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Predicting mortality in intensive
care unit patients with CAUTI
using an interpretable machine
learning model: a retrospective
cohort study from MIMIC-1V
database

Longcha Liu, Xueshu Yu, Zhi Chen, Qixia Zhang and
Danwen Zhuang*

Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University,
Wenzhou, China

Objective: The aim of this study was to develop a reliable model for predicting
mortality in patients with catheter-associated urinary tract infection (CAUTI) in
intensive care unit (ICU).

Methods: The MIMIC-IV database was used for model development and
validation in this study. Data from the first 24 h of ICU admission were collected,
and 70% of the data were used to train the model and 30% to validate the model.
Four machine learning models, including XGBoost, DecisionTree (DT), Logistic
Regression (LR) and Random Forest (RF), were used to construct the prediction
model. The SHAP method was used to explain the best performance model.

Results: A total of 545 patients with CAUTI were finally included. The mortality
of ICU patients with CAUTI was 7.89% (43/545). The area under the curve (AUC)
of the Logistic regression model was 0.871, which showed better prediction
performance among the four models. The DecisionTree machine had limited
generalization ability, with an AUC of 0.542 and relatively poor prediction
accuracy. The SHAP technique revealed 13 most important predictors of CAUTI
in order of importance, among which use of vasoactive drugs,shock index,APSIII
score, and concomitant malignancy were identified as variables with high
predictive significance.

Conclusion: The interpretable prediction model used in this study can help
medical staff improve their ability to predict the risk of death in patients
with CAUTI in ICU.
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Introduction

Catheter-associated urinary tract infection (CAUTI) is one of
the most common health care-associated infections in critical care
settings worldwide. Epidemiological studies have shown that (1) the
incidence of CAUTI varies significantly across different healthcare
systems and economic contexts, ranging from 1.3 to 8.9 per 1000
catheter days. Critical CAUTT is closely related to poor outcomes.
Inlow- and middle-income countries (LMICs), the mortality rate of
CAUTT is as high as 31.14%. Studies have highlighted that CAUTI
prolongs the average length of hospital stay of patients by 17.84 days
and generates an additional cost of approximately US $1,006 per
case in the United States (1-3). Studies have suggested (4, 5) that
once a patient is diagnosed with CAUTI, the risk of related death
is about 10%, which brings heavy clinical and economic burden,
and the incidence of infection in ICU increases sharply, which
significantly affects the prognosis of patients. As the risk of infection
increases, especially in critically ill patients, it is critical to accurately
predict the risk of CAUTI related mortality, as this information
is essential for clinical decision making and appropriate resource
allocation (6, 7).

In recent years, the effectiveness of machine learning (ML)
in the field of healthcare prediction has been well demonstrated,
such as designing a predictive model for prolonged length of stay
(LOS) of extremely preterm infants (vpi) for risk management
and decision aid in the early postpartum period (8). And
machine learning analytics to diagnose and predict the incidence
of pneumonia in patients undergoing elective cardiac surgery
(9). Given the inherent ability of machine learning algorithms
to capture non-linear relationships, more and more researchers
advocate the development of new predictive models to improve
patient treatment outcomes.

The purpose of our study is to use the Medical Information
Database for Intensive Care (MIMIC-IV) to integrate key clinical
variables and develop an interpretable model to predict the risk of
death in patients with catheter-associated urinary tract infection
(CAUTI) in the intensive care unit (ICU). In addition, SHapley
Additive exPlanations (SHAP) method was used to explain the
model and explore the prognostic factors of CAUTI. Our study
provides reference for clinical medical staff by deeply exploring
the risk factors related to death. By identifying poor prognostic
outcomes in patients at an early stage of the disease, timely
interventions can be taken to improve patient survival, and
ultimately improve clinical decision-making and patient outcomes
(10, 11).

