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Development and validation of an
endoscopic diagnostic model for
sessile serrated lesions based on
machine learning algorithms

Xinying Yu?, Lianyu Li? and Qiang He'*

!Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,
2Huazhong University of Science and Technology, Wuhan, China

Background and aims: Sessile serrated lesions (SSLs) are morphologically subtle
and often misclassified as hyperplastic polyps (HPs), increasing colorectal cancer
risks. We developed a machine learning (ML) model to improve endoscopic SSL
diagnosis.

Methods: Three hundred and eighty-six colorectal polyps (135 SSLs, 251 HPs)
with histologically confirmed were retrospective analyzed and divided into a
training set and a test set. Multiple ML classification models were applied for
a comprehensive analysis. SHapley Additive exPlanations (SHAP) for model
contribution were plotted, and the model results were interpreted by calculating
the contribution of each feature to the prediction results.

Results: Comparative analysis revealed that the shrinkage method based on
penalisation and post-estimation model fit (R?> Shrinkage) model demonstrated
superior performance in the SSL diagnostic task, with an average accuracy of
84.7% + 7.7, a specificity of 71.2% + 15.0, a sensitivity of 92.7% + 4.1 and F,-score
of 88.5% + 6.2. The results revealed that the area under the curve (AUC) values
based on both the validation and test sets eventually stabilized at approximately
0.90, indicating the reliable predictive performance of the model. By constructing
individualized SHAP plots, we established quantitative diagnostic criteria: when
the lesion size was >8 mm, there was a mucus cap, the lesion was located in the
right half of the colon, SSL was predicted with a probability of more than 85%;
otherwise, HP tended to be diagnosed.

Conclusion: This study represents the first application of an ML algorithm
techniques to the endoscopic classification of serrated polyps. The lesion size,
mucus cap and lesion location are key features for the endoscopic diagnosis of
SSL.

KEYWORDS

sessile serrated lesion, artificial intelligence, machine learning, colorectal polyps,
hyperplastic polyps

1 Introduction

Colorectal serrated lesions are a type of neoplastic lesion with significant morphological
heterogeneity and molecular biological characteristics. These lesions include sessile serrated
lesions (SSLs), hyperplastic polyps (HPs), and traditional serrated adenomas (TSAs) (1). In
recent years, with in-depth studies of the pathogenesis of colorectal cancer (CRC), the clinical
importance of SSL as a key prodromal lesion of the “serrated neoplasia pathway” (2, 3) has
become increasingly prominent. Studies have shown that approximately 20% of sporadic
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colorectal cancers originate from SSLs, and these lesions have the
potential to progress rapidly to highly dysplastic or even invasive
cancer (4, 5). Therefore, early identification of SSLs and complete
resection are crucial for reducing the incidence of CRC. HPs, on the
other hand, are nonneoplastic polyps that usually carry no potential
for malignancy and generally do not require intervention. However,
HPs are very similar to SSLs under endoscopy. The typical features of
SSLs, such as mucus caps, unclear boundaries, and cloud-like surfaces,
are more easily distinguishable from those of TSAs but often overlap
with those of HPs (6, 7), especially in conventional white light
endoscopy (WLE) examinations, which lack support from
narrowband imaging (NBI), optically enhanced endoscopy, or
magnifying endoscopy. The risk of misdiagnosis or missed diagnosis
is relatively high (8). Although several studies have proposed
endoscopic diagnostic criteria for SSLs, such as the Japan NBI Expert
Team (JNET) classification (9), these criteria rely on advanced
imaging techniques and are difficult to widely promote in primary
care institutions. In addition, the feature combinations of existing
diagnostic systems are complex, and clinicians still exhibit a high
degree of subjective judgment bias in practice. Therefore, developing
a diagnostic system based on the characteristics of conventional WLE
to improve the detection rate and diagnostic accuracy of SSLs is highly
valuable for optimizing clinical management strategies.

