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Development and validation of an 
endoscopic diagnostic model for 
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Background and aims: Sessile serrated lesions (SSLs) are morphologically subtle 
and often misclassified as hyperplastic polyps (HPs), increasing colorectal cancer 
risks. We developed a machine learning (ML) model to improve endoscopic SSL 
diagnosis.
Methods: Three hundred and eighty-six colorectal polyps (135 SSLs, 251 HPs) 
with histologically confirmed were retrospective analyzed and divided into a 
training set and a test set. Multiple ML classification models were applied for 
a comprehensive analysis. SHapley Additive exPlanations (SHAP) for model 
contribution were plotted, and the model results were interpreted by calculating 
the contribution of each feature to the prediction results.
Results: Comparative analysis revealed that the shrinkage method based on 
penalisation and post-estimation model fit (R2 Shrinkage) model demonstrated 
superior performance in the SSL diagnostic task, with an average accuracy of 
84.7% ± 7.7, a specificity of 71.2% ± 15.0, a sensitivity of 92.7% ± 4.1 and F1-score 
of 88.5% ± 6.2. The results revealed that the area under the curve (AUC) values 
based on both the validation and test sets eventually stabilized at approximately 
0.90, indicating the reliable predictive performance of the model. By constructing 
individualized SHAP plots, we established quantitative diagnostic criteria: when 
the lesion size was >8 mm, there was a mucus cap, the lesion was located in the 
right half of the colon, SSL was predicted with a probability of more than 85%; 
otherwise, HP tended to be diagnosed.
Conclusion: This study represents the first application of an ML algorithm 
techniques to the endoscopic classification of serrated polyps. The lesion size, 
mucus cap and lesion location are key features for the endoscopic diagnosis of 
SSL.
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1 Introduction

Colorectal serrated lesions are a type of neoplastic lesion with significant morphological 
heterogeneity and molecular biological characteristics. These lesions include sessile serrated 
lesions (SSLs), hyperplastic polyps (HPs), and traditional serrated adenomas (TSAs) (1). In 
recent years, with in-depth studies of the pathogenesis of colorectal cancer (CRC), the clinical 
importance of SSL as a key prodromal lesion of the “serrated neoplasia pathway” (2, 3) has 
become increasingly prominent. Studies have shown that approximately 20% of sporadic 
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colorectal cancers originate from SSLs, and these lesions have the 
potential to progress rapidly to highly dysplastic or even invasive 
cancer (4, 5). Therefore, early identification of SSLs and complete 
resection are crucial for reducing the incidence of CRC. HPs, on the 
other hand, are nonneoplastic polyps that usually carry no potential 
for malignancy and generally do not require intervention. However, 
HPs are very similar to SSLs under endoscopy. The typical features of 
SSLs, such as mucus caps, unclear boundaries, and cloud-like surfaces, 
are more easily distinguishable from those of TSAs but often overlap 
with those of HPs (6, 7), especially in conventional white light 
endoscopy (WLE) examinations, which lack support from 
narrowband imaging (NBI), optically enhanced endoscopy, or 
magnifying endoscopy. The risk of misdiagnosis or missed diagnosis 
is relatively high (8). Although several studies have proposed 
endoscopic diagnostic criteria for SSLs, such as the Japan NBI Expert 
Team (JNET) classification (9), these criteria rely on advanced 
imaging techniques and are difficult to widely promote in primary 
care institutions. In addition, the feature combinations of existing 
diagnostic systems are complex, and clinicians still exhibit a high 
degree of subjective judgment bias in practice. Therefore, developing 
a diagnostic system based on the characteristics of conventional WLE 
to improve the detection rate and diagnostic accuracy of SSLs is highly 
valuable for optimizing clinical management strategies.

