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Background: Osteoporosis in postmenopausal women is characterized by 
significant bone mass loss due to reduced oestrogen, leading to an increased 
risk of osteoporotic vertebral compression fractures (OVCF). Comprehensive risk 
prediction models for diagnosing and predicting fracture risk in this population 
are still lacking.
Objective: This study aims to identify key risk factors for OVCF in postmenopausal 
osteoporotic women and develop a machine learning model to predict OVCF 
risk by integrating clinical, biological, and musculoskeletal data.
Methods: This retrospective case-control study included 486 postmenopausal 
women diagnosed with osteoporosis between 2015 and 2018. The patients 
were divided into a non-fracture group (Group A) and a vertebral fracture group 
(Group B) based on whether they developed OVCF during the subsequent 
5 years of treatment and follow-up. Univariate and multivariate logistic 
regression analyses were performed to identify independent risk factors for 
OVCF. Furthermore, a comprehensive risk prediction model was constructed 
using multiple machine learning algorithms.
Results: Among the 486 postmenopausal women, 269 (55.35%) experienced OVCF. 
Low bone mineral density (BMD), chronic inflammation, and sarcopenia were 
identified as independent risk factors, while regular anti-osteoporotic treatment 
was associated with a reduced fracture incidence. The Balanced Bagging machine 
learning model demonstrated an accuracy of 98.98%, a sensitivity of 98.24%, a 
specificity of 100.00%, and the model’s F1-score was 0.99. The deployed model 
outputs calibrated, patient-specific probabilities with case-level explanations and 
supports dynamic re-scoring as new BMD/CTx/NLR results become available, 
enabling personalized risk management in routine care.
Conclusion: The development of OVCF in postmenopausal osteoporotic 
women is influenced by a combination of bone metabolism, inflammatory 
processes, and muscle health. The machine learning model developed in 
this study provides a reliable and accurate tool for personalized OVCF risk 
prediction, allowing clinicians to optimize prevention and treatment strategies. 
Future large-scale prospective studies are required to validate these findings 
and enhance the model’s predictive capabilities.
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Highlights

	•	 Low bone mineral density (BMD), chronic inflammation 
(elevated NLR), and sarcopenia are identified as key independent 
risk factors for OVCF, while regular anti-osteoporotic treatment 
was associated with a reduced fracture incidence.

	•	 The Balanced Bagging machine learning model integrates 
clinical, biological, and musculoskeletal data to predict 
osteoporotic vertebral compression fracture (OVCF) risk in 
postmenopausal women with 98.98% accuracy, 98.24% 
sensitivity, 100.00% specificity and the model’s F1-score was 0.99.

	•	 Comprehensive multidimensional anti-osteoporosis therapy is 
expected to significantly reduce the incidence of OVCF, 
emphasizing the importance of comprehensive and 
multidimensional treatment of high-risk populations.

1 Introduction

Osteoporosis is characterized by reduced bone mass and 
disruption of bone microarchitecture. In postmenopausal women, 
oestrogen decline accelerates bone resorption, lowering bone mineral 
density (BMD) and increasing fragility fracture risk (1, 2). Among 
them, OVCF is one of the most frequent osteoporotic fractures (3). 
These fractures often occur in the thoracolumbar spine, leading to 
significant somatic pain and activity limitation, increasing the risk of 
disability and affecting patients’ quality of life (4, 5). Therefore, 
identifying the risk causes for OVCF in postmenopausal osteoporotic 
women and reducing the probability of fracture through effective 
preventive and therapeutic means are of great humanistic and 
socioeconomic importance. Despite numerous studies examining the 
relationship between osteoporosis and fragility fractures (4–8), the 
factors are not comprehensive enough to accurately assess the way 
they interact. Although BMD is widely used to diagnose osteoporosis 
and estimate fracture risk, reliance on BMD alone is insufficient 
because risk is also influenced by bone quality, systemic inflammation 
and bone turnover (9, 10). Moreover, the specific determinants of 
OVCF in postmenopausal women remain incompletely defined, and 
few studies have integrated diverse dimensions of risk in this 
population (11–14).

