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Background: Sepsis is a highly heterogeneous clinical syndrome, and the real-
time prognosis prediction and risk stratification for it remain a big challenge in 
current clinical research. This study aimed to assess the performance of IL-10/
lymphocyte ratio (ILR) and lactate (Lac) in the prognostic prediction and risk 
stratification of sepsis.
Methods: This is a retrospective observational study that included 148 patients 
with sepsis admitted to the First Affiliated Hospital of Chongqing Medical 
University from January 2022 to February 2023. Data collection commenced on 
the first day of ICU admission, with clinical and laboratory parameters recorded 
within 24 h of diagnosis, including IL-10 levels, lymphocyte counts, Lac, SOFA 
score, and APACHE II score. The relationship between ILR and Lac and 28-day 
mortality were analyzed by multivariate logistic regression analysis and Cox 
proportional hazards regression, and their predictive efficacy were assessed 
by receiver operator characteristic curves (ROCs), and Kaplan–Meier survival 
curves were used to validate the effect of risk stratification.
Results: Patients in the death group exhibited significantly higher ILR (302.33 
vs. 16.37) and Lac levels (3.25 mmol/L vs. 1.90 mmol/L) compared to the 
survival group (both p < 0.001). Multivariate logistic regression analysis showed 
that ILR (OR = 1.005, 95% CI 1.001–1.009) was independent risk factor for 
death at 28 days. Analysis of ROCs showed that the predictive efficacy of ILR 
(AUC = 0.860) was superior to the APACHE II score (AUC = 0.797) and the 
SOFA score (AUC = 0.704). Based on stratification by ILR (cutoff value 97.4) 
and Lac (cutoff value 4.1 mmol/L), the four risk stratification levels (Levels I–
IV) exhibited progressively decreasing 28-day mortality rates: Level I  (78.95%), 
Level II (50.00%), Level III (15.38%), and Level IV (7.69%). Kaplan–Meier analysis 
confirmed significant survival differences (p < 0.001), with Level I demonstrating 
the worst prognosis.
Conclusion: The combined ILR and Lac measurement provides a practical 
bedside tool for real-time sepsis risk stratification, demonstrating better 
prognostic utility than conventional scoring systems while maintaining clinical 
feasibility.
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Highlights

	•	 Uniquely combines Interleukin-10-to-Lymphocyte Ratio (ILR) 
and lactate for sepsis prognosis (AUC = 0.860), outperforming 
SOFA and APACHE II scores.

	•	 Risk stratification using optimal cutoffs (ILR ≥ 97.4; Lactate 
≥4.1 mmol/L) identified four distinct risk groups (I–IV) with 
statistically significant gradients in mortality rates at both 7-day 
(57.9 to 3.9%) and 28-day follow-ups (78.9 to 7.7%) (p < 0.001).

	•	 Leverages readily available, low-cost routine tests with minimal 
iatrogenic burden, enabling real-time, repeatable risk assessment 
at the bedside—unlike complex multi-parameter or 
big-data models.

1 Introduction

Sepsis is a life-threatening organ dysfunction caused by a 
dysregulated host response to infection (1), and as one of the leading 
causes of death in critically ill patients worldwide, the complexity and 
clinical heterogeneity of its pathophysiologic mechanisms pose a great 
challenge for accurate prognostic assessment (2, 3). Sepsis manifests 
itself as a “cytokine storm” with over-activation of pro-inflammatory 
responses in the early stages. In the later stages, it turns into a 
predominantly immunosuppressive pathology. This immune 
imbalance persists throughout the disease, which is a key factor 
leading to organ failure and death (4, 5). Although predictive models 
based on artificial intelligence and multi-omics technologies have 
shown potential in sepsis typing and risk stratification in recent years, 
these methods generally suffer from complexity, high cost, and poor 
clinical accessibility, making it difficult to generalize their use in 
routine medical practice. Meanwhile, conventional scoring systems 
(e.g., SOFA and APACHE II), although widely used, have insufficiently 
reflected the immunosuppressive state, a key pathological feature of 
sepsis, limiting their application in accurate prognostic prediction (6).

The anti-inflammatory cytokines interleukin-10 (IL-10) and 
lymphocyte depletion are two key features in the immunosuppressive 
mechanisms of sepsis (7, 8). IL-10 is one of the most important anti-
inflammatory cytokines and is secreted by monocytes/macrophages 
and T-cell subsets, which are capable of inhibiting the release of 
pro-inflammatory factors (e.g., TNF-α, IL-6) and suppressing effector 
T-cell function (9, 10). Studies have shown that IL-10 levels are 
significantly elevated in septic patients early in life and persist for a 
long period, and its concentration is positively correlated with 
mortality (11, 12). On the other hand, lymphopenia is another central 
manifestation of sepsis immunosuppression involving apoptosis or 
dysfunction of T and B cells (13, 14), and persistently low lymphocyte 
counts (<0.76 × 109/L) for more than 3 days were significantly 
associated with 28-day mortality (15, 16). In addition, elevated levels 
of lactate (Lac), a product of hypoxic metabolism, directly reflect 
tissue hypoperfusion and mitochondrial dysfunction, and are closely 
associated with septic multi-organ failure (17).

