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Medical image segmentation task can provide the lesion object semantic
information, but ignores edge texture details from the lesion region. Conversely,
the medical image reconstruction task furnishes the object detailed information
to facilitate the semantic segmentation through self-supervised learning.
The two tasks are supplementary to each other. Therefore, we propose a
multi-interactive feature embedding learning for medical image segmentation.
In the medical image reconstruction task, we aim to generate the detailed feature
representations containing rich textures, edges, and structures, thus bridging
the low-level details lost from segmentation features. In particular, we propose
an adaptive feature modulation module to efficiently aggregate foreground and
background features to obtain a comprehensive feature representation. In the
medical segmentation task, we propose a bi-directional fusion module fusing
all important complementary information between the two tasks. Besides, we
introduce a multi-branch visual mamba to capture structural information at
different scales, thus enhancing model adaptation to different lesion regions.
Extensive experiments on four datasets demonstrate the effectiveness of
our framework.
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1 Introduction

Medical image segmentation tasks (1–5) focus on extracting lesion regions from
complex medical images, thereby assisting doctors to perform subsequent disease
diagnosis, treatment planning and efficacy assessment. In particular, skin lesion
segmentation and cell boundary detection tasks enable precise localization of key
tissues or lesions, which supports in early diagnosis and clinical assisted decision
making by visualizing lesion results (6). Therefore, in public health management, deep
learning-based medical image segmentation methods can effectively improve the efficiency
of group patient lesion detection. These methods can help public health departments
to better monitor and predict the disease spread, thereby promoting disease prevention
and treatment.

Existing medical segmentation methods (7, 8) construct complex network structures
to improve performance, but ignore texture and boundary detail information about
lesion regions in medical images. U-Net (9) introduces encoder-decoder structure, and
designs skip connections to combine the different-level semantic information. UNet++
(10) adds dense jump paths and nested decoders to enhance multiscale feature learning.
MFSNet (11) combines multi-scale feature extraction and attention mechanisms, which
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further improves segmentation performance. However, medical
image segmentation task emphasizes on extracting high-level
semantic features, resulting in the loss of pixel-level detail
information. In contrast, the medical image reconstruction task
can provide pixel-level detail information (e.g., texture and
boundaries) to the medical image segmentation task through a
self-supervised learning strategy, thus obtaining more accurate
segmentation results.

Moreover, since convolutional neural network (CNN)—based
segmentation methods (12–14) rely on local receptive fields and
convolutional structures, it is difficult to effectively capture the
non-local relations and structural ambiguity features present in
the lesion region. Therefore, Transformer-based segmentation
methods (15–18) aim to improve modeling ability for global
context, thus enhancing semantic consistency and regional
integrity. For example, TransUNet (19) combines the local feature
learning of CNN and the global context learning of Transformer
advantages. TransFuse (20) designs a two-branch network to
capture local and global features, and then fuses them using a fusion
module in the decoding stage. This architectural design enhances
the model’s capability to capture fine-grained boundaries and
structural information, thereby improving segmentation accuracy.
Although Transformer-based methods can help to recognize
organ contours, lesion shapes, and spatial layouts by capturing
distant dependencies in medical images through a self-attention
mechanism, they require high computational and memory costs.
Compared with Transformer-based architectures, Mamba (21,
22) offers lower computational overhead while maintaining
strong long-sequence modeling and structural awareness. This is
especially valuable in medical image segmentation, where accurate
delineation of anatomical structures requires modeling long-
range dependencies and preserving fine-grained spatial details. By
efficiently extracting spatially hierarchical features, Mamba enables
real-time and resource-constrained applications while ensuring
precise boundary segmentation.

In this paper, we propose a multi-interactive feature embedding
learning (MFEL) for medical image segmentation. Specifically,
MFEL consists of a feature interaction-driven image reconstruction
(FIIR) and a feature-embedded representation image segmentation
(FRIS). On the one hand, FIIR reconstructs the foreground image,
background image and medical image through self-supervised
learning, thus extracting complete pixel-level features. In particular,
an adaptive feature modulation module effectively enhances
foreground and background feature representation via the learned
modulation parameters, thereby obtaining a more comprehensive
and fine-grained pixel-level feature information. On the other
hand, FRIS aims to fuse the two different-level features between
the reconstruction and segmentation tasks, thereby improving the
performance of segmentation task. In particular, a bi-directional
fusion module is designed to fuse the feature representations from
two tasks, which enhances the information interaction. Moreover,
a multi-branch vision mamba utilizes the parallel branching
structure and linear state space modeling capability, improving
model semantic understanding about different lesion regions.

Our contributions can be summarized as follows:

• We explore an MFEL framework between medical
image reconstruction task and medical image

segmentation task, and then achieve superior
segmentation performance.

• An adaptive feature modulation module is proposed to
construct modulation parameters from foreground and
background features, thus obtaining a comprehensive pixel-
level feature representation.

• A bi-directional fusion module is introduced to establish
complementary relationships between structural details and
deep semantics, thus enabling feature information interaction
between two different-level tasks.

• Multi-branch vision mamba is designed to combine state-
space modeling and multi-branch parallel mechanism,
efficiently modeling the multi-scale structural information
from lesion regions.

