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Background: Osteoporosis in postmenopausal women is characterized by
significant bone mass loss due to reduced oestrogen, leading to an increased
risk of osteoporotic vertebral compression fractures (OVCF). Comprehensive risk
prediction models for diagnosing and predicting fracture risk in this population
are still lacking.

Objective: This study aims to identify key risk factors for OVCF in postmenopausal
osteoporotic women and develop a machine learning model to predict OVCF
risk by integrating clinical, biological, and musculoskeletal data.

Methods: This retrospective case-control study included 486 postmenopausal
women diagnosed with osteoporosis between 2015 and 2018. The patients
were divided into a non-fracture group (Group A) and a vertebral fracture group
(Group B) based on whether they developed OVCF during the subsequent
5years of treatment and follow-up. Univariate and multivariate logistic
regression analyses were performed to identify independent risk factors for
OVCF. Furthermore, a comprehensive risk prediction model was constructed
using multiple machine learning algorithms.

Results: Among the 486 postmenopausal women, 269 (55.35%) experienced OVCF.
Low bone mineral density (BMD), chronic inflammation, and sarcopenia were
identified as independent risk factors, while regular anti-osteoporotic treatment
was associated with a reduced fracture incidence. The Balanced Bagging machine
learning model demonstrated an accuracy of 98.98%, a sensitivity of 98.24%, a
specificity of 100.00%, and the model's F;-score was 0.99. The deployed model
outputs calibrated, patient-specific probabilities with case-level explanations and
supports dynamic re-scoring as new BMD/CTx/NLR results become available,
enabling personalized risk management in routine care.

Conclusion: The development of OVCF in postmenopausal osteoporotic
women is influenced by a combination of bone metabolism, inflammatory
processes, and muscle health. The machine learning model developed in
this study provides a reliable and accurate tool for personalized OVCF risk
prediction, allowing clinicians to optimize prevention and treatment strategies.
Future large-scale prospective studies are required to validate these findings
and enhance the model's predictive capabilities.
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Highlights

o Low bone mineral density (BMD), chronic inflammation
(elevated NLR), and sarcopenia are identified as key independent
risk factors for OVCE while regular anti-osteoporotic treatment
was associated with a reduced fracture incidence.

o The Balanced Bagging machine learning model integrates
clinical, biological, and musculoskeletal data to predict
osteoporotic vertebral compression fracture (OVCF) risk in
postmenopausal women with 98.98% accuracy, 98.24%
sensitivity, 100.00% specificity and the model’s F,-score was 0.99.

« Comprehensive multidimensional anti-osteoporosis therapy is
expected to significantly reduce the incidence of OVCE
emphasizing the

importance of comprehensive and

multidimensional treatment of high-risk populations.

1 Introduction

Osteoporosis is characterized by reduced bone mass and
disruption of bone microarchitecture. In postmenopausal women,
oestrogen decline accelerates bone resorption, lowering bone mineral
density (BMD) and increasing fragility fracture risk (1, 2). Among
them, OVCEF is one of the most frequent osteoporotic fractures (3).
These fractures often occur in the thoracolumbar spine, leading to
significant somatic pain and activity limitation, increasing the risk of
disability and affecting patients’ quality of life (4, 5). Therefore,
identifying the risk causes for OVCF in postmenopausal osteoporotic
women and reducing the probability of fracture through effective
preventive and therapeutic means are of great humanistic and
socioeconomic importance. Despite numerous studies examining the
relationship between osteoporosis and fragility fractures (4-8), the
factors are not comprehensive enough to accurately assess the way
they interact. Although BMD is widely used to diagnose osteoporosis
and estimate fracture risk, reliance on BMD alone is insufficient
because risk is also influenced by bone quality, systemic inflammation
and bone turnover (9, 10). Moreover, the specific determinants of
OVCEF in postmenopausal women remain incompletely defined, and
few studies have integrated diverse dimensions of risk in this
population (11-14).