Materials and methods

Data source

This retrospective study utilized the Medical Information
Intensive Care (MIMIC-IV) database (v3.1), an iterative version
following MIMIC-IIL. The database complies with HIPAA security
regulations and ensures anonymization of the data. MIMIC-IV
contains a large amount of clinical data from 70,000 adult intensive
care unit (ICU) patients at the Boston Diabetes Research Institute
(BIDMC) between 2008 and 2019 (12).
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All patient data within the database is anonymized, obviating
the need for informed consent. In adherence to the ethical
standards articulated in the 1964 Declaration of Helsinki and its
subsequent amendments, the study was conducted. Access to the
database was secured following the completion of the National
Institutes of Health Web-based training course and the Protecting
Human Research Participants examination (No. 43258214).

Participant selection

Patients fulfilling specific criteria were screened through the
MIMIC-IV database (version 3.1) for this study. We identified
individuals in the database meeting the following criteria:

(1) patients were diagnosed with CAUTI according to the
International Classification of Diseases, as indicated by ICD-9
codes, or ICD-10 codes;

(2) only the initial ICU admission date was considered for
patients with multiple ICU admissions;

(3) patients were aged 18 years or older.

Patients who had more than 30% missing values were excluded
(13). Ultimately, 545 patients were enrolled in this study (Figure 1).

Data extraction, preparation, and
definitions

The predicted outcome was the probability of death during
a stay in the intensive care unit (ICU). Baseline demographic
variables, comorbidities, vital signs, length of hospital stay,
severity scores, and laboratory data were extracted from the
MIMIC database based on previous studies as well as expert
input and implemented using SQL (Structured Query Language)
programming. With the exception of length of stay, vital signs
were collected within the first 24 h after each ICU admission,
whereas other variables were measured at admission. In addition, in
order to avoid overfitting, the least absolute shrinkage and selection
operator (LASSO) method was used for variable selection and
screening, and the LASSO regression was used to select the optimal
regularization parameter by 10-fold cross-validation (14).

Management of missing data

Missing data often occur in the MIMIC-IV database. However,
if these missing values are ignored during the analysis, the results
may be biased. Therefore, we used chained equation multiple
imputation (MICE) to deal with missing values, and the number
of imputation was set to 5 times to deal with missing data (15).
The proportion of missing values in each of the selected variables
was less than 30%.

Machine learning explainable tool
The prediction model is interpreted by SHAPmethod, which

is a comprehensive method that can accurately evaluate the
contribution and influence of each feature on the final prediction

frontiersin.org


https://doi.org/10.3389/fmed.2025.1665035
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Liu et al. 10.3389/fmed.2025.1665035
Patients with a diagnosis of catheter-
associated urinary tract infection
according to ICD-9/10 codes in the
MIMIC-IV (v3.1) database
(N=1344)
Exclud not admitted to the ICU (N=799)
Exclud admission age less than 18 years (N=0)
N=545
=< Exclud missing data more than 30%(N=0) )
\
N=545
Y
Survivors Non-survivors
N=502 N=43
FIGURE 1

Flowchart for patient selection. ICD, international classification of diseases.

result. SHAP analysis is implemented based on the SHAP 0.44.0
library of Python 3.8 (16). SHAP values indicate the extent to which
each predictor variable affects the target variable, either positively
or negatively. Furthermore, each data point can be understood by
its specific set of SHAP values.

Statistical analysis

data
integrates

used for
that
programming language environments and realizes data processing,

software is analysis,

platform

DecisionLinnc1.0
DecisionLinncl.0 is a multiple
data analysis and machine learning through a visual interface
(17). Categorical variables were presented as total amounts and
percentages, and the chi-square test or Fisher exact probability
method was used to compare the differences between different
groups. Continuous variables were expressed as medians and
interquartile ranges (IQR), and comparisons between the two
groups were performed with the use of the Wilcoxon rank-sum test.

Four machine learning models -XGBoost, DecisionTree (DT),
Logistic Regression (LR), and Random Forest (RF) -were used
to construct the prediction model. The predictive performance of
each model was evaluated by the area under the receiver operating
characteristic curve. In addition, we calculated accuracy, precision,
and F1 scores. In addition, in order to evaluate the practicality of
the model in decision making by quantifying the net benefits under

Frontiers in Medicine

03

different threshold probabilities, decision curve analysis (DCA) was
performed (18).