The rapid development of computer-aided diagnostic (CAD)
systems based on machine learning (ML) techniques provides new
ideas for addressing this challenge. As an important branch of
artificial intelligence, ML (10) offers a powerful set of algorithms for
learning, adapting to, predicting and analyzing massive amounts of
medical data (11, 12) to provide strong support for clinical decision-
making. These methods perform medical diagnostic tasks by using
feature extraction techniques, such as logistic regression analysis (13),
for feature screening and by using classifiers for prediction and
classification. CAD systems based on ML techniques provide strong
technical support for medical diagnosis through efficient feature
extraction and advanced classification algorithms. In this study,
through retrospective cohort analysis, independent predictors of SSL
endoscopy diagnosis were screened, an endoscopy diagnostic model
that does not rely on advanced imaging techniques using ML
methods was constructed, and efficient SSL recognition tools were
provided. Therefore, the main contributions of this paper are
summarized as follows: (1) We present the first use of a machine
approach to classify serrated polyps in endoscopic images. This
approach led to significantly increased classification accuracy; (2) A
systematic comparison of extreme gradient boosting (XGBoost) (14),
logistic regression analysis (Logistic), least absolute shrinkage and
selection operator (LASSO) (15), Shrinkage method based on
penalisation and post-estimation model fit (R* Shrinkage) (16), light
gradient boosting machine (LightGBM) (17), random forest (18),
adaptive boosting (AdaBoost) (19), multilayer perceptron (MLP)
(20), support vector machine (SVM) (21), K-nearest neighbor (KNN)
(22), and Gaussian naive Bayes (GNB) (23) was performed. The
results showed that although some models perform similarly in
specific metrics, R* Shrinkage shows a clear advantage in overall
diagnostic performance; and (3) the SHapley additive exPlanations
(SHAP) (24) method was applied to conduct a comprehensive
interpretability analysis of the ML models and quantify the
contribution of each feature to the model’s decision-making by
calculating the SHAP values.
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2 Methods
2.1 Case data

Clinical data from patients who underwent colonoscopy and
endoscopic colonic polyposectomy at Beijing Tiantan Hospital,
Capital Medical University, from January 2021 to December 2024
were collected and retrospectively analyzed. All patients included in
the study were consecutively enrolled. The inclusion criteria were as
follows: (1) patients who had undergone total colonic examination;
colonic polyps were identified, and polyposectomy was performed,
including endoscopic mucosal resection (EMR) or endoscopic
submucosal dissection (ESD); and (2) patients whose postoperative
pathology confirmed serrated lesions or hyperplastic polyps. The
exclusion criteria were as follows: (1) postoperative pathological
diagnosis of adenoma, cancer, normal mucosa, or other nonserrated
lesions; (2) poor intestinal preparation that affects observation
(Boston score less than 6); and (3) missing clinical or pathological data.

2.2 Endoscopic procedure

Colonoscopy and treatment for all patients were performed by expert
endoscopists with at least 5 years of experience in endoscopic treatment.
All patients were given a standardized bowel preparation protocol. The
specific medication was 4 boxes of compound polyethylene glycol
electrolyte powder (6 bags per box, each bag containing 13.125 g of
polyethylene glycol 4000). The patients were required to take the powder
dissolved in 3,000 mL of warm water at a uniform speed 4-6 h before the
endoscopy. After completing the intestinal preparation, the patients
underwent colonoscopy under intravenous anesthesia. During the
colonoscopy; all polyps identified by white light imaging were rinsed with
water, and photos before and after rinsing were taken and observed and
evaluated using optical enhancement (OE). Subsequently, endoscopic
treatment methods, mainly EMR and ESD, were selected on the basis of
the experience of the endoscopist, and specimens were collected for
pathological evaluation after the operation.

2.3 Definitions and collection of
observation indicators

The location, size, shape and endoscopic diagnosis results of each
lesion that was successfully evaluated and resected were recorded.
Lesion location was categorized as either the proximal colon or the
distal colon. The proximal colon includes the ileocecal region,
ascending colon, and transverse colon. The distal colon includes the
descending colon, sigmoid colon and rectum. Lesion size was
estimated by comparison with the snare opening. Lesion morphology
was endoscopically classified according to the Paris classification
criteria, including pedicled type (0-Ip), subpedicled type (0-Is),
superficial protuberant type (0-Ila), superficial flat type (0-IIb),
superficial depressed type (0-IIc), depressed type (0-III), and
superficial protuberant + superficial depressed type (0-IIa + Ilc).
Under white light and OE, characteristics such as mucus caps, a cloud-
like or red surface, unclear boundaries, surface microvessel thickening,
and crypt opening dilation were assessed. A mucus cap is defined as a
large amount of mucus or feces covering the surface of a lesion.
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Cloud-like surfaces are characterized by granular or nodular
protrusions resembling cumulus clouds. Red surfaces were identified
when lesion coloration turned red when observed under white light.
Indistinct boundaries are defined as lesion boundaries being blurred
and lacking a clear demarcation. Surface microvessel thickening is
defined as the presence of tortuous and thickened microvessels under
OE. Crypt opening dilation is defined as nonuniform expansion of the
crypt morphology under OE. The characteristics of the polyps are
shown in Table 1.

