

Current vessel  segmentation

in critical limitations.
leverage inherent vascular morphological priors, compromising
boundary delineation in high-curvature or low-contrast regions.
Second, limited topological modeling capability causes errors at
bifurcations, crossings, and distal branches, disrupting vascular
connectivity. Finally, ineffective management of angiographic
noise and dynamic variations yields temporally inconsistent
segmentation with poor signal-to-noise (SNR) robustness. These
shortcomings demand the development of novel architectures
that specifically address the geometric, topological, and dynamic
characteristics of coronary vessels.

In this study, we propose VM-CAGSeg, a Vessel Structure-
Aware State Space Model for coronary artery segmentation, that
integrates Visual State Space Models (VSSMs) (21) within a U-Net
architecture. The framework addressed three critical limitations
through the following approaches: (1) A Vessel Structure-Aware
State Space (VSASS) block synergizing geometric priors with
efficient long-range modeling, (2) a Multiscale Vessel Structure-
Aware (MVSA) component using Frangi filtering (25) to explicitly
represent tubular structures across scales, (3) Kolmogorov-Arnold
State Space (KASS) blocks enabling linear-complexity global
context integration, and (4) a Cross-Stage Feature Interaction
Fusion (CSFIF) module replacing skip connections to preserve
hierarchical spatial-semantic features.

The main contributions to this study are as follows:
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1) A novel VSASS block that integrates an MVSA component
with KASS modules, jointly capturing tubular morphology
and long-range dependencies to overcome limitations in
current SSM-based medical segmentation.

2) A CSFIF module that replaces conventional skip connections
with cross-stage feature fusion strategies, enhancing
feature diversity while preserving long-range contextual
relationships and fine-grained vascular details.

3) A unified architecture synergizing VSASS blocks and CSFIF
modules, achieving comprehensive vessel segmentation
through simultaneous multiscale structural awareness, global

dependency modeling, and cross-stage feature refinement.

2 Related work

2.1 Frangi vessel enhancement filter

The Frangi vessel enhancement filter (25) is based on the
eigenvalue analysis of the Hessian matrix on multiple Gaussian
scales. Given a location x in the image domain €2, the vascular
response function is directly related to the characteristic values of
the Hessian matrix at that location. The Hessian matrix consists
of the second derivative of the image intensity at x, defined by the
following (Formula 1):

_ Lix(x) Liy(x)
He = [Iy,xx) ij<x)} W

The noisy image is generally first de-noised by Gaussian filters,
defined by Formula 2:

1 _||y—x2u2
271028 v )

G(x; y,0) =

The two eigenvalues of the Hessian matrix are denoted by 14
and Ay (JA2] = |A;1]), which are calculated using the following

(Lex + Iy) £ /(L — Iy)* + 412,

2

(Formula 3):

Mo = (3)
Vascular structures are obtained if A; and X, satisfy the
0 and [Az2l] > [IAll. The
response function of the vascular structures that are darker than

following conditions: [[A;] =

the background in a 2D image is defined using the following
(Formula 4):

s if A
vo(s>={0 g2 =0

2 2 4
exp(— 35 )(1 — exp(— 7)) @

\ /)\% + A% is the second-order structureness. Rg = H

where s =
is the blobness measure in 2D and accounts for the eccentricity
of the second-order ellipse. 8 and ¢ are thresholds that control
the sensitivity of the line filter to the blobness and structureness
terms. B is fixed to 0.5. The value of the threshold ¢ depends
on the greyscale range of the image, and half the value of the
maximum Hessian norm has proven to work in most cases. In a

previous study (26), the Frangi filter provided optimal vesselness
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enhancement for multiscale region growing (MSRG), enabling
80% coronary tree coverage by fusing Hessian-based features with
directional data to preserve continuity. In another study (27),
an enhanced Frangi filter extracted Hessian-derived edges from
noisy angiograms, synergizing with optical flow-based motion
blur to reconstruct the full arterial topology across 50 patient
videos. In previous research (28), as a core component in a multi-
filter ensemble (Frangi/modified Frangi/MFAT), the Frangi filter
contributed complementary features for weighted-median fusion,
boosting CTA segmentation beyond individual filters. In a separate
study (29), Frangi-based multiscale enhancement optimized vessel-
background contrast for level-set segmentation, validated on retinal
vessels, with coronary transferability discussed.