Bone turnover markers, including type I procollagen N-terminal
propeptide (P1NP; formation) and carboxy-terminal cross-linked
telopeptide of type I collagen (CTx; resorption), reflect skeletal
metabolism, while osteocalcin (BGP) indicates osteoblastic activity
(14-17). Calcium (Ca), phosphorus (P) and vitamin D3 (Vit D3)
contribute to bone health maintenance, and clinical factors such as
nutrition, hypertension and diabetes mellitus may modify OVCEF risk
(18, 19). Low-grade inflammation, captured by the neutrophil-to-
lymphocyte ratio (NLR) and the systemic immune-inflammation
index (SII), may potentiate bone resorption and fracture susceptibility
(20). Emerging evidence links sarcopenia to higher vertebral fracture
risk and poorer recovery. Postmenopausal women show greater age-
and sex-related losses in muscle mass and strength, with more fatty
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infiltration of paraspinal muscles, supporting a role for muscle status
in OVCEF susceptibility. We therefore assessed the psoas major and
multifidus muscle indices (PMI/MMI) as imaging surrogates (21, 22).
Future work incorporating muscle quality and functional measures
may clarify the incremental contribution of sarcopenia in
postmenopausal osteoporosis. Against this background, we developed
a machine-learning model that integrates clinical variables,
densitometry, bone-turnover markers, inflammatory indices, and
muscle metrics to identify the risk factors for OVCEF and explore the
correlations among these factors, thereby enabling personalized risk
prediction and informing targeted prevention and treatment strategies
(23, 24).

2 Methods
2.1 Management of the sample

The study protocol was approved by the Ethics Committee of the
First Affiliated Hospital of Soochow University (2024 Lun Research
Grant No. 728). This study investigated factors associated with
(OVCF) in
postmenopausal women with osteoporosis. We analyzed 486

osteoporotic  vertebral compression fractures
postmenopausal women diagnosed with primary osteoporosis
between January 2015 and December 2018, all of whom received up
to 5 years of outpatient follow-up. Patients were categorized into two
groups based on the occurrence of OVCE Inclusion criteria were:
postmenopausal women with a menopause duration of 1-20 years, a
diagnosis of primary osteoporosis, and regular follow-up for at least
5 years. Exclusion criteria included severe congenital or acquired
spinal deformities, conditions significantly affecting bone metabolism,
and incomplete medical or imaging records. Among the diseases that
significantly affect bone metabolism are (1) chronic kidney disease
(eGFR <60 mL™" min™"). (2) Hyper- or hypoparathyroidism and
thyroid dysfunction. (3) Chronic liver disease (Child-Pugh B/C). (4)
Malabsorption syndrome. (5) Active malignancy or recent
chemotherapy/radiotherapy. (6) Long-term systemic glucocorticoid
therapy (=5 mg prednisolone >3 months), aromatase inhibitors,
antiepileptic drugs, heparin/warfarin. (7) Severe rheumatoid arthritis
or other inflammatory arthritis. (8) Chronic alcohol abuse.

2.2 Observation indicators

We retrospectively collected demographic data, laboratory results,
and imaging information, including age, BMI, fracture history,
histories of hypertension and diabetes, serum calcium, vitamin D3,
osteocalcin (BGP), type I collagen amino-terminal propeptide
(PINP), carboxy-terminal cross-linked telopeptide (CTx), bone
mineral density (BMD), neutrophil-to-lymphocyte ratio (NLR), psoas
major index (PMI), and multifidus muscle index (MMI). All patients
underwent serological tests and dual-energy X-ray absorptiometry
(DEXA) at diagnosis and during follow-up to assess BMD and bone
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metabolism markers. Time 0 was defined as the date of the index
DXA. A standardised baseline assessment pathway was implemented,
whereby bone turnover markers and lumbar MRI (for PMI/MMI)
were obtained routinely on the same day as DXA whenever feasible,
and otherwise within four weeks. Osteoporosis was defined according
to the World Health Organization (WHO) criteria using dual-energy
X-ray absorptiometry (DXA) at the lumbar spine (L1-L4) or the total
hip. A T-score of <—2.5 indicates osteoporosis. In addition, a T-score
between —1.0 and —2.5, in conjunction with fragility fractures of the
pelvis and lumbar spine, can also serve as diagnostic criteria for
osteoporosis. Given that this study focuses on vertebral fragility
fractures caused by decreased bone density, and based on prior
research and clinical experience, we set a T-score of <—1.5 as the
criterion for sample inclusion.