2.4 Construction and evaluation of
predictive models

After the features were selected from all the independent variables,
the enrolled patients were divided into a training set and a test set.
Multiple ML classification models were applied for a comprehensive
analysis to compare the importance of each metric in the training and test
sets. The results were evaluated and validated using the best model. The
steps are as follows: (1) Feature factor screening: First, feature selection
was conducted through least absolute shrinkage and selection operator
(LASSO) regression combined with multivariate logistic regression
analysis, and feature factors with statistical significance (p < 0.05) were
retained as predictive variables for subsequent modeling. (2) Data
division: SSL patients were randomly divided into a training set and a test
setata 7:3 ratio, with 270 cases in the training set and 116 cases in the test
set. (3) Classification multimodel synthesis analysis: XGBoost, Logistic,
LASSO, R? Shrinkage, LightGBM, RE, AdaBoost, MLP, SVM, KNN and
GNB methods were constructed. By evaluating key metrics such as
accuracy, specificity, sensitivity, and F,-score for each model based on the
training and test sets, the models discriminative ability was
comprehensively evaluated in combination with the area under the
receiver operating characteristic curve (AUC-ROC), and the optimal
prediction model was finally selected (25). (4) Training, validation and
testing of the optimal model: We performed 10 cross-validation using the
training set and evaluate it with the test set. ROC learning curves and
confusion matrices were plotted to evaluate model fit and stability for
both the training and validation sets. (5) Model interpretability using
SHAP: SHAP interpretations were plotted for model importance and
contribution, and the model results were interpreted by calculating the
contribution of each feature to the prediction results (26).

TABLE 1 Description of the characteristics of the colonic polyps studied.

Feature number ‘ Feature name ‘ Feature description

1 Part 1-Right half colon; 2-Left
colon
2 Size Units mm
3 Endoscopic typing 1-Ip, 2-Is, 3-IIa, 4-1Ib, 5-Ilc
4 Slime cap 0-None; 1-Yes
5 Thickening of the 0-None; 1-Yes
surface vessels
6 Red surface 0-None 1-Yes
7 Blurred boundaries 0-None; 1-Yes
8 Enlarged crypt 0-None; 1-Yes
openings
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3 Results
3.1 Patient information

A total of 2,044 patients who underwent colonoscopy and
endoscopic polyposectomy were included in the study. Among the
3,987 polyps removed from these patients, a total of 424 polyps were
pathologically diagnosed as serrated polyps and were classified as
SSLs, HPs, or TSAs according to the World Health Organization
(WHO) classification criteria (1). A total of 135 cases of SSL and 251
cases of HP were included in this study. Figure 1 shows the flowchart
of the study. This study did not include 38 cases of TSA. The reason is
that TSA usually has typical endoscopic morphological features, such
as villous or papillary protrusions, and the difficulty of clinical
differentiation is relatively low. To focus on the core issue of SSL and
HP, which is highly difficult to distinguish and has significant clinical
demands, the model construction of this study is only for SSL and HP
lesions, in order to enhance the performance and practicality of the
model in key differentiation tasks.

3.2 Screening of SSL diagnostic
characteristic factors

In this study, LASSO regression analysis (with the SSL category as
the dependent variable) was used for feature selection of the
independent variables, a method that effectively prevents overfitting
by compressing the variable coeflicients to solve multicollinearity
problems (27). On the basis of the LASSO screening results, the
associations between each clinical feature and the target outcome were
evaluated through multivariate logistic regression analysis. The final
model included variables such as location, size, endoscopic
classification, mucus cap, surface vascular thickening, red surface,
boundary blurring, and enlarged crypt openings. The analysis results
(shown in Table 2) revealed that lesion location (coeff. = 0.8602,
P <0.001) and surface vessel thickening (coeff. = 0.8589, p = 0.011)
were significantly positively correlated with the target outcome,
whereas lesion size (coeff. = —1.3989, p < 0.001) and mucus cap
(coeff. = —0.7809, p = 0.003) were significantly negatively correlated.
Endoscopic classification (coeff. = 0.3867, p = 0.049) was statistically
significant, but the effect size was relatively small. Notably, red surfaces
(p =0.096) and blurred boundaries (p = 0.051) did not reach the
traditional significance threshold, but their clinical significance is still
worthy of attention. No significant differences were observed in the
number of enlarged crypt openings (p =0.375). These findings
provide an important basis for endoscopic clinical decision-making,
and a focus on characteristics such as lesion location, size, mucus cap,
and thickening of surface vessels during the assessment process
is recommended.