2.2 Kolmogorov—Arnold networks (KANs)

(KANs) (30) are neural
networks based on the Kolmogorov-Arnold representation

Kolmogorov-Arnold networks

theorem, which provides a theoretical foundation for

approximating arbitrary multivariate continuous functions.
Originally formulated by Andrey Kolmogorov and Vladimir
Arnold, the theorem states that any n-dimensional continuous
function can be expressed as a finite composition of univariate

functions, as shown in the following (Formula 5):

2n+1 n
feaxa,enxa) = Y 0i) ¥ijlx) ()
=1  j=1

where ¢; and ;; are continuous univariate functions. This
decomposition implies that complex multivariate functions can
be approximated through linear combinations and non-linear
transformations of simpler one-dimensional functions.

Inspired by the Kolmogorov-Arnold representation theorem,
Kolmogorov-Arnold networks (KANs) use a three-layer neural
network architecture to approximate complex functions in high-
dimensional input spaces, which comprises five key components:
an input layer, a mapping layer, a combination layer, a non-linear
activation layer, and an output layer. The complete operations
of Kolmogorov-Arnold networks (KANs) are formally defined as
follows (Formula 6):

X = [X1,X25 o0 X
zij = Yij(x;)
h,’ = Z;I:I Zz']'
f) =X gilhy)

(6)

where is the multidimensional vector of input, z; represents
the one-dimensional features after mapping, ¥;; is the mapping
function, h; is the new feature representation obtained by linearly
combining the outputs of the mapping layer, ¢;(h;) is the non-linear
activation function applied to the output of the combination layer,
and f(x) is the final output after superposition of all non-linearly
activated features.

To improve the computational efficiency of KANs, Li proposed
FastKAN (31), which uses Gaussian radial basis functions (RBFs) to
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approximate the B-spline basis, a major bottleneck in KANs. This
is defined by the following (Formula 7):

h2
p(h) = eXp(—E) (7)

where h is the radial distance and p is the parameter that controls
the width or spread of the function.

To further improve computational efficiency, Athanasios Delis
proposed FasterKAN (32), which uses the Reflectional Switch
Activation Function (RSWAF) to approximate the B-spline basis.
This is 1.5x faster than FastKAN, as shown in the following
(Formula 8):

h 2
ph)=1— (tanh(;)) ®)

where h is the radial distance and p is the parameter that controls
the width or spread of the function. In a previous study (33),
KAN-based modules (KAN-ACM/KAN-BM) in KANSeg resolved
blurred organ boundaries, achieving a 90.99% Dice score on
cardiac data via non-linear feature learning. In another study
(34), MM-UKAN++ used multilevel KAN layers with attention
mechanisms for ultrasound segmentation, attaining a Dice score of
81.30% at 3.17 G FLOPS, outperforming CNNs and transformers.
In a separate study (35), KAN-MambaNet integrated learnable
activation functions to distinguish myocardial edema/scar
boundaries, overcoming small-region limitations in cardiac
MRI. In previous research (36), proKAN’s B-spline-based KAN
blocks prevented overfitting in liver tumor segmentation while
maintaining interpretability, reducing computational overhead

through progressive stacking.

2.3 Deep learning-based coronary
angiogram segmentation

These studies proposed advanced deep learning architectures
to address coronary angiography segmentation challenges. Hamdi
et al. (37) introduced a GAN framework featuring a novel U-
Net generator with dual self-attention blocks and an auxiliary
path to enhance feature generalization for thin vessels. Bao
et al. (38) developed SARC-UNet, which incorporates residual
convolution fusion modules (RCFMs), for multi-scale feature
integration and a location-enhanced spatial attention (LESA)
mechanism to preserve vascular connectivity. Abedin et al. (39)
incorporated Self-Organizing Neural Networks (Self-ONNs) into a
U-Net architecture, utilizing DenseNet121 encoders and enhanced
decoders for robust feature extraction, with additional integration
into multi-scale attention networks for stenosis localization.

Entropy-aware gated (EAG)-scale-adaptive
(SAE)-elastic spatial topology fusion (ESTF) (40) is a novel
network for coronary artery segmentation in X-ray angiography.

enhancement

It integrates an entropy-aware gated module to suppress catheter
interference, a scale-adaptive enhancement mechanism for multi-
scale vessel extraction, and an elastic spatial topology fusion module
to maintain vascular continuity. The architecture effectively
addresses semantic confusion and topological fragmentation in
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complex coronary structures. While the “entropy-aware gated
(EAG) module” is specifically designed to suppress semantic
interference from catheters, the Frangi filter within our proposed
MVSA module inherently enhances vascular structures while
implicitly suppressing non-vascular interference, achieving similar
catheter suppression effects through morphological prioritization.
The EAG-SAE-ESTF framework proposed an SAE module to
improve the structural representation of multi-scale coronary
arteries. Similarly, the MVSA module in our study also used
a multi-scale vessel enhancement architecture for analogous
purposes. The EAG-SAE-ESTF method incorporates an ESTF
module to perceive and model global information and directional
topological structures. Our proposed approach integrated KASS
blocks, enabling linear-complexity global context integration and a
CSFIF module replacing skip connections to preserve hierarchical
spatial-semantic features. Through these two modules, our method
also effectively achieved the perception and modeling of vascular
spatial topology.