Based on the above background, the present study innovatively 
proposes to combine IL-10/lymphocyte ratio (ILR) and Lac as a novel 
composite biomarker. This strategy has the following scientific rationale 
and clinical significance: the ILR reflects both the intensity of the anti-
inflammatory response (via IL-10 levels) and quantifies the degree of 
immune cell depletion (via lymphocyte counts), thus providing a more 

comprehensive assessment of the immunosuppressive state of sepsis. 
While previous studies demonstrated that both elevated IL-10 and 
lymphopenia are independently associated with sepsis mortality (18, 
19), their combination appears to provide enhanced predictive value. 
Lac serves as a marker of tissue hypoperfusion, and elevated Lac levels 
directly reflect the severity of tissue hypoxia and organ dysfunction. 
The synergistic effect of Lac with immunosuppressive indicators (e.g., 
IL-10) may further exacerbate organ failure, so the inclusion of Lac in 
and indicators may reflect the pathophysiological status of septic 
patients more comprehensively and improve the accuracy of prognostic 
assessment. Finally, these three indicators are routine clinical tests with 
the advantages of being simple to obtain and interpret, low 
cost, and low iatrogenic consumption of blood during repeated real-
time detections, they are particularly suitable for bedside 
clinical practice.

This study aims to investigate the clinical value of ILR and Lac 
in the prognostic assessment and risk stratification of septic 
patients, and to verify its feasibility as a prognostic indicator and 
risk stratification by analyzing its relationship with 28-day 
mortality rate and traditional scoring systems (e.g., SOFA, 
APACHE II). The significance of this study is to provide a new 
theoretical basis and clinical tools for the prognostic management 
of sepsis, to help early identification of high-risk patients, to 
optimize intervention strategies, and thus to improve the survival 
outcomes of patients.

2 Materials and methods

2.1 Study population

A total of 197 patients with sepsis who attended the First Affiliated 
Hospital of Chongqing Medical University between January 2022 and 
February 2023 were included in this study. The study was a 
retrospective observational study and was approved by the Ethics 
Committee of the First Affiliated Hospital of Chongqing Medical 
University (NO. 2022-K456).

2.2 Inclusion and exclusion criteria

Inclusion:

	(1)	 All hospitalized patients with sepsis. Sepsis was defined as the 
presence of a Sequential Organ Failure Assessment (SOFA) 
score ≥2 based on an infection (definite or suspected), i.e., 
indicating the presence of organ dysfunction caused by 
the infection.

	(2)	 Adult patients (age ≥18 years).

Exclusion:

(1) patients with a history of comorbid hematologic disease; (2) 
patients with a history of extensive hormone therapy; (3) patients with 
an unclear baseline SOFA score; (4) patients for whom complete 
information was not available; (5) patients for whom laboratory tests 
were not completed within 24 h of the patient’s admission to the 
hospital with a confirmed diagnosis of sepsis; and (6) patients with a 
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history of malignant neoplasm treated with radiotherapy or 
chemotherapy in the 6 months before admission to the hospital.

Definition of sepsis: the presence of a Sequential Organ Failure 
Assessment (SOFA) score ≥2 based on an infection (definite or 
suspected), which is indicative of the presence of organ dysfunction 
caused by infection (1).

The definition of infection includes the following aspects (20, 21): 
(1) the presence of a systemic reaction in the body, such as fever or a 
drop in body temperature, accompanied by corresponding clinical 
symptoms, which may involve the gastrointestinal, respiratory, and 
urinary tracts; (2) the presence of some common indicators of 
infection, such as the white blood cell count, the percentage of 
neutrophils, the concentration of C-reactive protein, and serum 
calcitoninogen levels; and (3) the presence of an area or pathologic 
basis for suspected infection.

2.2.1 Plasma IL-10 measurement
In this study, IL-10 was measured using a commercial multiplex 

bead-based assay kit. First, plasma samples were collected from the 
peripheral blood of each septic patient at the time of patient 
enrollment. The plasma sample collection process consisted of placing 
whole blood in a tube containing sodium citrate and centrifuging it in 
a centrifuge at 1,000 × g for 10 min to separate the plasma. After 
centrifugation, the upper plasma layer was removed and immediately 
frozen to −80 °C, in order to ensure the stability of the samples and 
the accuracy of the subsequent analysis. For IL-10 assay, follow the kit 
manufacturer’s instructions. Specific steps included thawing the 
frozen plasma samples and diluting them to the appropriate 
concentration to comply with the kit requirements. Subsequently, the 
diluted samples are added to a pre-prepared multiplexed bead-based 
assay plate, ensuring that each sample is evenly distributed. Through 
the use of specific fluorescent-labeled antibodies, combined with flow 
cytometry techniques, the concentration of IL-10 in the samples was 
able to be accurately determined. All samples were assayed under 
consistent experimental conditions to minimize experimental errors 
and ensure comparable results.

2.2.2 Lymphocyte count measurement
In this study, lymphocyte counts were performed using EDTA 

anticoagulated tubes (purple tubes) to collect peripheral venous blood 
to avoid coagulation or hemolysis interfering with the count results. 
The samples were stored at 2–8 °C, and the assay was completed 
within 4 h to prevent changes in cell morphology from affecting 
the accuracy.