2 Related work

2.1 Medical image segmentation methods

Convolutional neural networks (CNNs) have achieved
remarkable success in medical image segmentation by leveraging
hierarchical representations and strong inductive biases (23–26).
Recent methods enhance segmentation performance by integrating
boundary cues and multi-scale features. DCSAU-Net (27)
introduces a split attention mechanism with semantic retention,
while U-Net v2 (28) incorporates boundary information to refine
local detail representations. Transformer-based architectures
address CNNs’ limitations in modeling long-range dependencies.
These models exhibit strong global context awareness and
have demonstrated competitive performance in medical image
segmentation (19, 29–35). CASF-Net (36) employs dual-branch
modeling to combine global semantics and fine-grained features.
CSWin-UNet (18) utilizes cross-shaped window attention to
improve spatial interactions with low computational cost. Hybrid
designs, such as TBConvL-Net (37) and MobileUNETR (38),
further balance local detail extraction and global reasoning. Since
medical image segmentation as a high-level vision task focuses
on extracting semantic structural information, the pixel-level
details are ignored. In contrast, we introduce the medical image
reconstruction task to learn fine-grained feature representations
through self-supervised learning, thus bridging the shortcomings
from the semantic segmentation task.

2.2 Self-supervised learning methods

Self-supervised learning methods have been widely applied
in tasks such as image reconstruction (39, 40), inpainting (41–
43), and enhancement (44, 45). For example, Self-path (46)
introduces a region-aware contrastive learning framework, which
enforces consistency between local and global representations. This
strategy effectively enhances feature discrimination and contextual
modeling for downstream segmentation tasks. DSFormer (47),
designed for multi-contrast MRI reconstruction, proposes a dual-
domain self-supervised Transformer architecture. It performs
joint reconstruction and context restoration in both k-space
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and image space, achieving collaborative modeling of structural
information and significantly improving reconstruction quality
and generalization. MiM (48) targets 3D medical image analysis
by proposing a hierarchical Mask-in-Mask masking mechanism.
Through a coarse-to-fine masking strategy combined with residual
reconstruction, it guides the model to learn rich semantic structures
and fine spatial details, thereby improving its adaptability to
downstream tasks such as segmentation and classification. In
contrast, the medical image reconstruction task guides the model
to focus on pixel-level content (e.g., texture, structure, edges), thus
compensating the loss of important details in the cell and skin
lesion segmentation tasks.

2.3 Vision mamba

Mamba (21) is a novel sequence modeling architecture
built upon State Space Models. It enables efficient inference
while modeling long-range dependencies. Unlike traditional self-
attention mechanisms, Mamba introduces learnable state space
kernels and applies linear operations in a sliding-window manner.
This design supports global modeling while significantly reducing
computational complexity, achieving linear time and space costs.
VMamba (22) extends Mamba to vision tasks by introducing a
2D Selective Scan mechanism, which aggregates spatial context
from multiple directions with linear complexity, achieving superior
accuracy and efficiency over Vision Transformers. Compared with
CNNs, Mamba is not limited by local receptive fields and can
capture global sequential and contextual information. Compared
with Transformers, Mamba avoids the high computational
overhead of self-attention in long sequences, achieving better
efficiency and performance. These advantages make Mamba
particularly suitable for high-resolution or 3D medical image
tasks. In medical image segmentation (49–51), accurately capturing
the spatial structure and contextual relationships of lesions is
critical for performance. Mamba’s strength in long-range modeling
and computational efficiency provides strong support for this
task. Recently, Mamba has been increasingly applied in medical
scenarios. U-VM-UNet (52) integrates sparse gating and low-
rank decomposition to design an efficient visual selective scan
module, achieving strong segmentation results across datasets.
Mamba-Sea (53) proposes a global-to-local sequence augmentation
mechanism and builds a pure SSM-based framework, improving
generalization in cross-domain segmentation tasks. VM-UNetV2
(54) combines Vision Mamba with the UNet v2 (28) architecture
and introduces a semantic and detail injection module, showing
better performance than conventional models in skin and polyp
segmentation. SMM-UNet (55) constructs selective and multi-
scale fusion Mamba modules to enhance feature representation
at different scales while keeping the network compact. CAMS
(56) completely removes convolution and attention mechanisms,
adopting a pure Mamba encoder and dual decoder structure to
balance global modeling and fine-grained detail recovery in cardiac
image segmentation. Therefore, we adopt a multi-branch mamba
structure to establish long-distance dependency capturing global
relationships and effectively aggregating contextual information,
thus enhancing global semantic representation.

3 Methods

Medical image segmentation task aims to extract the lesion
object semantic information, but ignores the pixel-level detail
information. In contrast, medical image reconstruction task focuses
on mining low-level content information. Therefore, we combine
the medical image reconstruction task and the medical image
segmentation task, which is jointly optimized to improve the
segmentation performance. Our MFEL framework is shown
in Figure 1, which includes a feature interaction-driven image
reconstruction (FIIR) and a feature-embedded representation
image segmentation (FRIS). The specific details are as follows.

3.1 Feature interaction-driven image
reconstruction

FIIR employs self-supervised learning to obtain fine-grained
feature representations, thereby enhancing the segmentation
feature representations. It consists of three components:
foreground image reconstruction (FIR), background image
reconstruction (BIR), and medical image reconstruction (MIR).
Specifically, FIR generates foreground feature, BIR provides
background feature, and MIR obtains fine pixel-level feature.
Foreground feature contains the key object information (e.g.,
edges, textures, structures), and background feature includes the
irrelevant environment information. In this way, the two features
can enhance the pixel-level fine-grained feature representation
during medical image reconstruction.