3.3 Classification multimodel synthesis
analysis

Table 3 summarizes the performance metrics of various machine
learning algorithms in SSL diagnostic tasks, including accuracy, specificity,
sensitivity, and F,-score. While the overall accuracy of most algorithms is
similar, there are notable differences in sensitivity and specificity.
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FIGURE 1
Flowchart of the study.
TABLE 2 Logistic regression analysis (multivariate analysis).

Variable Coeff. Std. err. z p > |z| 95% Cl lower =~ 95% Cl upper
Part 0.8602 0.184 4.664 <0.001 0.499 1.222
Size —1.3989 0.418 —3348 <0.001 -2218 —0.580
Endoscopic typing 0.3867 0.196 1.970 0.049 0.002 0.771
Mucus cap —0.7809 0.263 2972 0.003 -1.29 —0.266
The surface vessels thicken 0.8589 0.338 2.543 0.011 0.197 1.521
Red surface —0.6028 0.362 —1.667 0.096 —1.312 0.106
Blurred boundaries —0.8159 0.418 —1.952 0.051 —1.635 0.003
Enlarged crypt openings 0.3501 0394 0.888 0375 —0.423 1.123

Specifically, R* Shrinkage achieves the best balance between sensitivity
(92.7% +4.1) and specificity (71.2% + 15.0), outperforming other
algorithms. Logistic regression, though exhibiting the highest sensitivity
(92.3% + 4.3), shows lower specificity, whereas XGBoost and Light GBM
offer slightly better specificity but at the cost of reduced sensitivity. These
differences highlight the trade-off between false positives and false
negatives in SSL diagnosis. The advantage of R* Shrinkage lies in its
adjustment mechanism based on penalization and post-estimation model
fit (R*-based shrinkage), which reduces overfitting while improving the
model’s ability to correctly identify minority positive samples, thus
enhancing the balance between sensitivity and specificity. As a result, R*
Shrinkage achieves the highest F,-score (88.5% + 6.2), demonstrating its
superior overall diagnostic performance.

To quantitatively evaluate the classification performance of each
model, the ROC curve of the above algorithm in the colonic polyp
identification task was plotted, and the AUC value was calculated. As
shown in Figure 2, all models achieved high classification performance,
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with AUC values concentrated between 0.89 and 0.91. On the training
set (Figure 2A), ensemble methods such as XGBoost and Random
Forest reached the highest mean AUC (0.90-0.91), indicating strong
fitting ability. However, on the validation set (Figure 2B), penalized
regression models (Logistic, LASSO, R? Shrinkage) and MLP maintained
relatively higher and more consistent AUCs (0.91), whereas tree-based
models showed a slight decline (0.89-0.90). These results suggest that,
while most algorithms performed similarly, R* Shrinkage in particular
achieved a favorable balance between accuracy and generalizability,
highlighting its potential superiority in SSL diagnostic applications.

3.4 Best model construction and evaluation

We conducted 10-fold cross-validation on the training set using
the R? Shrinkage algorithm, and the results revealed that the average

frontiersin.org


https://doi.org/10.3389/fmed.2025.1665079
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Yuetal.

10.3389/fmed.2025.1665079

TABLE 3 Performance evaluation of the XGBoost, Logistic, LASSO, R? Shrinkage, LightGBM, RF, AdaBoost, SVM, KNN, and GNB algorithms in SSL

diagnosis.
Algorithm Accuracy Specificity Sensitivity Fi-score
XGBoost 84.7 £ 6.6 76.6 £ 13.8 89.5+5.3 88.4£5.6
Logistic 842+73 70.0 + 14.1 923+43 88.2£6.0
LASSO 842+73 70.0 + 14.1 923+43 88.2+6.0
R® Shrinkage 84.7+7.7 71.2+15.0 92.7 +4.1 88.5£6.2
LightGBM 83467 76.0 £ 13.8 88.0+6.3 87.1£5.6
RF 83.4+7.0 739 +13.5 89.1+5.2 872459
AdaBoost 84.7 + 6.4 754 £13.2 90.3+5.3 883 £5.3
MLP 83.7+84 735+ 159 90.0 + 5.4 87.6 6.8
SVM 84.0+5.6 73.1+123 89.9 +5.4 87.7£4.9
KNN 83.9+57 77.5 £ 13.0 87.6 £ 4.1 87.5+4.9
GNB 82275 67.8 £10.7 90.3 +4.9 86.5 + 6.4

The bold values represented that R2 Shrinkage model demonstrated greater performance and reliability.