2.2.3 Blood lactate measurement
In the present study, Lac was determined using blood gas analyzer. 

Blood samples were collected from the arterial blood of each septic 
patient at the time of patient enrollment. The samples were placed in 
test tubes containing anticoagulant immediately after collection to 
prevent blood clotting. Subsequently, the samples were stored in an ice 
bath and assayed within 30 min of collection to ensure the accuracy 
of the results. During the measurement, the operating procedures of 
the blood gas analyzer were strictly followed to minimize experimental 
errors and to ensure comparable results.

IL-10, lymphocyte count, and Lac assays were performed under 
the unified quality control of the Clinical Laboratory Center of the 
First Affiliated Hospital of Chongqing Medical University. The 

Interleukin-10 to lymphocyte ratio (ILR) in this study was calculated 
using the IL-10 concentration and absolute lymphocyte count 
measured within 24 h of admission. The formula used was: 
ILR = IL-10 (pg/mL)/lymphocyte count (×109/L). Consequently, the 
unit of ILR is pg/109.

2.3 Data collection

The starting time for data collection was the first day of the 
patient’s admission to the ICU, and all relevant laboratory data and 
clinical information were recorded at this time. During the data 
collection process, emphasis was placed on the basic demographic 
characteristics of the patients, including age and gender. In addition, 
detailed information on the patient’s medical history, such as 
hypertension, coronary artery disease, chronic kidney disease, 
diabetes mellitus, chronic obstructive pulmonary disease, chronic 
liver disease, and other comorbidities, was recorded. The definitions 
of these variables were based on internationally recognized medical 
standards to ensure consistency and comparability of data. Laboratory 
data were collected, including lymphocyte count, Lac, and IL-10 
measurements. In addition, data on other relevant biomarkers such as 
creatinine, platelet count, Glasgow Coma Score, temperature, PCT, 
interleukin 6, D-Dimer, albumin, acute kidney injury, and SOFA score 
were also collected in order to assess the patient’s clinical status 
more comprehensively.

2.4 Statistical analysis

In this study, the collected data were statistically analyzed using SPSS 
29.0, GraphPad Prism 10, and R language 4.4.0. For count data, 
expressed as frequencies and percentages, the chi-square test was used 
for comparison between groups. For the measurement data, if normal 
distribution was satisfied, they were analyzed by the paired t-test to 
assess the differences between the groups, and the results were reported 
as means and their standard deviations (x̄±s); if normal distribution was 
not satisfied, comparisons between the groups were made using the 
Wilcoxon-Mann–Whitney U-test, and the results were expressed as the 
median (interquartile spacing) [M(IQR)]. In addition, multivariate 
logistic regression analysis was utilized in this study to identify 
independent risk factors for death in patients with sepsis and to explore 
the important role of ILR in the prognostic assessment of patients with 
sepsis by the Cox proportional hazards regression. In order to assess the 
diagnostic validity of the relevant indices, a receiver operator 
characteristic curve (ROC) was used, and the area under the curve 
(AUC) was calculated to assess the predictive efficacy. Meanwhile, SHAP 
(Shapley Additive Explanations) value analysis was introduced by 
training the XGBoost model, demonstrating the key indicators affecting 
the prognosis of death in septic patients. Patients were categorized into 
four risk stratification levels (I-IV) based on the optimal cutoff value of 
ILR and Lac. Kaplan–Meier survival curves were used to plot the 
survival of different levels, and the differences between risk stratification 
levels were statistically compared by the Log-Rank test to further validate 
the application value of ILR in clinical prognostic assessment. To ensure 
the quality of the data, missing values were strictly handled in the data 
organization process of this study. First, all clinical variables included in 
the analysis were screened for completeness, and variables with a high 
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percentage of missing values or limited clinical significance were not 
included in the modeling analysis. For the very small proportion of 
missing values, simple imputation was applied (median for continuous 
variables and mode for categorical variables). Importantly, the core 
predictors (ILR and lactate) and outcomes had no missing data, ensuring 
the reliability of the main results. Data preprocessing was mainly done 
in SPSS 29.0, and the R language was used to further verify the 
consistency of the processed data and the robustness of the analysis. All 
statistical results were tested for significance with a p-value of less than 
0.05 to ensure the scientific validity and effectiveness of the study results.

3 Results

3.1 Enrolled cases

A total of 197 patients with sepsis were collected in this study, and 
148 cases were finally included after the following exclusion criteria 
(Figure 1).

Excluded cases:

	(1)	 Patients with a comorbid history of hematologic disorders, 
including 5 cases of acute myeloid leukemia, 2 cases of aplastic 
anemia, and 1 case of diffuse large B-cell lymphoma; patients 
with a comorbid history of immunodeficiency, including 5 
cases of systemic lupus erythematosus and 2 cases of 
dermatophytosis; and 2 cases of pulmonary infections 
associated with a history of HIV;

	(2)	 Enrollment of 3 patients with a recent history of receiving a 
large dose of hormone therapy (a large dose was defined as 

more than 1 mg/(kg·d) of prednisone or other equivalent dose 
of glucocorticoids over 7 days);

	(3)	 Of the patients with an unclear underlying SOFA score, there 
were 6 cases;

	(4)	 For multiple reasons, complete information was not available 
for 11 patients;

	(5)	 6 cases in which relevant tests were not performed within 24 h 
of the patient’s admission to the hospital with a confirmed 
diagnosis of sepsis;

	(6)	 6 cases who had a history of malignancy treated 
with radiotherapy or chemotherapy within 6 months 
before admission.