The rapid development of computer-aided diagnostic (CAD) 
systems based on machine learning (ML) techniques provides new 
ideas for addressing this challenge. As an important branch of 
artificial intelligence, ML (10) offers a powerful set of algorithms for 
learning, adapting to, predicting and analyzing massive amounts of 
medical data (11, 12) to provide strong support for clinical decision-
making. These methods perform medical diagnostic tasks by using 
feature extraction techniques, such as logistic regression analysis (13), 
for feature screening and by using classifiers for prediction and 
classification. CAD systems based on ML techniques provide strong 
technical support for medical diagnosis through efficient feature 
extraction and advanced classification algorithms. In this study, 
through retrospective cohort analysis, independent predictors of SSL 
endoscopy diagnosis were screened, an endoscopy diagnostic model 
that does not rely on advanced imaging techniques using ML 
methods was constructed, and efficient SSL recognition tools were 
provided. Therefore, the main contributions of this paper are 
summarized as follows: (1) We present the first use of a machine 
approach to classify serrated polyps in endoscopic images. This 
approach led to significantly increased classification accuracy; (2) A 
systematic comparison of extreme gradient boosting (XGBoost) (14), 
logistic regression analysis (Logistic), least absolute shrinkage and 
selection operator (LASSO) (15), Shrinkage method based on 
penalisation and post-estimation model fit (R2 Shrinkage) (16), light 
gradient boosting machine (LightGBM) (17), random forest (18), 
adaptive boosting (AdaBoost) (19), multilayer perceptron (MLP) 
(20), support vector machine (SVM) (21), K-nearest neighbor (KNN) 
(22), and Gaussian naive Bayes (GNB) (23) was performed. The 
results showed that although some models perform similarly in 
specific metrics, R2 Shrinkage shows a clear advantage in overall 
diagnostic performance; and (3) the SHapley additive exPlanations 
(SHAP) (24) method was applied to conduct a comprehensive 
interpretability analysis of the ML models and quantify the 
contribution of each feature to the model’s decision-making by 
calculating the SHAP values.

2 Methods

2.1 Case data

Clinical data from patients who underwent colonoscopy and 
endoscopic colonic polyposectomy at Beijing Tiantan Hospital, 
Capital Medical University, from January 2021 to December 2024 
were collected and retrospectively analyzed. All patients included in 
the study were consecutively enrolled. The inclusion criteria were as 
follows: (1) patients who had undergone total colonic examination; 
colonic polyps were identified, and polyposectomy was performed, 
including endoscopic mucosal resection (EMR) or endoscopic 
submucosal dissection (ESD); and (2) patients whose postoperative 
pathology confirmed serrated lesions or hyperplastic polyps. The 
exclusion criteria were as follows: (1) postoperative pathological 
diagnosis of adenoma, cancer, normal mucosa, or other nonserrated 
lesions; (2) poor intestinal preparation that affects observation 
(Boston score less than 6); and (3) missing clinical or pathological data.

2.2 Endoscopic procedure

Colonoscopy and treatment for all patients were performed by expert 
endoscopists with at least 5 years of experience in endoscopic treatment. 
All patients were given a standardized bowel preparation protocol. The 
specific medication was 4 boxes of compound polyethylene glycol 
electrolyte powder (6 bags per box, each bag containing 13.125 g of 
polyethylene glycol 4000). The patients were required to take the powder 
dissolved in 3,000 mL of warm water at a uniform speed 4–6 h before the 
endoscopy. After completing the intestinal preparation, the patients 
underwent colonoscopy under intravenous anesthesia. During the 
colonoscopy, all polyps identified by white light imaging were rinsed with 
water, and photos before and after rinsing were taken and observed and 
evaluated using optical enhancement (OE). Subsequently, endoscopic 
treatment methods, mainly EMR and ESD, were selected on the basis of 
the experience of the endoscopist, and specimens were collected for 
pathological evaluation after the operation.

2.3 Definitions and collection of 
observation indicators

The location, size, shape and endoscopic diagnosis results of each 
lesion that was successfully evaluated and resected were recorded. 
Lesion location was categorized as either the proximal colon or the 
distal colon. The proximal colon includes the ileocecal region, 
ascending colon, and transverse colon. The distal colon includes the 
descending colon, sigmoid colon and rectum. Lesion size was 
estimated by comparison with the snare opening. Lesion morphology 
was endoscopically classified according to the Paris classification 
criteria, including pedicled type (0-Ip), subpedicled type (0-Is), 
superficial protuberant type (0-IIa), superficial flat type (0-IIb), 
superficial depressed type (0-IIc), depressed type (0-III), and 
superficial protuberant + superficial depressed type (0-IIa + IIc). 
Under white light and OE, characteristics such as mucus caps, a cloud-
like or red surface, unclear boundaries, surface microvessel thickening, 
and crypt opening dilation were assessed. A mucus cap is defined as a 
large amount of mucus or feces covering the surface of a lesion. 
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Cloud-like surfaces are characterized by granular or nodular 
protrusions resembling cumulus clouds. Red surfaces were identified 
when lesion coloration turned red when observed under white light. 
Indistinct boundaries are defined as lesion boundaries being blurred 
and lacking a clear demarcation. Surface microvessel thickening is 
defined as the presence of tortuous and thickened microvessels under 
OE. Crypt opening dilation is defined as nonuniform expansion of the 
crypt morphology under OE. The characteristics of the polyps are 
shown in Table 1.