3 Materials and methods
3.1 Overall architecture of VM-CAGSeg

Figure 2 illustrates the overall architecture of VM-CAGSeg. The
proposed model consisted of four core components: an encoder, a
decoder, a bottleneck, and skip connections, collectively forming
a U-shaped architecture. A progressive patch embedding layer
first partitioned the input grayscale image X € RITXWxI into
non-overlapping 4 x 4 patches. To preserve fine-grained details
while enhancing non-linear representational capacity, this layer
progressively mapped the spatial dimensions to a channel Hde th C
(default to 96), producing an embedded image X € R * 7 *C,
Subsequently, X underwent layer normalization (41) prior to
encoder processing.

The encoder comprised four hierarchical stages. Stage 1
incorporated two of the proposed VSASS blocks, each integrating
one proposed MVSA block and one proposed KASS block. Stages
2-4 each used two KASS blocks. A patch merging operation
followed the first three stages, progressively halves the spatial
dimensions while doubling channel depth according to the
sequence [C, 2C, 4C, 8C].

The decoder mirrored this four-stage architecture. Stages 2-4
began with patch expanding operations that halved channel depth
while doubling the spatial resolution. Each stage integrated [2, 2, 2,
1] KASS blocks respectively, with channel dimensions progressively
decreasing according to the sequence [8C, 4C, 2C, C]. A final
projection layer then upsampled features 4 x via patch expanding to
recover the original spatial dimensions, followed by convolutional
mapping to the segmentation space.

Inspired by CSPNet (42), we implemented cross-stage
feature interaction using the proposed Cross-Stage Feature
Interactive Fusion (CSIF) module within both bottleneck and
skip connections. The CSIF module first fused adjacent stage
features via convolutional operations, then performed element-
wise summation with the corresponding decoder inputs during
feature reconstruction.
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FIGURE 2
Overall illustration of the proposed VM-CAGSeg network.

3.2 Vessel structure-aware state space
(VSASS) block

As detailed in Figure 3A, the proposed VSASS block integrated
one proposed MVSA block and one proposed KASS block.
Concurrently, Figure 2 illustrates the architectural workflow. X €
RE*XWx1 represents the original grayscale input image, while X €
R%*%*C denotes the embedded image obtained through the

progressive patch embedding module.

3.2.1 Multiscale vessel structure-aware (MVSA)
block

To reinforce the extraction of vascular structural features, we
proposed the MVSA block. As detailed in Figure 3B, the proposed
MVSA block first extracted vascular features at three spatial scales
(I1x, 0.5%, 0.25%) from the input image X € RHxWx1 using
a Frangi filter (25). The original scale feature map was then
downsampled by a factor of two. The output V; was added
to the half-scale vascular features (V). This combined output
underwent further 2x downsampling before summation with
the quarter-scale features (V3). A channel attention module then
processed these concatenated multi-scale features (V) alongside
the embedded features X' € R%*% *C, yielding the vascular-
enhanced output V.. This process is formally expressed in the
following (Formula 9):

Xy = Downsampler x 2 (X)
Xy = Downsampler x 4(X)
V1 = Downsampler x 2(Frangi2D (X))
V3 = ReLU(LN(Conv((Frangi2D(Xy)))))
V3 = ReLU(LN(Conv((Frangi2D(X)))))
V4 = Downsampler x 2(Vy + V1) + V3
Viywsa = ReLU(LN(Conv(CAM([Vs, X 1))))
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Xp, and X, are the 2x and 4x downsampled versions of the input
X, respectively. V1, V3, and V3 denote the three-scale vascular
features extracted using Frangi filtering, while V4 represents their
fused features.

3.2.2 Kolmogorov—Arnold state space (KASS)
block

To enhance the model’s capability for non-linear representation
learning and complex topological modeling, we proposed the
KASS block. As shown in Figure 3C, the proposed KASS block
adapted VMamba’s VSS block (14) with two key modifications:
First, it replaced the original Feed-Forward Network (FFN)
with a FasterKAN block (32), and second, it retained the
multiplicative branch integrated with local attention for enhanced
feature representation.