3.2 Clinical characteristics of patients

Patients with sepsis were categorized as surviving and dying based 
on their clinical outcome at 28 days. As can be seen from the following 
tables (Table 1, Supplementary Table S1), there was no significant 
difference between surviving and dying septic patients in terms of age 
and gender using the chi-square test and t-test. However, significant 
differences were presented in qSOFA score, SOFA score, APACHE II 
score, Lac, IL-10, lymphocyte, and ILR.

3.3 Feature importance ranking for septic 
mortality via SHAP value

We used R language to construct XGBoost machine learning 
model based on objective laboratory indicators, literature support 

FIGURE 1

Flowchart of patient enrollment.
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parameters and commonly used clinical indicators, and applied SHAP 
(Shapley Additive Explanations) value analysis to analyze the key 
predictors of prognosis of death in septic patients (Figure 2) and the 
results of their model performance evaluation 
(Supplementary Table S2). The SHAP analysis showed that the ILR 
had the highest contribution to the model output (mean SHAP 
value = 1.887), indicating that this metric has a significant impact on 
mortality risk prediction. This was followed by total bilirubin (Tbil, 
SHAP value = 0.801) and D-dimer (SHAP value = 0.772). Other 
statistically significant predictors included white blood cell count 
(WBC), prothrombin time (PT), activated partial thromboplastin 
time (APTT), patient age, and Lac levels.

3.4 Multivariate logistic regression analysis

Based on the results of SHAP analysis, the present study 
adopted a holistic assessment strategy in the selection of variables: 

to avoid the local bias that may be  caused by individual organ 
function indexes (e.g., coagulation parameters), a comprehensive 
organ function assessment system such as SOFA scores and 
APACHE II scores was turned to as a substitute. This design aims 
to more comprehensively reflect the overall characteristics of 
multi-organ dysfunction in sepsis. We  used age, ILR, SOFA, 
APACHE II, Lac, IL-6, D-dime, albumin (ALB), and underlying 
diseases (e.g., diabetes mellitus and hypertension) as independent 
variables, and survival status of septic patients (survival = 1, 
death = 0) as the dependent variable, and performed multivariate 
logistic regression analysis. Stepwise regression was used for this 
analysis (Table  2). The results showed that APACHE II score 
(OR = 1.143, 95% confidence interval CI 1.060–1.232) and ILR 
(OR = 1.005, 95% CI 1.001–1.009) were identified as independent 
risk factors for death, whereas Lac also demonstrated a dominance 
ratio OR = 1.047. specifically. The risk of death in patients with 
sepsis increased significantly with increasing APACHE II score and 
ILR values.

TABLE 1  Comparison of general characteristics between survivors and non-survivors in septic patients.

