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Objective: The aim of this study was to develop a reliable model for predicting 

mortality in patients with catheter-associated urinary tract infection (CAUTI) in 

intensive care unit (ICU). 

Methods: The MIMIC-IV database was used for model development and 

validation in this study. Data from the first 24 h of ICU admission were collected, 

and 70% of the data were used to train the model and 30% to validate the model. 

Four machine learning models, including XGBoost, DecisionTree (DT), Logistic 

Regression (LR) and Random Forest (RF), were used to construct the prediction 

model. The SHAP method was used to explain the best performance model. 

Results: A total of 545 patients with CAUTI were finally included. The mortality 

of ICU patients with CAUTI was 7.89% (43/545). The area under the curve (AUC) 

of the Logistic regression model was 0.871, which showed better prediction 

performance among the four models. The DecisionTree machine had limited 

generalization ability, with an AUC of 0.542 and relatively poor prediction 

accuracy. The SHAP technique revealed 13 most important predictors of CAUTI 

in order of importance, among which use of vasoactive drugs,shock index,APSIII 

score, and concomitant malignancy were identified as variables with high 

predictive significance. 

Conclusion: The interpretable prediction model used in this study can help 

medical staff improve their ability to predict the risk of death in patients 

with CAUTI in ICU. 
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Introduction 

Catheter-associated urinary tract infection (CAUTI) is one of 
the most common health care-associated infections in critical care 
settings worldwide. Epidemiological studies have shown that (1) the 
incidence of CAUTI varies significantly across dierent healthcare 
systems and economic contexts, ranging from 1.3 to 8.9 per 1000 
catheter days. Critical CAUTI is closely related to poor outcomes. 
In low- and middle-income countries (LMICs), the mortality rate of 
CAUTI is as high as 31.14%. Studies have highlighted that CAUTI 
prolongs the average length of hospital stay of patients by 17.84 days 
and generates an additional cost of approximately US $1,006 per 
case in the United States (1–3). Studies have suggested (4, 5) that 
once a patient is diagnosed with CAUTI, the risk of related death 
is about 10%, which brings heavy clinical and economic burden, 
and the incidence of infection in ICU increases sharply, which 
significantly aects the prognosis of patients. As the risk of infection 
increases, especially in critically ill patients, it is critical to accurately 
predict the risk of CAUTI related mortality, as this information 
is essential for clinical decision making and appropriate resource 
allocation (6, 7). 

In recent years, the eectiveness of machine learning (ML) 
in the field of healthcare prediction has been well demonstrated, 
such as designing a predictive model for prolonged length of stay 
(LOS) of extremely preterm infants (vpi) for risk management 
and decision aid in the early postpartum period (8). And 
machine learning analytics to diagnose and predict the incidence 
of pneumonia in patients undergoing elective cardiac surgery 
(9). Given the inherent ability of machine learning algorithms 
to capture non-linear relationships, more and more researchers 
advocate the development of new predictive models to improve 
patient treatment outcomes. 

The purpose of our study is to use the Medical Information 
Database for Intensive Care (MIMIC-IV) to integrate key clinical 
variables and develop an interpretable model to predict the risk of 
death in patients with catheter-associated urinary tract infection 
(CAUTI) in the intensive care unit (ICU). In addition, SHapley 
Additive exPlanations (SHAP) method was used to explain the 
model and explore the prognostic factors of CAUTI. Our study 
provides reference for clinical medical sta by deeply exploring 
the risk factors related to death. By identifying poor prognostic 
outcomes in patients at an early stage of the disease, timely 
interventions can be taken to improve patient survival, and 
ultimately improve clinical decision-making and patient outcomes 
(10, 11). 

Materials and methods 

Data source 

This retrospective study utilized the Medical Information 
Intensive Care (MIMIC-IV) database (v3.1), an iterative version 
following MIMIC-III. The database complies with HIPAA security 
regulations and ensures anonymization of the data. MIMIC-IV 
contains a large amount of clinical data from 70,000 adult intensive 
care unit (ICU) patients at the Boston Diabetes Research Institute 
(BIDMC) between 2008 and 2019 (12). 

