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Skin scars, resulting from the natural healing cascade following cutaneous injury,

impose enduring physiological and psychological burdens on patients. This

review first summarizes the biological classification of scars, their formation

mechanisms, and conventional clinical assessment techniques. We then

introduce core concepts of artificial intelligence, contrasting traditional machine

learning algorithmswithmodern deep learning architectures, and review publicly

available dermatology datasets. Standardized quantitative evaluation metrics

and benchmarking protocols are presented to enable fair comparisons across

studies. In the Methods Review section, we employ a systematic literature search

strategy. Traditional machine learning methods are classified into unsupervised

and supervised approaches. We examine convolutional neural networks

(CNNs) as an independent category. We also explore advanced algorithms,

including multimodal fusion, attention mechanisms, and self-supervised and

generative models. For each category, we outline the technical approach,

emphasize performance benefits, and discuss inherent limitations. Throughout,

we also highlight key challenges related to data scarcity, domain shifts, and

privacy legislation, and propose recommendations to enhance robustness,

generalizability, and clinical interpretability. By aligning current capabilities with

unmet clinical needs, this review o�ers a coherent roadmap for future research

and the translational deployment of intelligent scar diagnosis systems.

KEYWORDS

artificial intelligence in dermatology, computer vision for skin analysis, dataset, medical

image process, large-scale foundation model

1 Introduction

Scarring is a natural part of the skin healing process after injury, where permanent

fibrous tissue replaces damaged skin. This process occurs when the body produces either

an excessive or insufficient amount of collagen during wound healing, resulting in visible

marks or traces on the skin’s surface (1). Scars represent the skin’s attempt to restore

structure and function by replacing damaged tissue. However, these scar tissues differ
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from normal skin in terms of structure and function, often

manifesting as changes in color, texture, or elasticity. Scars can vary

widely in type, depending on the underlying cause, and typically

include normal scars, hypertrophic scars, keloids, and atrophic

FIGURE 1

Examples of clinical images of typical skin scars. The image data is sourced from publicly available datasets (Fitzpatrick 17k, etc.) and the Wikipedia

entry “Scar.” (a) Normal Scar: Flat in appearance, with coloration closely resembling the surrounding skin, and a smooth surface texture. (b)

Hypertrophic scar: characterized by a red or pink raised appearance that remains confined within the boundaries of the original wound. (c) Keloid:

prominently elevated scar tissue that extends beyond the original wound margins, often darker in color. (d) Atrophic scar: marked by skin depression

or indentation, commonly observed following the healing of acne or varicella (chickenpox) lesions.

scars, among others (2–4). Several examples of clinical images

typical skin scars are illustrated in Figure 1.

The impact of scarring extends beyond the skin’s surface,

profoundly affecting the psychological and emotional wellbeing of
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patients, particularly when scars are located on visible areas such as

the face. Scarring can lead to self-esteem issues, social anxiety, and

even depression (5–8). Furthermore, certain types of scars, such

as keloids, may also cause physical discomfort, including pain or

itching, which can significantly impair the quality of daily life (9).

Due to the complexity of scars and their profound impact

on individuals, developing precise and objective scar assessment

methods is of paramount importance. Traditional scar assessment

relies on clinicians’ experience and subjective judgment. Training

a physician capable of accurately diagnosing dermatological

conditions requires many years of education and clinical

practice, involving exposure to thousands of patients (10). With

advancements in artificial intelligence (AI) and deep learning

technologies, intelligent recognition and diagnostic systems have

emerged as a powerful tool in research and clinical practice,

offering an efficient and standardized approach to scar assessment.

Intelligent diagnostic systems analyze skin images to

automatically identify scar types and severity, providing

clinicians with accurate and objective diagnostic information.

This technology not only accelerates the diagnostic process but also

improves accuracy and consistency, allowing more personalized

and targeted treatment plans for patients. More importantly,

intelligent recognition techniques offer a non-invasive and

convenient evaluation method, significantly enhancing patient

experience and satisfaction (11).

Although AI and machine learning have achieved remarkable

improvements in medical image diagnosis, such as skin cancer

detection and dermatological lesion analysis (12, 13), research on

the intelligent recognition and diagnosis of skin scars remains

relatively scarce. Our comprehensive review of the existing

literature confirmed this gap. This research gap may be attributed

to several factors:

1. Limited availability of high-quality datasets: Compared to

other medical imaging domains, systematically collecting and

annotating high-quality scar images poses significant challenges.

Standardization, privacy concerns, and ethical considerations

further complicate the process. Unlike imaging modalities such

as computed tomography (CT) or magnetic resonance imaging

(MRI), which follow strict acquisition protocols, scar images

can be highly variable due to differences in lighting conditions,

camera devices, angles, and distances. Additionally, since scars

may appear in private or sensitive areas of the body, patient

privacy concerns and ethical constraints pose barriers to dataset

acquisition.

2. Disparity in clinical research priorities: Medical research

resources are often allocated to conditions deemed more urgent

or life-threatening. While scars can significantly affect a patient’s

quality of life, they may not always be prioritized as a critical

medical issue, leading to relatively limited research efforts in this

domain.

In addition to the scar-focused intelligent recognition methods

reviewed herein, several representative studies in related domains

have emerged. Li et al. (14) proposed a skin lesion classification

model that combines multi-scale feature enhancement with an

interaction Transformer module; Wang et al. (15) developed a

segmentation network that fuses edge and region cues to improve

lesion boundary delineation; Wang et al. (16) demonstrated

a wide-field quantitative phase imaging approach using phase-

manipulating Fresnel lenses to enhance tissue contrast; and Wu

et al. (17) introduced a Dynamic Security Computing Framework

based on zero-trust privacy-domain prevention and control theory

to secure privacy data. Although these works do not directly target

scars, their innovations in network architecture design, imaging

modality enhancement, and system-level security offer valuable,

transferable insights for the future development of intelligent

scar analysis systems. We hope that this review will inspire

further research and technological advancements, driving the

application of intelligent medical technologies in scar diagnosis

and management. By improving diagnostic accuracy and efficiency,

these innovations have the potential to provide more effective,

personalized, and patient-centered treatment solutions.

2 Classification, mechanism and
traditional diagnosis of scars

2.1 Classification and formation
mechanism

The formation of scars is a complex biomedical process that

involves multiple stages of the skin’s self-repair mechanism. Each

stage is influenced by various factors, leading to different types of

scars. This section introduces the formation mechanisms of various

scar types, including normal scars, hypertrophic scars, keloids, and

atrophic scars. Understanding these mechanisms is essential for

leveraging AI and machine learning (ML) technologies to improve

scar recognition and assessment, ultimately enabling more precise

and personalized treatment strategies for patients.

Scars are generally classified into the following types:

1. Normal scars: these are the most common type of scars, typically

resulting from minor cuts or incisions. Over time, they tend to

fade and become less noticeable.

2. Hypertrophic scars (2): these scars form due to excessive

collagen production during the healing process, resulting

in thickened and raised tissue. However, unlike keloids,

hypertrophic scars remain confined to the original wound

boundaries.

3. Keloids (4): keloids are an overgrown form of scar tissue that

extends beyond the original wound margins. They are typically

firmer than normal skin and may be accompanied by pain or

itching. Certain individuals are genetically predisposed to keloid

formation, making them more susceptible to this condition.

4. Atrophic scars: characterized by a sunken appearance, atrophic

scars form when the healing process leads to tissue loss. They

are commonly seen as residual scars from chickenpox or acne

(18, 19).

The process of scar formation follows the skin’s natural wound

healing mechanism, which occurs in several key phases (20, 21):

1. Inflammation phase: this phase begins immediately after an

injury and lasts for several days. The affected area exhibits

redness, swelling, heat, and pain as part of the inflammatory

response. Immune cells, such as white blood cells and

macrophages, infiltrate the wound site to remove dead cells,
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FIGURE 2

The process of scar formation. Tissue injury initiates an inflammatory response that activates transforming growth factor-β (TGF–β) and other

mediators, leading to fibroblast proliferation, migration, and di�erentiation. This promotes collagen synthesis and deposition, ultimately resulting in

scar formation. Multiple therapeutic interventions targeting key steps—such as cyclooxygenase-2 (COX-2), TGF-β signaling, and fibroblast

activity—may attenuate or prevent excessive scarring.

pathogens, and foreign debris. Additionally, inflammatory

mediators release cytokines and growth factors that play a

crucial role in stimulating subsequent cell proliferation and

tissue formation.