Anti-osteoporosis medications at baseline and during follow-up
(bisphosphonates, denosumab, teriparatide, or SERMs) were
extracted from the electronic record and summarised in Table 1.
Regimens followed product labelling (denosumab 60 mg SC every six
months; teriparatide 20 pg SC daily) with vitamin D and calcium
supplementation. BMD was reassessed at least annually (six-monthly
in selected cases). Incident OVCF events were identified from the
electronic record and confirmed radiographically using predefined
criteria. The case records documented that participants underwent
scheduled annual lateral thoracolumbar radiographs and symptom-
triggered imaging to identify incident vertebral fractures. An incident
vertebral fracture was defined according to Genant semi-quantitative
criteria, or as a >20% and >4 mm reduction in vertebral body height
(anterior, middle, or posterior) on follow-up compared with the most
recent negative radiograph. Cases involving high-energy trauma were
excluded, and each patient underwent lumbar magnetic resonance
imaging (MRI) within 4 weeks of a radiograph showing a lumbar
fracture to confirm the diagnosis.

Additionally, cross-sectional areas of the psoas and multifidus
muscles at the L3 level were measured on T2-weighted MRI, with PMI
and MMI calculated by normalizing muscle area to height squared
(cm?/m?). Sarcopenia was defined as a PMI below 3.9 cm?/m? All
images were independently reviewed by two fellowship-trained
musculoskeletal radiologists who were blinded to the clinical
predictors, with disagreements resolved by consensus.

2.3 Statistical analysis

Statistical analysis was performed using SPSS software (version 27.0,
IBM, United States), presenting continuous data as mean + standard
deviation analyzed with independent t-tests. Categorical data were
evaluated using chi-square tests or Fisher’s exact tests. A p-value <0.05
was considered significant. Variables that demonstrated significant
differences in the univariate analysis were subsequently included in a
multivariate logistic regression to identify independent risk factors for
OVCF among postmenopausal women with osteoporosis. Prior to
multivarjable modelling, we assessed pairwise dependencies and applied
a VIF threshold of <5.0 to evaluate collinearity. For clusters of biologically
related predictors (e.g., SI with NLR; CTx with PINP/BGP), we retained
the clinically more parsimonious and statistically more robust variable
(NLR and CTx, respectively). For transparency, BGP, PINP, SII, and
PMI were included in descriptive statistics and exploratory visualisations
but were not carried forward into the comparative modelling process.
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TABLE 1 General data comparison between No vertebral fracture group
(Group A) and Osteoporotic vertebral compression fracture group (Group
B) patients.

Group A Group B P
(n = 217) (n = 269)

Age [mean (SD)] 62.68 (5.29) 63.58 (3.86) 0.036
Weight [mean (SD)] 49.32 (8.53) 50.69 (7.00) 0.057
BMI [mean (SD)] 24.66 (4.71) 25.63 (5.64) 0.045
History of fracture (%) 0.001

Yes 14 (6.45) 74 (27.51)

No 203 (93.55) 195 (72.49)
Hypertension (%) 0.153

Yes 20 (9.22) 36 (13.38)

No 197 (90.78) 233 (86.62)
Diabetes (%) 0.031

Yes 7(3.23) 21(7.81)

No 210 (96.77) 248 (92.19)
BMD [mean (SD)] —2.56 (0.37) —2.79 (0.31) 0.001
Osteoporosis treatment (%) 0.011

Yes 184 (84.79) 203 (75.46)

No 33 (15.21) 66 (24.54)
Albumin [mean (SD)] 38.32(7.71) 37.29 (5.52) 0.990
Calcium [mean (SD)] 2.36 (0.23) 2.32(0.17) 0.027
Phosphorus [mean (SD)] 1.16 (0.17) 1.13 (0.21) 0.190
VitD3 [mean (SD)] 24.61 (6.71) 17.86 (7.27) 0.001
BGP [mean (SD)] 26.28 (8.52) 19.95 (8.98) 0.001
CTx [mean (SD)] 215.71 (182.05) 713.15 (329.80) 0.001
PINP [mean (SD)] 33.02 (20.51) 75.14 (87.01) 0.001
NLR [mean (SD)] 1.98 (0.58) 2.12(0.92) 0.044
SII [mean (SD)] 385.37 (115.41) 417.59 (218.94) 0.038
PMI [mean (SD)] 4.07 (0.63) 3.91(0.57) 0.003
MMI [mean (SD)] 19.38 (4.96) 18.78 (5.12) 0.197