Items Survival (n = 109) Non-survival (n = 39) t value/Z value p value

Age (years) 62.98 ± 16.93 66.41 ± 14.86 −0.96 0.337

HR (beats/min) 103 ± 22 120 ± 22 −3.82 <0.001

RR (breaths/min) 22 (20, 26) 26 (23, 32) −3.279 0.001

T (°C) 36.8 (36.5, 38.1) 36.7 (36.5, 38.1) −0.682 0.495

qSOFA 1 (1, 2) 2 (1, 2) −3.358 0.001

SOFA 4 (3, 6) 6 (4, 10) −3.82 <0.001

APACHE II 23 (18, 28) 45 (25, 49) −5.341 <0.001

GCS 15 (15, 15) 15 (13, 15) −2.004 0.045

OI 300.68 ± 112.68 276.33 ± 144.69 1.467 0.142

Cr (umol/L) 101 (74, 172) 159 (108, 243) −3.13 0.002

TBIL (umol/L) 17.20 (10.43, 30.08) 29.10 (13.50, 63.00) −3.025 0.002

PLT (×109/L) 145 (91, 225) 101.00 (32, 199) −2.239 0.025

WBC (×109/L) 11.54 (7.15, 16.97) 10.43 (4.64, 17.94) −0.725 0.469

NEUT (×109/L) 10.55 (6.34, 15.84) 9.28 (3.97, 17.03) −0.783 0.434

PCT (ng/mL) 2.56 (0.87, 53.20) 13.94 (1.48, 48.8) −1.396 0.163

PT (s) 15.3 (14.5, 16.9) 17.3 (15.8, 21.1) −4.282 <0.001

APTT (s) 39.45 (34.68, 46.80) 44.7 (39.3, 55.5) −2.848 0.004

PTA (%) 71.10 ± 16.31 56.25 ± 16.28 −4.367 <0.001

D-Dimer (ng/mL) 4.61 (2.25, 9.25) 5.06 (2.75, 17.94) −0.958 0.338

Lac (mmol/L) 1.90 (1.00, 3.30) 3.25 (1.73, 8.18) −3.563 <0.001

ALB (g/L) 29 (26, 32) 26 (23, 31) −2.189 0.029

IL-6 (pg/mL) 132 (65, 312) 229 (104, 815) −2.493 0.013

IL-10 (pg/mL) 9.96 (1.94, 33.08) 112.47 (29.80, 273.91) −5.952 <0.001

Lym (×109/L) 0.62 (0.41, 0.83) 0.28 (0.16, 0.39) −5.916 <0.001

ILR 16.37 (3.11, 66.65) 302.33 (118.73, 972.52) −6.583 <0.001

Continuous variables were analyzed using an independent samples t-test and Wilcoxon-Mann–Whitney U test to assess between-group differences. For normally distributed data, group 
comparisons were analyzed using independent t-tests, reported as mean ± SD (x̄ ± s). For non-normally distributed data, the Wilcoxon-Mann–Whitney U test was used, reported as median 
(IQR) [M (IQR)]. HR, Heart rate; RR, Respiratory rate; T, Temperature; qSOFA, Quick Sequential Organ Failure Assessment; SOFA, Sequential Organ Failure Assessment; APACHE, II Acute 
Physiology and Chronic Health Evaluation II; GCS, Glasgow Coma Scale; OI, Oxygenation Index; Cr, Creatinine; TBIL, Total bilirubin; PLT, Platelet count; WBC, White blood cell count; 
NEUT, Neutrophil count; PCT, Procalcitonin; PT, Prothrombin time; APTT, Activated partial thromboplastin time; PTA, Prothrombin activity; Lac, Lactate; ALB, Albumin; IL-6, 
Interleukin-6; IL-10, Interleukin-10; Lym, Lymphocyte count; ILR, Interleukin-10 to lymphocyte ratio.
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3.5 Cox proportional hazards regression 
analysis

Cox proportional hazards regression analyses were performed 
with age, ILR, SOFA, APACHE II, Lac, IL-6, D-dimer, ALB, and 
underlying disease (diabetes mellitus, hypertension) as the 
independent variables, and time to death within 28 days of admission 
in septic patients as the dependent variable, respectively (Table 3). Cox 
regression showed that APACHE II score (HR = 1.102, 95% CI 1.046–
1.161) and ILR (HR = 1.239, 95% CI 1.097–1.399) were independent 
predictors of death. For every 1-point increase in APACHE II score, 
the risk of death increased by 10.2%. For every 1-unit increase in ILR, 
the risk of death increased by 23.9%.

3.6 ROC for predicting prognosis in septic 
patients

Based on the results of multivariate logistic regression analysis and 
Cox proportional hazards regression, we further evaluated the predictive 
efficacy of each independent predictor for the 28-day risk of death in 
patients with sepsis. Based on the significance levels of OR (Logistic 
regression) and HR (Cox regression), we selected four key indicators - 
ILR, Lac, SOFA score, and APACHE II score, for receiver operator 
characteristic curves (ROCs) analysis. The predictive efficacy of ILR, 
Lac, SOFA score, and Apache II score for death in patients with sepsis is 
shown in Figure 3 and Table 4. The area under the ROC curve (AUC) 
for ILR is 0.860 (95% CI 0.791–0.914, p < 0.001), the highest efficacy, 

FIGURE 2

SHAP-based interpretation of model feature importance. (A) SHAP beeswarm plot illustrating the individual impact of each feature on the model 
output. Each dot represents a sample, with color indicating the feature value (purple = low, yellow = high). The ILR shows the strongest influence on 
predictions, followed by Tbil and D-dimer. (B) Bar plot of mean absolute SHAp values, summarizing the overall importance of each feature. ILR ranks 
highest, indicating its dominant role in the model’s predictive power.
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with a sensitivity of 79.49% and a specificity of 81.65% at an optimal 
cutoff value of 97.4 (Supplementary Figure S1). The area under the ROC 
curve (AUC) for Lac was 0.706 (95% CI 0.621–0.781, p < 0.001), with a 
cutoff value of 4.1 score corresponding to a 46.15% sensitivity and 
85.98% specificity (Supplementary Figure S2). The area under the ROC 
curve (AUC) for SOFA was 0.704 (95% CI 0.624–0.777, p < 0.001), and 
its cutoff value of 4 points corresponded to a sensitivity of 71.79% and a 
specificity of 59.63% (Supplementary Figure S3). The area under the 
ROC curve (AUC) for Apache II was 0.797 (95% CI 0.720–0.861, 
p < 0.001), and its cutoff value of 38 points corresponded to a sensitivity 
of 67.57% and a specificity of 98.02% (Supplementary Figure S4).