2.4 Construction and evaluation of 
predictive models

After the features were selected from all the independent variables, 
the enrolled patients were divided into a training set and a test set. 
Multiple ML classification models were applied for a comprehensive 
analysis to compare the importance of each metric in the training and test 
sets. The results were evaluated and validated using the best model. The 
steps are as follows: (1) Feature factor screening: First, feature selection 
was conducted through least absolute shrinkage and selection operator 
(LASSO) regression combined with multivariate logistic regression 
analysis, and feature factors with statistical significance (p < 0.05) were 
retained as predictive variables for subsequent modeling. (2) Data 
division: SSL patients were randomly divided into a training set and a test 
set at a 7:3 ratio, with 270 cases in the training set and 116 cases in the test 
set. (3) Classification multimodel synthesis analysis: XGBoost, Logistic, 
LASSO, R2 Shrinkage, LightGBM, RF, AdaBoost, MLP, SVM, KNN and 
GNB methods were constructed. By evaluating key metrics such as 
accuracy, specificity, sensitivity, and F1-score for each model based on the 
training and test sets, the model’s discriminative ability was 
comprehensively evaluated in combination with the area under the 
receiver operating characteristic curve (AUC-ROC), and the optimal 
prediction model was finally selected (25). (4) Training, validation and 
testing of the optimal model: We performed 10 cross-validation using the 
training set and evaluate it with the test set. ROC learning curves and 
confusion matrices were plotted to evaluate model fit and stability for 
both the training and validation sets. (5) Model interpretability using 
SHAP: SHAP interpretations were plotted for model importance and 
contribution, and the model results were interpreted by calculating the 
contribution of each feature to the prediction results (26).

3 Results

3.1 Patient information

A total of 2,044 patients who underwent colonoscopy and 
endoscopic polyposectomy were included in the study. Among the 
3,987 polyps removed from these patients, a total of 424 polyps were 
pathologically diagnosed as serrated polyps and were classified as 
SSLs, HPs, or TSAs according to the World Health Organization 
(WHO) classification criteria (1). A total of 135 cases of SSL and 251 
cases of HP were included in this study. Figure 1 shows the flowchart 
of the study. This study did not include 38 cases of TSA. The reason is 
that TSA usually has typical endoscopic morphological features, such 
as villous or papillary protrusions, and the difficulty of clinical 
differentiation is relatively low. To focus on the core issue of SSL and 
HP, which is highly difficult to distinguish and has significant clinical 
demands, the model construction of this study is only for SSL and HP 
lesions, in order to enhance the performance and practicality of the 
model in key differentiation tasks.

3.2 Screening of SSL diagnostic 
characteristic factors

In this study, LASSO regression analysis (with the SSL category as 
the dependent variable) was used for feature selection of the 
independent variables, a method that effectively prevents overfitting 
by compressing the variable coefficients to solve multicollinearity 
problems (27). On the basis of the LASSO screening results, the 
associations between each clinical feature and the target outcome were 
evaluated through multivariate logistic regression analysis. The final 
model included variables such as location, size, endoscopic 
classification, mucus cap, surface vascular thickening, red surface, 
boundary blurring, and enlarged crypt openings. The analysis results 
(shown in Table  2) revealed that lesion location (coeff. = 0.8602, 
p < 0.001) and surface vessel thickening (coeff. = 0.8589, p = 0.011) 
were significantly positively correlated with the target outcome, 
whereas lesion size (coeff. = −1.3989, p < 0.001) and mucus cap 
(coeff. = −0.7809, p = 0.003) were significantly negatively correlated. 
Endoscopic classification (coeff. = 0.3867, p = 0.049) was statistically 
significant, but the effect size was relatively small. Notably, red surfaces 
(p = 0.096) and blurred boundaries (p = 0.051) did not reach the 
traditional significance threshold, but their clinical significance is still 
worthy of attention. No significant differences were observed in the 
number of enlarged crypt openings (p = 0.375). These findings 
provide an important basis for endoscopic clinical decision-making, 
and a focus on characteristics such as lesion location, size, mucus cap, 
and thickening of surface vessels during the assessment process 
is recommended.