SD, standard deviation; BMI: body mass index; BGP, osteocalcin; CTx, C-terminal
telopeptide of type I collagen; PINP, procollagen type I N-terminal propeptide; NLR,
neutrophil-to-lymphocyte ratio; SII, systemic immune inflammation index; PMI, psoas
muscle index; MMI, multifidus muscle index.

2.4 Model analysis

In this study, various machine learning models—including
Logistic Regression, Naive Bayes, SVM, Decision Tree, AdaBoost,
Gradient Boosting, and Balanced Bagging—were developed using
Python 3.11.7 with the scikit-learn library. Since the retrospectively
collected laboratory dataset contained only a small fraction of missing
values, we employed the missForest algorithm, thereby minimizing
information loss while preserving the underlying distribution
structure. Model training employed 10-fold cross-validation and grid
search for hyperparameter optimization: the former partitions the
training data into 10 subsets, iteratively using nine for training and
one for validation to reduce partition bias, while grid search
systematically explores a predefined parameter space to identify the
optimal parameter combination. Model performance was evaluated
using metrics such as AUC, sensitivity, specificity, PPV, NPV, accuracy,
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F,-score, and Brier Score, ensuring a comprehensive assessment of
classification ability, stability, and calibration. To control overfitting in
high-variance learners, we imposed a priori constraints (for tree/
boosting models: max_depth <3, min_samples_leaf >20, learning
rate <0.05) and used class-balanced resampling within a Balanced
Bagging framework. Learning curve analyses showed that
performance plateaued once the training sample exceeded
approximately 200 cases; permutation tests (1,000 shuffles) yielded an
AUC of approximately 0.50, indicating that the observed
discrimination was not due to chance. Additionally, SHAP (SHapley
Additive exPlanations) was applied to quantify each features
contribution to the model’s predictions, enhancing interpretability
and providing insights into the decision-making process. The same
individual can be re-scored at follow-up when new densitometry or
laboratory results are available, allowing trajectory monitoring after
treatment initiation or adjustment. A five-feature configuration (BMD
T-score, CTx, NLR, age, BMI) preserved >90% of full-model
discrimination, supporting deployment where selected assays
are unavailable.

3 Result
3.1 Patient characteristics

A total of 486 postmenopausal osteoporotic women (mean age
63.18 + 4.57 years) were included, with 217 in the non-fracture group
(Group A) and 269 in the OVCF group (Group B). Significant differences
between groups were observed in BMI (p =0.045), fracture history
(p=0.001), BMD (p = 0.001), calcium (p = 0.027), Vit D3 (p = 0.001), and
bone turnover markers (CTx and PINP, p = 0.001) (Table 1).

3.2 Visualization analysis

Box plots showed that Group B had significantly higher age and
CTx levels, and lower BMD and Vit D3 levels (Figure 1). Bar charts

10.3389/fmed.2025.1664219

revealed that Group B had a higher fracture history and lower
osteoporosis treatment rates compared to Group A (Figure 2),
suggesting that age, BMD, fracture history, and treatment status are
key predictors of OVCE

3.3 Univariate and multivariate analysis

Univariate analysis demonstrated significant associations
(p < 0.05) between OVCEF and variables such as age, BMI, fracture
history, diabetes, BMD, osteoporosis treatment, calcium, Vit D3, CTx,
PINP, NLR, SII, and PMI. Multivariate logistic regression (Hosmer—
Lemeshow p = 0.565) identified age, BMI, fracture history, BMD,
osteoporosis treatment, calcium, Vit D3, CTx, and NLR as
independent risk factors for OVCE (Table 2).