Train ROC Curve Comparison (10-Fold CV)

Validation ROC Curve Comparison (10-Fold CV)

Comparative analysis of the ML models.

1.0 1.0
0.8 0.8
3 3
& - & -
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s —— Logistic (AUC = 0.91 £ 0.01) 5 —— Logistic (AUC = 0.91 % 0.05)
5 — Lasso (AUC = 0.91 £ 0.01) o —— Lasso (AUC = 0.91 £ 0.05)
& .44 _#—— R? Shrinkage (AUC = 0.92 £ 0.01) €044 _~—— R? Shrinkage (AUC = 0.91 £ 0.05)
g ,*" = LightGBM (AUC = 0.95 % 0.00) g ,*" = LightGBM (AUC = 0.90 % 0.04)
i ’/” = RandomForest (AUC = 0.96 * 0.00) = ’/" = RandomForest (AUC = 0.90 % 0.05)
o ~—— AdaBoost (AUC = 0.92 =* 0.01) L ~—— AdaBoost (AUC = 0.91 * 0.05)
0.2 et —— MLP (AUG = 0.93 # 0.01) 0.21 L —— MLP (AUG = 0.91 % 0.05)
~—— SVM (AUC = 0.92 % 0.00) ~—— SVM (AUC = 0.89 * 0.05)
- ~—— KNN (AUC = 0.93 % 0.00) =~ KNN (AUC = 0.89 * 0.05)
0.04 ~ —— GNB (AUC = 0.90 % 0.01) 004 —— GNB (AUC = 0.90 % 0.05)
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
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FIGURE 2

AUC of the training set reached 0.910 (ranging from 0.899-0.922), the
average AUC of the validation set was 0.899 (ranging from 0.781-
0.996), and the AUC of the test set was 0.933 (Figures 3A-C). As
illustrated in Figure 3, the R* Shrinkage model exhibited strong and
consistent discriminative performance across all datasets, with no
signs of overfitting. The cumulative confusion matrix (Figure 3D)
further confirmed its robust diagnostic capability, correctly classifying
94 SSL cases and 233 HP cases. These results demonstrate that the R
Shrinkage model generalizes well and shows practical utility for
SSL identification.

3.5 SHAP for model interpretability

The SHAP analysis conducted in this study revealed patterns
in the contribution of key features to the model’s outputs
(Figure 4). The visualization results highlight the relative
importance of five key features and their predicted trends: the
x-axis represents the SHAP value (a positive value indicates a
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positive correlation, and a negative value indicates a negative
correlation), and the color gradient represents the magnitude of
the feature value (red, high value; blue, low value). This
two-dimensional visualization clearly shows how feature
contribute to the model predictions.

Figure 4A shows the five most important features in the model.
Features 1 (location), 4 (mucus cap), 2 (size), 3 (endoscopic typing),
and 5 (surface vascular thickening) were identified as key predictors
in SSL diagnosis. Specifically, (1) the high values of features 2 and 4
are distributed mainly in positive regions, indicating that a larger
lesion size and the presence of a mucus cap increase the probability of
SSL diagnosis; (2) the high values of features 1, 3 and 5 are
concentrated in negative areas, suggesting that lesions located in the
left half of the colon, specific endoscopic subtypes and the presence of
vascular thickening reduce the probability of SSL diagnosis; and (3)
feature 3 has the widest distribution of SHAP values, indicating that
its influence is more complex.

Figure 4B presents the analysis results of feature importance on
the basis of the absolute average SHAP value. In this study, the R?
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A) 10-Fold Training ROC Curves B) 10-Fold Validation ROC Curves
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FIGURE 3
Training and testing results of the R2 Shrinkage model. (A) 10-fold training ROC curve. (B) 10-fold validation ROC curve. (C) Independent test ROC
curve. (D) The cumulative confusion matrix.
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SHAP interpretation. (A) Attributes of features in the SHAP analysis. Each point represents a feature, and the SHAP values are plotted on the x-axis. The

red dots represent high eigenvalues, and the blue dots represent low eigenvalues. (B) Feature importance sorted by SHAP value; the matrix diagram
describes the importance of each covariate in the final prediagnosis process.