Bone turnover markers, including type I procollagen N-terminal 
propeptide (P1NP; formation) and carboxy-terminal cross-linked 
telopeptide of type I  collagen (CTx; resorption), reflect skeletal 
metabolism, while osteocalcin (BGP) indicates osteoblastic activity 
(14–17). Calcium (Ca), phosphorus (P) and vitamin D3 (Vit D3) 
contribute to bone health maintenance, and clinical factors such as 
nutrition, hypertension and diabetes mellitus may modify OVCF risk 
(18, 19). Low-grade inflammation, captured by the neutrophil-to-
lymphocyte ratio (NLR) and the systemic immune-inflammation 
index (SII), may potentiate bone resorption and fracture susceptibility 
(20). Emerging evidence links sarcopenia to higher vertebral fracture 
risk and poorer recovery. Postmenopausal women show greater age- 
and sex-related losses in muscle mass and strength, with more fatty 

infiltration of paraspinal muscles, supporting a role for muscle status 
in OVCF susceptibility. We therefore assessed the psoas major and 
multifidus muscle indices (PMI/MMI) as imaging surrogates (21, 22). 
Future work incorporating muscle quality and functional measures 
may clarify the incremental contribution of sarcopenia in 
postmenopausal osteoporosis. Against this background, we developed 
a machine-learning model that integrates clinical variables, 
densitometry, bone-turnover markers, inflammatory indices, and 
muscle metrics to identify the risk factors for OVCF and explore the 
correlations among these factors, thereby enabling personalized risk 
prediction and informing targeted prevention and treatment strategies 
(23, 24).

2 Methods

2.1 Management of the sample

The study protocol was approved by the Ethics Committee of the 
First Affiliated Hospital of Soochow University (2024 Lun Research 
Grant No. 728). This study investigated factors associated with 
osteoporotic vertebral compression fractures (OVCF) in 
postmenopausal women with osteoporosis. We  analyzed 486 
postmenopausal women diagnosed with primary osteoporosis 
between January 2015 and December 2018, all of whom received up 
to 5 years of outpatient follow-up. Patients were categorized into two 
groups based on the occurrence of OVCF. Inclusion criteria were: 
postmenopausal women with a menopause duration of 1–20 years, a 
diagnosis of primary osteoporosis, and regular follow-up for at least 
5 years. Exclusion criteria included severe congenital or acquired 
spinal deformities, conditions significantly affecting bone metabolism, 
and incomplete medical or imaging records. Among the diseases that 
significantly affect bone metabolism are (1) chronic kidney disease 
(eGFR <60 mL−1 min−1). (2) Hyper- or hypoparathyroidism and 
thyroid dysfunction. (3) Chronic liver disease (Child–Pugh B/C). (4) 
Malabsorption syndrome. (5) Active malignancy or recent 
chemotherapy/radiotherapy. (6) Long-term systemic glucocorticoid 
therapy (≥5 mg prednisolone >3 months), aromatase inhibitors, 
antiepileptic drugs, heparin/warfarin. (7) Severe rheumatoid arthritis 
or other inflammatory arthritis. (8) Chronic alcohol abuse.