In the first branch, X passed sequentially through a linear
layer, depthwise convolution, SiLU activation, and a 2D
selective scan (SS2D) module for global feature extraction,
followed by linear normaliztion (Linear) to produce the
output F;. In the second branch, X passed through a linear
SiLU
generating the output F,. The outputs of both branches were

layer, activation, and a local attention module,
then element-wise multiplied, processed in another linear
layer, and combined with a residual connection to produce the
intermediate output Fs.

In the second component, the feature F3 passed through
layer normalization (LN) and a FasterKAN block (32). The
result was combined with F5 via an additive residual connection,
yielding the KASS output Fy,. Finally, Fy,s underwent 2x spatial
downsampling with concurrent 2x channel expansion to produce

the VSASS block output Figgss.
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Details of the proposed (A) VSASS block and its sub-block (B) MVSA, (C) KASS and (D) SS2D block.

The overall computation is defined by the following
(Formula 10):

F; = CAM(LN(SS2D(SiLU(DWConv(Linear(LN(X))))))
Fy = SiLU(Linear(LN (Vinysa)))
F3 = V,ysa + Linear(Fy © F)
Fras = FasterKAN (LN (F3)) + Fs#
Fysass = ChannelExpand x 2(Downsampler x 2 (Fygss))

(10)

3.3 Cross-stage feature interactive fusion
(CSIF) block

Standard skip connections directly concatenate shallow
encoder features with deep decoder features. The significant
semantic disparity between these features hinders effective fusion
optimization. This limitation is particularly problematic for
medical images with low-contrast boundaries. Furthermore, skip
connections only aggregate features at identical scales, failing
to leverage multi-scale contextual information. Consequently,
segmentation performance is compromised for small targets and
complex structures. To address these limitations, we introduced
the Cross-stage feature interactive fusion (CSIF) module.

The proposed CSIF module (Figure4), inspired by the
EFM module in CSPNet (42), adopts cross-stage feature fusion
strategies, enhancing feature diversity across network layers
through truncated gradient flow. The CSIF module processes
four hierarchical encoder features [El, E2, E3, E4] through
a top-down refinement cascade to generate interactively fused
outputs [D1, D2, D3, D4].

First, D4 is generated by fusing E3 and E4 through the Mixed
Pooling Module (MPM) (43). Next, D3 integrates 2x downsampled
E2 with native-resolution E3 and prior-stage D4. Subsequently, D2
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combines 2x downsampled E1, 2x upsampled D3, and current-
stage E2. Finally, D1 fuses 2x upsampled D2 with the encoder
input E1. Critically, all fusion operations use Multiscale Interaction
Aggregation (MIA) to enhance cross-stage feature compatibility.

The Mixed Pooling Module (MPM), as shown in Figure 4C,
captures both short-range and long-range dependencies through
parallel pathways: short-range modeling uses lightweight pyramid
pooling plus convolutional layers for local context extraction, while
long-range modeling leverages horizontal/vertical strip pooling to
connect distant regions.

The MIA module, as shown in Figure4B, uses a
Multidimensional Collaborative Attention (MCA) (44) mechanism
The three-branch
architecture captures feature interactions across width (W),

to extract attention-enhanced features.
height (H), and channel dimensions through permute-based
long-range dependency modeling, with final outputs integrated
via averaging. Finally, the features are processed by convolutional
layers, batch normalization (BN), and ReLU activation for
non-linear transformation.

4 Experimental data and evaluation
methods

4.1 Experimental data and parameters

4.1.1 Clinical data

This study utilized a clinical dataset of 1,856 anonymized
coronary angiography sequences retrospectively collected from
102 patients (38 males, 64 females; aged 45-82 years) at the
Second Affiliated Hospital of Nanchang University (January 2022
December 2024). The cohort encompassed diverse cardiovascular
pathologies: stable angina (37.2%), acute coronary syndrome
(41.5%), and chronic total occlusion (21.3%). All angiograms were
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acquired using Phillips Xper FD10 systems at 15 frames/second,
with resolutions ranging from 512 x 512 to 1,024 x 1,024 pixels,
across standard projections (e.g., LAO 45, RAO 45, and AP views).

Ethical approval was granted by the Institutional Review Boards
of the participating institutions, with informed consent waived for
this retrospective study. The exclusion criteria eliminated frames
with excessive motion artifacts, poor contrast filling, or prior
coronary bypass grafts. A team of one interventional cardiologist
and two medical imaging experts independently annotated all
major coronary arteries (LAD, LCX, and RCA) using ITK-
Snap (45).