All patient data within the database is anonymized, obviating 
the need for informed consent. In adherence to the ethical 
standards articulated in the 1964 Declaration of Helsinki and its 
subsequent amendments, the study was conducted. Access to the 
database was secured following the completion of the National 
Institutes of Health Web-based training course and the Protecting 
Human Research Participants examination (No. 43258214). 

Participant selection 

Patients fulfilling specific criteria were screened through the 
MIMIC-IV database (version 3.1) for this study. We identified 
individuals in the database meeting the following criteria: 

(1) patients were diagnosed with CAUTI according to the 
International Classification of Diseases, as indicated by ICD-9 
codes, or ICD-10 codes; 

(2) only the initial ICU admission date was considered for 
patients with multiple ICU admissions; 

(3) patients were aged 18 years or older. 
Patients who had more than 30% missing values were excluded 

(13). Ultimately, 545 patients were enrolled in this study (Figure 1). 

Data extraction, preparation, and 
definitions 

The predicted outcome was the probability of death during 
a stay in the intensive care unit (ICU). Baseline demographic 
variables, comorbidities, vital signs, length of hospital stay, 
severity scores, and laboratory data were extracted from the 
MIMIC database based on previous studies as well as expert 
input and implemented using SQL (Structured Query Language) 
programming. With the exception of length of stay, vital signs 
were collected within the first 24 h after each ICU admission, 
whereas other variables were measured at admission. In addition, in 
order to avoid overfitting, the least absolute shrinkage and selection 
operator (LASSO) method was used for variable selection and 
screening, and the LASSO regression was used to select the optimal 
regularization parameter λ by 10-fold cross-validation (14). 

Management of missing data 

Missing data often occur in the MIMIC-IV database. However, 
if these missing values are ignored during the analysis, the results 
may be biased. Therefore, we used chained equation multiple 
imputation (MICE) to deal with missing values, and the number 
of imputation was set to 5 times to deal with missing data (15). 
The proportion of missing values in each of the selected variables 
was less than 30%. 

Machine learning explainable tool 

The prediction model is interpreted by SHAPmethod, which 
is a comprehensive method that can accurately evaluate the 
contribution and influence of each feature on the final prediction 
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FIGURE 1 

Flowchart for patient selection. ICD, international classification of diseases. 

result. SHAP analysis is implemented based on the SHAP 0.44.0 
library of Python 3.8 (16). SHAP values indicate the extent to which 
each predictor variable aects the target variable, either positively 
or negatively. Furthermore, each data point can be understood by 
its specific set of SHAP values. 

Statistical analysis 

DecisionLinnc1.0 software is used for data analysis, 
DecisionLinnc1.0 is a platform that integrates multiple 
programming language environments and realizes data processing, 
data analysis and machine learning through a visual interface 
(17). Categorical variables were presented as total amounts and 
percentages, and the chi-square test or Fisher exact probability 
method was used to compare the dierences between dierent 
groups. Continuous variables were expressed as medians and 
interquartile ranges (IQR), and comparisons between the two 
groups were performed with the use of the Wilcoxon rank-sum test. 

Four machine learning models -XGBoost, DecisionTree (DT), 
Logistic Regression (LR), and Random Forest (RF) -were used 
to construct the prediction model. The predictive performance of 
each model was evaluated by the area under the receiver operating 
characteristic curve. In addition, we calculated accuracy, precision, 
and F1 scores. In addition, in order to evaluate the practicality of 
the model in decision making by quantifying the net benefits under 

dierent threshold probabilities, decision curve analysis (DCA) was 
performed (18). 

Results 

Patient characteristics 

In this study, 545 adult patients diagnosed with CAUTI were 
included out of a total of 1344 patients with CAUTI in the MIMIC-
IV database. The depiction of the patient screening process can be 
observed in Figure 1. 