2.2 Observation indicators

We retrospectively collected demographic data, laboratory results, 
and imaging information, including age, BMI, fracture history, 
histories of hypertension and diabetes, serum calcium, vitamin D3, 
osteocalcin (BGP), type I  collagen amino-terminal propeptide 
(P1NP), carboxy-terminal cross-linked telopeptide (CTx), bone 
mineral density (BMD), neutrophil-to-lymphocyte ratio (NLR), psoas 
major index (PMI), and multifidus muscle index (MMI). All patients 
underwent serological tests and dual-energy X-ray absorptiometry 
(DEXA) at diagnosis and during follow-up to assess BMD and bone 
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metabolism markers. Time 0 was defined as the date of the index 
DXA. A standardised baseline assessment pathway was implemented, 
whereby bone turnover markers and lumbar MRI (for PMI/MMI) 
were obtained routinely on the same day as DXA whenever feasible, 
and otherwise within four weeks. Osteoporosis was defined according 
to the World Health Organization (WHO) criteria using dual-energy 
X-ray absorptiometry (DXA) at the lumbar spine (L1–L4) or the total 
hip. A T-score of ≤−2.5 indicates osteoporosis. In addition, a T-score 
between −1.0 and −2.5, in conjunction with fragility fractures of the 
pelvis and lumbar spine, can also serve as diagnostic criteria for 
osteoporosis. Given that this study focuses on vertebral fragility 
fractures caused by decreased bone density, and based on prior 
research and clinical experience, we set a T-score of <−1.5 as the 
criterion for sample inclusion.

Anti-osteoporosis medications at baseline and during follow-up 
(bisphosphonates, denosumab, teriparatide, or SERMs) were 
extracted from the electronic record and summarised in Table 1. 
Regimens followed product labelling (denosumab 60 mg SC every six 
months; teriparatide 20 μg SC daily) with vitamin D and calcium 
supplementation. BMD was reassessed at least annually (six-monthly 
in selected cases). Incident OVCF events were identified from the 
electronic record and confirmed radiographically using predefined 
criteria. The case records documented that participants underwent 
scheduled annual lateral thoracolumbar radiographs and symptom-
triggered imaging to identify incident vertebral fractures. An incident 
vertebral fracture was defined according to Genant semi-quantitative 
criteria, or as a ≥20% and ≥4 mm reduction in vertebral body height 
(anterior, middle, or posterior) on follow-up compared with the most 
recent negative radiograph. Cases involving high-energy trauma were 
excluded, and each patient underwent lumbar magnetic resonance 
imaging (MRI) within 4 weeks of a radiograph showing a lumbar 
fracture to confirm the diagnosis.

Additionally, cross-sectional areas of the psoas and multifidus 
muscles at the L3 level were measured on T2-weighted MRI, with PMI 
and MMI calculated by normalizing muscle area to height squared 
(cm2/m2). Sarcopenia was defined as a PMI below 3.9 cm2/m2. All 
images were independently reviewed by two fellowship-trained 
musculoskeletal radiologists who were blinded to the clinical 
predictors, with disagreements resolved by consensus.

2.3 Statistical analysis

Statistical analysis was performed using SPSS software (version 27.0, 
IBM, United States), presenting continuous data as mean ± standard 
deviation analyzed with independent t-tests. Categorical data were 
evaluated using chi-square tests or Fisher’s exact tests. A p-value <0.05 
was considered significant. Variables that demonstrated significant 
differences in the univariate analysis were subsequently included in a 
multivariate logistic regression to identify independent risk factors for 
OVCF among postmenopausal women with osteoporosis. Prior to 
multivariable modelling, we assessed pairwise dependencies and applied 
a VIF threshold of <5.0 to evaluate collinearity. For clusters of biologically 
related predictors (e.g., SII with NLR; CTx with P1NP/BGP), we retained 
the clinically more parsimonious and statistically more robust variable 
(NLR and CTx, respectively). For transparency, BGP, P1NP, SII, and 
PMI were included in descriptive statistics and exploratory visualisations 
but were not carried forward into the comparative modelling process.

2.4 Model analysis

In this study, various machine learning models—including 
Logistic Regression, Naive Bayes, SVM, Decision Tree, AdaBoost, 
Gradient Boosting, and Balanced Bagging—were developed using 
Python 3.11.7 with the scikit-learn library. Since the retrospectively 
collected laboratory dataset contained only a small fraction of missing 
values, we employed the missForest algorithm, thereby minimizing 
information loss while preserving the underlying distribution 
structure. Model training employed 10-fold cross-validation and grid 
search for hyperparameter optimization: the former partitions the 
training data into 10 subsets, iteratively using nine for training and 
one for validation to reduce partition bias, while grid search 
systematically explores a predefined parameter space to identify the 
optimal parameter combination. Model performance was evaluated 
using metrics such as AUC, sensitivity, specificity, PPV, NPV, accuracy, 

TABLE 1  General data comparison between No vertebral fracture group 
(Group A) and Osteoporotic vertebral compression fracture group (Group 
B) patients.