The dataset was partitioned at the patient level into training (61
patients; 1,112 sequences), validation (21 patients; 371 sequences),
and test sets (20 patients; 373 sequences). All images underwent
standardized preprocessing with isotropic resampling to 512 x 512
pixels and intensity normalization. Data augmentation involved
spatial transformations such as rotation and random flipping.

4.1.2 Experimental parameters

The network was implemented in PyTorch 1.13 with CUDA
11.6 acceleration. Training used a batch size of 4 and the AdamW
optimizer (42) with an initial learning rate of 1 X 1073, B = 0.9,
B 0.999, € 1 x 1078, weight decay A 1 x 1072,
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and AMSGrad disabled. CosineAnnealingLR (43) was utilized as
the scheduler with a maximum of 50 iterations and a minimum
learning rate of 1 x 10~>. The Frangi filter was utilized with oy =
0.5, Omax = 5, B = 0.5, and ¢ = 15. FasterKAN was configured
with a denominator h = 0.33, a grid number of 8, a maximum grid
of 2, and a minimum grid of —2. Binary cross-entropy and Dice
1.
Training epochs were set to 1,000. All experiments were conducted
on a single NVIDIA A10 GPU.

loss were used with weighting coefficients w; 1 and w,

4.2 Evaluation methods

The performance metrics included the Dice similarity
coefficient (DSC) (46), sensitivity (Sen) (47), 95% Hausdorft
distance (HD95) (48), and Intersection over Union (IoU) (49).

The DSC and sensitivity are defined by Formulas 11, 12:

2TP
DSC=— an
2TP + FP + FN
Sensitivit L (12)
ensiiivi e ——
V= TP+ FN

where TP denotes true positive, TN denotes true negative, FP
denotes false positive, and FN denotes false negative.
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TABLE 1 Summary of the comparative results.

Model mioU DSC Sen HD95
(%)t (%)1 (%)1 (mm) |
UNet 77.27 86.97 89.20 27.29
UNet++ 77.29 86.99 90.26 27.15
Attention U-Net 76.21 86.02 89.70 30.49
TransUNet 76.88 86.83 90.33 15.85
OCT?Former 76.35 86.47 88.93 17.25
MISSFormer 78.80 87.94 89.68 16.41
VM-UNet 77.30 87.01 89.50 18.29
H_vmunet 77.76 87.24 89.65 18.21
VM-CAGSeg 79.19 88.15 90.05 13.68

The bold value represents the optimal value for this column.

The HD95 means the 95th percentile of the maximum surface
distances between segmentation boundaries, evaluating contour
alignment precision. This is defined by Formula 13:

HD(X,Y) = max{h(X, Y), h(Y, X)}
h(X,Y) = maxyex minyey d(x,y) (13)
h(Y,X) = maXyecy Minyey d(x,y)

where X and Y denote the ground truth and segmented maps,
respectively, and d(x, y) represents the distance between the points
x and y. HD95 is the 95th percentile of the distances between the
boundaries of X and Y.

IoU, used for comparing the similarity between two arbitrary
shapes, is defined by Formula 14:

_JANB|

IoU =
|A U B|

(14)

where A and B denote two arbitrary shapes representing the ground
truth and predicted segmentation maps, respectively.

5 Results

We evaluated our method against state-of-the-art approaches
under identical experimental conditions. The benchmark
architectures included the following: CNN-based models [UNet
(9), UNet++ (11), Attention U-Net (12)]; transformer-based
methods [TransUNet (14), OCT2Former (19), MISSFormer (20)];
and SSM-based approaches [VM-UNet (21) with encoder/decoder
weights initialized from ImageNet-1K pretrained VMamba-T
(22) and H_vmunet (23)]. All models underwent rigorous 5-fold
cross-validation, with a fixed 20% independent test set, and
non-pretrained components were trained from scratch.

5.1 Quantitative performance evaluation

Table 1 summarizes the comparative results on the clinical
dataset. VM-CAGSeg demonstrated superior performance across
key metrics, achieving 88.15% DSC, 79.19% mloU, and 13.68 mm
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HD95. This outperformed CNN-based approaches [e.g.,
UNet++ (11): 86.99% DSC, 77.29% mloU, and 27.15mm
HD95], transformer-based approaches [e.g., MISSFormer (20):
87.94% DSC, 78.80% mloU, and 16.41 mm HD95; OCT?Former
(19): 86.47% DSC, 76.35% mloU, and 17.25mm HD95], and
SSM-based approaches [e.g., H_vmunet (23): 87.24% DSC, 77.76%
mloU, and 1821 mm HD95]. The method achieved precise
boundary delineation with a significantly lower HD95 (13.68 mm)
compared to UNet (27.29mm) and TransUNet (15.85mm).
Although sensitivity (90.05%) was marginally lower than that of
TransUNet (90.33%, < 0.3%), VM-CAGSeg maintained a superior
metric balance, demonstrating robust performance. In summary,
VM-CAGSeg excelled in segmentation accuracy (mIoU/DSC)
and boundary precision (HD95), making it ideal for clinical
applications that require fine-grained segmentation.