Results

Patient characteristics

In this study, 545 adult patients diagnosed with CAUTT were
included out of a total of 1344 patients with CAUTI in the MIMIC-
IV database. The depiction of the patient screening process can be
observed in Figure 1.

Table 1 presents the baseline characteristics of 545 patients who
fulfilled the inclusion criteria, categorized into the ICU survival
group and non-survival group. The mortality rate of ICU patients
diagnosed with CAUTI was 7.89% (43/545). Among these patients,
there were 261 females (47.89%) and 284 males (52.11%), with
a median age of 74 (21-99) years, and the age difference was
not significant (P = 0.803). In terms of length of hospital stay,
the median length of hospital stay was 11.94 days for survivors
and 15.86 days for non-survivors (P = 0.117), and there was
no significant difference in length of ICU stay (P = 0.065).
Severity of illness score showed that SOFA score, APSIII score,
APSII score, OASIS score and shock index of non-survivors
were significantly higher than those of survivors (P < 0.05).
The duration of mechanical ventilation of non-survivors was
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TABLE 1 All variables for patients with CAUTI (N = 545).

Variable names

Number

545 ‘

10.3389/fmed.2025.1665035

Survivors Non-survivors
502 43

|

Demographics
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Age(years), median (IQR) 74 (21-99) 75 (21-99) 73 (30-93) 0.803
Gender (male), n(%) 284 (52.11) 260 (51.79) 24 (55.81) 0.728
Length of stay
Hosp_day, days 12.19 (0.43-211.14) 11.94 (1.48-161.54) 15.86 (0.43-211.14) 0.117
ICU_day, days 2.52(0.06-95.84) 2.475 (0.06-95.84) 3.78 (0.36-66.27) 0.065
Ventilation
Ventilation (%) 402 (73.76) 367 (73.11) 35 (81.40) 0.315
Ventilation_hour 18 (0-1692.28) 17.8 (0-1692.28) 26 (0-1541) 0.004
Comorbidities, n (%)
Hypertension (%) 203 (37.25) 190 (37.85) 13 (30.23) 0.408
Cancer (%) 104 (19.08) 90 (17.93) 14 (32.56) 0.032
Heart failure (%) 182 (33.39) 162 (32.27) 20 (46.51) 0.083
Acute kidney injury (%) 275 (50.46) 243 (48.41) 32 (74.42) 0.002
Type 1 diabetes mellitus (%) 15 (2.75) 14 (2.79) 1(2.33) 1.000
Type 2 diabetes mellitus (%) 175 (32.11) 156 (31.08) 19 (44.19) 0.110
Vital signs, median (IQR)
Nibp_mean, mmHg 80 (31-166) 80 (31-166) 79 (35-122) 0.471
Temperature, F 98.2 (86.5-103.4) 98.2 (86.5-103.4) 98.2 (92.9-101.4) 0.186
Heart rate, beats/min 90 (41-178) 89.5 (41-178) 97 (65-137) 0.009
Respiratory rate, times/min 19 (0-50) 19 (0-50) 23 (12-42) 0.001
SpO3 (%) 98 (64-100) 98 (64-100) 97 (84-100) 0.042
Severity scoring
SOFA 4(0-17) 4(0-17) 7 (1-16) <0.001
APSIIT 46 (13-135) 45 (13-114) 64 (21-135) <0.001
APSII 38 (6-100) 37 (6-88) 48 (21-100) <0.001
OASIS 31 (12-56) 31 (12-56) 37 (24-56) <0.001
GCS 14 (3-15) 14 (3-15) 14 (3-15) 0.159
Charlson comorbidity index 6(0-17) 6(0-17) 7 (1-14) 0.034
Shock index 1.071 (0.316-3.812) 1.049 (0.316-3.812) 1.578 (0.611-3.167) <0.001
Laboratory variables, median (IQR)
Hemoglobin, g/dL 9.8 (2.7-18.8) 9.8 (2.7-18.8) 8.8 (5.9-17.7) 0.024
Red_blood_cells,10"2L 3.38 (1.36-7.04) 3.39 (1.36-7.04) 3.11 (2.01-5.85) 0.109
White_blood_cells,10°/L 10.9 (0.4-66.7) 10.8 (1-66.7) 12.6 (0.4-50.8) 0.114
Rdw (%) 15.3 (11.7-28.8) 152 (11.7-28.8) 16.2 (12.5-24.2) 0.001
Platelet_count,10°/L 214 (8-847) 213 (25-847) 226 (8-763) 0.906
Hematocrit (%) 30.3 (9.6-58.8) 30.55 (9.6-58.8) 27.3 (19.8-55.3) 0.042
Urea_nitrogen, mg/dL 24 (4-184) 24 (4-184) 42 (9-141) <0.001
Creatinine, mg/dL 1.1 (0.2-8.7) 1.1(0.2-8.7) 1.8 (0.4-6.3) 0.008
Alanine_aminotransferase, U/L 21 (3-5970) 20 (3-5970) 25 (4-620) 0.944
Bilirubin_total, umol/L 0.5 (0.1-17.9) 0.5 (0.1-17.9) 0.5(0.1-12.9) 0.281
Aspartate_aminotransferase, U/L 30 (6-4494) 30 (6-4494) 32 (11-825) 0.601
Lactate (mmol/L) 1.5 (0.4-12) 1.5 (0.4-11) 1.8 (0.5-12) 0.020
(Continued)
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TABLE 1 (Continued)