3.7 ILR-lac risk stratification and 
multimethod prognostic validation in 
sepsis

Using ROC-derived optimal cutoffs (ILR: 97.4; Lac: 4.1 mmol/L), 
patients were stratified into four risk stratification levels (Levels I–IV), 
where Level I represented the highest-risk stratum and Level IV the 
lowest. Kaplan–Meier survival analyses at 7 and 28 days revealed 
significant intergroup differences (7-day: χ2 = 37.84; 28-day: 
χ2 = 61.41; both p < 0.001) (Supplementary Tables S3, S4), with 
mortality rates demonstrating a consistent hierarchy across 

timepoints: 57.89, 35.71, 15.38, and 3.85% at 7 days, progressing to 
78.95, 50.00, 15.38, and 7.69% at 28 days in the respective risk 
stratification levels (Figure 4). In addition, trend analysis of survival 
analysis Log-Rank test (7-day χ2 = 36.21, p < 0.001; 28-day χ2 = 56.62, 
p < 0.001) further confirmed the statistically significant trend of 
deterioration in patient survival with increasing level rank. This trend 
analysis is particularly useful for assessing consistent patterns of 
change in survival with level rank. To further validate differences 
between survival curves, we used the Gehan-Breslow-Wilcoxon test, 
which is more sensitive to early events. The results (7-day χ2 = 37.79, 
p < 0.001; 28-day χ2 = 58.82, p < 0.001) support the conclusion that 
there is a significant difference between the survival curves and 
suggest that this difference may have been apparent at an early stage 
of follow-up. This dual stratification method, based on objective cutoff 
values, ensures standardization of assessment and more precise 
identification of different risk stratification levels, providing a reliable 
basis for early clinical intervention.

4 Discussion

The pathophysiological mechanism of sepsis, as a life-threatening 
organ dysfunction caused by a dysregulated systemic inflammatory 
response triggered by infection, involves a complex dysregulation of 

TABLE 2  Multivariate logistic regression analysis of risk factors for 28-day mortality in septic patients.

OR p value 95%CI

Age 1.017 0.510 0.968 1.067

HTN 0.69 0.685 0.115 4.133

DM 0.382 0.328 0.056 2.629

SOFA 1.028 0.860 0.757 1.395

APACHE II 1.143 <0.001 1.060 1.232

ILR 1.005 0.013 1.001 1.009

Lac 1.047 0.786 0.751 1.460

IL-6 1 0.452 1.000 1.000

D-Dimer 0.988 0.588 0.947 1.031

ALB 0.985 0.876 0.818 1.187

HTN, Hypertension; DM, Diabetes mellitus; OR, Odds ratio; CI, Confidence interval; other abbreviations are as same as Table 1.

TABLE 3  Cox proportional hazards regression analysis of predictors for 28-day survival in septic patients.

HR p value 95%CI

Age 1.003 0.882 0.967 1.040

HTN 0.547 0.235 0.202 1.481

DM 0.772 0.607 0.289 2.063

SOFA 0.971 0.778 0.790 1.193

APACHE II 1.102 0.000 1.046 1.161

ILR 1.239 0.001 1.097 1.399

Lac 1.068 0.428 0.908 1.257

IL-6 1.000 0.578 1.000 1.000

D-Dimer 1.000 0.982 0.976 1.024

ALB 1.020 0.711 0.919 1.131

HR, hazard ratio; CI, Confidence interval; other abbreviations are as same as Table 1.
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the immune response characterized by a dynamic imbalance between 
an early excessive pro-inflammatory response and a subsequent state 
of immunosuppression. This imbalance not only exacerbates organ 
dysfunction but is also strongly associated with high patient mortality 
(22, 23). The immunosuppressive state of sepsis is characterized by an 
overproduction of anti-inflammatory cytokines (e.g., IL-10) and a 
significant decrease in the number of lymphocytes, which together 
constitute the core features of immune dysfunction in septic patients. 
This immunosuppressive state leads to decreased clearance of 
pathogens and increased risk of secondary infections in patients, 
making it an important driver of sepsis mortality (24). Studies have 
shown that elevated levels of IL-10, an important immunomodulatory 
factor that inhibits the release of pro-inflammatory cytokines and 
impairs effector T-cell function, are strongly associated with poor 
prognosis in patients with sepsis (25, 26). On the other hand, 
lymphopenia reflects extensive depletion of immune cells and is 
another key manifestation of immunosuppression in sepsis. In 
addition, elevated levels of Lac, a marker of tissue hypoperfusion and 
metabolic disturbances, not only suggest organ dysfunction but may 
also exacerbate immunosuppressive symptoms by affecting immune 
cell function (27).

The central feature of immunosuppression in sepsis is well 
characterized by the dynamic changes in the ILR. The overexpression 
of IL-10, a key mediator of immunomodulation, not only attenuates 
T-cell activation by inhibiting the expression of MHC-II class II 
molecules and co-stimulatory signals (e.g., CD80/CD86) in 

antigen-presenting cells (APCs), but also directly induces regulatory 
T-cells (Tregs) expansion, further reinforcing the immunosuppressive 
microenvironment (28). At the same time, lymphopenia reflects the 
widespread phenomenon of apoptosis of immune cells in sepsis, 
especially the significant depletion of CD4 + T cells and B cells (29). 
Lac, as a reflection of tissue hypoperfusion and metabolic disturbances, 
not only suggests circulatory disturbances but also further impairs 
immune effector cell activity by impairing mitochondrial function. It 
has been shown that high Lac levels promote Treg expansion (30) and 
inhibit CD8 + T-cell function (31), creating a cycle of 
immunosuppression that is mutually reinforcing with IL-10. 
Therefore, the combination of ILR and Lac may reflect the pathological 
state from both immunologic and metabolic aspects.