Table 1 presents the baseline characteristics of 545 patients who 
fulfilled the inclusion criteria, categorized into the ICU survival 
group and non-survival group. The mortality rate of ICU patients 
diagnosed with CAUTI was 7.89% (43/545). Among these patients, 
there were 261 females (47.89%) and 284 males (52.11%), with 
a median age of 74 (21–99) years, and the age dierence was 
not significant (P = 0.803). In terms of length of hospital stay, 
the median length of hospital stay was 11.94 days for survivors 
and 15.86 days for non-survivors (P = 0.117), and there was 
no significant dierence in length of ICU stay (P = 0.065). 
Severity of illness score showed that SOFA score, APSIII score, 
APSII score, OASIS score and shock index of non-survivors 
were significantly higher than those of survivors (P < 0.05). 
The duration of mechanical ventilation of non-survivors was 
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TABLE 1 All variables for patients with CAUTI (N = 545). 

Variable names Overall Survivors Non-survivors P-value 

Number 545 502 43 

Demographics 

Age(years), median (IQR) 74 (21–99) 75 (21–99) 73 (30–93) 0.803 

Gender (male), n(%) 284 (52.11) 260 (51.79) 24 (55.81) 0.728 

Length of stay 

Hosp_day, days 12.19 (0.43–211.14) 11.94 (1.48–161.54) 15.86 (0.43–211.14) 0.117 

ICU_day, days 2.52 (0.06–95.84) 2.475 (0.06–95.84) 3.78 (0.36–66.27) 0.065 

Ventilation 

Ventilation (%) 402 (73.76) 367 (73.11) 35 (81.40) 0.315 

Ventilation_hour 18 (0–1692.28) 17.8 (0–1692.28) 26 (0–1541) 0.004 

Comorbidities, n (%) 

Hypertension (%) 203 (37.25) 190 (37.85) 13 (30.23) 0.408 

Cancer (%) 104 (19.08) 90 (17.93) 14 (32.56) 0.032 

Heart failure (%) 182 (33.39) 162 (32.27) 20 (46.51) 0.083 

Acute kidney injury (%) 275 (50.46) 243 (48.41) 32 (74.42) 0.002 

Type 1 diabetes mellitus (%) 15 (2.75) 14 (2.79) 1 (2.33) 1.000 

Type 2 diabetes mellitus (%) 175 (32.11) 156 (31.08) 19 (44.19) 0.110 

Vital signs, median (IQR) 

Nibp_mean, mmHg 80 (31–166) 80 (31–166) 79 (35–122) 0.471 

Temperature, F 98.2 (86.5–103.4) 98.2 (86.5–103.4) 98.2 (92.9–101.4) 0.186 

Heart rate, beats/min 90 (41–178) 89.5 (41–178) 97 (65–137) 0.009 

Respiratory rate, times/min 19 (0–50) 19 (0–50) 23 (12–42) 0.001 

SpO2 (%) 98 (64–100) 98 (64–100) 97 (84–100) 0.042 

Severity scoring 

SOFA 4 (0–17) 4 (0–17) 7 (1–16) <0.001 

APSIII 46 (13–135) 45 (13–114) 64 (21–135) <0.001 

APSII 38 (6–100) 37 (6–88) 48 (21–100) <0.001 

OASIS 31 (12–56) 31 (12–56) 37 (24–56) <0.001 

GCS 14 (3–15) 14 (3–15) 14 (3–15) 0.159 

Charlson comorbidity index 6 (0–17) 6 (0–17) 7 (1–14) 0.034 

Shock index 1.071 (0.316–3.812) 1.049 (0.316–3.812) 1.578 (0.611–3.167) <0.001 

Laboratory variables, median (IQR) 