3.1.1 Foreground and background feature
extraction

The medical image Is first can be divided into foreground image
If and background image Ib by the segmentation mask Im. Im labels
the foreground information as 1 and the background information
as 0. Therefore, If and Ib can be formulated as follows:

If = Is ⊗ Im, Ib = Is ⊗ (1 − Im) . (1)

Then, If and Ib are respectively fed into the foreground encoder
Ei

f and the background encoder Ei
b to extract the foreground feature

Fi
f and the background feature Fi

b, where i = 1, 2, 3 denotes
the layer index. Finally, Fi

f and Fi
b are input to the foreground

decoder Df and the background decoder Db to reconstruct the
foreground image I′f and the background image I′b. The self-
supervised foreground reconstruction loss Lf and self-supervised
background reconstruction loss Lb focus on extracting foreground
and background information of the medical segmentation image,
which can be formulated as:

Lf =
∥∥∥I′f − If

∥∥∥
1

, Lb = ∥∥I′b − Ib
∥∥

1 , (2)

where ‖·‖1 represents the l1 norm.
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FIGURE 1

The overall framework illustration of the proposed MFEL. MFEL consists of FIIR and FRIS. FIIR aims to extract pixel-level features through
self-supervised learning, thus helping the segmentation task to obtain finer-grained information. FRIS fuses semantic segmentation features and
fine-grained reconstruction features to generate a more comprehensive feature representation.

FIGURE 2

Architecture of adaptive feature modulation module.

3.1.2 Pixel-level fine-grained feature generation
As shown in Figure 2, Fi

f and Fi
b from each layer are fed into

the adaptive feature modulation module �i
a, thereby helping SIR

to obtain more significant foreground and background features.
Specifically, Fi

f , Fi
b and the initial pixel-level feature Fi

r first perform
channel feature concatenation to generate the fusion feature Fu,
and then the global semantic features are extracted by using global
average pooling. Further, we utilize dual-stream convolutional
blocks to generate calibration parameters α and β to guide Fi

r . This
calibration process can be represented as:

F̂i
r = (1 + α) × Fi

r + β . (3)

Next, the calibrated pixel-level fine-grained feature F̂i
r is fed

into the reconstruction decoder to reconstruct the medical image.
Finally, the medical image reconstruction loss Ls ensures that
the pixel-level fine-grained features can reconstruct a complete
segmentation image, which can be expressed as follows:

Ls =
∥∥I′r − Is

∥∥
1 , (4)

where Is denotes a medical image, and I′r represents a reconstructed
medical image.

3.2 Feature representation reinforcement
learning

3.2.1 Bi-directional fusion module via
hierarchical guidance

In Section 3.1, we obtain pixel-level fine-grained feature F̂i
r

from FIIR. Specifically, as shown in Figure 3, Is is first fed into
the segmentation encoder Ei

s to extract the segmentation semantic
feature Fi

s. Then, Fi
s and F̂i

r are input to the bi-directional fusion
module �i

b to obtain a complete feature representation with strong
semantics and rich details. Specifically, we compute respectively the
cross-attention weights between Fi

s and F̂i
r , thereby jointly modeling

the complementary relationship between the reconstruction branch
and the semantic branch. In this process, F̂i

r uses semantic clues to
guide Fi

s to enhance structural perception, while Fi
s employs textural

details to enhance the spatial resolution of F̂i
r . In particular, First, Fi

s
generates the query vector Qs and F̂i

r generates the key-value pair
(Kr , Vr). Similarly, Qr is obtained via F̂i

r , and (Ks, Vs) is generated
through Fi

s. The two-stream cross-modal attention is computed
as follows:

Attnr = Softmax
(

QsK�
r√

d

)
, Attns = Softmax

(
QrK�

s√
d

)
, (5)

where
√

d is the channel dimension of each attention head and
Softmax is an activation function. Attnr denotes the segmentation-
guided attention map, and Attns represents the reconstruction-
guided attention map. Subsequently, we adopt feature aggregation
and residual concatenation to generate two enhanced features F̃i

r
and F̃i

s, which can be formulated as:

F̃i
r = C1

1 (Attnt ×Vr) + F̂i
r , F̃i

s = C1
1 (Attnr ×Vs) + F̂i

s, (6)

where C1
1 denotes one convolutional layer with 1 × 1 kernel.

Finally, we fuse F̃i
r and F̃i

s to generate the refined segmentation
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FIGURE 3

Architecture of bi-directional fusion module.

feature F̄i
s through concatenation and convolution operations, thus

enhancing the feature representation ability.

3.2.2 High-level semantic feature mining via
multi-branch vision mamba

Multi-branch vision mamba is constructed to force the model
to mine high-level semantic information, thus improving the
feature representation. Specifically, as shown in Figure 4, F̄3

s firstly
is fed into EM to perform flattening and normalization, thereby
generating segmentation sequence feature Ns. Then, we divide Ns
into four groups to learn the important representations of different
sub-regions, which can be represented as:

[N1
s , N2

s , N3
s , N4

s ] = Split(Ns). (7)

Next, each subsequence is respectively fed into the weight-
sharing Mamba module to perform state modeling, and then refine
the representation by residual operations:

Ñj
s = M

(
Nj

s

)
+ γ · Nj

s, j ∈ {1, 2, 3, 4} (8)

where γ is a scaling factor. M(·) denotes the Mamba function.
Then, the updated subsequence Nj is performed to feature
concatenation from the channel dimension, thus generating the
enhanced sequence representation:

Ñs = Concat(Ñ1
s , Ñ2

s , Ñ3
s , Ñ4

s ). (9)

where Concat(·) denotes the feature concatenation operation.
Subsequently, Ñs is normalized and linearly transformed to project
to the original feature dimension, which can be expressed as:

N̂out = Proj(LN(Ñs)), (10)

where LN(·) represents layer normalization, and Proj(·) indicates
linear projection.