5.2 Qualitative performance evaluation

Figures 5-7 present qualitative comparisons between VM-
CAGSeg and six state-of-the-art methods (UNet, UNet++,
OCT?Former, MISSFormer, VM-UNet,
clinically challenging scenarios. All visualizations used identical

H_vmunet) under
preprocessing and displayed parameters to ensure comparability.

Figure 5 shows segmentation performance under low-contrast
conditions. VM-CAGSeg preserved complete vascular structures
with superior contrast robustness. While UNet and UNet++
exhibited fragmentation in faint branches, the transformer-based
methods (OCT?Former, MISSFormer) produced discontinuous
outputs. The SSM-based approaches (VM-UNet, H_vmunet)
maintained better topology but overlooked subtle low-contrast
features that were captured by VM-CAGSeg.

Figure 6 shows the segmentation results for complex
anatomies. VM-CAGSeg accurately resolved crossing vessels
and thin bifurcations without topological errors. The CNN-based
methods (UNet/UNet++)

connections, while the transformer-based methods (OCT?Former,

produced erroneous inter-vessel
MISSFormer) generated over-segmentation in dense vascular
regions. Although the SSM-based methods (VM-UNet, H_vmunet)
improved structural accuracy compared to the CNN-based
methods, they missed fine branch details that VM-CAGSeg
preserved with anatomically precise geometries.

Figure 7 shows segmentation performance at fuzzy vascular
boundaries. VM-CAGSeg achieved clinically plausible contours
with smooth transitions, particularly in regions with gradual
intensity changes. Traditional UNet architectures produced jagged
boundaries, while UNet++ showed moderately improved but
inconsistent edge smoothness. SSM-based and transformer-
based approaches maintained better coherence than CNN-based
approaches but lacked VM-CAGSeg’s physiological continuity in
ambiguous regions.

5.3 Ablation studies

In this section, we adopted VM-UNet (22) as the baseline
model. We configured a batch size of 4 and used the AdamW
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UNet

FIGURE 5

UNet++ OCT?Former MISSFormer VM-UNet

Qualitative evaluation of low-contrast cases. GT denotes the ground truth

H_vmunet

Proposed

Image GT UNet

FIGURE 6
Qualitative evaluation of complex anatomy cases. GT denotes the ground truth

UNet++ OCT?Former MISSFormer VM-UNet

H_vmunet Proposed

optimizer (50) with an initial learning rate of le-3. The
CosineAnnealingLR scheduler (51) was implemented with a
maximum of 50 iterations and a minimum learning rate of le-5.
Training proceeded for 1,000 epochs. Both encoder and decoder
weights were initialized using the Image Net-1k pretrained weights
from VMamba-S (21). All the experiments were executed on a
single NVIDIA A10 GPU.

Frontiersin Medicine

5.3.1 Impact of key modules

We conducted ablation experiments on the clinical dataset
to assess the contributions of key components. Table 2 shows
the incremental improvements from component integration. The
baseline model (VM-UNet) achieved a mIoU of 76.30%, DSC
of 86.01%, sensitivity (Sen) of 86.50%, and HD95 of 28.29 mm.
Adding the CSIF module alone improved mlIoU by 0.95%,
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UNet

FIGURE 7

Qualitative evaluation of fuzzy vascular boundary cases. GT denotes the ground truth.
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DSC by 0.96%, and Sen by 1.04% and reduced HD95 by
7.98 mm, highlighting CSIF’s ability to enhance cross-stage feature
integration. Adding the KASS module alone improved mIoU by
1.02%, DSC by 0.91%, and Sen by 0.99% and reduced HD95
by 8.17mm. Adding the MVSA module alone improved mIoU
by 1.72%, DSC by 1.52%, and Sen by 2.08% and significantly
reduced HD95 by 11.77mm (15.52mm), validating its ability
to capture hierarchical features. Combining the KASS module
with the CSIF module yielded 77.67% mloU, 87.02% DSC,
and 87.92% Sen while reducing HD95 to 17.13 mm. Combining
the MVSA module with the KASS module further refined
performance, increasing mIoU to 78.81%, DSC to 87.82%, and
sensitivity (Sen) to 89.05% and reducing HD95 to 14.84 mm.
Combining MVSA with CSIF yielded 78.97% mloU, 87.93%
DSC, and 89.26% Sen, while reducing HD95 to 14.58 mm. The
full model (MVSA + KASS + CSIF) achieved the best results:
79.59% mloU, 88.15% DSC, and 13.68 mm HD95. MVSA, KASS,
and Cross-Stage Feature Interactive Fusion (CSIF) collectively
enhanced segmentation by capturing multiscale vessel structures,
modeling complex topological relationships, and fusing cross-
stage contexts. The heatmap (Figure 8) conclusively demonstrates
that the “MVSA+KASSHCSIF” configuration achieved optimal
performance: it yielded the highest values for mIoU, DSC, and
Sen while attaining the lowest HD95 metric, confirming that the
simultaneous integration of all three modules delivered superior
segmentation efficacy.