2. Proliferation phase: during this phase, fibroblasts rapidly

proliferate and synthesize extracellular matrix proteins, such as

collagen, to establish a new tissue framework. Concurrently,

new blood vessels form (a process known as angiogenesis) to

supply nutrients and oxygen to the developing tissue. However,

excessive fibroblast activity and collagen deposition can lead to

the overgrowth of scar tissue, resulting in hypertrophic scars or

keloids.

3. Remodeling phase: this final phase of wound healing can

last from several months to years. Newly synthesized collagen

undergoes structural rearrangement and maturation, making

the scar tissue more closely resemble normal skin. Over time,

scars may become flatter and softer, although in some cases,

suboptimal healing can result in persistent depressions or

protrusions.

Scar formation is a dynamic and ongoing process, and extensive

research has been conducted on the different stages of scar

development, shown in Figure 2. A deeper understanding of

these processes can significantly enhance the application of AI-

driven technologies for intelligent scar recognition and diagnosis,

ultimately leading to improved patient outcomes.

2.2 Traditional diagnostic methods

Before delving into intelligent scar recognition and diagnosis,

it is essential to understand the foundation laid by traditional

methods. Conventional scar assessment depends primarily

on clinicians’ experience and intuitive judgment, with visual

and tactile examinations forming the core of the evaluation.

Physicians first observe scar color, size, shape and contrast

with surrounding skin to judge potential functional or aesthetic

impact. Palpation then assesses hardness, texture, elasticity and

temperature differences, helping to detect underlying inflammation

or circulatory issues. Beyond these basic examinations, clinicians

perform pain and sensory function tests and evaluate any

functional limitations—for example, reduced joint range of

motion due to perijoint scars. Standardized scales such as the

Vancouver Scar Scale (VSS) and the Patient and Observer Scar

Assessment Scale (POSAS) lend additional structure: the VSS scores
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vascularity, pigmentation, pliability and height, while the POSAS

combines patient-reported symptoms with observer-rated scar

characteristics (22, 23).

However, several key studies have quantified substantial inter-

rater variability in these traditional scales. Draaijers et al. (23)

evaluated 49 burn scar areas and reported single-observer reliability

coefficients of r = 0.73 for the POSAS observer scale vs. r = 0.69

for the VSS (Cronbach’s α = 0.69 and 0.49, respectively), indicating

only moderate agreement among raters. Nedelec et al. (24)

demonstrated that individual mVSS subscales yielded ICCs ≤ 0.30

and total mVSS scores ≤ 0.50, highlighting poor reproducibility

of subjective metrics. More recently, Lee et al. (25) confirmed

that both mVSS and POSAS fell below the acceptable Intraclass

Correlation Coefficient (ICC) threshold of 0.70, whereas objective

devices (e.g., ultrasound, colorimetry) achieved ICCs > 0.90.

These quantitative findings vividly illustrate the limitations of

traditional visual and tactile assessment—namely, their reliance

on subjective judgment and limited reproducibility. Consequently,

there is a clear and growing need for AI-driven diagnostic

approaches that can provide objective, consistent and fine-grained

analysis of scar characteristics.

3 What is AI?

AI is a multidisciplinary field of computer science that aims to

develop systems capable of performing tasks that typically require

human intelligence. These tasks include reasoning, learning,

problem-solving, perception, and language understanding.

AI has evolved significantly over the past decades, driven

by advances in computational power, data availability, and

algorithmic innovations.

The field of AI encompasses several subdomains, including

machine learning, natural language processing (NLP), computer

vision (CV), expert systems, and robotics. Among these, machine

learning—which enables systems to learn from data and improve

their performance without being explicitly programmed—is one

of the most transformative approaches, particularly in medical

applications. With the development of deep learning, a subset of

machine learning that utilizes neural networks to model complex

patterns, AI has achieved remarkable breakthroughs in medical

imaging, diagnosis, and personalized treatment (26).

As AI continues to advance, its integration into healthcare,

including dermatology and scar assessment, holds great promise.

The ability to automate medical image analysis and enhance

diagnostic accuracy has positioned AI as a powerful tool in

modern medicine, paving the way for more precise, efficient, and

accessible healthcare solutions. The theoretical framework and

methodologies of AI, as well as commonly used algorithms and

network frameworks in ML and deep learning (DL), are illustrated

in Figure 3.

3.1 Machine learning

Machine learning (ML) is a branch of artificial intelligence that

enables systems to learn from data and improve their performance

over time, without being explicitly programmed (27). ML models

can be broadly categorized into three types based on how the data

is used to train the model: supervised learning (28), unsupervised

learning (29), and semi-supervised learning (30).

Supervised learning is the most common type of machine

learning, where models are trained on labeled data, meaning each

input data point has a corresponding output label. The goal is

for the model to learn a mapping between inputs and outputs,

so that it can predict the labels of new, unseen data. Common

algorithms in supervised learning include linear regression (31),

support vector machines (SVM) (32), k-nearest neighbors (KNN)

(33), and decision trees (34). These algorithms are widely applied

in tasks such as classification and regression, including applications

like medical image classification (e.g., distinguishing benign

from malignant tumors) and predicting patient outcomes (35).

Supervised learning is essential when there is a large, labeled dataset

available for training.

In contrast, unsupervised learning involves training models

on data that does not have labeled outputs. The model’s objective

is to uncover the hidden structure or patterns within the data.

Clustering and dimensionality reduction are typical examples

of unsupervised learning tasks (36, 37). Algorithms such as k-

means clustering (38), hierarchical clustering (39), and principal

component analysis (PCA) are often used (40). In medical

applications, unsupervised learning is helpful for segmenting

medical images or identifying unknown patterns in complex

datasets, such as detecting new disease subtypes based on genetic

data (41).

Semi-supervised learning lies between supervised and

unsupervised learning, where the model is trained on a

combination of labeled and unlabeled data. This approach

proves to be especially valuable when acquiring large labeled

datasets is either difficult or costly, a situation that frequently arises

in medical fields due to the scarcity of expert annotations. Semi-

supervised learning can significantly improve the performance

of the model by leveraging the abundance of unlabeled data.

Techniques such as self-training and graph-based models

are often employed in this approach. In healthcare, semi-

supervised learning is increasingly used in medical image

analysis, where only a small portion of the images may be

annotated by experts, yet vast amounts of unannotated data are

available (42).

3.2 Deep learning

Deep learning has emerged as a transformative advancement

in artificial intelligence, enabling machines to perform complex

tasks that traditionally required human expertise. As a subfield

of machine learning, deep learning utilizes multi-layered neural

networks to automatically extract hierarchical features from raw

data, thereby obviating the need for manual feature selection. This

ability to learn directly from data allows deep learning models to

generalize across diverse applications. At its core, deep learning

processes information through interconnected layers, with early

layers capturing low-level features (e.g., edges, textures) and deeper

layers identifying more complex patterns, such as object structures

or diagnostic markers in medical data (43). This hierarchical
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FIGURE 3

Theoretical framework and methods of AI, ML algorithms, DL network framework.

representation learning allows deep learning to achieve superior

performance across domains.

Deep learning has revolutionized fields like computer vision

(44), natural language processing (45), and biomedical research

(46). In healthcare, it has enhanced medical imaging, enabling

automated disease detection, segmentation, and classification (47–

49). It has also driven advancements in drug discovery, genomics,

and personalized treatment strategies.

The rapid adoption of deep learning can be attributed to three

main factors:

1. Powerful feature extraction: deep learning’s capability to learn

representations directly from raw data eliminates manual

engineering, allowing models to capture complex patterns;

2. Growth in data and computational power: the surge in digital

data and advancements in computational resources have fueled

deep learning’s success;

3. Continuous evolution of architectures: innovations in model

architectures and training techniques, coupled with open-source

frameworks, have accelerated the deployment of deep learning

solutions.
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TABLE 1 A few popular deep learning architectures.

Network Year References Description Application in dermatology

LeNet-5 1998 LeCun et al. (167) Early CNN using convolution and pooling for

image classification.

Used for dermatological image classification in

early CNN studies (168).

AlexNet 2012 Krizhevsky et al. (169) Introduced deep layers, ReLU, and GPU training

for image classification.

AlexNet was used in skin disease classification,

showing strong multi-class accuracy (170).

VAE 2013 Kingma (171) Probabilistic encoder-decoder for data

reconstruction and new sample generation.

Commonly used for generating synthetic

dermatology images to augment training data

(172).

GAN 2014 Goodfellow et al. (173) Generates realistic data via adversarial

generator-discriminator training.

Applied in dermatological image generation and

integrated classification frameworks for

multi-class skin disease detection (174, 175)

VGGNet 2014 Simonyan (176) Deep CNN with stacked small filters for efficient

feature learning.