Therefore, we utilized the state-space mechanism of Mamba
to capture long-distance contextual information. Then, multi-
branch decomposition is used to enhance the feature representation
between different sub-regions. In this way, multi-branch vision

FIGURE 4

Architecture of multi-branch vision mamba.

mamba establishes the dependency between global semantics and
local details, thus helping the model to improve the segmentation
accuracy of key objects.

3.3 Model training

3.3.1 Image reconstruction head
To constrain the difference at the pixel level between the

reconstructed image and the segmentation image, the image
reconstruction head Df , Dr and Db adopt the reconstruction loss
Lrec, which can be defined as follows:

Lrec = Ls + Lf + Lb, (11)

where Ls, Lf and Lb denote foreground reconstruction loss,
background reconstruction loss and medical image reconstruction
loss, respectively.

3.3.2 Semantic segmentation head
The BCE loss Lbce aims to predict the per-pixel classification

accuracy. The Dice loss Ldice can measure the overall overlap region
between the prediction mask I′s and the ground truth Igt . Thus, we
jointly Lbce and Ldice constrain the segmentation head Sh, which
can be expressed as:

Lmask = Lbce(I′s, Igt) + Ldice(I′s, Igt). (12)

Finally, the total training loss can be expressed as:

Ltotal = Lrec + Lmask. (13)

4 Experiments

In this section, we present a comprehensive overview of
our experiments. We begin by introducing the datasets used in
the study, followed by detailed descriptions of the experimental
settings and implementation details. We then report the results
of comparison experiments against state-of-the-art methods. In
addition, we perform ablation studies to assess the impact of each
key component. These experiments are designed to validate the
effectiveness of the proposed method and to provide insights into
the contribution of different modules to the overall performance.
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4.1 Experimental settings

4.1.1 Datasets
GLAS (57) dataset consists of 165 microscopy images of

colorectal adenocarcinoma tissue sections at stage T3 or T4, stained
with H&E. Each image has a resolution of 128 × 128 pixels and
is collected from a different patient. Due to variations in cancer
progression, the lesions exhibit significant differences in shape
and distribution. Meanwhile, since all samples originate from the
same type of tissue, the surrounding environments are relatively
consistent. Additionally, some cells are damaged or ruptured
during the sampling process, resulting in large inter-cell variability.
These factors make the dataset highly challenging. According to the
official split, the training set contains 85 images and the test set
contains 80 images. This dataset is mainly used to assess the model’s
capability in segmenting dense lesion regions and small targets.

ISIC2016 (58) and ISIC2017 (59) datasets were released by
the International Skin Imaging Collaboration (ISIC) in 2016 and
2017, respectively. They were used as official datasets for the skin
lesion analysis challenges held in those years. The goal of these
datasets is to raise global awareness of skin disease diagnosis
and to improve the detection of melanoma and other benign or
malignant lesions. Both datasets contain a large number of samples
and include various types of skin lesions. Due to the diversity
of lesion types and the wide range of patient backgrounds, the
samples show high variability in texture, color, and structure. In
addition, some mild lesions look very similar to normal skin, which
makes it hard to identify lesion boundaries. This increases the
difficulty of the segmentation task. In this study, we evaluate the
segmentation performance of our model using the ISIC2016 and
ISIC2017 datasets. Both datasets follow the official training and
testing splits: ISIC2016 includes 900 training images and 379 testing
images, while ISIC2017 consists of 2,000 training images and 600
testing images. All images are resized to 256 × 256 pixels to ensure
consistency during the experiments.

PH2 (60) is a public dataset designed for dermoscopic image
segmentation and classification. It aims to support research on
computer-aided diagnosis of melanocytic lesions. The images
were collected at the dermatology department of Pedro Hispano
Hospital in Portugal. All images were captured under the same
conditions using the Tuebinger mole analyzer system with 20×
magnification. The dataset contains 200 dermoscopic images
of melanocytic lesions, including 80 common nevi, 80 atypical
nevi, and 40 melanomas. PH2 serves as a reliable benchmark
for evaluating lesion detection, segmentation, and classification
algorithms. In our experiments, all images were resized to 256 ×
256 pixels. It is worth noting that we used PH2 as an external
validation dataset. We tested it directly using the model trained on
ISIC2016 to assess the effectiveness of our method and its potential
for future clinical applications.

4.1.2 Metrics
In the quantitative analysis, we adopt widely used evaluation

metrics in the field of medical image segmentation. Specifically,
we use Precision, Recall, F1, and Intersection over Union (IoU)
to assess the performance of the proposed model. Here, TP

denotes true positives, FP denotes false positives, TN denotes true
negatives, and FN denotes false negatives. These metrics jointly
provide a comprehensive evaluation of the model’s accuracy and
completeness from multiple perspectives.

Precision measures the proportion of true positives among
all regions predicted as positive (e.g., lesion areas). It reflects the
model’s ability to control FP. In medical image segmentation, a high
Precision means the model can avoid wrongly identifying normal
areas as lesions, which helps reduce the risk of misdiagnosis. When
Precision is high, most of the predicted lesion regions are actually
correct, and the FP rate is low. This is especially important in cases
with small lesions or strong background noise. In such situations,
Precision is a key metric to evaluate how well the model limits
over-segmentation. The formula is given as:

Precision = TP
TP + FP

(14)

Recall measures the model’s ability to detect all positive targets.
It shows how many of the actual positive pixels are correctly
identified. In medical image segmentation, a high Recall means the
model can successfully detect most lesion areas, which helps reduce
missed detections and is important for clinical diagnosis support.
The formula is given as:

Recall = TP
TP + FN

(15)