5.3.2 Feed-forward network (FFN) comparison

A comparative ablation study evaluated the efficacy of two FEN
implementations: multilayer perceptron (MLP) and FasterKAN
(32). Table 3 shows the efficacy of two FEN implementations.
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While the baseline model (VM-UNet) exhibited low computational
costs, its performance remained suboptimal (75.30% mloU,
85.01% DSC, and 2829 mm HD95). Incorporating a Feed-
Forward Network (FFN) into the vanilla VSS block considerably
enhanced performance. Adding an MLP to the vanilla VSS
block slightly improved accuracy (40.99% mlIoU) but nearly
doubled the number of parameters (47.07 M) and FLOPS (8.65G),
making it inefficient. Replacing the MLP with the FasterKAN
variant offered a better trade-off, improving mIoU by 2.52%
(77.82%) while adding only 8.35M parameters and minimal
FLOPS (4.13 G), validating its efficiency in feature transformation.
Therefore, VM-CAGSeg incorporates FasterKAN into the vanilla
VSS block.

5.3.3 Module placement strategy

In this study, we constrained the MVSA module exclusively
to stage 1, leveraging maximal utilization of high-resolution
inputs for global vessel topology extraction. Further synergistic
division of labor was achieved with downstream topology-
refinement modules (KASS). To validate the efficacy of this
placement strategy, we conducted an ablation study comparing
MVSA configurations across network stages, with quantitative
results summarized in Table 4. Critically, exclusive stage 1
deployment achieved optimal performance: 78.02% mlIoU, 87.53%
DSC, 88.58% Sen, and 15.52mm HD95. Notably, extending
MVSA to subsequent stages increased parameters (22.55M)
and FLOPS (5.33G) while degrading segmentation efficacy.
Contrary to conventional multi-scale processing paradigms, our
findings demonstrated that vessel structure awareness delivers peak
effectiveness when restricted to initial feature extraction. This
strategy aligns with vascular hierarchy principles: macroscopic
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TABLE 2 Ablation study on the different components of VM-CAGSeg.

10.3389/fmed.2025.1661680

Components
KASS
No No No 76.30 86.01 28.29 86.50
No No Yes 77.25 86.97 2031 87.54
No Yes No 77.32 86.92 20.12 87.49
Yes No No 78.02 87.53 15.52 88.58
No Yes Yes 77.67 87.02 17.13 87.92
Yes Yes No 78.81 87.82 14.84 89.05
Yes No Yes 78.97 87.93 14.58 89.26
Yes Yes Yes 79.59 88.15 13.68 89.95

The bold value represents the optimal value for this column.
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structures require holistic analysis, whereas microscopic details
benefit from localized processing.

5.4 Evaluation of non-angiography vessels

We evaluated the proposed network on the benchmark
DRIVE (52) dataset. The
results demonstrated segmentation

retinal  vessel experimental

superior performance
for extremely fine capillaries, visualized in Figure9 using
with  directional

method’s

diamond and circular markers
These

generalization capability.

arrows.

findings confirmed the robustness and

6 Discussion

VM-CAGSeg outperforms existing methods by fundamentally
addressing three critical limitations in coronary segmentation:

Frontiersin Medicine

First, geometric-topological synergy. The proposed VSASS block
uniquely integrates MVSAs explicit Frangi-based vascular priors
with KASSs non-linear state transitions. This combination
captures tubular morphology and complex bifurcations more
effectively than CNNs (limited receptive fields) or transformers
(fixed attention patterns). Second, context-aware fusion. CSFIF
overcomes the semantic gap in standard skip connections through
cross-stage feature interaction. By dynamically fusing multi-
rather same-resolution

scale contexts, than concatenating

features, it preserves fine-grained details in low-contrast
regions where competitors lose vascular continuity. Finally,
unified optimization. The architecture co-optimizes structural
awareness (MVSA), global dependency modeling (KASS), and
hierarchical feature refinement (CSFIF). This holistic approach
enables precise boundary delineation in challenging scenarios
(e.g., crossing vessels, fuzzy boundaries) where fragmented
solutions fail.