Hemoglobin, g/dL 9.8 (2.7–18.8) 9.8 (2.7–18.8) 8.8 (5.9–17.7) 0.024 

Red_blood_cells,1012L 3.38 (1.36–7.04) 3.39 (1.36–7.04) 3.11 (2.01–5.85) 0.109 

White_blood_cells,109/L 10.9 (0.4–66.7) 10.8 (1–66.7) 12.6 (0.4–50.8) 0.114 

Rdw (%) 15.3 (11.7–28.8) 15.2 (11.7–28.8) 16.2 (12.5–24.2) 0.001 

Platelet_count,109/L 214 (8–847) 213 (25–847) 226 (8–763) 0.906 

Hematocrit (%) 30.3 (9.6–58.8) 30.55 (9.6–58.8) 27.3 (19.8–55.3) 0.042 

Urea_nitrogen, mg/dL 24 (4–184) 24 (4–184) 42 (9–141) <0.001 

Creatinine, mg/dL 1.1 (0.2–8.7) 1.1 (0.2–8.7) 1.8 (0.4–6.3) 0.008 

Alanine_aminotransferase, U/L 21 (3–5970) 20 (3–5970) 25 (4–620) 0.944 

Bilirubin_total, µmol/L 0.5 (0.1–17.9) 0.5 (0.1–17.9) 0.5 (0.1–12.9) 0.281 

Aspartate_aminotransferase, U/L 30 (6–4494) 30 (6–4494) 32 (11–825) 0.601 

Lactate (mmol/L) 1.5 (0.4–12) 1.5 (0.4–11) 1.8 (0.5–12) 0.020 

(Continued) 
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TABLE 1 (Continued) 

Variable names Overall Survivors Non-survivors P-value 

PH 7.38 (6.87–7.62) 7.39 (6.87–7.62) 7.35 (7.06–7.51) 0.025 

INR(PT) 1.3 (0.9–7.5) 1.3 (0.9–7.5) 1.4 (1–5.9) 0.005 

PT(sec) 14.1 (10.1–82.2) 14 (10.1–82.2) 15.5 (10.9–65.1) 0.002 

Drugs 

Sedative analgesic (%) 229 (42.02) 202 (40.24) 27 (62.79) 0.007 

Vasopressor (%) 229 (42.02) 199 (39.64) 30 (69.77) <0.001 

Glucocorticoids (%) 144 (26.42) 129 (25.70) 15 (34.88) 0.258 

Antihypertensive (%) 358 (65.69) 324 (64.54) 34 (79.07) 0.079 

Nibp, non-invasive blood pressure; SpO2, O2 saturation; APSIII, acute physiology and chronic health evaluation III; SOFA, sequential organ failure assessment; SAPSII, simplified acute 
physiology score II; OASIS, oxford acute illness severity score; Rdw, red blood cell distribution width; PT, prothrombin time. 

significantly longer (P = 0.004), and vital signs such as heart rate, 
respiratory rate, and blood oxygen saturation showed significant 
dierences. Among the laboratory indicators, lactic acid, PH value, 
international normalized ratio of prothrombin time and creatinine 
were significantly poor in non-survivors (P < 0.05). In terms of 
complications, the incidence of acute renal failure was significantly 
higher in non-survivors, as was the incidence of malignancies. In 
terms of drug use, the use of sedatives, analgesics and vasoactive 
drugs in non-survivors was significantly higher than that in 
survivors (P < 0.05). The LASSO regularization method was used 
to select 13 potential predictors from the training dataset, and these 
factors were used for model development. 

Model building and evaluation 

The dataset was divided in a random fashion into two parts: 
70% of the data was used to train the model, while 30% was 
used to validate the model. In the training dataset, we built four 
models: XGBoost, Logistic Regression (LR), Random Forest (RF), 
and Decision Tree (DT). The AUC values obtained from the test 
dataset are shown in Figure 2 and Table 2, respectively. Among 
these models, LR showed superior predictive performance with an 
AUC of 0.871, while DT had the lowest generalization ability with 
an AUC of 0.542. The net benefit of the best-performing model was 
compared with an alternative approach to clinical Decision making 
using Decision Curve Analysis (DCA) on the test dataset. 

We evaluated the overall payos at dierent probability 
thresholds. The assumptions in Figure 3, represented by the black 
line, assume that all patients received the intervention. On the other 
hand, the dashed line represents the case where no patient received 
any intervention. Given the diverse nature of the study population, 
developing a treatment strategy based on any of the four machine-
learning models would be preferable to treating all or none of the 
patients by default. 