F1 is the harmonic mean of Precision and Recall. It is used to
evaluate both the accuracy and completeness of the model. When
there is a large gap between Precision and Recall, F1 provides
a more balanced result. In segmentation tasks, F1 is especially
useful for assessing model performance under class imbalance, such
as small lesions against large background regions. A higher F1
indicates that the model achieves a good balance between accuracy
and completeness. The formula is given as:

F1 = 2 · Precision · Recall
Precision + Recall

= 2TP
2TP + FP + FN

(16)

IoU is one of the most widely used metrics in image
segmentation. It measures the overlap between the predicted region
and the GT. It is defined as the ratio of the intersection area to
the union area of the prediction and the GT. IoU directly reflects
how well the predicted boundary matches the actual boundary. A
higher IoU means the predicted region aligns more closely with the
GT, indicating better segmentation accuracy. Compared to F1, IoU
is more sensitive to small differences and is suitable for evaluating
boundary localization. The formula is given as:

IoU = TP
TP + FP + FN

(17)

4.1.3 Implementations
We use NVIDIA GeForce RTX 4090 GPU to train and inference

the model. The network framework is Pytorch. EPOCH is set to
150, and Batch is 4. The optimizer is Adam that uses momentum
strategy to steadily update the model parameters. We employ
warm-up and cosine annealing schedulers to achieve slow startup
in the early stages and fine convergence in the later. The initial
learning rate is 1e-3 and gradually decays to 1e-5.
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4.2 Comparison with SOTA methods

To ensure a more comprehensive and reliable evaluation of
model performance, we compare our method against state-of-the-
art (SOTA) approaches from the past four years across different
network architectures. These comparisons highlight the advantages
of our model. Specifically, we select representative CNN-based
methods including MsRED (25), MFSNet (11), DCSAU (27), and
U-Net V2 (28); Transformer-based methods including BAT (30),
FAT-Net (31), SSFormer (32), and CASF-Net (36); and a recent

TABLE 1 Qualitative comparison results on the GLAS dataset.

Method F1(%) IoU(%) Precision(%) Recall(%)

BAT (30) 83.93 73.47 84.85 84.43

FAT-Net (31) 86.45 76.14 88.23 84.75

MsRED (25) 85.92 75.32 87.20 84.69

MFSNet (11) 86.33 75.95 81.70 89.20

SSFormer (32) 71.60 59.13 74.17 74.00

CASF-Net (36) 85.83 76.08 88.05 75.20

DCSAU (27) 88.28 79.03 87.67 88.32

U-vm-unet
(52)

82.07 69.60 74.39 86.60

U-Net V2 (28) 88.90 80.86 87.31 89.16

Ours 89.73 82.07 91.01 89.18

Red indicates the best performance, and blue indicates the second best.

Mamba-based method, U-vm-unet (52). Extensive comparisons are
conducted on four public datasets.

4.2.1 GLAS
4.2.1.1 Qualitative comparisons

As in Table 1, we compare several representative methods from
recent years on the GLAS dataset. The results show that Ours
achieves the highest scores in F1, IoU, and Precision, and ranks
second in Recall, slightly behind MFSNet. Ours reaches 82.07 in
IoU, which shows a clear advantage over other methods. This
indicates that the predicted lesion regions by Ours have better
overlap with the GT and more accurate boundary localization.
The Precision score reaches 91.01, suggesting that Ours effectively
reduces false positives, which is important in scenarios where
over-segmentation should be avoided. Considering that the GLAS
dataset contains complex gland structures, a high proportion
of small targets, and blurry boundaries, IoU and Precision are
key metrics to evaluate real segmentation quality. Some methods
achieve higher Recall but perform worse in IoU and Precision,
which may be caused by over-segmentation. In contrast, Ours
maintains high Recall while achieving high accuracy, showing
strong boundary modeling ability and overall robustness.

4.2.1.2 Quantitative comparisons
Figure 5 shows the visual comparison results on the GLAS

dataset. In sample (a), the lesion cell has clear boundaries and
appears hollow due to structural damage. SSFormer and U-vm-
unet make obvious errors in this case, leading to inaccurate
boundary prediction and incorrect segmentation of the cell
structure. In samples (c) and (d), the lesion boundaries are blurry.

FIGURE 5

Quantitative comparison results on the GLAS dataset. Green regions indicate areas missed with respect to the GT, while red regions represent
incorrectly predicted areas compared to the GT.
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FIGURE 6

Detail comparison on the GLAS dataset.

Most methods fail to extract the target contours correctly and show
severe missegmentation. In contrast, although Ours also shows
some boundary errors, it preserves the overall shape of the target
more completely.

In samples (e) and (f), the white regions represent the internal
cell structure and the external background, respectively. These two
samples come from different experimental conditions. For sample
(e), methods like U-Net V2 miss part of the structure on the left
side and mistakenly classify it as background. In sample (f), these
methods show incomplete cell boundaries. In comparison, Ours
gives results that are closer to the ground truth in both samples,
showing better generalization. However, it is worth noting that
Ours still makes a mistake in identifying the cell on the right side
of sample (e), which suggests that there is still room to improve
robustness across different environments.

To evaluate model performance on small targets and in
noisy environments, we conducted local zoom-in comparisons
on representative samples, as shown in Figure 6. DCSAU, U-
vm-unet, and U-Net V2 often misidentify background textures
as lesion regions, especially when boundaries are blurred or
targets are irregular. This suggests limited robustness to noise and
weak discrimination in challenging cases. In contrast, Ours better
distinguishes true lesions from noisy backgrounds and successfully
detects small, low-contrast targets. Despite minor boundary errors,
it shows stronger resistance to noise and improved sensitivity to
fine-grained lesion structures.