3.4 Multi-model predictive analysis

Internal cross-validation (Figures 3, 4) showed that model
performance stabilized with over 200 training samples. On the
external dataset (Figure 5), the Balanced Bagging model
outperformed others, achieving an AUC of 0.9956 and an accuracy
of 98.98%, with high sensitivity and specificity. SHAP analysis
(Figures 6, 7) indicated that CTx, BMD, BMI, NLR, age, and Vit D3
were the most influential features—particularly CTx, BMD, and
NLR—in discriminating between classes. Overall, the model
effectively captured multidimensional patterns, supporting robust
OVCEF risk prediction.

4 Discussion

In this single-centre cohort of 486 postmenopausal women,
we identified age, BMI, prior fracture, lower BMD, absence of anti-
osteoporotic treatment, lower calcium, lower Vit D3, higher CTx
and higher NLR as independent correlates of OVCE, reflecting the

75
‘ 2.8
ol 3 - : N 2
-2.0 45
70 60 2.6
60 40 i 24 1
65 P o
§ 5 = =0 g =25 E 5 l
=4 3 S 1
60 £ a0 |. ® : x> § 22 !
-3.0
. 30 30 201 §
“ 3
© . 20 -35 25 ‘ ‘ 181 ¢ N
No Yes No Yes No Yes No Yes No Yes No Yes
Group Group Group Group Group Group
-4 - L] ¢
16 .: . ELE I s 1400 4 500 .
14 30 w1 8 ) 1200 400
M - 4
812 25 1000 3 .
£ : 820 g% g 800 g 300 = ¢
210 g H 2 E Ed I
E ‘ 15{ ¢ 20 600 e ¢ 200 2 .
0.8 -
- 10 400 a
oed t L] w01 &§
g 5 10 200 = 1
0.4 L] 0 ° )
No Yes No Yes No Yes No Yes No Yes No Yes
Group Group Group Group Group Group
FIGURE 1
Box plot comparison of continuous variables by groups. Using box plots and scatter points, it displays the median, quartiles, and outliers of each
variable in different groups, providing a visual comparison of the differences between these variables.
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Categorical variable distribution between Group A and Group B. The graph shows the distribution of several categorical variables: treatment for
osteoporosis, history of fracture, hypertension, and diabetes. The bar graph compares the counts for each category in these variables, providing a clear

TABLE 2 Results of multi-factor logistic regression analysis of risk factors associated with osteoporotic vertebral compression fractures (OVCF) in

postmenopausal women.

Influencing factor B OR Tolerance VIF 95% ClI p
Age 0.249 1.283 0.968 1.033 1.132-1.453 0.001
BMI 0.267 1.306 0.877 1.141 1.149-1.486 0.001
History of fracture 0.805 1.242

No Reference

Yes 2.714 15.082 4.577-49.695 0.001
Diabetes 0.954 1.048

No Reference

Yes 1.444 4.236 0.844-21.274 0.080
BMD —5.515 0.004 0.842 1.187 0.001-0.026 0.001
Osteoporosis treatment 0.964 1.038

No Reference

Yes —1.507 0.221 0.072-0.678 0.008
Calcium —3.297 0.037 0.904 1.106 0.005-0.281 0.001
VitD3 —0.237 0.789 0.688 1.453 0.722-0.862 0.001
BGP —0.038 0.962 0.825 1.212 0.913-1.014 0.151
CTx 0.011 0.957 0.542 1.844 0.926-0.990 0.001
PINP 0.017 0.521 0.544 1.838 0.319-0.851 0.225
NLR 0.780 2.182 0.521 1.920 1.046-4.552 0.037
SIT —0.003 0.997 0.539 1.856 0.993-1.001 0.101
PMI —0.282 0.754 0.939 1.064 0.384-1.484 0.414

interplay of skeletal fragility, bone turnover and systemic
inflammation (25). Our machine-learning analysis, using these nine
features, achieved excellent discrimination and calibration;
Balanced Bagging performed best (temporal hold-out AUC 0.9956;
accuracy 98.98%), and learning curves plateaued beyond
approximately 200 cases, supporting model stability. Brier score and
calibration plots indicated well-calibrated probabilities. SHAP
analyses consistently ranked CTx, BMD and NLR as the most
influential contributors, with age, BMI and Vit D3 providing
additional signal.