3.3 Classification multimodel synthesis 
analysis

Table 3 summarizes the performance metrics of various machine 
learning algorithms in SSL diagnostic tasks, including accuracy, specificity, 
sensitivity, and F1-score. While the overall accuracy of most algorithms is 
similar, there are notable differences in sensitivity and specificity. 

TABLE 1  Description of the characteristics of the colonic polyps studied.

Feature number Feature name Feature description

1 Part 1-Right half colon; 2-Left 

colon

2 Size Units mm

3 Endoscopic typing 1-Ip, 2-Is, 3-IIa, 4-IIb, 5-IIc

4 Slime cap 0-None; 1-Yes

5 Thickening of the 

surface vessels

0-None; 1-Yes

6 Red surface 0-None 1-Yes

7 Blurred boundaries 0-None; 1-Yes

8 Enlarged crypt 

openings

0-None; 1-Yes
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Specifically, R2 Shrinkage achieves the best balance between sensitivity 
(92.7% ± 4.1) and specificity (71.2% ± 15.0), outperforming other 
algorithms. Logistic regression, though exhibiting the highest sensitivity 
(92.3% ± 4.3), shows lower specificity, whereas XGBoost and LightGBM 
offer slightly better specificity but at the cost of reduced sensitivity. These 
differences highlight the trade-off between false positives and false 
negatives in SSL diagnosis. The advantage of R2 Shrinkage lies in its 
adjustment mechanism based on penalization and post-estimation model 
fit (R2-based shrinkage), which reduces overfitting while improving the 
model’s ability to correctly identify minority positive samples, thus 
enhancing the balance between sensitivity and specificity. As a result, R2 
Shrinkage achieves the highest F1-score (88.5% ± 6.2), demonstrating its 
superior overall diagnostic performance.

To quantitatively evaluate the classification performance of each 
model, the ROC curve of the above algorithm in the colonic polyp 
identification task was plotted, and the AUC value was calculated. As 
shown in Figure 2, all models achieved high classification performance, 

with AUC values concentrated between 0.89 and 0.91. On the training 
set (Figure 2A), ensemble methods such as XGBoost and Random 
Forest reached the highest mean AUC (0.90–0.91), indicating strong 
fitting ability. However, on the validation set (Figure 2B), penalized 
regression models (Logistic, LASSO, R2 Shrinkage) and MLP maintained 
relatively higher and more consistent AUCs (0.91), whereas tree-based 
models showed a slight decline (0.89–0.90). These results suggest that, 
while most algorithms performed similarly, R2 Shrinkage in particular 
achieved a favorable balance between accuracy and generalizability, 
highlighting its potential superiority in SSL diagnostic applications.

3.4 Best model construction and evaluation

We conducted 10-fold cross-validation on the training set using 
the R2 Shrinkage algorithm, and the results revealed that the average 

FIGURE 1

Flowchart of the study.

TABLE 2  Logistic regression analysis (multivariate analysis).

Variable Coeff. Std. err. z p > |z| 95% CI lower 95% CI upper

Part 0.8602 0.184 4.664 <0.001 0.499 1.222

Size −1.3989 0.418 −3.348 <0.001 −2.218 −0.580

Endoscopic typing 0.3867 0.196 1.970 0.049 0.002 0.771

Mucus cap −0.7809 0.263 −2.972 0.003 −1.296 −0.266

The surface vessels thicken 0.8589 0.338 2.543 0.011 0.197 1.521

Red surface −0.6028 0.362 −1.667 0.096 −1.312 0.106

Blurred boundaries −0.8159 0.418 −1.952 0.051 −1.635 0.003

Enlarged crypt openings 0.3501 0.394 0.888 0.375 −0.423 1.123
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AUC of the training set reached 0.910 (ranging from 0.899–0.922), the 
average AUC of the validation set was 0.899 (ranging from 0.781–
0.996), and the AUC of the test set was 0.933 (Figures 3A–C). As 
illustrated in Figure 3, the R2 Shrinkage model exhibited strong and 
consistent discriminative performance across all datasets, with no 
signs of overfitting. The cumulative confusion matrix (Figure 3D) 
further confirmed its robust diagnostic capability, correctly classifying 
94 SSL cases and 233 HP cases. These results demonstrate that the R2 
Shrinkage model generalizes well and shows practical utility for 
SSL identification.