4.2.2 ISIC2016
4.2.2.1 Qualitative comparisons

On the ISIC2016 dataset, we compare our method with
several representative approaches from recent years and evaluate
segmentation performance from multiple aspects. As in Table 2,
Ours achieves the best results across all four metrics: F1, IoU,

TABLE 2 Qualitative comparison results on the ISIC2016 dataset.

Method F1(%) IoU(%) Precision(%) Recall(%)

BAT (30) 91.22 84.99 93.36 91.32

FAT-Net (31) 91.58 85.42 92.36 92.79

MsRED (25) 91.61 85.51 93.37 91.90

MFSNet (11) 92.57 86.17 93.85 91.33

SSFormer (32) 91.37 85.63 90.18 93.22

CASF-Net (36) 91.46 85.50 92.26 88.22

DCSAU (27) 92.72 86.42 91.42 94.05

U-vm-unet
(52)

92.79 86.54 93.92 91.68

U-Net V2 (28) 93.02 86.96 96.83 93.14

Ours 94.14 89.40 95.48 93.45

Red indicates the best performance, and blue indicates the second best.

Precision, and Recall, demonstrating strong overall performance.
Specifically, the F1 reaches 94.14 and the IoU reaches 89.40, which
shows a clear improvement over other methods. This indicates
that our model provides a better balance between segmentation
accuracy and region coverage, and can more precisely recover
lesion shapes. The Precision reaches 95.48, showing stable control
over false positives and helping reduce the misclassification of
normal skin areas. The Recall reaches 93.45, ensuring high
detection rates for lesion regions, which is important in clinical
settings where missed detections must be minimized. The ISIC2016
dataset contains many benign and malignant skin lesions with
blurry boundaries and similar textures, making segmentation more
challenging. Compared to Ours, U-Net V2 achieves a similar Recall
but lower Precision, which may cause over-segmentation. DCSAU
shows good Precision, but its Recall is lower, which leads to missed
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lesion areas. In contrast, Ours maintains a better balance across
all four metrics, indicating stronger segmentation ability under
challenges such as background similarity, boundary ambiguity, and
class imbalance commonly found in dermoscopic images.

4.2.2.2 Quantitative comparisons
Figure 7 presents the visual comparison results on the ISIC2016

dataset. In clinical diagnosis, accurate boundary identification of
lesions is important for evaluating the development stage and

malignancy of the disease. However, in samples (a)–(d), many
baseline methods show varying degrees of boundary errors, such as
incomplete contours or blurred edges. In contrast, Ours performs
more consistently in boundary modeling and produces results that
are closer to the ground truth, which is of higher clinical value.

In sample (e), there is a dark skin area in the lower left
region with texture similar to the lesion. FAT, U-vm-unet, and U-
Net V2 all misclassify this area as a lesion, resulting in obvious
false segmentation. MFSNet successfully captures the main region

FIGURE 7

Quantitative comparison results on the ISIC2016 dataset. Green regions indicate areas missed with respect to the GT, while red regions represent
incorrectly predicted areas compared to the GT.

FIGURE 8

Detail comparison on the ISIC2016 dataset.
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but misses parts near the boundary, which affects the overall
contour quality.

Sample (f) contains a lesion with complex boundaries and fine
internal structure. The lesion is located near the image edge, and the
background interference is strong. These factors make boundary
detection more difficult. Most baseline methods show shifted or
broken contours in this case. Although Ours also makes some
errors, its prediction is still the closest to the ground truth and better
preserves both the overall shape and boundary continuity.

To further evaluate the model’s ability to handle blurry
boundaries, we selected a group of representative samples and

TABLE 3 Qualitative comparison results on the PH2 dataset.

Method F1(%) IoU(%) Precision(%) Recall(%)

BAT (30) 89.24 81.62 96.33 84.99

FAT-Net (31) 90.66 83.54 86.13 97.14

MsRED (25) 88.61 80.65 84.35 95.97

MFSNet (11) 91.42 84.19 89.12 93.84

SSFormer (32) 90.77 83.98 89.04 94.65

CASF-Net (36) 90.85 83.86 86.92 96.60

DCSAU (27) 87.33 77.51 90.27 84.58

U-vm-unet
(52)

86.87 76.79 86.43 87.32

U-Net V2 (28) 90.70 82.98 92.88 95.28

Ours 94.44 89.70 93.73 95.37

Red indicates the best performance, and blue indicates the second best.

performed local zoom-in comparisons, as shown in Figure 8. The
results show that CASF-Net and U-Net V2 produce relatively
coarse boundary predictions. Their outputs often show broken
or expanded contours, which do not match the ground truth
accurately. In contrast, Ours shows better alignment with the
ground truth boundaries and performs more stably in preserving
fine structural details. These results further demonstrate that
our method has stronger fine-grained boundary perception
and achieves higher localization accuracy for targets with
unclear edges.

4.2.3 PH2
4.2.3.1 Qualitative comparisons

Table 3 shows the test results on the PH2 dataset, which is
used as an external validation set. The model is trained on the
ISIC2016 dataset. As shown, Ours achieves the highest scores
in the two key metrics, F1 and IoU, with values of 94.44 and
89.70 respectively. These results clearly outperform other methods
and demonstrate strong overall segmentation ability and good
generalization performance across datasets.