OVCF is the most prevalent complication of osteoporosis in
postmenopausal women, typically affecting the thoracolumbar spine

Frontiers in Medicine

and causing pain, functional limitation and healthcare burden (26—
29). Lower BMD remained a dominant risk factor in our data,
consistent with its status as the diagnostic standard and a core
determinant of vertebral fragility. Reduced mineral content is
accompanied by deterioration of microarchitecture (trabecular
thinning, loss of connectivity and endplate microcracks), decreasing
load-sharing capacity and raising the likelihood of wedge or
biconcave deformities under routine activities (30-33). CTx, a
marker of type I collagen degradation, reflects systemic osteoclastic
activity. Elevated CTx signifies uncoupled remodelling with increased
resorption cavities, transient porosity and weaker bone packets
before secondary mineralisation is complete (34, 35). In the vertebral
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FIGURE 3
Internal validation results—cross-validation performance evaluation.
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FIGURE 5
External validation results—generalization performance evaluation.
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Gradient Boosting 0.995 + 0.004 Gradient Boosting 0.922 = 0.060 Gradient Boosting 1.000 £ 0.004
AdaBoost 0.997 £ 0.004 AdaBoost 0.974 £ 0.04® AdaBoost 0.986 = 0.03@|
Decision Tree 0.980 = 0.029 Decision Tree 0.970 = 0.04® Decision Tree 1.000 = 0.004
SVM 0.986 + 0.01 1| SVM 0.957 £ 0.03@ svM 0.905 * 0.04®
Naive Bayes 0.935 £ 0.02» Naive Bayes 0.882 +£ 0.049 Naive Bayes 0.892 £ 0069
Logistic Regression 0.974 + 0.02® Logistic Regression 0.933 + 0.04® Logistic 0.934 + 0.05®
FIGURE 4
Learning curve analysis—training and validation accuracy trends.
Model AUC Sensitivity Specificity PPV NPV Accuracy F1Score Brier Score
Logistic Regression 0.978605 0.894737 0.926829 0.944444 0.863636 0.908163 0.918919 0.057080
Naive Bayes 0.946941 0.894737 0.878049 0.910714 0.857143 0.887755 0.902655 0.087275
SVM 0.985879 0.964912 0.926829 0.948276 0.950000 0.948980 0.956522 0.040402
Decision Tree 0.973684 0.947368 1.000000 1.000000 0.931818 0.969388 0.972973 0.030612
AdaBoost 0.998716 0.982456 0.975610 0.982456 0.975610 0.979592 0.982456 0.143008
Gradient Boosting 0.997647 0.982456 0.951220 0.965517 0.975000 0.969388 0.973913 0.062198
Balanced Bagging 0.999572 0.982456 1.000000 1.000000 0.976190 0.989796 0.991150 0.012327

body—rich in trabecular bone—this manifests as reduced stiffness
and earlier yield under axial load. CTx outperformed formation
markers (PINP, BGP) for discrimination, implying that resorption
acceleration, rather than formation dynamics, is the proximate driver
of vertebral failure in this setting. SHAP showed monotonic risk
escalation with rising CTx, supporting a dose-response relation.
Chronic low-grade inflammation likely amplifies this risk: oestrogen
decline is associated with increased pro-inflammatory cytokines (e.g.,
TNF-q, IL-6), which elevate NLR, suppress osteoblastic activity and
enhance osteoclastic activity, thereby weakening bone structural
strength (36-40). BMI showed a positive association with OVCE, a
finding compatible with sarcopenic obesity and visceral adiposity,
which promote systemic inflammation despite higher absolute mass;
this may offset any mechanical protection conferred by weight alone
(41). Although PMI was lower in the OVCEF group at the univariate
level, it did not remain independent after adjustment, suggesting that
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global anthropometry and biochemical drivers captured the
incremental risk more parsimoniously in this dataset.