Commonly used in dermatological image

classification tasks due to its straightforward

architecture and transferability (177, 178)

U-Net 2015 Ronneberger et al. (179) Designed for biomedical image segmentation

using an encoder-decoder with skip connections.

Widely used for skin lesion segmentation in

dermatological imaging (180–182)

GoogLeNet 2015 Szegedy et al. (183) Introduced the Inception module for multi-scale

feature extraction with fewer parameters.

Used in skin image classification, often paired with

lightweight models for better accuracy (184, 185)

Deep Q-Network 2015 Mnih et al. (186) Combines Q-learning with deep networks to

achieve human-level control in reinforcement

learning.

Recently explored in dermatology for lesion

segmentation, classification, and treatment

recommendation tasks (90, 187, 188)

ResNet 2016 He et al. (189) Introduced residual connections to train very deep

networks, mitigating vanishing gradients.

Widely used in dermatology for classification and

scar analysis due to its deep feature extraction

capability (190–192)

DenseNet 2017 Huang et al. (193) Uses dense connectivity for improved gradient

flow and feature reuse.

Used for lesion classification and segmentation

with efficient feature reuse (194, 195)

Transformer 2017 Vaswani (196) Uses self-attention for efficient sequence modeling

and spatial context learning.

Recently adopted in dermatology for capturing

long-range dependencies in lesion segmentation

and classification (123, 127)

As deep learning continues to evolve, ongoing research

aims to improve model interpretability, reduce data dependency,

and enhance architecture efficiency. Its continued integration

into healthcare and other industries is paving the way for

intelligent automation, improved decision-making, and new

scientific breakthroughs.

To illustrate the architectural diversity and historical evolution

of deep learning, several representative models are summarized in

Table 1, and a visual overview of a typical deep learning workflow

shown in Figure 4.

4 Dataset

Datasets are foundational to artificial intelligence, acting as

carriers of information and knowledge that determine both the

ceiling and the failure modes of downstream models (Figure 5).

In current scar recognition research, however, most datasets are

private and originate from hospital-affiliated projects with strict

privacy and use restrictions. While such datasets may contain rich

clinical detail, limited accessibility constrains reproducibility and

the external validity of published findings.

Private datasets are typically collected and annotated by

medical professionals. Their size and quality depend on patient

volume, acquisition workflows, and the expertise of annotators.

Although private collections may exhibit heterogeneous imaging

conditions and granular labels, restricted access prevents

independent validation and hampers community-wide progress.

Beyond scar-specific corpora, the broader dermatology field

maintains several well-established public datasets (Table 2), some

of which incidentally include scar images (see examples from

the ISIC repository in Figure 6). These resources, however, were

seldom curated with scars as a primary target, and often lack

the metadata necessary to study fairness and generalization

in scar analysis. Such metadata gaps extend beyond technical

parameters and include clinically and technically salient variables-

such as patient phenotype, scar architecture, and imaging

conditions-whose omission can hinder comprehensive bias and

generalization assessments.

4.1 Representational diversity (skin tones)

A growing body of evidence shows that widely used

dermatology datasets are skewed toward lighter skin tones

(Fitzpatrick I–III), resulting in performance disparities on darker

phenotypes (50). For instance, generative or discriminative models

trained on imbalanced data can systematically underperform on

Fitzpatrick IV–VI even when sample size is controlled (51, 52). To

support fair evaluation in scar analysis, future datasets should (i)

record skin phenotype explicitly (e.g., Fitzpatrick I–VI or validated

proxies), (ii) target balanced sampling across tone strata, and
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FIGURE 4

A visual overview of a typical deep learning workflow, illustrating the flow from input data through trainable and non-trainable components—such as

convolutional layers, pooling, normalization, activation functions—to loss calculation and weight updates via backpropagation.

FIGURE 5

The foundational role of datasets in developing AI: from data

collection to training, validation, and testing of intelligent systems.

(iii) require subgroup reporting (per-tone sensitivity/specificity,

balanced accuracy, worst-group accuracy, and calibration).

4.2 Scar architecture coverage

Clinical scars are heterogeneous in type, etiology, maturity,

and anatomical site. Representative types include hypertrophic,

keloid, atrophic, and contracture scars. Common etiologies include

surgical wounds, burns, and trauma. Using labels aligned with

established clinical instruments such as POSAS and VSS (23,

53), and recording item-level attributes-thickness, vascularity, and

pliability-improves both learning and interpretability. Dataset splits

should be stratified by patient identity as well as by scar type and

anatomical site to prevent shortcut learning, where background

skin texture or body region inadvertently serves as a proxy.

4.3 Imaging settings and acquisition
variability

Generalization in clinical use hinges on robustness to

illumination and equipment variability. We recommend recording:

device class (smartphone/DSLR/dermoscope), sensor and lens,

optical setting (polarized vs. non-polarized, flash/ring light),

resolution and compression, white-balance/exposure mode, use of

color charts, scene context (rulers, dressings, tattoos, hair), and

capture protocol. Such metadata enables (i) cross-device/lighting

analyses, (ii) leave-one-device/site-out validation, and (iii) targeted

data augmentation (color constancy, exposure jitter) evaluated

against held-out domains rather than the training distribution

(54, 55).
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TABLE 2 A few publicly available dermatology datasets.

Dataset Volume Resolution Scar images Image types Links

ISIC 20,000+ Mixed Not labeled Dermoscopy ISIC Archive

HAM10000 (197) 10,015 Mixed Not labeled Dermoscopy Harvard

PH2 200 768× 560 Not labeled Dermoscopy PH2 Database

BCN20000 (198) 18,946 Mixed Not labeled Dermoscopy Nature

MED-NODE 170 Mixed Not labeled Dermoscopy Kaggle

Dermofit Image Library 1,300 Mixed Not labeled Clinical University of Edinburgh

SD-198 (199) 6,584 Mixed Not labeled Clinical Papers with Code

PAD-UFES-20 (200) 2,298 Mixed Not labeled Clinical ScienceDirect

fitzpatrick17k (201) 17,000 Mixed 123+ Clinical Kaggle

DDI (202) 656 Mixed About 50 Clinical DDI

“Not labeled" indicates that the dataset may contain scar images, but does not provide explicit annotations for scars.

FIGURE 6

Example images from the ISIC dataset. The top row shows strong-labeled images, where detailed disease types are annotated. The bottom row

shows weak-labeled images, where only benign or malignant status is provided. Some of these images may contain scar-like features, indicating

their potential relevance to skin scar analysis.

4.4 Multimodal and metadata-rich datasets
(clinical photos, dermoscopy, and 3D)

Beyond routine photographic images, scar categorization

benefits substantially from complementary modalities and

structured metadata. Clinical photographs capture global color

and texture together with contextual cues; dermoscopic images

(polarized/non-polarized) reveal vascular and pigment structures

that aid in distinguishing hypertrophic from keloid scars (56, 57).

Three-dimensional surface imaging (e.g., stereophotogrammetry

or laser profilometry) provides height and volume maps for

objective quantification and treatment monitoring (58, 59).

Cross-sectional modalities such as optical coherence tomography

(OCT) and high-frequency ultrasound (HFUS, with elastography

where available) capture subsurface morphology, thickness, and

stiffness associated with activity and maturity (60–62). In parallel,

aggregated meta-datasets in dermatology increasingly pair clinical

and dermoscopic photographs or integrate multi-institution,

multi-modality collections with standardized metadata, which

improves skin-tone-stratified analyses and cross-site/device

generalization (60, 63, 64). When paired with well-defined fields

(anatomical site, etiology and maturity, Fitzpatrick or Monk Skin

Tone, device/illumination/polarization, calibration targets), such

resources provide stronger supervision for differentiating scar

architectures, quantifying activity, and disentangling confounders

due to lighting or device variability.

Despite these advantages, most existing scar datasets either

lack the above modalities or do not release consistent metadata

schemas, limiting fairness assessments across skin tones and

external validity across clinics and equipment. We therefore

advocate curating aggregated, multi-institution datasets that (i)

include harmonized clinical photos, dermoscopy, and-where
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TABLE 3 Recommended metadata fields for scar-image datasets to support fairness assessment and generalization.