Variable names

Overall ‘ Non-survivors P-value ‘

10.3389/fmed.2025.1665035

PH 7.38 (6.87-7.62) 7.39 (6.87-7.62) 7.35(7.06-7.51) 0.025
INR(PT) 1.3 (0.9-7.5) 1.3 (0.9-7.5) 1.4 (1-5.9) 0.005
PT(sec) 14.1 (10.1-82.2) 14 (10.1-82.2) 15.5 (10.9-65.1) 0.002
Drugs

Sedative analgesic (%) 229 (42.02) 202 (40.24) 27 (62.79) 0.007
Vasopressor (%) 229 (42.02) 199 (39.64) 30 (69.77) <0.001
Glucocorticoids (%) 144 (26.42) 129 (25.70) 15 (34.88) 0.258
Antihypertensive (%) 358 (65.69) 324 (64.54) 34 (79.07) 0.079

Nibp, non-invasive blood pressure; SpO2, O2 saturation; APSIII, acute physiology and chronic health evaluation III; SOFA, sequential organ failure assessment; SAPSII, simplified acute

physiology score II; OASIS, oxford acute illness severity score; Rdw, red blood cell distribution width; PT, prothrombin time.

significantly longer (P = 0.004), and vital signs such as heart rate,
respiratory rate, and blood oxygen saturation showed significant
differences. Among the laboratory indicators, lactic acid, PH value,
international normalized ratio of prothrombin time and creatinine
were significantly poor in non-survivors (P < 0.05). In terms of
complications, the incidence of acute renal failure was significantly
higher in non-survivors, as was the incidence of malignancies. In
terms of drug use, the use of sedatives, analgesics and vasoactive
drugs in non-survivors was significantly higher than that in
survivors (P < 0.05). The LASSO regularization method was used
to select 13 potential predictors from the training dataset, and these
factors were used for model development.

Model building and evaluation

The dataset was divided in a random fashion into two parts:
70% of the data was used to train the model, while 30% was
used to validate the model. In the training dataset, we built four
models: XGBoost, Logistic Regression (LR), Random Forest (RF),
and Decision Tree (DT). The AUC values obtained from the test
dataset are shown in Figure 2 and Table 2, respectively. Among
these models, LR showed superior predictive performance with an
AUC of 0.871, while DT had the lowest generalization ability with
an AUC of 0.542. The net benefit of the best-performing model was
compared with an alternative approach to clinical Decision making
using Decision Curve Analysis (DCA) on the test dataset.