Group A 
(n = 217)

Group B 
(n = 269)

p

Age [mean (SD)] 62.68 (5.29) 63.58 (3.86) 0.036

Weight [mean (SD)] 49.32 (8.53) 50.69 (7.00) 0.057

BMI [mean (SD)] 24.66 (4.71) 25.63 (5.64) 0.045

History of fracture (%) 0.001

 � Yes 14 (6.45) 74 (27.51)

 � No 203 (93.55) 195 (72.49)

Hypertension (%) 0.153

 � Yes 20 (9.22) 36 (13.38)

 � No 197 (90.78) 233 (86.62)

Diabetes (%) 0.031

 � Yes 7 (3.23) 21 (7.81)

 � No 210 (96.77) 248 (92.19)

BMD [mean (SD)] −2.56 (0.37) −2.79 (0.31) 0.001

Osteoporosis treatment (%) 0.011

 � Yes 184 (84.79) 203 (75.46)

 � No 33 (15.21) 66 (24.54)

Albumin [mean (SD)] 38.32 (7.71) 37.29 (5.52) 0.990

Calcium [mean (SD)] 2.36 (0.23) 2.32 (0.17) 0.027

Phosphorus [mean (SD)] 1.16 (0.17) 1.13 (0.21) 0.190

VitD3 [mean (SD)] 24.61 (6.71) 17.86 (7.27) 0.001

BGP [mean (SD)] 26.28 (8.52) 19.95 (8.98) 0.001

CTx [mean (SD)] 215.71 (182.05) 713.15 (329.80) 0.001

P1NP [mean (SD)] 33.02 (20.51) 75.14 (87.01) 0.001

NLR [mean (SD)] 1.98 (0.58) 2.12 (0.92) 0.044

SII [mean (SD)] 385.37 (115.41) 417.59 (218.94) 0.038

PMI [mean (SD)] 4.07 (0.63) 3.91 (0.57) 0.003

MMI [mean (SD)] 19.38 (4.96) 18.78 (5.12) 0.197

SD, standard deviation; BMI: body mass index; BGP, osteocalcin; CTx, C-terminal 
telopeptide of type I collagen; P1NP, procollagen type I N-terminal propeptide; NLR, 
neutrophil-to-lymphocyte ratio; SII, systemic immune inflammation index; PMI, psoas 
muscle index; MMI, multifidus muscle index.
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F1-score, and Brier Score, ensuring a comprehensive assessment of 
classification ability, stability, and calibration. To control overfitting in 
high-variance learners, we  imposed a priori constraints (for tree/
boosting models: max_depth ≤3, min_samples_leaf ≥20, learning_
rate ≤0.05) and used class-balanced resampling within a Balanced 
Bagging framework. Learning curve analyses showed that 
performance plateaued once the training sample exceeded 
approximately 200 cases; permutation tests (1,000 shuffles) yielded an 
AUC of approximately 0.50, indicating that the observed 
discrimination was not due to chance. Additionally, SHAP (SHapley 
Additive exPlanations) was applied to quantify each feature’s 
contribution to the model’s predictions, enhancing interpretability 
and providing insights into the decision-making process. The same 
individual can be re-scored at follow-up when new densitometry or 
laboratory results are available, allowing trajectory monitoring after 
treatment initiation or adjustment. A five-feature configuration (BMD 
T-score, CTx, NLR, age, BMI) preserved >90% of full-model 
discrimination, supporting deployment where selected assays 
are unavailable.