Explanation model with the SHAP 
method 

The SHAP algorithm was used to determine the importance of 
each predictor variable in the prediction results of the LR model. 

The variable importance map presents a list of variables ranked 
from highest to lowest according to their level of importance. 

The use of vasoactive agents was considered to have the highest 
predictive value of all prediction periods, followed by the shock 
index, coexisting malignancies and APSIII score (Figure 4). 

In addition, SHAP values were used to identify predictor 
variables that had a significant eect on mortality risk and to 
determine their positive or negative association with the target 
outcome. As shown in Figure 5, the horizontal position indicates 
whether the eect of the value is associated with an increase or 
decrease in the predicted value, while the color indicates the high 
or low state of the variable in a particular observation. 

SHAP heat force plots 

Figure 6 shows the heat force plots for patients who did not 
survive and survived. The SHAP values provide insights into the 
predictive factors of individual patients and quantify the impact of 
each factor on mortality prediction. The numbers highlighted in 
bold represent the probabilistic predictions (f(x)), while the base 
values indicate the predictions made by the model without any 
input. The log odds ratio of each observation is represented by the 
function f(x). The left side displays red features that are associated 
with an elevated risk of mortality, while the blue features represent 
factors linked to a reduced risk of mortality. The magnitude of the 
eect on the prediction can be easily visualized by observing the 
length of the arrows. 

Discussion 

In this study, we used a comprehensive intensive care unit 
(ICU) database to perform a retrospective cohort analysis. We 
focused on the development and validation of four dierent 
machine-learning algorithms that eectively predicted mortality in 
patients diagnosed with catheter-associated urinary tract infection 
(CAUTI). XGBoost, DT, and RF were all outperformed by the 
logistic regression (LR) model. The area under the curve (AUC) 
of the Logistic regression model was 0.871, which showed better 
prediction performance among the four models. The DecisionTree 
machine had limited generalization ability, with an AUC of 0.542 
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FIGURE 2 

The ROC curve was used to compare the performance of four models in predicting the ICU mortality rate of patients with CAUTI. 

FIGURE 3 

Decision curve analysis of four models plotting the net benefit at different threshold probilities. 

and relatively poor prediction accuracy. The poor performance 
of decision tree models may be related to overfitting, and its 
complex branch structure has limited generalization ability in small 
samples. Random Forest and XGBoost were prone to overfitting 
and calibration drift because the eective number of events was 
insuÿcient to stabilize their large parameter spaces. The superior 

performance of logistic regression may be due to the linear 
separability of CAUTI mortality prediction and its resistance to 
overfitting in small samples. In order to ensure the interpretability 
of the logistic regression model while maintaining its performance, 
we adopted the SHAP method for interpretation. This will enhance 
the understanding of the decision-making process of the model by 
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FIGURE 4 

The significance of variable weights. SpO2, O2 saturation; APSIII, 
acute physiology and chronic health evaluation III; VP, vasopressor; 
SA, sedative analgesic; PT, prothrombin time; AKI, acute kidney 
injury; OASIS, oxford acute illness severity score; Rdw, red blood 
cell distribution width; SHAP, SHapley Additive explanation. 

healthcare professionals and facilitate the practical application of 
the predicted results. It was observed that within this range, logistic 
regression showed superior performance. In the field of intensive 
care research, logistic regression has gained significant popularity 
due to its application in predicting patient mortality during 
hospitalization, thus potentially helping healthcare professionals to 
make informed decisions (19–21). 

It is essential to evaluate the advantages of early mortality 
prediction in clinical practice. In this study, 545 adult patients were 
included from 1344 CAUTI patients diagnosed in the MIMIC-
IV database. The mortality of CAUTI patients in intensive care 
unit (ICU) was 7.89% (43/545). We utilized SHAP to elucidate 
the LR model and identify key factors associated with in-hospital 
mortality in CAUTI patients. Shock index, use of vasoactive drugs, 
concomitant malignancy, and APSIII score were identified as 
variables with high predictive significance. SHAP risk threshold 
can help early identification of high-risk patients, and it is 
recommended to integrate it into the early warning system of ICU 
electronic medical record. 