In this study, the ILR (302.33 [118.73, 972.52]) and Lac (3.25 
[1.73, 8.18]) were significantly higher in the patients in the death 
group than in the survivor group (16.37 [3.11, 66.65]), and (1.90 [1.00, 
3.30]), and the difference was statistically significant (p < 0.001). Both 
multivariate logistic regression analysis (OR = 1.005, 95% CI 1.001–
1.009) and Cox proportional hazards regression (HR = 1.239, 95% CI 
1.097–1.399) indicated that the ILR was an independent risk factor for 
28-day mortality. This ratio not only reflects the intensity of the anti-
inflammatory response (IL-10), but also quantifies the depletion of 
immune cells (lymphocyte), which is highly compatible with the 
“high-inflammatory-high-immunosuppressive” feature of sepsis (32). 
Compared with traditional scoring systems such as SOFA and 
APACHE II, ILR showed superior predictive efficacy in this study. Its 
ROC curve area under the curve was 0.860, which was better than that 
of APACHE II (0.797) and SOFA score (0.704), and it had good 
sensitivity (79.49%) and specificity (81.65%) at the cutoff value of 97.4. 
Importantly, ILR not only outperformed SOFA and APACHE II in 
predictive accuracy but also provided incremental prognostic value by 
capturing the immunosuppressive component of sepsis, which is 
insufficiently addressed by conventional scoring systems. This suggests 
that ILR may serve as a useful complement to existing tools, enhancing 
risk stratification and guiding individualized management strategies 
in septic patients.

A previous study investigated the ILR in patients with severe sepsis 
and identified an optimal cutoff value of 23.39 ng/ml2 for predicting 
28-day mortality (33). In contrast, the cutoff value identified in our 
study was 97.4 pg/109. This discrepancy may be attributed to several 
factors: (1) Differences in the enrolled patient population and sample 
size. The study by Li et al. focused specifically on patients with severe 
sepsis, including 63 patients, among whom 20 were non-survivors. Our 
study included a broader spectrum of septic patients (including those 
with septic shock) with a larger sample size of 148 patients and 39 
non-survivors. The inclusion of a more generalized sepsis population 
and a larger sample size in our study may enhance the generalizability 
of our findings. (2) Differences in ILR measurement, including both 

TABLE 4  ROC analysis for mortality prediction in sepsis.

Index AUC P value 95% CI Sensitivity (%) Specificity (%) Cutoff value

ILR 0.860 <0.001 0.791–0.914 79.49 81.65 97.4

SOFA 0.704 <0.001 0.624–0.777 71.79 59.63 4

Lac 0.706 <0.001 0.621–0.781 46.15 85.98 4.1

APACHE II 0.797 <0.001 0.720–0.861 67.57 98.02 38

AUC area under the receiver operating characteristic curve.

FIGURE 3

ROC for 28-day mortality in septic patients.
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the units used and laboratory assay techniques. Li et al. reported ILR 
in ng/ml2, whereas our study utilized pg/109. Variations in IL-10 assay 
methods across laboratories may further contribute to differences in 
reported values. Both the differences in enrolled populations and in 

measurement methods/units are important factors that may underlie 
the observed discrepancy in cutoff values. These observations highlight 
the need for future studies with larger, multicenter cohorts to optimize 
and validate universally applicable cutoff values.

FIGURE 4

Risk stratification and survival analysis by ILR and Lactate (Lac) optimal cutoff value in sepsis. (A) Risk stratification criteria: Level I: ILR ≥ 97.4 and Lac 
≥4.1 mmol/L; Level II: ILR ≥ 97.4 and Lac <4.1 mmol/L; Level III: ILR < 97.4 and Lac ≥4.1 mmol/L; Level IV: ILR < 97.4 and Lac <4.1 mmol/L. (B) 7-day and 
(C) 28-day Kaplan–Meier survival curves showing significant mortality differences across levels (I > II > III > IV, all log-rank p < 0.001).
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Compared with previous studies, the integrated design of the ILR 
compensates for the limitations of a single indicator. For example, 
although elevated IL-10 levels are associated with immunosuppression, 
their individual differences and detection time may affect the 
generalizability of the thresholds (34); whereas lymphopenia, although 
reflective of immune depletion, does not allow for a comprehensive 
assessment of the dynamic balance between inflammation and 
immunosuppression (35). By simultaneously quantifying both the 
levels of anti-inflammatory factors and the degree of immune cell 
depletion, the ILR more accurately captures the severity of immune 
imbalance in sepsis, thus providing a more reliable basis for clinical 
decision-making. This finding was also validated by the SHAP 
machine learning model, which ranked first among all features, 
indicating its critical role in prognostic prediction.