Shrinkage algorithm was used to construct a classification model,and ~ (0.121), feature 2 (0.109), feature 3 (0.046), and feature 5 (0.028),
the SHAP method was employed to calculate the contribution of each ~ which had the lowest contribution. This analysis not only objectively
feature to the model predictions. By calculating the global mean  identified the key predictive features but also significantly enhanced
absolute SHAP value, we obtained the feature importance ranking:  the interpretability of the model, providing an important reference for
feature 1 (0.124) was the most influential, followed by feature 4  subsequent research and clinical application.
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4 Discussion

In recent years, advances in molecular biology research has
highlighted the clinical importance of SSLs as core precursor lesions
of the “serrated carcinogenesis pathway” in colorectal cancer.
of SSLs are
morphologically subtle, and some cases are missed because of the lack

However, the morphological manifestations
of typical bulges or color changes. Therefore, some studies suggest that
CRC that occurs after colonoscopy screening may develop from
missed and untreated serrated lesions (28), and colonoscopy is not as
effective in screening the right half of the colon as it is for the left half
(29). Several studies have confirmed that interphase CRC often occurs
in the proximal colon and is associated with the serrated carcinogenesis
pathway (30). Therefore, the current view holds that serrated lesions
play an important role in the development of CRC. Given the high
carcinogenic potential of SSLs, clinical guidelines emphasize complete
resection of right hemicolonic serrated lesions >5 mm and shortening
the follow-up period to 3 years (31, 32) to prevent their progression
to invasive cancer. In this study, the detection rate of SSL was 3.3%
(135/3,987), which was relatively low compared with previous studies.
It mainly reflects the historical limitations of insufficient
understanding of SSL and the lack of unified diagnostic criteria in the
early stage of the included study. With the popularization of
pathological diagnosis norms and the strengthening of training in
recent years, the diagnostic accuracy of SSL has significantly improved.

Previous studies have indicated that SSLs are located mostly in the
right colon, their diameters are often greater than 5mm, and
endoscopically, they often grow in a flat or broad-based manner and
are easily confused with the microvesicular or goblet cell subtypes of
HPs (33). As a result, these lesions are prone to be overlooked during
endoscopy, leading to a missed diagnosis. Therefore, accurate
identification of SSLs under endoscopy is a key step in reducing the
incidence of colorectal cancer. Hazewinkel et al. (8) summarized the
endoscopic characteristics of SSLs as unclear boundaries, cloud-like
surfaces, black spots in the crypts under NBI, irregular shapes, pit
pattern II-O type gladular duct openings and normal vascular density.
Unclear boundaries and white cumulus surfaces, black spots and
irregular shapes within the crypts were identified as independent
predictors during NBI examination. However, the diagnostic efficacy
of a single feature is limited, and assistive techniques such as
magnifying endoscopy or staining endoscopy are not yet widespread,
resulting in a higher rate of missed diagnoses in clinical practice.
Although several studies have attempted to increase diagnostic
accuracy through multiparameter models, most of these models rely
on high-resolution or magnifying imaging techniques (34) and are
difficult to adopt in primary care. Traditional research methods and
statistical methods encounter certain limitations in dissecting these
complex factors. This study aims to build an endoscopic classification
prediction model of SSLs through ML techniques to address the high
rate of missed diagnoses and the difficulty in differentiating SSLs from
HPs due to their subtle morphology, improve the early accurate
recognition rate, provide technical support for blocking the serrated
sawtooth carcinogenesis pathway and optimizing clinical treatment
and follow-up strategies.