Factor Recommended metadata Rationale

Skin phenotype Fitzpatrick type I–VI; color chart or reflectance proxy; optional

self-reported skin phenotype

Supports subgroup analysis and balanced sampling across skin

tones; enables reporting of fairness and probability calibration

metrics

Scar architecture Type: hypertrophic, keloid, atrophic, contracture; etiology:

surgical, burn, trauma; maturity or stage; POSAS or VSS item

scores: thickness, vascularity, pliability

Ensures coverage of clinically distinct phenotypes; increases label

detail and interpretability

Anatomical site Standardized body-region code or map Controls differences due to body region; enables train, validation,

and test splits that respect anatomical site

Acquisition Device class and model; lens; resolution and compression;

polarization; illumination or flash; white balance and exposure

mode; presence of a color chart

Enables robustness analysis under device and lighting shifts;

supports cross-device and cross-site validation-train on all other

domains and test on the held-out domain

Context Camera-to-lesion distance; background; presence of rulers,

dressings, tattoos, hair

Mitigates shortcut learning, where models rely on background or

scene cues rather than scar morphology

Annotations Rater identifiers and training level; inter-rater agreement metrics;

version of the annotation guideline

Documents label quality and reproducibility; provides traceable

records for quality control and error analysis

Splits and governance Patient-wise split; additional splits by site, device, and time; notes

on consent and de-identification

Improves generalization to unseen clinical settings; ensures

ethical and legal compliance; documents the origin and

processing history of the data

feasible-3D or cross-sectional imaging; (ii) adopt standardized

acquisition protocols and per-image metadata fields (see Table 3);

and (iii) support evaluation protocols that explicitly test cross-

modality generalization, leave-one-site/device-out splits, worst-

group performance (e.g., Fitzpatrick types IV-VI), and probability

calibration. These recommendations align dataset design with

downstream clinical reliability.

Building on these considerations, future research should aim

to develop standardized, multimodal, and metadata-rich meta-

datasets, together with bias-aware evaluation frameworks.

5 Privacy constraints and ethical AI
training

As noted above regarding dataset privacy and ethical approvals,

contemporary medical artificial intelligence development must

navigate stringent privacy regulations, e.g., general data protection

regulation (GDPR), health insurance portability and accountability

act (HIPAA), and ethical review processes, which restrict data

sharing and centralization. To address these challenges, researchers

have developed a range of privacy-preserving techniques, including

federated learning, synthetic data augmentation, differential

privacy, and encryption-based methods, each of which balances

data utility, privacy guarantees, and computational overhead in its

own way.

5.1 Federated learning for decentralized
model training

Federated Learning (FL) enables multiple institutions to

collaboratively train a global model by exchanging local model

updates rather than raw patient data, thus minimizing privacy risks

associated with central data aggregation (65). In medical imaging,

FL frameworks have been successfully applied to histopathology

and radiology datasets, maintaining performance comparable

to centralized training while respecting data sovereignty (66,

67). Recent advances integrate transfer learning and adaptive

aggregation to further improve accuracy across heterogeneous sites

without compromising privacy (68).

5.2 Synthetic data augmentation

When real-world medical datasets are scarce or cannot be

shared due to privacy constraints, synthetic data generated by

Generative Adversarial Networks (GANs) can augment training

sets. GAN-based augmentation has been shown to improve

CNN performance in tasks such as liver lesion classification

and chest X-ray analysis, boosting sensitivity and specificity

on underrepresented classes (69, 70). Comprehensive reviews

demonstrate that synthetic data not only increases data diversity

but can also serve as an anonymization tool, enabling model

training without exposing patient-identifiable images (71, 72).

5.3 Di�erential privacy and encryption
techniques

Differential Privacy (DP) introduces carefully calibrated noise

into model updates or outputs, providing quantifiable privacy

guarantees against inference attacks. DP-enabled FL frameworks

have demonstrated practical viability in complex medical image

analysis, achieving performance on par with non-private methods

while bounding privacy loss (66, 73). Encryption approaches,

particularly Homomorphic Encryption (HE), allow computations

to be performed directly on encrypted data, ensuring that

raw data remain confidential throughout training and inference

(74). Fully Homomorphic Encryption (FHE) schemes, though
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computationally intensive, have been successfully prototyped for

optical coherence tomography(OCT) image classification and chest

CT nodule detection, marking a step toward “zero-trust” AI in

healthcare (75, 76).

5.4 Other emerging strategies

Beyond these core methods, secure multi-party computation

(SMPC) and zero-knowledge proofs (ZKP) are gaining attention for

enabling privacy-preserving analytics without revealing sensitive

inputs (77). Concurrently, the development of synthetic cohort

generation via diffusion models and advance in privacy-balanced

data sharing agreements hold promise for ethically ground AI

research while safeguarding patient rights.

By embedding these privacy-centric techniques into the

AI lifecycle—from data augmentation to model deployment—

researchers can better balance clinical innovation with ethical

and regulatory imperatives, fostering trust and enabling broader

adoption of AI in medicine.

6 Intelligent scar recognition and
diagnosis

6.1 Search strategy

To ensure this review encompasses all relevant research on

“Intelligent Recognition and Diagnosis of Skin Scars,” a multi-

step search strategy was employed. Initially, a comprehensive

search was conducted in databases such as Google Scholar,

PubMed, Web of Science, and Science Direct. Keywords were

systematically combined, including terms such as “skin scars,”

“scarring,” “burn,” “wound,” “hypertrophic,” “keloids,” “atrophic,”

“dermatology,” “intelligent,” “automatic,” “recognition,” “diagnosis,”

“segmentation,” “detection,” and “image analysis.” Additionally,

to broaden the search scope, auxiliary keywords like “computer

vision,” “machine learning,” “deep learning,” and “artificial

intelligence” were also included.

The search was limited to English-language publications from

the past 5–10 years to ensure the inclusion of the most recent

advancements in the field. The inclusion criteria for the selected

papers were: (i) research on skin scars related to the detection,

recognition, segmentation, and classification of prior damage,

(ii) traditional image processing methods, (iii) conventional

machine learning methods, (iv) deep learning methods, (v) digital

image modalities, and (vi) articles published in well-defined,

reputable journals.

The initial search yielded 67,500 papers. The results were

then refined through several rounds of screening: (1) removal

of duplicate articles and inclusion based on the above criteria,

(2) a thorough review of full-text papers to exclude studies

with inadequate methodologies or irrelevant data, (3) manual

examination of reference lists to ensure no relevant studies were

overlooked. After these steps, a total of 33 articles were selected

for inclusion. These articles comprehensively address all aspects of

the topic, ranging from image acquisition and preprocessing to the

application of traditional image processing and AI-based methods,

as well as the evaluation of experimental results. The overall process

is shown in the Figure 7.

This broad coverage of literature ensures the

comprehensiveness and depth of this review, providing a

solid foundation for future research directions.

6.2 Quantitative evaluation metrics for
intelligent diagnosis

Quantitative evaluation metrics are essential tools used to

objectively assess and compare the performance of AI-based

diagnostic methods. The following summarizes the commonly used

metrics in classification, segmentation, and regression tasks. To

enhance clarity and compactness, the metrics are presented in

Table 4, accompanied by unified symbol definitions.

To ensure clarity and consistency in interpreting the evaluation

metrics presented above, the key symbols and variables used in the

formulas are defined as follows:

• TP (True positive): number of positive cases correctly

predicted as positive.

• TN (True negative): number of negative cases correctly

predicted as negative.

• FP (False positive): number of negative cases incorrectly

predicted as positive.

• FN (False negative): number of positive cases incorrectly

predicted as negative.

• A, B: in segmentation tasks, A denotes the set of predicted

pixels (or regions), and B denotes the ground truth set.

• yi, ŷi: The ground truth and predicted continuous values for

the i-th sample, respectively.

• n: total number of samples or observations in the dataset.

• k: number of raters or measurement repetitions in reliability

assessments.

• MSR: mean square for rows (typically subjects) in the ICC

calculation.

• MSC: mean square for columns (typically raters) in the ICC

calculation.

• MSE: mean square error term in the ICC formulation,

representing residual variance.

The Intraclass Correlation Coefficient (ICC) is a widely adopted

statistical measure for assessing the reliability of quantitative

measurements made by different raters or systems. In the context

of intelligent diagnosis and clinical research, ICC is commonly

used to evaluate either consistency or absolute agreement between

observers. Various forms of ICC exist, depending on the

statistical model employed, e.g., one-way vs. two-way analysis of

variance(ANOVA), the nature of the raters (fixed vs. random

effects), and whether the evaluation is based on single or average

measurements.

Among these, ICC(2,1) is frequently utilized due to its

suitability for assessing absolute agreement under a two-way

random-effects model, in which both raters and subjects are

assumed to be random samples. This variant is particularly

appropriate in studies where generalization to a broader population
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FIGURE 7

Search strategy.

of raters is desired. The corresponding formula is derived from an

ANOVA decomposition that partitions the observed variance into

components attributable to subjects, raters, and residual error. It is

expressed as:

ICC(2, 1) =
MSR −MSE

MSR + (k− 1)MSE +
k
n (MSC −MSE)

(1)

whereMSR,MSC, andMSE denote the mean square values for rows

(subjects), columns (raters), and residuals, respectively.