3 Result

3.1 Patient characteristics

A total of 486 postmenopausal osteoporotic women (mean age 
63.18 ± 4.57 years) were included, with 217 in the non-fracture group 
(Group A) and 269 in the OVCF group (Group B). Significant differences 
between groups were observed in BMI (p = 0.045), fracture history 
(p = 0.001), BMD (p = 0.001), calcium (p = 0.027), Vit D3 (p = 0.001), and 
bone turnover markers (CTx and P1NP, p = 0.001) (Table 1).

3.2 Visualization analysis

Box plots showed that Group B had significantly higher age and 
CTx levels, and lower BMD and Vit D3 levels (Figure 1). Bar charts 

revealed that Group B had a higher fracture history and lower 
osteoporosis treatment rates compared to Group A (Figure  2), 
suggesting that age, BMD, fracture history, and treatment status are 
key predictors of OVCF.

3.3 Univariate and multivariate analysis

Univariate analysis demonstrated significant associations 
(p < 0.05) between OVCF and variables such as age, BMI, fracture 
history, diabetes, BMD, osteoporosis treatment, calcium, Vit D3, CTx, 
P1NP, NLR, SII, and PMI. Multivariate logistic regression (Hosmer–
Lemeshow p = 0.565) identified age, BMI, fracture history, BMD, 
osteoporosis treatment, calcium, Vit D3, CTx, and NLR as 
independent risk factors for OVCF (Table 2).

3.4 Multi-model predictive analysis

Internal cross-validation (Figures  3, 4) showed that model 
performance stabilized with over 200 training samples. On the 
external dataset (Figure  5), the Balanced Bagging model 
outperformed others, achieving an AUC of 0.9956 and an accuracy 
of 98.98%, with high sensitivity and specificity. SHAP analysis 
(Figures 6, 7) indicated that CTx, BMD, BMI, NLR, age, and Vit D3 
were the most influential features—particularly CTx, BMD, and 
NLR—in discriminating between classes. Overall, the model 
effectively captured multidimensional patterns, supporting robust 
OVCF risk prediction.

4 Discussion

In this single-centre cohort of 486 postmenopausal women, 
we identified age, BMI, prior fracture, lower BMD, absence of anti-
osteoporotic treatment, lower calcium, lower Vit D3, higher CTx 
and higher NLR as independent correlates of OVCF, reflecting the 

FIGURE 1

Box plot comparison of continuous variables by groups. Using box plots and scatter points, it displays the median, quartiles, and outliers of each 
variable in different groups, providing a visual comparison of the differences between these variables.
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interplay of skeletal fragility, bone turnover and systemic 
inflammation (25). Our machine-learning analysis, using these nine 
features, achieved excellent discrimination and calibration; 
Balanced Bagging performed best (temporal hold-out AUC 0.9956; 
accuracy 98.98%), and learning curves plateaued beyond 
approximately 200 cases, supporting model stability. Brier score and 
calibration plots indicated well-calibrated probabilities. SHAP 
analyses consistently ranked CTx, BMD and NLR as the most 
influential contributors, with age, BMI and Vit D3 providing 
additional signal.

OVCF is the most prevalent complication of osteoporosis in 
postmenopausal women, typically affecting the thoracolumbar spine 

and causing pain, functional limitation and healthcare burden (26–
29). Lower BMD remained a dominant risk factor in our data, 
consistent with its status as the diagnostic standard and a core 
determinant of vertebral fragility. Reduced mineral content is 
accompanied by deterioration of microarchitecture (trabecular 
thinning, loss of connectivity and endplate microcracks), decreasing 
load-sharing capacity and raising the likelihood of wedge or 
biconcave deformities under routine activities (30–33). CTx, a 
marker of type I collagen degradation, reflects systemic osteoclastic 
activity. Elevated CTx signifies uncoupled remodelling with increased 
resorption cavities, transient porosity and weaker bone packets 
before secondary mineralisation is complete (34, 35). In the vertebral 

FIGURE 2

Categorical variable distribution between Group A and Group B. The graph shows the distribution of several categorical variables: treatment for 
osteoporosis, history of fracture, hypertension, and diabetes. The bar graph compares the counts for each category in these variables, providing a clear 
visual comparison of the frequency distribution between the two groups.