3.5 SHAP for model interpretability

The SHAP analysis conducted in this study revealed patterns 
in the contribution of key features to the model’s outputs 
(Figure  4). The visualization results highlight the relative 
importance of five key features and their predicted trends: the 
x-axis represents the SHAP value (a positive value indicates a 

positive correlation, and a negative value indicates a negative 
correlation), and the color gradient represents the magnitude of 
the feature value (red, high value; blue, low value). This 
two-dimensional visualization clearly shows how feature 
contribute to the model predictions.

Figure 4A shows the five most important features in the model. 
Features 1 (location), 4 (mucus cap), 2 (size), 3 (endoscopic typing), 
and 5 (surface vascular thickening) were identified as key predictors 
in SSL diagnosis. Specifically, (1) the high values of features 2 and 4 
are distributed mainly in positive regions, indicating that a larger 
lesion size and the presence of a mucus cap increase the probability of 
SSL diagnosis; (2) the high values of features 1, 3 and 5 are 
concentrated in negative areas, suggesting that lesions located in the 
left half of the colon, specific endoscopic subtypes and the presence of 
vascular thickening reduce the probability of SSL diagnosis; and (3) 
feature 3 has the widest distribution of SHAP values, indicating that 
its influence is more complex.

Figure 4B presents the analysis results of feature importance on 
the basis of the absolute average SHAP value. In this study, the R2 

TABLE 3  Performance evaluation of the XGBoost, Logistic, LASSO, R2 Shrinkage, LightGBM, RF, AdaBoost, SVM, KNN, and GNB algorithms in SSL 
diagnosis.

Algorithm Accuracy Specificity Sensitivity F1-score

XGBoost 84.7 ± 6.6 76.6 ± 13.8 89.5 ± 5.3 88.4 ± 5.6

Logistic 84.2 ± 7.3 70.0 ± 14.1 92.3 ± 4.3 88.2 ± 6.0

LASSO 84.2 ± 7.3 70.0 ± 14.1 92.3 ± 4.3 88.2 ± 6.0

R2 Shrinkage 84.7 ± 7.7 71.2 ± 15.0 92.7 ± 4.1 88.5 ± 6.2

LightGBM 83.4 ± 6.7 76.0 ± 13.8 88.0 ± 6.3 87.1 ± 5.6

RF 83.4 ± 7.0 73.9 ± 13.5 89.1 ± 5.2 87.2 ± 5.9

AdaBoost 84.7 ± 6.4 75.4 ± 13.2 90.3 ± 5.3 88.3 ± 5.3

MLP 83.7 ± 8.4 73.5 ± 15.9 90.0 ± 5.4 87.6 ± 6.8

SVM 84.0 ± 5.6 73.1 ± 12.3 89.9 ± 5.4 87.7 ± 4.9

KNN 83.9 ± 5.7 77.5 ± 13.0 87.6 ± 4.1 87.5 ± 4.9

GNB 82.2 ± 7.5 67.8 ± 10.7 90.3 ± 4.9 86.5 ± 6.4

The bold values represented that R2 Shrinkage model demonstrated greater performance and reliability.

FIGURE 2

Comparative analysis of the ML models.
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Shrinkage algorithm was used to construct a classification model, and 
the SHAP method was employed to calculate the contribution of each 
feature to the model predictions. By calculating the global mean 
absolute SHAP value, we obtained the feature importance ranking: 
feature 1 (0.124) was the most influential, followed by feature 4 

(0.121), feature 2 (0.109), feature 3 (0.046), and feature 5 (0.028), 
which had the lowest contribution. This analysis not only objectively 
identified the key predictive features but also significantly enhanced 
the interpretability of the model, providing an important reference for 
subsequent research and clinical application.

FIGURE 3

Training and testing results of the R2 Shrinkage model. (A) 10-fold training ROC curve. (B) 10-fold validation ROC curve. (C) Independent test ROC 
curve. (D) The cumulative confusion matrix.