In regression-based medical AI applications, mean absolute

error (MAE) and root mean squared error (RMSE) are among

the most frequently used evaluation metrics. MAE quantifies

the average magnitude of prediction errors, offering direct

interpretability in clinical units such as millimeters or severity

grades. RMSE, due to its squared term, places greater emphasis on

larger errors, making it more sensitive to outliers and thus useful in

safety-critical predictions.

These metrics are particularly informative when assessing

models that predict continuous clinical scores. For example, in

scar severity prediction tasks, MAE values close to 1.0 and

RMSE values around 1.4 may indicate that model outputs

typically differ from expert-assigned scores by approximately

one severity level, reflecting strong alignment with clinical

judgment (78).

For classification tasks, the receiver operating characteristic

(ROC) curve serves as a standard method to visualize model

performance across varying decision thresholds. It plots the

true positive rate (sensitivity) against the false positive rate

(1− specificity), thus illustrating the trade-off between sensitivity

and specificity.
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TABLE 4 Summary of commonly used quantitative evaluation metrics in artificial intelligence.

Task type Metric Definition Formula

Classification Accuracy Overall proportion of correct predictions
TP + TN

TP + TN + FP + FN

Classification Sensitivity (recall) True positive rate; important for avoiding missed diagnoses
TP

TP + FN

Classification Specificity True negative rate; reduces false positives
TN

TN + FP

Classification Precision Proportion of predicted positives that are true
TP

TP + FP

Classification F1-Score Harmonic mean of precision and recall; robust to class imbalance 2×
Precision× Recall

Precision+ Recall

Classification AUC (ROC) Area under the ROC curve; evaluates threshold-independent

performance

–

Segmentation Dice Measures overlap between predicted and ground truth masks
2|A ∩ B|

|A| + |B|

Segmentation IoU Ratio of intersection to union for segmentation regions
|A ∩ B|

|A ∪ B|

Regression Mean Absolute Error (MAE) Average of absolute differences between prediction and truth
1

n

n
∑

i=1

|yi − ŷi|

Regression Root Mean Squared Error

(RMSE)

Square root of the average squared differences; penalizes large errors

more

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2

Regression/

Measurement

Intraclass Correlation

Coefficient (ICC)

Agreement between raters or repeated measures Defined using mean square values;

See below for full formula

FIGURE 8

Simulated ROC curves of three hypothetical classification models (Model A, B, and C). Model A (blue) illustrates moderate classification performance

(AUC = 0.80), Model B (green) shows improved overall discrimination (AUC = 0.88), and Model C (orange) demonstrates near-optimal performance

(AUC = 0.97). The diagonal dashed line represents random classification (AUC = 0.5). This figure is intended for illustrative purposes to demonstrate

how ROC curves and AUC values reflect the ability of models to distinguish between classes across various thresholds.

The area under the ROC curve (AUC) condenses this

information into a single scalar metric ranging from 0.5

(random performance) to 1.0 (perfect discrimination).

AUC offers a threshold-independent assessment of a

classifier’s ability to distinguish between positive and negative

cases. While the numerical value provides a summary, its

interpretation is often more intuitive when supported by

ROC visualizations.

As illustrated in Figure 8, simulated ROC curves demonstrate

how classifiers of varying quality (e.g., Model A, B, and C) differ in

performance. Curves that approach the top-left corner correspond

to higher AUCs and stronger discriminative power. Such visual
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representations are especially helpful when comparing models or

assessing robustness across thresholds.

In segmentation tasks, the Dice similarity coefficient and

Intersection over Union (IoU) are commonly employed to

evaluate spatial overlap between predicted and ground truth

regions. While related, these metrics serve different purposes and

are not directly interchangeable.

Dice is particularly advantageous in scenarios with pronounced

class imbalance—such as lesion or scar segmentation—where the

target region occupies a small fraction of the image. It gives

proportionally more weight to correctly identified positive pixels,

making it sensitive to small structure detection.

In contrast, IoU is a stricter metric that penalizes both over- and

under-segmentation. It is better suited for applications requiring

precise boundary delineation, such as organ contouring or multi-

class anatomical segmentation.

Therefore, metric selection should align with the clinical goal:

Dice is more appropriate for detecting small or subtle targets,

whereas IoU is preferred when spatial accuracy and structure

completeness are prioritized.

These definitions provide a standardized interpretation of each

metric, facilitating consistent comparison and critical evaluation of

intelligent diagnostic systems across studies.

6.3 Unsupervised traditional machine
learning methods

Unsupervised methods for scar segmentation and

measurement typically exploit clustering or rule-based cues

to delineate regions of interest without requiring annotated

data. Ma et al. (79) presented a saliency-based segmentation

framework for skin scars: Gaussian pyramid feature maps are

clustered to produce saliency maps, which are then thresholded

to isolate scar regions. Khan et al. (80) developed a segmentation

pipeline based on fuzzy C-means clustering with an intelligent

cluster-selection mechanism; they demonstrated that the Q

(YIQ) and I3 (I1I2I3) chrominance components yield optimal

cluster separation, achieving 92.63% segmentation accuracy

on a set of 50 images. Chantharaphaichi et al. (81) proposed a

rule-based image-processing scheme for acne lesion detection:

grayscale and HSV(Hue, Saturation, Value) transformations are

combined with brightness subtraction and size filtering to generate

candidate lesion regions, which are then bounded with minimal

operator intervention. Lastly, Jiang et al. (82) used unlabeled

smartphone images of keloids to reconstruct three-dimensional

models via parallel computing and extracted the maximum

diameter, thickness, and volume. These measures showed excellent

agreement with manual caliper and ultrasound assessments

(ICCs > 0.95), indicating a highly repeatable, fully unsupervised

measurement protocol.

6.4 Supervised traditional machine
learning methods

Supervised approaches leverage hand-crafted feature extraction

followed by classical classifiers trained on labeled examples.

Liu et al. (83) combined local binary pattern (LBP) operators

with wavelet-based texture analysis on multiphoton fluorescence

microscopy images of scars; the resulting features were fed into a

support vector machine (SVM) to distinguish scar tissue. Heflin

et al. (84) introduced an automatic detection and classification

system for scars, marks, and tattoos in unconstrained, forensic-

style images by training classifiers on annotated samples from

real-world scenarios. Abas et al. (85) fused entropy-based region-

of-interest extraction with dual-tree wavelet frame (DWF) and

gray-level cooccurrence matrix (GLCM) texture features, then

employed decision trees to classify six types of acne lesions,

achieving 85.5% accuracy. Alamdari et al. (86) implemented a

mobile application that segments lesions via k-means and classifies

them with fuzzy logic and SVMs, reporting 100% accuracy in

acne detection and up to 80% in scar classification. Kittigul and

Uyyanonvara (87) extracted speeded-up robust features (SURF)

descriptors along with hue mean, RGB (Red, Green, Blue) standard

deviations, and circularity, and used a k-nearest neighbors (k-

NN) classifier to achieve 73% sensitivity, 84% precision, and 68%

overall accuracy. Al-Tawalbeh et al. (88) built a three-class skin-

lesion classifier (benign, melanoma, seborrheic keratosis) using 71

color and texture features across multiple color spaces and Gabor

filters; a second-order polynomial SVM yielded 95.8% overall

accuracy and 99.7% precision for seborrheic keratosis on non-

segmented images. Finally, Maroni et al. (89) combined Haar-

cascade body-part detection with random-forest skin segmentation

(using multimodal features), CIELab heat-mapping, adaptive

thresholding, and Laplacian-of-Gaussian blob detection to count

acne lesions and monitor severity under real-world conditions.

As shown in Table 5, traditional machine learning approaches

can be broadly classified into unsupervised and supervised

methods. Unsupervised techniques (e.g., saliency-based clustering

and fuzzy C-means) require no labeled data and offer automated

segmentation and measurement, but they can be sensitive

to parameter choices and imaging variation. In contrast,

supervised methods (e.g., LBP + SVM, SURF + k-NN, Gabor

+ multiclass SVM) learn from annotated examples to achieve

higher classification accuracy, though their performance depends

heavily on the quality and diversity of the training dataset.