TABLE 2  Results of multi-factor logistic regression analysis of risk factors associated with osteoporotic vertebral compression fractures (OVCF) in 
postmenopausal women.

Influencing factor B OR Tolerance VIF 95% CI p

Age 0.249 1.283 0.968 1.033 1.132–1.453 0.001

BMI 0.267 1.306 0.877 1.141 1.149–1.486 0.001

History of fracture 0.805 1.242

 � No Reference

 � Yes 2.714 15.082 4.577–49.695 0.001

Diabetes 0.954 1.048

 � No Reference

 � Yes 1.444 4.236 0.844–21.274 0.080

BMD −5.515 0.004 0.842 1.187 0.001–0.026 0.001

Osteoporosis treatment 0.964 1.038

 � No Reference

 � Yes −1.507 0.221 0.072–0.678 0.008

Calcium −3.297 0.037 0.904 1.106 0.005–0.281 0.001

VitD3 −0.237 0.789 0.688 1.453 0.722–0.862 0.001

BGP −0.038 0.962 0.825 1.212 0.913–1.014 0.151

CTx 0.011 0.957 0.542 1.844 0.926–0.990 0.001

P1NP 0.017 0.521 0.544 1.838 0.319–0.851 0.225

NLR 0.780 2.182 0.521 1.920 1.046–4.552 0.037

SII −0.003 0.997 0.539 1.856 0.993–1.001 0.101

PMI −0.282 0.754 0.939 1.064 0.384–1.484 0.414
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body—rich in trabecular bone—this manifests as reduced stiffness 
and earlier yield under axial load. CTx outperformed formation 
markers (P1NP, BGP) for discrimination, implying that resorption 
acceleration, rather than formation dynamics, is the proximate driver 
of vertebral failure in this setting. SHAP showed monotonic risk 
escalation with rising CTx, supporting a dose-response relation. 
Chronic low-grade inflammation likely amplifies this risk: oestrogen 
decline is associated with increased pro-inflammatory cytokines (e.g., 
TNF-α, IL-6), which elevate NLR, suppress osteoblastic activity and 
enhance osteoclastic activity, thereby weakening bone structural 
strength (36–40). BMI showed a positive association with OVCF, a 
finding compatible with sarcopenic obesity and visceral adiposity, 
which promote systemic inflammation despite higher absolute mass; 
this may offset any mechanical protection conferred by weight alone 
(41). Although PMI was lower in the OVCF group at the univariate 
level, it did not remain independent after adjustment, suggesting that 

global anthropometry and biochemical drivers captured the 
incremental risk more parsimoniously in this dataset.

Among tested learners, the Balanced Bagging model yielded the 
lowest cross-validated deviance with favorable calibration, likely because 
bagging reduces variance under class imbalance and captures non-linear 
interactions without overfitting when depth and leaf size are constrained 
(30). The Balanced Bagging framework can be retrained with reduced 
feature sets, allowing deployment when certain biomarkers (e.g., CTx) 
are temporarily unavailable. SHAP analyses show that a core subset—
BMD, CTx, NLR, age, BMI—retains >90% of the model’s discriminative 
capacity, supporting a “tiered” prediction approach adaptable to real-
world data completeness. These findings support a multidomain 
approach to risk stratification that integrates densitometry, resorption 
activity and inflammatory tone. Embedded within electronic health 
records, the model can deliver patient-specific risk with SHAP-based 
explanations, guiding optimisation of anti-resorptive therapy, 

FIGURE 3

Internal validation results—cross-validation performance evaluation.

FIGURE 4

Learning curve analysis—training and validation accuracy trends.

FIGURE 5

External validation results—generalization performance evaluation.
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calcium-vitamin D repletion and resistance exercise, and prioritising 
high-risk patients for early intervention (36, 42). Our findings suggest 
that the combination of bone-specific translational markers (especially 
CTx), systemic inflammation index (NLR), and lumbar paravertebral 
muscle health index (PMI) can lead to a multifactorial and 
comprehensive assessment model of skeletal vulnerability.