Although the Recall of Ours is not the highest among all
methods, it remains at a high level. It is worth noting that the
Recall of Ours is slightly lower than that of FAT-Net’s 97.14 and
CASF-Net’s 96.60. This may be due to the fact that lesions in the
PH2 dataset are more regular in shape and have relatively clearer
boundaries. FAT-Net and CASF-Net tend to enlarge the predicted
regions to increase the recall rate. However, this strategy often
leads to lower precision and causes a drop in both IoU and F1. In
contrast, Ours keeps a good balance. It maintains a reasonable recall

FIGURE 9

Quantitative comparison results on the PH2 dataset. Green regions indicate areas missed with respect to the GT, while red regions represent
incorrectly predicted areas compared to the GT.
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while avoiding over-segmentation, which helps improve boundary
accuracy and overall model stability.

4.2.3.2 Quantitative comparisons
Figure 9 shows the segmentation results of several samples from

the PH2 dataset. Overall, most methods can outline the general
shape of the lesion, but there are still clear differences in boundary
details and the handling of interference regions. In samples (a)
and (b), where the lesion boundaries are relatively clear, U-Net V2
and CASF-Net produce coarser edges. In contrast, Ours generates
contours that better align with the ground truth, with smoother
and more complete boundaries, especially in the transition areas
around the lesion. In sample (f), the lesion is large and structurally
complex. Methods such as BAT and U-Net V2 show varying
degrees of over-segmentation, with a large number of false positive
areas (in red). Although Ours also has some prediction errors,
its boundaries are more compact and the over-segmentation is
significantly reduced.

We also select a group of samples for local zoom-in
comparison, as shown in Figure 10. In these samples, the lesion
regions are located within a liquid environment, and bubbles above
the lesions introduce interference. This causes CASF-Net, U-vm-
unet, and U-Net V2 to produce severe misclassifications. Although
Ours also shows some boundary inaccuracies due to the blurred
edges, its prediction remains the closest to the ground truth.

4.2.4 ISIC2017
4.2.4.1 Qualitative comparisons

Table 4 shows the evaluation results on the ISIC2017 dataset.
Ours ranks first in three key metrics: F1, IoU, and Recall, with scores
of 88.10, 80.06, and 94.84, respectively. These results show that our
model achieves strong overall segmentation quality and high lesion
detection sensitivity. In particular, the Recall score is significantly

higher than other methods, indicating that our model is more
sensitive to lesion regions and can reduce missed detections. This
is useful for clinical applications that require high recall. Compared
to methods such as U-Net V2 and MFSNet, Ours maintains a high
Recall while achieving a better balance in IoU and F1, showing
better boundary modeling ability and practical value.

However, in terms of Precision, Ours performs relatively lower,
with a score of 83.13, which is clearly below methods like U-Net
V2’s 96.26 and MFSNet’s 91.91. The ISIC2017 dataset contains
more complex lesions with blurry boundaries and irregular shapes.
While trying to capture lesion regions more completely, the model
may also include neutral areas near the lesion boundary or non-
lesion areas with similar appearance. This increases the false
positive rate and leads to a lower Precision score.

TABLE 4 Qualitative comparison results on the ISIC2017 dataset.

Method F1(%) IoU(%) Precision(%) Recall(%)

BAT (30) 84.85 76.23 86.64 88.75

FAT-Net (31) 84.79 76.06 89.08 85.93

MsRED (25) 84.43 75.79 91.21 83.61

MFSNet (11) 85.42 74.55 91.91 79.79

SSFormer (32) 83.43 71.30 81.51 85.54

CASF-Net (36) 84.20 72.71 85.14 84.51

DCSAU (27) 85.92 75.32 83.93 88.01

U-vm-unet
(52)

85.26 74.93 89.51 81.39

U-Net V2 (28) 85.00 73.90 96.26 82.86

Ours 88.10 80.06 83.13 94.84

Red indicates the best performance, and blue indicates the second best.

FIGURE 10

Detail comparison on the PH2 dataset.
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4.2.4.2 Quantitative comparisons
As shown in Figure 11, the samples in the ISIC2017 dataset

often have more blurred boundary information. This leads to
boundary prediction errors across all compared methods. In sample
(b), the lesion boundaries are highly similar to the surrounding
skin texture, causing all models to misidentify the boundary.
In sample (d), although the lesion boundary is relatively clear,
the surrounding skin is more complex. As a result, U-vm-unet

mistakenly includes the ruler at the bottom as part of the lesion.
In sample (e), the lesion gradually darkens from left to right. Most
methods can accurately detect the boundary on the right where the
contrast is high, but fail to identify the blurry boundary on the left.
In contrast, Ours achieves a result that is closest to the ground truth.

In Figure 12, we present a local zoom-in comparison.
The blurred and small-sized lesion increases the difficulty of
segmentation. Compared with DCSAU and two other methods,

FIGURE 11

Quantitative comparison results on the ISIC2017 dataset. Green regions indicate areas missed with respect to the GT, while red regions represent
incorrectly predicted areas compared to the GT.

FIGURE 12

Detail comparison on the ISIC2017 dataset.
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Ours shows better performance in boundary prediction. However,
Ours is still affected by the surrounding environment and
mistakenly identifies hair in the lower-left area as part of the
boundary. This indicates that there is still room for improvement
in handling fine-grained features.

4.3 Ablation studies

4.3.1 GLAS
To evaluate the contribution of each module in the model,

we conducted a systematic ablation study on the GLAS dataset.
The quantitative results obtained after removing different
components are presented in Table 5, and the corresponding visual
segmentation outputs are shown in Figure 13, offering a clear view
of how each module affects the final performance.