6.5 Unsupervised CNN-based methods

To date, there have been no purely unsupervised CNN

architectures applied to scar recognition or diagnosis in the

literature covered; all deep-learning approaches rely on annotated

data and end-to-end supervised training to learn feature

representations or perform segmentation. However, recent

work has explored deep reinforcement learning (DRL) as a

form of weakly supervised segmentation that does not require

pixel-wise annotation during inference. Usmani et al. (90) cast

lesion delineation as a Markov decision process and train an

agent via deep deterministic policy gradient (DDPG) to “draw”

segmentation masks in a continuous action space, using only

global reward signals derived from expert-provided ground-truth

masks. Their method achieved accuracy of 96.33% on naevus,

95.39% on melanoma, and 94.27% on seborrheic keratosis in the

ISIC 2017 dataset, and comparable performance on HAM10000
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TABLE 5 Traditional machine learning methods for scar recognition and diagnosis.

References Method description Data Metrics Supervised?

Ma et al. (79) Saliency detection using Gaussian pyramid

and clustering

– – Unsupervised

Liu et al. (83) LBP & wavelet features, SVM classification Microscopy images – Supervised

Jiang et al. (82) Smartphone-based 3D modeling and

measurements

33 keloids, 28 patients ICC > 0.95 Unsupervised

Heflin et al. (84) Scar/tattoo detection in uncontrolled images Forensic scenarios – Supervised

Chantharaphaichi et al.

(81)

Rule-based acne detection Acne lesion images High sensitivity; prone to false

positives

Unsupervised

Khan et al. (80) Fuzzy C-means clustering 50 acne images Accuracy: 92.63% Unsupervised

Abas et al. (85) Entropy-based ROI, decision tree

classification

Acne images Accuracy: 85.5% Supervised

Alamdari et al. (86) K-means segmentation + fuzzy/SVM Acne/scar images Acne: 100%, Scar: 80% Supervised

Kittigul and

Uyyanonvara (87)

SURF feature extraction, k-NN classification Acne images Sens: 73%, Prec: 84%, Acc: 68% Supervised

Al-Tawalbeh et al. (88) 71 color/texture features, polynomial SVM Skin lesion images Acc: 95.8%; Prec: 99.7% (SK) Supervised

Maroni et al. (89) Haar-cascade + RF skin segmentation + blob

detection

Smartphone acne images Lesion counting and severity

tracking

Supervised

and PH2 (96.3%, 95.4%, and 94.3%, respectively). Although this

approach still depends on ground-truth masks to compute rewards

during training, it eliminates the need for dense, step-by-step pixel

annotations and thus represents a promising direction toward

unsupervised—or more accurately, weakly supervised—deep

segmentation methods for skin lesions.

6.6 Supervised CNN-based methods

Convolutional neural networks (CNNs) have rapidly become

the state of the art in scar recognition and diagnosis by learning

hierarchical feature representations directly from data. Table 6

summarizes key CNN architectures, datasets, and performance

metrics reported in the literature, while Figure 9 illustrates

a prototypical multi-task VGG-based network that combines

classification and segmentation branches. In the following section,

we examine these supervised CNN approaches by discussing their

design innovations, clinical datasets, and quantitative outcomes,

and then outline the challenges they face in generalization,

interpretability, and computational demands.

Figures 10, 11 summarize the performance metrics of the

methods discussed in this chapter, corresponding to classification

and segmentation tasks, respectively. These visual comparisons aim

to provide readers with a convenient overview of how different

approaches perform under commonly used evaluation criteria.

The figures include only studies that report standard quantitative

metrics; methods employing less conventional evaluations (e.g.,

mask dimension differences in segmentation) are not represented.

Similarly, studies focusing on tasks such as scar characterization

or analysis are excluded, as these often lack universally adopted

quantitative benchmarks.

Due to differences in datasets, sample sizes, and experimental

protocols, the reported metrics should be interpreted with

caution. Readers are advised to consult the preceding tables

and method descriptions for contextual understanding. For

studies evaluated on multiple datasets, the plotted results

reflect weighted averages based on dataset size to ensure

consistent comparison.

In the following, we review these supervised CNN

approaches—highlighting their design innovations, clinical

datasets, and quantitative outcomes—as well as the challenges they

face in generalization, interpretability, and resource demands.

Pham et al. (91) developed a deep learning-based method

using a modified VGG-16 CNN to classify and quantify collagen

fiber organization in burn-induced scar tissue from Masson’s

Trichrome (MT)-stained histology images. The model achieves

over 97% classification accuracy and effectively extracts collagen

density and directional variance, revealing significant structural

differences between scar and normal tissue. While demonstrating

robustness across multi-scale images, limitations include sensitivity

to tissue heterogeneity and restriction to MT staining. Afterwards,

they further proposed a universal CNN model that does not

rely on specific histological staining processes to classify and

characterize collagen fiber structures in burn-induced scar tissue

(92). Maknuna et al. (93) employed machine learning techniques

for the automated structural analysis and quantitative feature

description of scar tissue. Using Mask R-CNN and K-means

algorithms, the study effectively predicted and characterized scar

images, such as collagen density and directional variation. Chu

et al. (94) proposes a deep learning-based approach for the

classification of post-thyroidectomy scar subtypes using a ResNet-

50 CNN and a novel multiple clinical photography learning

(MCPL) method. A dataset of 7,524 clinical photographs from

3565 patients was used to train and validate the model. The

MCPL method, which leverages multiple images of the same

scar per patient, improved model robustness and classification

accuracy compared to a baseline model, achieving an AUC of up
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TABLE 6 CNN-based methods for scar recognition and diagnosis.

References Method description Data Metrics

Usmani et al. (90) Deep RL-based lesion segmentation via DDPG ISIC 2017, HAM10000, PH2 Acc: 96.3% (nevus), 95.4% (melanoma), 94.3%

(seborrheic keratosis)

Pham et al. (91) Modified VGG-16 CNN Histology images Accuracy: >97%

Pham et al. (92) Universal CNN model General histology High robustness

Maknuna et al. (93) Mask R-CNN, K-means Scar images Effective collagen characterization

Chu et al. (94) ResNet-50 CNN, MCPL 7,524 images, 3,565 patients AUROC: 0.915

Kim et al. (78) CNN-based severity prediction 1,283 patients Comparable accuracy to dermatologists

Junayed et al. (95) ScarNet (19-layer CNN) Acne scar images Optimized accuracy, efficient

Ito et al. (96) CNN-based scar classification Clinical images Accuracy: 77% (Doctors: 68.7%)

Singh and Saxena (97) CNN for collagen structure Treatment efficacy images Efficacy evaluation

Privalov et al. (98) Mask R-CNN segmentation Wound photographs Effective segmentation

Rajesh et al. (99) Custom CNN for vitiligo/scars 3135 images Accuracy: 93.89%, Precision: 96.5%, AUC: 0.95

Abdolahnejad et al. (100) EfficientNet B7, segmentation, K-means 6,550 images, longitudinal Accuracy: 98%,± 2 mm error

Aguilar et al. (101) CNN acne scar risk assessment 437 images, 404 patients Accuracy: 93.15%, AUC: 0.931

FIGURE 9

A multi-task CNN architecture based on VGG. The shared convolutional backbone feeds into two branches: one for image classification via fully

connected layers, and another for semantic segmentation. The segmentation path requires upsampling (e.g., transposed convolution) to restore

spatial resolution.

to 0.915 for hypertrophic scars. Kim et al. (78) developed an AI

model to predict the severity of post-surgical scars. Using data

from 1,283 patients (1,043 in the main dataset and 240 in the

external dataset), the model demonstrated comparable accuracy

to that of 16 dermatologists. Junayed et al. (95) developed a deep

CNN model named ScarNet for the automatic classification of

acne scars. ScarNet employs a 19-layer deep learning architecture,

with optimizations made to the activation functions, optimization

algorithms, loss functions, kernel sizes, and batch sizes to improve

classification performance while reducing computational costs.

Ito et al. (96) developed a computer vision algorithm based on

automated machine learning for diagnosing four types of scars:

immature scars, mature scars, hypertrophic scars, and keloids.

Compared to doctors’ diagnoses, the algorithm achieved an average

accuracy of 77%, while doctors’ average accuracy was 68.7%.

Singh and Saxena (97) developed an image processing algorithm

using CNN to evaluate treatment efficacy by analyzing collagen

fiber structures in scar images. Privalov et al. (98) validated an

automated wound segmentation and measurement method based

on Mask R-CNN for processing wound photographs. Rajesh et al.
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FIGURE 10

Performance comparison of various machine learning and deep learning approaches across multiple evaluation metrics (Accuracy, Precision, Recall,

F1-score, and AUC) as reported in existing literature. The methods are grouped by model type: traditional machine learning (gray-shaded

background), convolutional neural networks (light blue background), and generative AI models (light orange background). Missing values are

indicated as “NA.” The figure highlights the relative strengths and limitations of each approach within a normalized score range (0–1), providing a

comprehensive overview of their e�ectiveness in the reviewed studies.