However, relatively few studies have investigated the risk 
factors for mortality in patients with catheter-associated urinary 

FIGURE 5 

The SHapley Additive exPlanation (SHAP) values. SpO2, O2 
saturation; APSIII, acute physiology and chronic health evaluation 
III; VP, vasopressor; SA, sedative snalgesic; PT, prothrombin time; 
AKI, acute kidney injury; OASIS, oxford acute illness severity score; 
Rdw, red blood cell distribution width; SHAP, SHapley Additive 
exPlanation. 

tract infection (CAUTI). A high shock index indicates possible 
hemodynamic instability and is associated with increased mortality 
in critically ill patients (3). This instability reflects the inability 
of the body to maintain adequate perfusion and oxygenation of 
organs, which impairs their function and leads to multiple organ 
failure, especially in the context of infections such as CAUTI (22). 
The use of vasoactive drugs usually indicates the presence of severe 
inflammation and significant cardiovascular damage in patients, 
and may lead to an increase in CAUTI mortality (5). Patients 
with malignancies often have compromised immune systems due 
to the disease itself or treatment options such as chemotherapy 
and radiotherapy, making them more susceptible to infections, 

FIGURE 6 

SHapley Additive exPlanation (SHAP) force plot. SpO2, O2 saturation; VP, vasopressor; SA, sedative analgesic; AKI, acute kidney injury; SHAP, SHapley 
Additive exPlanation. 
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TABLE 2 Evaluation of predictive performance for each model. 

Model name Accuracy F1-score AUROC Precision 

Random forest 0.8963 0.1905 0.7752 0.3333 

XGBoost 0.9024 0.3333 0.7749 0.4444 

Decision tree 0.8659 0.1538 0.5418 0.1818 

Logistic regression 0.9146 0.3 0.8707 0.6 

including CAUTI. Studies have shown (23) that patients with 
cancer face a high incidence of CAUTI, which is associated with 
an increased risk of death associated with these infections, and 
that the metabolic activity of the tumor and the potential to 
develop neutropenia further complicate the treatment of such 
patients and increase the risk of serious complications. Malignancy 
is an independent risk factor for 28-day mortality in patients 
with CAUTI. APSIII is a scoring system that assesses disease 
severity based on various physiological parameters; higher scores 
are associated with an increased risk of death in critically ill patients 
and can be used as a predictor of clinical outcomes (24). In the 
future, bedside CDSS tools can be developed to generate death risk 
scores by entering physiological parameters in real time. However, 
due to the lack of an external validation cohort, further studies are 
needed to explore the applicability of this research approach. 

Limitations 

The strength of our research is attributed to the use of a large 
sample size obtained from the MIMIC database, and the statistical 
results are quite persuasive. However, there are several limitations 
in this study. Firstly, since our data were taken from a publicly 
accessible database, some variables were incomplete. Secondly, all 
data originated from ICU patients in the MIMIC database, which 
raises questions about how well our model can be applied to other 
populations. Thirdly, our mortality prediction models relied on 
information available within the first 24 h of each ICU admission; 
this may overlook subsequent events that could alter prognosis and 
introduce confounding factors to some degree. Lastly, due to the 
absence of an external validation cohort, the eectiveness of the 
developed LR model in clinical practice may be limited. 

Conclusion 

This study provides a methodological basis for the development 
of a real-time prediction tool for mortality risk in the ICU 
and demonstrates the utility of artificial intelligence in accurately 
predicting catheter-associated urinary tract infection (CAUTI) and 
mortality in patients admitted to the intensive care unit (ICU). 
We created an interpretable logistic regression prediction model 
that performed best in assessing the risk of death in patients with 
CAUTI. Moreover, this interpretable machine learning approach 
enables eective identification of risk factors associated with 
CAUTI patients and will help healthcare providers to identify 
CAUTI patients with high mortality risk, enabling them to take 
timely and eective treatment measures. 
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