We evaluated the overall payoffs at different probability
thresholds. The assumptions in Figure 3, represented by the black
line, assume that all patients received the intervention. On the other
hand, the dashed line represents the case where no patient received
any intervention. Given the diverse nature of the study population,
developing a treatment strategy based on any of the four machine-
learning models would be preferable to treating all or none of the
patients by default.

Explanation model with the SHAP
method

The SHAP algorithm was used to determine the importance of
each predictor variable in the prediction results of the LR model.
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The variable importance map presents a list of variables ranked
from highest to lowest according to their level of importance.

The use of vasoactive agents was considered to have the highest
predictive value of all prediction periods, followed by the shock
index, coexisting malignancies and APSIII score (Figure 4).

In addition, SHAP values were used to identify predictor
variables that had a significant effect on mortality risk and to
determine their positive or negative association with the target
outcome. As shown in Figure 5, the horizontal position indicates
whether the effect of the value is associated with an increase or
decrease in the predicted value, while the color indicates the high
or low state of the variable in a particular observation.

SHAP heat force plots

Figure 6 shows the heat force plots for patients who did not
survive and survived. The SHAP values provide insights into the
predictive factors of individual patients and quantify the impact of
each factor on mortality prediction. The numbers highlighted in
bold represent the probabilistic predictions (f(x)), while the base
values indicate the predictions made by the model without any
input. The log odds ratio of each observation is represented by the
function f(x). The left side displays red features that are associated
with an elevated risk of mortality, while the blue features represent
factors linked to a reduced risk of mortality. The magnitude of the
effect on the prediction can be easily visualized by observing the
length of the arrows.

Discussion

In this study, we used a comprehensive intensive care unit
(ICU) database to perform a retrospective cohort analysis. We
focused on the development and validation of four different
machine-learning algorithms that effectively predicted mortality in
patients diagnosed with catheter-associated urinary tract infection
(CAUTI). XGBoost, DT, and RF were all outperformed by the
logistic regression (LR) model. The area under the curve (AUC)
of the Logistic regression model was 0.871, which showed better
prediction performance among the four models. The DecisionTree
machine had limited generalization ability, with an AUC of 0.542
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ROC Curve Plot
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FIGURE 2

The ROC curve was used to compare the performance of four models in predicting the ICU mortality rate of patients with CAUTI.
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Decision curve analysis of four models plotting the net benefit at different threshold probilities.

and relatively poor prediction accuracy. The poor performance
of decision tree models may be related to overfitting, and its
complex branch structure has limited generalization ability in small
samples. Random Forest and XGBoost were prone to overfitting
and calibration drift because the effective number of events was
insufficient to stabilize their large parameter spaces. The superior

Frontiers in Medicine

performance of logistic regression may be due to the linear
separability of CAUTI mortality prediction and its resistance to
overfitting in small samples. In order to ensure the interpretability
of the logistic regression model while maintaining its performance,
we adopted the SHAP method for interpretation. This will enhance
the understanding of the decision-making process of the model by
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the predicted results. It was observed that within this range, logistic FIGURE 5
regression showed superior performance. In the field of intensive The SHapley Additive exPlanation (SHAP) values. SpO2, O2
care research, logistic regression has gained significant popularity saturation; APSIII, acute physiology and chronic health evaluation
X T ) Lo i ; . IIl; VP, vasopressor; SA, sedative snalgesic; PT, prothrombin time;
due to its application in predicting patient mortality during AKI, acute kidney injury; OASIS, oxford acute illness severity score;
hospitalization, thus potentially helping healthcare professionals to Rdw, red blood cell distribution width; SHAP, SHapley Additive
make informed decisions (19-21). exPlanation.