FIGURE 4

SHAP interpretation. (A) Attributes of features in the SHAP analysis. Each point represents a feature, and the SHAP values are plotted on the x-axis. The 
red dots represent high eigenvalues, and the blue dots represent low eigenvalues. (B) Feature importance sorted by SHAP value; the matrix diagram 
describes the importance of each covariate in the final prediagnosis process.
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4 Discussion

In recent years, advances in molecular biology research has 
highlighted the clinical importance of SSLs as core precursor lesions 
of the “serrated carcinogenesis pathway” in colorectal cancer. 
However, the morphological manifestations of SSLs are 
morphologically subtle, and some cases are missed because of the lack 
of typical bulges or color changes. Therefore, some studies suggest that 
CRC that occurs after colonoscopy screening may develop from 
missed and untreated serrated lesions (28), and colonoscopy is not as 
effective in screening the right half of the colon as it is for the left half 
(29). Several studies have confirmed that interphase CRC often occurs 
in the proximal colon and is associated with the serrated carcinogenesis 
pathway (30). Therefore, the current view holds that serrated lesions 
play an important role in the development of CRC. Given the high 
carcinogenic potential of SSLs, clinical guidelines emphasize complete 
resection of right hemicolonic serrated lesions ≥5 mm and shortening 
the follow-up period to 3 years (31, 32) to prevent their progression 
to invasive cancer. In this study, the detection rate of SSL was 3.3% 
(135/3,987), which was relatively low compared with previous studies. 
It mainly reflects the historical limitations of insufficient 
understanding of SSL and the lack of unified diagnostic criteria in the 
early stage of the included study. With the popularization of 
pathological diagnosis norms and the strengthening of training in 
recent years, the diagnostic accuracy of SSL has significantly improved.

Previous studies have indicated that SSLs are located mostly in the 
right colon, their diameters are often greater than 5 mm, and 
endoscopically, they often grow in a flat or broad-based manner and 
are easily confused with the microvesicular or goblet cell subtypes of 
HPs (33). As a result, these lesions are prone to be overlooked during 
endoscopy, leading to a missed diagnosis. Therefore, accurate 
identification of SSLs under endoscopy is a key step in reducing the 
incidence of colorectal cancer. Hazewinkel et al. (8) summarized the 
endoscopic characteristics of SSLs as unclear boundaries, cloud-like 
surfaces, black spots in the crypts under NBI, irregular shapes, pit 
pattern II-O type gladular duct openings and normal vascular density. 
Unclear boundaries and white cumulus surfaces, black spots and 
irregular shapes within the crypts were identified as independent 
predictors during NBI examination. However, the diagnostic efficacy 
of a single feature is limited, and assistive techniques such as 
magnifying endoscopy or staining endoscopy are not yet widespread, 
resulting in a higher rate of missed diagnoses in clinical practice. 
Although several studies have attempted to increase diagnostic 
accuracy through multiparameter models, most of these models rely 
on high-resolution or magnifying imaging techniques (34) and are 
difficult to adopt in primary care. Traditional research methods and 
statistical methods encounter certain limitations in dissecting these 
complex factors. This study aims to build an endoscopic classification 
prediction model of SSLs through ML techniques to address the high 
rate of missed diagnoses and the difficulty in differentiating SSLs from 
HPs due to their subtle morphology, improve the early accurate 
recognition rate, provide technical support for blocking the serrated 
sawtooth carcinogenesis pathway and optimizing clinical treatment 
and follow-up strategies.

This study introduced an SSL intelligent diagnostic model based 
on ML algorithms, with a focus on differentiating between SSL and 
HP diagnoses. A systematic comparison of the diagnostic performance 
of nine algorithms, including XGBoost, Logistic, LASSO, R2 Shrinkage, 
LightGBM, random forest, AdaBoost, MLP, SVM, KNN and GNB, 

revealed that the R2 Shrinkage model performed the best, with a 
diagnostic accuracy rate of 84.7% ± 7.7. The specificity was 
71.2% ± 15.0, the sensitivity was 92.7% ± 4.1 and the F1-score was 
88.5% ± 6.2. As the first study to apply machine learning techniques 
to endoscopic classification, this method enables precise differentiation 
between SSLs and HPs, providing new ideas for clinical diagnosis. 
Although differences exist in datasets and evaluation protocols across 
studies, the performance of our model can be contextualized with 
previous machine learning and deep learning studies on SSL diagnosis 
(see Supplementary Tables 1, 2), demonstrating comparable or 
superior potential (35–39). The excellent performance of R2 Shrinkage 
is attributed mainly to the following: (1) the R2 Shrinkage method can 
effectively adjust model coefficients to account for potential overfitting; 
and (2) this shrinkage improves the stability and generalizability of the 
diagnostic model across different datasets. This study provides a 
reliable intelligent diagnostic approach for the classification of 
serrated polyps.