This study introduced an SSL intelligent diagnostic model based
on ML algorithms, with a focus on differentiating between SSL and
HP diagnoses. A systematic comparison of the diagnostic performance
of nine algorithms, including XGBoost, Logistic, LASSO, R? Shrinkage,
LightGBM, random forest, AdaBoost, MLP, SVM, KNN and GNB,
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revealed that the R* Shrinkage model performed the best, with a
diagnostic accuracy rate of 84.7% +7.7. The specificity was
71.2% =+ 15.0, the sensitivity was 92.7% + 4.1 and the F,-score was
88.5% * 6.2. As the first study to apply machine learning techniques
to endoscopic classification, this method enables precise differentiation
between SSLs and HPs, providing new ideas for clinical diagnosis.
Although differences exist in datasets and evaluation protocols across
studies, the performance of our model can be contextualized with
previous machine learning and deep learning studies on SSL diagnosis
(see Supplementary Tables 1, 2), demonstrating comparable or
superior potential (35-39). The excellent performance of R* Shrinkage
is attributed mainly to the following: (1) the R? Shrinkage method can
effectively adjust model coefficients to account for potential overfitting;
and (2) this shrinkage improves the stability and generalizability of the
diagnostic model across different datasets. This study provides a
reliable intelligent diagnostic approach for the classification of
serrated polyps.

In terms of model interpretability studies, SHAP analysis was
applied to systematically evaluate the contribution of each clinical
feature to SSL diagnosis. By constructing a global bee colony map and
an average absolute SHAP plot, we visually demonstrated the
importance ranking of different features in model decision-making
and the direction of their influence. The results revealed the following:
(1) Lesion size (absolute mean SHAP = 0.109) and the presence of a
mucus cap (0.121) were significantly positively correlated with SSL
classification. When a diameter >8 mm or mucus cap was present, the
SHAP value was positively offset, suggesting an increased probability
of SSL diagnosis. (2) The left hemicolonic region (0.124), specific
endoscopic classification (0.046), and surface vascular thickening
(0.028) were negatively correlated with SSLs, among which the
endoscopic classification had the greatest dispersion of the SHAP
value distribution, reflecting its nonlinear effect characteristics. (3)
Surface vascular thickening contributed the least (0.028). By
constructing individualized SHAP maps, we established quantitative
diagnostic criteria and proposed the three most contributing
indicators as the basis for SSL diagnosis: when the lesion size was
>8 mm, there was a mucus cap, and when the lesion was located in the
right half of the colon, the probability of an SSL diagnosis was more
than 85%; otherwise, the model predicts HP. The model innovatively
reveals the interaction patterns among features, its diagnostic efficacy
is highly consistent with clinical guidelines, and its feature of not
relying on magnifying endoscopy is particularly suitable for primary
care institutions and routine endoscopic examination scenarios,
providing efficient and objective decision support for SSL
differentiation. In addition, the model constructed in this study
provides a quantitative basis for the clinical diagnosis of SSL by
integrating key features such as the location, size and mucus cap of the
lesion. This tool helps to reduce the missed diagnosis rate of SSL,
improve the diagnostic consistency among different operators, and
especially provides a reference for the real-time decision-making
of endoscopists.

There are certain limitations in this study. First, in terms of the
study design, a retrospective study method was adopted. Retrospective
data lack the consistency to standardize endoscopic procedures such
as image quality and shooting angle, and individual differences among
patients, such as intestinal preparation quality and combined
medication were not effectively corrected, which might amplify the
differential error between SSLs and HPs. Second, there was an
imbalance in the sample size. The sample size of the HP group was
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greater than that of the SSL group, which led to the ML model
overfitting to most classes (HP) and reducing its classification
sensitivity to SSLs. In addition, the model was only validated using
retrospective datasets, and its actual clinical efficacy was not tested in
multicenter, prospective cohorts, which may overestimate the
classification accuracy. Prospective multicenter studies are needed in
the future to expand sample diversity and use oversampling synthetic
minority oversampling technique (SMOTE) or generative adversarial
networks (GANs) to address the imbalance between classes. In
addition, manual extraction of endoscopic features may introduce
subjectivity and individual differences due to the varying experiences
and judgment criteria of observers. In future research, we plan to
expand the scale of the dataset and consider exploring the end-to-end
application of deep learning for adaptive feature extraction to further
enhance the objectivity and generalization ability of the model.

5 Conclusion

This study is the first to apply ML algorithms to the endoscopic
classification of serrated polyps and can differentiate SSLs in
non-magnifying endoscopic clinical scenarios, supporting diagnosis
and providing a feasible and efficient new method for this purpose.
Compared with those of the other studied models, the R* Shrinkage
model demonstrated greater performance and reliability, yielding
higher accuracy, specificity, sensitivity, and F,-score. In addition, the
SHAP value analysis revealed that a lesion size >8 mm, the presence
of a mucus cap, and the lesion location in the right half of the colon
were key features for the endoscopic identification of SSLs.
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