It is essential to evaluate the advantages of early mortality
prediction in clinical practice. In this study, 545 adult patients were
included from 1344 CAUTI patients diagnosed in the MIMIC-
IV database. The mortality of CAUTI patients in intensive care
unit (ICU) was 7.89% (43/545). We utilized SHAP to elucidate
the LR model and identify key factors associated with in-hospital
mortality in CAUTI patients. Shock index, use of vasoactive drugs,
concomitant malignancy, and APSIII score were identified as
variables with high predictive significance. SHAP risk threshold
can help early identification of high-risk patients, and it is
recommended to integrate it into the early warning system of ICU
electronic medical record.

However, relatively few studies have investigated the risk
factors for mortality in patients with catheter-associated urinary

tract infection (CAUTI). A high shock index indicates possible
hemodynamic instability and is associated with increased mortality
in critically ill patients (3). This instability reflects the inability
of the body to maintain adequate perfusion and oxygenation of
organs, which impairs their function and leads to multiple organ
failure, especially in the context of infections such as CAUTI (22).
The use of vasoactive drugs usually indicates the presence of severe
inflammation and significant cardiovascular damage in patients,
and may lead to an increase in CAUTI mortality (5). Patients
with malignancies often have compromised immune systems due
to the disease itself or treatment options such as chemotherapy
and radiotherapy, making them more susceptible to infections,

1
f(x)=0.0203

8 other features

SHAP Heat Force Plot

Shock_index=0.845 Sp02=100 AKI=0

E[f(x)]=0.0733

0.000 0.025

FIGURE 6

Additive exPlanation.
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SHapley Additive exPlanation (SHAP) force plot. SpO2, O2 saturation; VP, vasopressor; SA, sedative analgesic; AKI, acute kidney injury; SHAP, SHapley
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TABLE 2 Evaluation of predictive performance for each model.

AROC ———preciion |

Model name

Random forest 0.8963 0.1905 0.7752 0.3333

XGBoost 0.9024 0.3333 0.7749 0.4444

Decision tree 0.8659 0.1538 0.5418 0.1818
Logistic regression 0.9146 0.3 0.8707 0.6

including CAUTI. Studies have shown (23) that patients with
cancer face a high incidence of CAUTI, which is associated with
an increased risk of death associated with these infections, and
that the metabolic activity of the tumor and the potential to
develop neutropenia further complicate the treatment of such
patients and increase the risk of serious complications. Malignancy
is an independent risk factor for 28-day mortality in patients
with CAUTIL APSIII is a scoring system that assesses disease
severity based on various physiological parameters; higher scores
are associated with an increased risk of death in critically ill patients
and can be used as a predictor of clinical outcomes (24). In the
future, bedside CDSS tools can be developed to generate death risk
scores by entering physiological parameters in real time. However,
due to the lack of an external validation cohort, further studies are
needed to explore the applicability of this research approach.

Limitations

The strength of our research is attributed to the use of a large
sample size obtained from the MIMIC database, and the statistical
results are quite persuasive. However, there are several limitations
in this study. Firstly, since our data were taken from a publicly
accessible database, some variables were incomplete. Secondly, all
data originated from ICU patients in the MIMIC database, which
raises questions about how well our model can be applied to other
populations. Thirdly, our mortality prediction models relied on
information available within the first 24 h of each ICU admission;
this may overlook subsequent events that could alter prognosis and
introduce confounding factors to some degree. Lastly, due to the
absence of an external validation cohort, the effectiveness of the
developed LR model in clinical practice may be limited.

Conclusion

This study provides a methodological basis for the development
of a real-time prediction tool for mortality risk in the ICU
and demonstrates the utility of artificial intelligence in accurately
predicting catheter-associated urinary tract infection (CAUTI) and
mortality in patients admitted to the intensive care unit (ICU).
We created an interpretable logistic regression prediction model
that performed best in assessing the risk of death in patients with
CAUTI. Moreover, this interpretable machine learning approach
enables effective identification of risk factors associated with
CAUTI patients and will help healthcare providers to identify
CAUTI patients with high mortality risk, enabling them to take
timely and effective treatment measures.
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