As can be seen from the visual results, w/o FIIR (1) leads
to evident deficiencies along the object boundaries and causes
incomplete structural predictions. This demonstrates that FIIR
plays an important role in enhancing pixel-level detail and
supporting the extraction of informative segmentation features.
When the adaptive feature modulation module Φ i

a is removed,
and then replaced with feature summary (2) or concat (3), the

TABLE 5 Ablation studies results on the GLAS dataset.

Method F1(%) IoU(%) Precision(%) Recall(%)

(1) w/o FIIR 79.68 67.90 81.94 80.65

(2) w/o Φ i
a

summary
84.58 75.42 78.18 96.10

(3) w/o Φ i
a

concat
76.27 64.35 66.37 96.31

(4) w/o Φ i
b

summary
88.64 80.31 89.77 87.79

(5) w/o Φ i
b

concat
89.60 81.91 89.87 88.72

(6) w/o EM 85.01 75.05 84.18 87.77

(7) Ours 89.73 82.07 91.01 89.18

Red indicates the best performance, and blue indicates the second best.

model tends to produce over-segmentation. This is reflected in
the increased number of false positives in the predicted maps.
Although the recall remains relatively high, reaching 96.10 and
96.31 respectively, the precision drops significantly to 78.18 and
66.37, suggesting that the model becomes less capable of regulating
foreground and background responses effectively.

Moreover, we adopt summary (4) and concat (5) operations
to replace the bi-directional fusion module Φ i

b. The predicted
structures remain mostly intact, but the boundaries are less precise,
indicating that this module still contributes to enhancing local
detail and structural consistency. Further, the removal of the
multi-branch vision mamba module EM (6) results in a decrease
in both IoU and F1, and the predicted boundaries become less
distinct. This shows that EM plays a critical role in aggregating
hierarchical features and is particularly helpful in capturing
complex object shapes.

Among all the configurations, the complete model (7) achieves
the best overall performance. It obtains an F1 of 89.73, an IoU
of 82.07, a precision of 91.01, and a recall of 89.18. Its visual
results are also the most aligned with the ground truth annotations.
These observations confirm that the synergy between the proposed
modules leads to significant improvements in both segmentation
accuracy and visual quality.

TABLE 6 Ablation studies results on the ISIC2016 dataset.

Method F1(%) IoU(%) Precision(%) Recall(%)

(1) w/o FIIR 90.81 84.33 91.76 91.87

(2) w/o Φ i
a

summary
91.64 85.45 86.82 97.09

(3) w/o Φ i
a

concat
93.75 88.86 89.19 98.48

(4) w/o Φ i
b

summary
91.51 85.14 95.48 88.16

(5) w/o Φ i
b

concat
88.77 81.19 89.25 91.17

(6) w/o EM 90.79 84.04 95.23 87.37

(7) Ours 94.14 89.40 95.48 93.45

Red indicates the best performance, and blue indicates the second best.

FIGURE 13

Quantitative comparative results of ablation experiments on the GLAS dataset.
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FIGURE 14

Quantitative comparative results of ablation experiments on the ISIC2016 dataset.

4.3.2 ISIC2016
We further validate the effect of each model component

by conducting ablation experiments on the ISIC2016 dataset.
Table 6 reports the numerical performance under different ablation
settings, while Figure 14 illustrates the corresponding segmentation
outputs for visual comparison. w/o FIIR (1) leads to a noticeable
decline in IoU and F1, which drops to 84.33 and 90.81, respectively.
Despite the recall and precision being reasonably balanced, the
visual outputs exhibit weaker boundary fidelity, particularly in
areas with low contrast, where the predicted masks tend to deviate
from the lesion margins. Interestingly, we adopt w/o Φ i

a concat (3)
to produce the highest recall at 98.48, suggesting that the model
becomes more permissive in capturing lesion pixels. However, this
also comes at the cost of increased false positives, as reflected in
the relatively lower precision and the presence of redundant red
areas in the predicted masks. w/o Φ i

a summary (2) causes the
prediction accuracy to decrease, reinforcing that the absence of the
modulation structure compromises the foreground-background
balancing mechanism.

To verify the effectiveness of the bi-directional fusion module
Φ i

b, we use Φ i
b summary (4) and Φ i

b concat (4) instead of Φ i
b.

Specifically, w/o Φ i
b concat (5) has a clearer negative effect,

with IoU decreasing to 81.19, accompanied by more pronounced
boundary irregularities in the visualization. w/o EM on IoU and
F1 metrics scores lower than the full model. This suggests that
although the primary structure still functions, the lack of high-low
feature interaction leads to reduced segmentation confidence near
ambiguous regions. With all components intact, the full model (7)
achieves the strongest performance across all metrics F1 reaches
94.14, IoU improves to 89.40, and both precision and recall are
maximized. The output masks are tightly aligned with the lesion
contours, even under challenging conditions such as blurry or low-
contrast boundaries, confirming the complementary nature of all
proposed modules.

5 Conclusion

In this paper, we propose a multi-interactive feature
embedding learning method for medical image segmentation.
The core idea is to establish information interaction between
the reconstruction task and the segmentation task, thus
achieving superior segmentation performance. Specifically,

an adaptive feature modulation module can efficiently fuse
foreground and background features, thereby extracting
pixel-level fine-grained features. Then, a bi-directional fusion
module integrates important feature information between two
different tasks, enhancing semantic understanding and detail
retention. Finally, a multi-branch visual mamba effectively
captures structural details by extracting multi-scale features
in parallel, thus improving the model capability in terms of
local texture and global semantics. Extensive experiments
demonstrate that the proposed method can accurately
segment the lesion region compared to other state-of-the-art
segmentation methods.
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