VM-CAGSeg effectively addressed three critical challenges in

coronary segmentation: low-contrast vessel continuity, complex
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TABLE 3 Ablation study on the different feed-forward network implementations in VM-CAGSeg.

Model Params FLOPS mloU(%) DSC HD95 Sen

(M)} (G 0 (%) (%)} (%)
The baseline model 22.03 4.11 75.30 85.01 28.29 85.50
The baseline model + MLP 47.07 8.65 76.29 87.04 23.12 87.08
The baseline model + FasterKAN 30.38 4.13 77.82 87.53 20.12 87.58

The bold value represents the optimal value for this column.

TABLE 4 Ablation study on the module placement strategy of MVSA.

Module placement strategy of MVSA Params FLOPS mioU

(M)} (G (%)
Stage 1 22.16 4.59 78.02 87.53 15.52 88.58
Stage 1-2 22.29 4.87 77.51 87.12 19.15 87.75
Stage 1-3 22.42 5.05 76.82 86.57 23.34 87.03
All stages 22.55 5.33 77.37 87.01 19.97 87.58

The bold value represents the optimal value for this column.
Image GT TransUNet Proposed

FIGURE 9
Qualitative evaluation of the DRIVE dataset. GT denotes the ground truth.

topological integrity, and boundary ambiguity. Quantitatively,
it outperformed CNN-, transformer-, and SSM-based methods
across all key metrics, achieving a balance between sensitivity
and precision. Qualitatively, it uniquely preserved fine vascular
branches in low-contrast regions (Figure 5), resolved bifurcations
without errors (Figure 6), and generated physiologically plausible
boundaries (Figure 7). While SSM-based approaches showed
improved topology, they missed subtle details, and the transformers
suffered from over-segmentation. VM-CAGSeg’s integration of
geometric priors and multi-scale feature refinement enabled
unmatched performance in clinically challenging scenarios, making
it ideal for fine-grained segmentation tasks.

The superiority of VM-CAGSeg was statistically validated
against all compared methods. On the clinical dataset, VM-
CAGSeg demonstrated in both
segmentation accuracy and boundary precision. For DSC,
it achieved a mean improvement of +2.5% [95% CI: (1.8%,
3.2%), p < 0.001, paired t-test] over UNet++ and +1.2% [95%
CL (0.7%,1.7%), p = 0.008, Wilcoxon signed-rank test] over
MISSFormer. For HD95 (Wilcoxon signed-rank test), it achieved
a mean reduction of —13.6mm [95% CI: (—15.2, 12.0), p <
0.001] compared to UNet and —2.9mm [95% CI: (-3.5,—2.3),
p =0.002] against VM-UNet. These results confirmed that the
observed enhancements were statistically significant and not due

significant improvements

to random variability.
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7 Conclusion and future work

VM-CAGSeg introduces a U-shaped network integrating
VSASS blocks and Cross-Stage Feature Interactive Fusion (CSIF)
for precise coronary artery segmentation. The architecture
incorporates the following: 1) A MVSA module enhancing
hierarchical features through Frangi filtering and channel attention,
2) KASS blocks with FasterKAN-accelerated non-linear modeling
for topological dependencies, and 3) A CSIF module enabling
multi-scale fusion via cross-stage interactions. Evaluated on
1,856 clinical sequences, VM-CAGSeg achieved state-of-the-art
performance (88.15% DSC, 79.19% mloU, and 13.68 mm HD95),
with the ablation studies confirming a 3.29% mlIoU gain over the
baseline. Qualitative validation demonstrates robustness in low-
contrast, complex anatomical, and boundary-ambiguous scenarios.

Despite its advantages, there are some limitations: (1)
Reliance on Frangi filtering may limit generalization to non-
vascular segmentation tasks and (2) computational requirements
(30.38 M parameters) could challenge real-time deployment.
Future research will focus on the following: (1) Developing
lightweight architectures via distillation or quantization, (2)
validating generalizability on multi-center datasets, including
retinal and cerebral vasculature, (3) extending to 4D spatiotemporal
segmentation using angiographic sequences, and (5) exploring
weakly-supervised learning to reduce annotation dependence.
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Integration into interventional planning systems promises to
enhance quantitative coronary analysis in clinical practice.
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