FIGURE 11

Comparative performance analysis of segmentation and detection methods reported in this chapter, evaluated across various metrics including Dice

coe�cient, Intersection over Union (IoU), Accuracy, Recall, Precision, Specificity, mean Average Precision (mAP), and mean Average Recall (mAR).

The models are categorized by methodological approach. Missing metric values are denoted as “Missing.” All scores are normalized within the range

[0, 1], facilitating a standardized comparison of model e�ectiveness across diverse approaches.

(99) proposes a deep learning-based approach for classifying

vitiligo and scar images using a customized CNN with six

convolutional layers and three fully connected layers. A dataset

of 3,135 images was used, augmented to improve generalization.

The model achieved a training accuracy of 93.89%, precision

of 96.50%, and an AUC score of 0.95, outperforming existing

architectures such as ResNet-50, InceptionV3, and VGG-16.

Abdolahnejad et al. (100) introduces a machine learning pipeline

for the automated assessment and longitudinal tracking of keloid

scars, integrating EfficientNet B7-based CNN for classification,

segmentation techniques for lesion boundary detection, and K-

Means clustering for colorimetric analysis. The model was trained

on a dataset of 6,550 images, achieving a classification accuracy

of 98%, with segmentation refined using fiducial markers and
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FIGURE 12

Simulation of overfitting in CNN training on limited data. The yellow curve traces the training loss steadily decreasing, while the orange curve shows

the validation loss initially falling but then rising after mid-training. The divergence between these curves indicates the model’s tendency to

memorize training-specific noise and lose generalization capability as epochs progress.

contour-based detection. The pipeline was validated through 5–

6 months of follow-up imaging, effectively capturing changes in

keloid size and pigmentation with a measurement error margin

of ± 2 mm. Despite its high accuracy, the method demonstrated

limitations in detecting early-stage keloids and challenges in

segmenting lesions on darker skin tones due to reduced contrast.

Aguilar et al. (101) explores the feasibility of using CNN for

automated acne scar risk assessment. A dataset of 437 clinical

images from 404 acne patients was annotated by dermatologists

and categorized using the four-item Acne-Scar Risk Assessment

Tool (4-ASRAT) into low-, moderate-, and high-risk groups. A

custom CNN model was trained for both binary (risk/no risk) and

three-class classification, achieving 93.15% accuracy and an AUC

of 0.931 for the binary classification task. However, performance

on the three-class classification was poor (68.26% accuracy)

due to the lack of clear separation between mild and severe

scarring categories.

6.7 Key limitations and failure modes of
CNN-based diagnostic models

Convolutional neural networks (CNNs) have emerged

as the cornerstone of numerous state-of-the-art diagnostic

systems, offering remarkable performance improvements over

traditional machine learning and rule-based methods. Their

ability to automatically learn hierarchical representations

from raw medical images has led to substantial gains in tasks

such as disease classification, lesion detection, and image

segmentation. Particularly in domains like radiology, dermatology,

and ophthalmology, CNN-based models have approached or

even exceeded expert-level diagnostic accuracy in controlled

settings. Furthermore, CNNs are highly adaptable to diverse

imaging modalities (e.g., CT, MRI, histopathology), and benefit

from transfer learning, making them broadly applicable across

medical subfields.

However, despite these strengths, CNN-based diagnostic

models are not without significant limitations. Their practical

deployment in clinical environments is hindered by a series of non-

trivial challenges, which compromise model robustness, reliability,

and trustworthiness. Below, we summarize key failure modes and

systemic limitations of CNNs in biomedical applications.

6.7.1 Overfitting and limited generalization in
small clinical datasets

While CNNs excel at learning from large-scale annotated

corpora, clinical datasets are often limited in size and suffer

from class imbalance, institutional bias, and acquisition variability.

This mismatch between model capacity and data availability

can lead to overfitting, where CNNs memorize dataset-specific

artifacts rather than learning disease-relevant features, As shown

in Figure 12. Despite the architectural regularization imposed

by convolutional layers and weight sharing, CNNs still require

extensive regularization strategies—such as data augmentation,

dropout, weight decay, transfer learning, and early stopping—

to mitigate this issue and improve generalization to unseen data

(102, 103).
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FIGURE 13

Simulation of batch-size sensitivity in CNN training on CIFAR-10. Dashed lines represent training accuracy for small-batch (SB, blue) and large-batch

(LB, red) regimes, while solid lines show the corresponding test accuracy. The chart illustrates that larger batch sizes yield reduced gradient noise,

converge to sharper minima, and exhibit a substantially wider generalization gap compared to smaller batches.

6.7.2 Vulnerability to adversarial perturbations
and distributional shifts

CNN-based diagnostic systems are highly susceptible to

adversarial attacks—minute, often imperceptible modifications

to input images that can drastically alter model predictions.

Finlayson et al. (104) demonstrated that adversarial examples

could significantly impair CNN performance across multiple

medical domains under both white-box and black-box threat

models. Moreover, CNNs often fail to maintain accuracy when

exposed to distributional shifts, such as changes in imaging

protocols, hardware, or patient demographics. Recent studies have

emphasized the need for robust training paradigms, including

adversarial training, domain adaptation, and input validation, to

ensure model reliability under real-world deployment scenarios

(105, 106).

6.7.3 Sensitivity to batch size and
optimization-induced generalization gaps

Optimization dynamics in CNN training are significantly

influenced by batch size. Keskar et al. (107) showed that large-batch

(LB) training (e.g., >1,000 samples) tends to converge to sharp

local minima in the loss landscape, which are associated with poor

generalization performance. In contrast, small-batch (SB) training

(e.g., 32–128 samples) introduces stochasticity that encourages

convergence to flatter minima, yielding more robust models, as

shown in Figure 13.Masters and Luschi (108) further demonstrated

that extremely small batches (as few as 2–32 samples) often achieve

the best generalization even on large datasets like ImageNet and

CIFAR-10/100. This highlights the importance of tuning batch size

as a hyperparameter and considering its interaction with learning

rate schedules in biomedical applications.

6.7.4 Lack of interpretability and opaqueness of
decision processes

The black-box nature of CNNs raises major concerns in high-

stakes domains such as medicine. While techniques like Grad-

CAM and other saliency-based methods attempt to visualize

decision rationales, they often produce inconsistent or misleading

explanations—e.g., focusing on irrelevant regions, highlighting

only dominant lesions in multi-lesion cases, or failing basic

sanity checks like weight randomization and reproducibility tests

(109, 110). This lack of reliable interpretability undermines

clinical trust, impairs model debugging, and complicates regulatory

approval, emphasizing the need for more principled and faithful

explanation methods.

6.7.5 Summary and future directions
In summary, while CNN-based models have revolutionized

image-based diagnosis through automated feature learning and

superior classification performance, their real-world clinical utility

remains constrained by several critical limitations. These include

susceptibility to overfitting on small and heterogeneous clinical

datasets, vulnerability to adversarial perturbations and domain

shifts, sensitivity to training dynamics such as batch size, and

persistent issues surrounding interpretability and transparency.
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TABLE 7 Advanced methods combining 3D reconstruction, deep learning, and foundation models for scar diagnosis.

References Method description Dataset/scale Performance metrics

Wang et al. (111) SHG imaging, GAN, CNN regression SHG imaging data Scar collagen texture quantification

Zhou et al. (112) 3D reconstruction, CNN segmentation Smartphone forensic images Measurement error: 3.69%

Zhou et al. (113) 3D reconstruction, CNN segmentation with

augmentation

Multi-view scar images Improved segmentation accuracy

Yan et al. (64) Multimodal foundation model (PanDerm) pretrained

via self-supervised learning

Over 2 million dermatological

images

Superior accuracy over clinicians; significant

data efficiency

Nguyen et al. (120) ChatGPT-based image analysis model predicting scar

outcomes

40 plastic surgery patients Binary classification accuracy: 97.5%; width

prediction R2 = 0.956; height prediction R2 =

0.857

Shiraishi et al. (121) ChatGPT-based models differentiating keloids from

hypertrophic scars

30 clinical scar images GPT-4 accuracy: 36.0%; Specificity (keloid:

0.60, hypertrophic scar: 0.72)

Yang et al. (122) Swin Transformer and CNN dual encoder + MFFM and

multi-pooling channel-spatial attention mechanism

265 clinical scar images Acc: 96.01%; Prec: 77.43%; Dice: 83.21%

Such failure modes not only challenge the robustness of CNNs but

also raise ethical and regulatory concerns, particularly in safety-

critical applications.