Among tested learners, the Balanced Bagging model yielded the
lowest cross-validated deviance with favorable calibration, likely because
bagging reduces variance under class imbalance and captures non-linear
interactions without overfitting when depth and leaf size are constrained
(30). The Balanced Bagging framework can be retrained with reduced
feature sets, allowing deployment when certain biomarkers (e.g., CTx)
are temporarily unavailable. SHAP analyses show that a core subset—
BMD, CTx, NLR, age, BMI—retains >90% of the model’s discriminative
capacity, supporting a “tiered” prediction approach adaptable to real-
world data completeness. These findings support a multidomain
approach to risk stratification that integrates densitometry, resorption
activity and inflammatory tone. Embedded within electronic health
records, the model can deliver patient-specific risk with SHAP-based
explanations, guiding optimisation of anti-resorptive therapy,
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calcium-vitamin D repletion and resistance exercise, and prioritising
high-risk patients for early intervention (36, 42). Our findings suggest
that the combination of bone-specific translational markers (especially
CTx), systemic inflammation index (NLR), and lumbar paravertebral
muscle health index (PMI) can lead to a multifactorial and
comprehensive assessment model of skeletal vulnerability.

In clinical applications, machine learning-based risk prediction tools
can help physicians identify at-risk individuals at an early stage and
implement personalized interventions for treatment. By comprehensively
evaluating individual patients, the model can be embedded into electronic
health record systems, providing clinicians with a more intuitive risk
assessment to identify women with osteoporosis whose biochemical or
imaging parameters indicate fracture vulnerability. Helps develop more
effective prevention and treatment strategies. Comprehensive factor
analysis helps identify patient deficiencies and provide multidimensional
interventions. Early intensive anti-osteoporosis treatment, optimization
of calcium-vitamin D status, and targeted resistance training can
effectively stop the transition from osteoporosis to bone loss, thereby
preventing the first OVCE For future clinical deployments, our strategy
is to reduce the need for bespoke data collection by leveraging data
generated from routine care and providing a calibrated, patient-specific
probability at the point of care. The production model uses nine routine
variables, and a five-feature configuration (BMD T-score, CTx, NLR, age,
BMI) retains >90% of the full models discriminative power. The tool
remains deployable in resource-limited settings, while federated updating
and periodic recalibration support sustainable, privacy-preserving model
improvement across hospitals. Unlike single-modality calculators (e.g.,
DEXA thresholds or turnover markers alone) or physics-only
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morphometric models, our framework integrates densitometry,
biochemical resorption activity, inflammatory tone, and clinical context
to produce calibrated, patient-specific probabilities with case-level
explanations. This multimodal, EHR-embeddable approach supports
targeted, modifiable interventions and remains deployable in resource-
limited settings via a five-feature configuration that preserves >90% of
full-model discrimination.

Although this study explored the risk factors for OVCF in
postmenopausal women with osteoporosis through multifactorial analysis
and machine learning modelling, there are still some limitations. First, this
study was a retrospective study with a single sample source. Future large-
scale prospective studies are needed to validate the broad applicability of
these risk factors and predictive models. All participants in the study were
recruited from China; therefore, genetic backgrounds, lifestyle factors, and
medical care may differ from other ethnic groups, which may not make the
model generalisable worldwide. Future prospective multicentre validation
in European and North American populations will be sought, as well as
recalibration of model thresholds for different ethnic backgrounds. In
addition, given the low prevalence and incomplete ascertainment of some
secondary causes of altered bone metabolism, we treated these factors as
exclusion criteria rather than including them as covariates in the model. As
a result, our model may not be generalisable to these subgroups and could
potentially underestimate the risk in such contexts. Thirdly, although the
baseline calibration was favorable, the time-varying treatment exposure
(osteoporosis treatment regimen) and adherence were not explicitly
modeled. Future studies should explore the influence of more potential
factors on secondary OVCEF in postmenopausal osteoporotic women to
further improve the prediction model.
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5 Conclusion

This study identifies low BMD, chronic inflammation, and bone
breaking indicator as key risk causes for osteoporotic vertebral
compression fractures (OVCEF) in postmenopausal women, while
regular anti-osteoporotic treatment reduces fracture risk. Multiple
machine learning developed provides a reliable tool for personalized
OVCF risk prediction, integrating clinical, biological, and
musculoskeletal data to enhance prevention and treatment strategies.
Future studies are needed to validate the model and explore additional
factors, improving its accuracy and clinical application.
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