Of interest, the present study found that the median IL-10 in the 
patients in the death group (112.47 pg/mL) was more than 11-fold 
higher than that in the survival group (9.96 pg/mL), while the 
lymphocyte counts were decreased by 55% (0.28 vs. 0.62 × 109/L), 
presenting a significant immune imbalance or suggesting that the 
body has moved from an immune compensatory The ILR acutely 
captured this critical turn by integrating anti-inflammatory intensity 
with immune cell reserve, and predicted efficacy (AUC = 0.860) better 
than the SOFA score (AUC = 0.704). This result is consistent with 
recent sepsis immunophenotyping studies, suggesting that a high ILR 
may represent an “immunosuppressive” subtype that may benefit from 
targeted immunomodulatory therapy (36, 37).

In recent years, multiple sepsis typing strategies have been 
proposed to cope with its high degree of heterogeneity. For 
example, clinical data-based SENECA typing (types α, β, γ, and δ) 
identifies patient subgroups through electronic health record 
variables, but its distribution and mortality rates vary significantly 
across cohorts (e.g., δ types accounted for 26–48% of the MARS 
and NICE cohorts but only 13% of the MIMIC-IV cohort) (38), 
suggesting that its generalizability may be limited by population 
and geographic location. In addition, typing based on vital sign 
trajectories (e.g., group A with hyperthermia with hypotension 
versus group D with advanced age and hypothermia), although 
predictive of therapeutic response (e.g., group D is more sensitive 
to balanced crystalloid fluids) (39), requires continuous 
ambulatory monitoring and high complexity of clinical 
implementation. Transcriptomic approaches (e.g., Mars1-4 and 
SRS1-2 typing) define immunosuppressive or hyperinflammatory 
states (e.g., SRS1 is associated with T-cell depletion and a 
significantly higher mortality rate) through gene expression 
profiles (40, 41), but their reliance on whole-genome sequencing 
and bioinformatic analyses is costly and difficult to apply in real 
time, even when using PCR to detect the specific RNA of the target 
type. Despite the value of these approaches in mechanism 
exploration and precision therapy, their complexity (e.g., AI 
models require multi-parameter integration) and low tractability 
(e.g., lack of immediate detection tools) limit clinical dissemination 
(42–44).

In contrast, the ILR and Lac stratification strategy proposed in this 
study offers significant advantages: (1) Operational Simplicity: Risk 
stratification requires only three routine tests (IL-10, lymphocyte count, 
and Lac), enabling real-time bedside assessment without complex 
calculations or continuous monitoring. This facilitates immediate 

clinical decision-making, particularly in resource-limited settings; (2) 
Cost-Effectiveness: By minimizing blood sample volume (≤2 mL) and 
utilizing low-cost tests (versus transcriptomics or AI models), this 
approach reduces financial and logistical burdens for patients and 
healthcare systems; (3) Pathophysiology Integration: The dual 
assessment of immunosuppression (ILR) and tissue hypoperfusion 
(Lac) provides superior risk stratification and prognosis prediction 
compared to single-dimension tools, with significant mortality gradient; 
(4) Immediate Decision Support: Defined cutoff values (ILR ≥ 97.4, Lac 
≥4.1 mmol/L) allow direct clinical application, eliminating reliance on 
external algorithms. This supports rapid intervention adjustments, 
especially in economically disadvantaged regions. Future studies could 
explore the joint application of ILR with existing typing (e.g., SENECA 
or SRS) to further optimize precision management of sepsis.

However, this study still has some limitations. First, the single-
center retrospective design may have led to selection bias, and the 
small sample size (n = 148) may have limited statistical power. Second, 
the non-inclusion of other potential modifiers [e.g., PD-1/PD-L1 
expression (45) or metabolic markers (46, 47)] or external validation 
cohorts may affect the generalizability of the results. Future 
multicenter, prospective studies are needed to further validate the 
predictive efficacy of the ILR and Lac and to explore their association 
with immunomodulatory therapy. For example, whether intervention 
strategies targeting the IL-10 pathway or lymphocyte reconstitution 
can improve the prognosis of high-risk patients deserves in-depth 
investigation. In addition, the standardization of ILR and Lac assays 
and the clinical applicability of cutoff values still need to be further 
optimized. Third, this study only assessed a limited number of 
prognostic markers (ILR and lactate), whereas many other factors 
such as age, infection site, and baseline organ function are also known 
to influence outcomes in sepsis. Although incorporating a broader set 
of variables or using AI-based predictive models could potentially 
improve predictive accuracy, such approaches may increase costs and 
reduce feasibility for bedside application. Our current strategy 
emphasizes simplicity and clinical operability, but inevitably sacrifices 
some precision compared with large-scale data-driven models.

5 Conclusion

ILR and Lac synergistically combine immunologic profiling with 
tissue perfusion assessment, establishing a biomarker-based 
stratification system that demonstrates significant prognostic 
discrimination. Our proposed four-tier risk stratification (using 
cutoffs of ILR ≥ 97.4 and Lac ≥ 4.1 mmol/L) showed markedly 
distinct mortality outcomes (28-day: 78.95–7.69%), its operational 
simplicity is superior to complex AI models and circumvents the 
difficulty of clinical implementation of SOFA/APACHE II, etc. Future 
multicenter studies are needed to validate the generalizability of the 
cutoff values and to explore targeted therapeutic strategies for high-
risk stratification to promote its widespread use in clinical practice.
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