In terms of model interpretability studies, SHAP analysis was 
applied to systematically evaluate the contribution of each clinical 
feature to SSL diagnosis. By constructing a global bee colony map and 
an average absolute SHAP plot, we  visually demonstrated the 
importance ranking of different features in model decision-making 
and the direction of their influence. The results revealed the following: 
(1) Lesion size (absolute mean SHAP = 0.109) and the presence of a 
mucus cap (0.121) were significantly positively correlated with SSL 
classification. When a diameter >8 mm or mucus cap was present, the 
SHAP value was positively offset, suggesting an increased probability 
of SSL diagnosis. (2) The left hemicolonic region (0.124), specific 
endoscopic classification (0.046), and surface vascular thickening 
(0.028) were negatively correlated with SSLs, among which the 
endoscopic classification had the greatest dispersion of the SHAP 
value distribution, reflecting its nonlinear effect characteristics. (3) 
Surface vascular thickening contributed the least (0.028). By 
constructing individualized SHAP maps, we established quantitative 
diagnostic criteria and proposed the three most contributing 
indicators as the basis for SSL diagnosis: when the lesion size was 
>8 mm, there was a mucus cap, and when the lesion was located in the 
right half of the colon, the probability of an SSL diagnosis was more 
than 85%; otherwise, the model predicts HP. The model innovatively 
reveals the interaction patterns among features, its diagnostic efficacy 
is highly consistent with clinical guidelines, and its feature of not 
relying on magnifying endoscopy is particularly suitable for primary 
care institutions and routine endoscopic examination scenarios, 
providing efficient and objective decision support for SSL 
differentiation. In addition, the model constructed in this study 
provides a quantitative basis for the clinical diagnosis of SSL by 
integrating key features such as the location, size and mucus cap of the 
lesion. This tool helps to reduce the missed diagnosis rate of SSL, 
improve the diagnostic consistency among different operators, and 
especially provides a reference for the real-time decision-making 
of endoscopists.

There are certain limitations in this study. First, in terms of the 
study design, a retrospective study method was adopted. Retrospective 
data lack the consistency to standardize endoscopic procedures such 
as image quality and shooting angle, and individual differences among 
patients, such as intestinal preparation quality and combined 
medication were not effectively corrected, which might amplify the 
differential error between SSLs and HPs. Second, there was an 
imbalance in the sample size. The sample size of the HP group was 
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greater than that of the SSL group, which led to the ML model 
overfitting to most classes (HP) and reducing its classification 
sensitivity to SSLs. In addition, the model was only validated using 
retrospective datasets, and its actual clinical efficacy was not tested in 
multicenter, prospective cohorts, which may overestimate the 
classification accuracy. Prospective multicenter studies are needed in 
the future to expand sample diversity and use oversampling synthetic 
minority oversampling technique (SMOTE) or generative adversarial 
networks (GANs) to address the imbalance between classes. In 
addition, manual extraction of endoscopic features may introduce 
subjectivity and individual differences due to the varying experiences 
and judgment criteria of observers. In future research, we plan to 
expand the scale of the dataset and consider exploring the end-to-end 
application of deep learning for adaptive feature extraction to further 
enhance the objectivity and generalization ability of the model.

5 Conclusion

This study is the first to apply ML algorithms to the endoscopic 
classification of serrated polyps and can differentiate SSLs in 
non-magnifying endoscopic clinical scenarios, supporting diagnosis 
and providing a feasible and efficient new method for this purpose. 
Compared with those of the other studied models, the R2 Shrinkage 
model demonstrated greater performance and reliability, yielding 
higher accuracy, specificity, sensitivity, and F1-score. In addition, the 
SHAP value analysis revealed that a lesion size >8 mm, the presence 
of a mucus cap, and the lesion location in the right half of the colon 
were key features for the endoscopic identification of SSLs.
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