In clinical applications, machine learning-based risk prediction tools 
can help physicians identify at-risk individuals at an early stage and 
implement personalized interventions for treatment. By comprehensively 
evaluating individual patients, the model can be embedded into electronic 
health record systems, providing clinicians with a more intuitive risk 
assessment to identify women with osteoporosis whose biochemical or 
imaging parameters indicate fracture vulnerability. Helps develop more 
effective prevention and treatment strategies. Comprehensive factor 
analysis helps identify patient deficiencies and provide multidimensional 
interventions. Early intensive anti-osteoporosis treatment, optimization 
of calcium-vitamin D status, and targeted resistance training can 
effectively stop the transition from osteoporosis to bone loss, thereby 
preventing the first OVCF. For future clinical deployments, our strategy 
is to reduce the need for bespoke data collection by leveraging data 
generated from routine care and providing a calibrated, patient-specific 
probability at the point of care. The production model uses nine routine 
variables, and a five-feature configuration (BMD T-score, CTx, NLR, age, 
BMI) retains >90% of the full model’s discriminative power. The tool 
remains deployable in resource-limited settings, while federated updating 
and periodic recalibration support sustainable, privacy-preserving model 
improvement across hospitals. Unlike single-modality calculators (e.g., 
DEXA thresholds or turnover markers alone) or physics-only 

morphometric models, our framework integrates densitometry, 
biochemical resorption activity, inflammatory tone, and clinical context 
to produce calibrated, patient-specific probabilities with case-level 
explanations. This multimodal, EHR-embeddable approach supports 
targeted, modifiable interventions and remains deployable in resource-
limited settings via a five-feature configuration that preserves >90% of 
full-model discrimination.

Although this study explored the risk factors for OVCF in 
postmenopausal women with osteoporosis through multifactorial analysis 
and machine learning modelling, there are still some limitations. First, this 
study was a retrospective study with a single sample source. Future large-
scale prospective studies are needed to validate the broad applicability of 
these risk factors and predictive models. All participants in the study were 
recruited from China; therefore, genetic backgrounds, lifestyle factors, and 
medical care may differ from other ethnic groups, which may not make the 
model generalisable worldwide. Future prospective multicentre validation 
in European and North American populations will be sought, as well as 
recalibration of model thresholds for different ethnic backgrounds. In 
addition, given the low prevalence and incomplete ascertainment of some 
secondary causes of altered bone metabolism, we treated these factors as 
exclusion criteria rather than including them as covariates in the model. As 
a result, our model may not be generalisable to these subgroups and could 
potentially underestimate the risk in such contexts. Thirdly, although the 
baseline calibration was favorable, the time-varying treatment exposure 
(osteoporosis treatment regimen) and adherence were not explicitly 
modeled. Future studies should explore the influence of more potential 
factors on secondary OVCF in postmenopausal osteoporotic women to 
further improve the prediction model.

FIGURE 7

SHAP analysis (positive)—feature importance for positive class. (a) SHAP summary dot plot. (b) SHAP waterfall plot for the 11th sample. (c) SHAP 
decision plot.

FIGURE 6

SHAP analysis (negative)—feature importance for negative class. (a) SHAP summary dot plot. (b) SHAP waterfall plot for the 11th sample. (c) SHAP 
decision plot.
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5 Conclusion

This study identifies low BMD, chronic inflammation, and bone 
breaking indicator as key risk causes for osteoporotic vertebral 
compression fractures (OVCF) in postmenopausal women, while 
regular anti-osteoporotic treatment reduces fracture risk. Multiple 
machine learning developed provides a reliable tool for personalized 
OVCF risk prediction, integrating clinical, biological, and 
musculoskeletal data to enhance prevention and treatment strategies. 
Future studies are needed to validate the model and explore additional 
factors, improving its accuracy and clinical application.
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