Addressing these challenges calls for a multifaceted research

agenda. On the data side, collaborative efforts to curate large-

scale, diverse, and well-annotated medical image repositories—

ideally spanning multiple institutions and patient demographics—

are essential to improve generalization and fairness. In terms

of algorithmic development, future work should prioritize

robust optimization strategies that are resilient to data shifts

and adversarial noise, such as distributionally robust learning,

self-supervised pretraining, and uncertainty-aware inference.

Furthermore, integrating domain knowledge (e.g., anatomical

priors or clinical guidelines) into model design may offer inductive

biases that enhance generalizability and interpretability.

Finally, the development of inherently interpretable CNN

architectures and rigorous post hoc explanation tools remains a

pressing need. These efforts should be coupled with standardized

benchmarks and clinical evaluation protocols to quantify

explanation reliability and diagnostic value. Bridging the gap

between algorithmic performance and clinical trustworthiness

will be vital to transition CNN-based diagnostic systems

from promising prototypes to dependable tools in routine

medical practice.

6.8 Other advanced methods

6.8.1 Methods combining 3D reconstruction and
deep learning

integrating 3D reconstruction with deep learning techniques

allows for comprehensive analysis and quantification of scars

in three-dimensional space, particularly beneficial for precise

measurements and assessments on complex skin surfaces. The

combination of 3Dmodeling with deep neural networks opens new

avenues for highly accurate, non-contact scar evaluation. Below we

discuss recent developments in this promising research direction,

and relevant references are also listed in Table 7.

Wang et al. (111) proposed a novel method combining

second harmonic generation (SHG) imaging technology and

deep learning algorithms. By integrating SHG imaging with

GAN and utilizing Tamura texture features, they constructed a

regression model to quantitatively analyze collagen textures in

human scar tissue and predict scar development. Zhou et al.

(112) proposes a deep learning-based method for the automatic

measurement of linear scar lengths, particularly for forensic

applications. By integrating multiview stereo 3D reconstruction

and CNN for image segmentation, the method allows non-

contact, automated, and high-accuracy scar measurement using

images taken from a smartphone. The model achieved an average

measurement error of 3.69%, demonstrating strong agreement

with manual measurements. Compared to traditional manual

and 2D imaging methods, this approach reduces subjectivity

and improves accuracy, especially for scars on curved surfaces.

However, limitations include time-consuming 3D reconstruction

and reliance on training data quality. Future research should

optimize computational efficiency, improve segmentation models,

and explore broader clinical applications. Zhou et al. (113)

proposed an advanced two-stage deep learning framework for scar

segmentation in multi-view images. The first stage includes a novel

data augmentation method based on 3D reconstruction and view

interpolation to enhance the model’s generalization ability.

Methods combining 3D reconstruction with deep learning

show substantial promise in enhancing measurement precision

and automated analysis of scars, particularly in forensic and

clinical contexts requiring high accuracy. Despite their benefits,

the significant computational cost, complexity of data acquisition,

and reliance on high-quality training data are notable limitations

requiring further exploration.

6.8.2 Computational footprint of
3D-reconstruction-driven scar assessment

Although 3D reconstruction noticeably improves geometric

fidelity, its clinical roll-out hinges on practical runtime

and hardware demands. Table 8 summarizes the details of

computational resource requirements for these research works.

Wang et al. (111) needed roughly six minutes per case on

unspecified hardware, with ScarGAN accounting for most

of the 360 s pipeline latency. Zhou et al. (112) executed on
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TABLE 8 Reported computational profile of 3-D reconstruction methods for scar analysis.

Study Hardware (GPU/CPU) Time per sample (s) Params (M) FLOPs (G)

Wang et al. (111) – 360 – –

Zhou et al. (112) RTX 2060 8 GB + i7-9700 111.8 (recon) + 28.1 (measure) – –

Zhou et al. (113) RTX 3090 24 GB – 31.0 218.7

a consumer-grade RTX 2060 (8 GB) workstation; even after

aggressive image down-sampling, structure-from-motion took

a mean ± Standard Deviation (SD) of 111.8 ± 19.9 s, while

subsequent measurement added 28.1 ± 8.4 s. To cope with heavier

multi-view co-segmentation, Zhou et al. (113) upgraded to an RTX

3090 (24 GB); their MVCSNet contains 31.0 M parameters and

incurs 218.7 GFLOPs per forward pass—no end-to-end runtime

was disclosed, but the authors note that GPU memory constrained

batch-size to 1.

Collectively, these data indicate that current 3-D

Reconstruction methods still require 30s–6min per patient

and 8–24 GB of GPU memory–tolerable for retrospective analysis

yet insufficient for real-time clinical use. Future work should (i)

publish full training and inference profiles, (ii) apply pruning,

quantisation, and mixed-precision to cut memory below 4 GB,

and (iii) replace global multi-View stereo (MVS) with lightweight

depth-fusion schemes to bring per-case runtime under 10 s.

6.8.3 Large-scale foundation models in scar
diagnosis

Recent advancements in foundationmodels have demonstrated

considerable potential in dermatological diagnostics, including

scar recognition and evaluation. A prominent work by Yan

et al. (64), published in Nature Medicine, introduced PanDerm,

a multimodal vision foundation model pretrained via self-

supervised learning on over two million dermatological images

collected from 11 clinical institutions, encompassing clinical

photography, dermoscopic images, total-body photography, and

dermatopathological slides. A general architecture of such large-

scale foundation models is illustrated in Figure 14. PanDerm

achieved state-of-the-art performance across diverse clinical tasks,

notably demonstrating superior data efficiency by surpassing

existing methods even when utilizing only 10% of labeled data.

Clinical validation confirmed PanDerm’s substantial clinical value,

notably outperforming clinicians by 10.2% in early-stagemelanoma

detection and improving diagnostic accuracy across 128 skin

conditions by 16.5% among non-specialists. This seminal work

highlights the transformative potential of multimodal foundation

models in comprehensive dermatological assessments, providing a

critical reference point for future intelligent scar diagnostics.

PanDerm has demonstrated broad applicability across

dermatological tasks through pretraining on over two million

multimodal skin disease images. However, fine-tuning for

scar evaluation requires addressing the unique morphological,

chromatic, and vascular features of scar tissue. First, it is essential

to curate a high-quality dataset that includes dermoscopy, optical

coherence tomography, and ultrasound images with precise

annotations of scar width, height, vascularity, and pigmentation.

In the fine-tuning phase, parameter-efficient methods such

as layer-wise differentiation of learning rates (freezing early

convolutional and Transformer layers while fully training later

layers) and Low-Rank Adaptation (LoRA) can significantly reduce

trainable parameters without sacrificing performance (114, 115).

Moreover, integrating multi-task objectives for scar segmentation,

classification, and regression within a shared backbone exploits

cross-task synergies, as shown by self-training frameworks

leveraging confident pseudo-labels for segmentation (116). To

mitigate domain shift between PanDerm’s broad pretraining

domain and the scar-specific target domain, adversarial domain

adaptation techniques such as Domain-Adversarial Neural

Networks with gradient reversal layers can promote extraction

of scar-invariant features and improve generalization across

clinical centers (117, 118). When annotation resources are limited,

pseudo-label self-training can expand the training corpus by using

confident predictions on unlabeled images. Finally, applying self-

supervised pretraining strategies such as masked image modeling

or contrastive multimodal learning on scar-centric datasets can

further regularize the model, reduce overfitting, and pave the way

for federated and few-shot scar assessment systems that support

privacy-preserving deployment in diverse clinical settings (119).

Other explorations have investigated generative AI frameworks

in scar prognosis and classification. Nguyen et al. (120) assessed

the feasibility of a ChatGPT-integrated image analysis model in

predicting long-term scar characteristics. Evaluating standardized

images from 40 plastic surgery patients, the ChatGPT-based

approach achieved remarkable accuracy (97.5%) for binary

scar classification. The model performed exceptionally well in

predicting static scar attributes such as width (R2 = 0.956) and

height (R2 = 0.857), although dynamic features, such as vascularity

(R2 = 0.234) and pigmentation (R2 = 0.676), remain challenging.

These findings highlight the promising yet currently limited

capability of generative AI for objective, long-term scar prediction,

especially concerning dynamic scar properties.

Additionally, Shiraishi et al. (121) explored the potential

of ChatGPT-based models in distinguishing between keloids

and hypertrophic scars through standardized clinical image

prompts. Comparing multiple AI chatbots, GPT-4 significantly

outperformed others, achieving a higher diagnostic accuracy

(36.0% vs. 22.0%) and notably better specificity. Nevertheless,

current generative AI models still fall short of clinical standards,

underscoring the need for further refinements in accuracy and

robustness. This preliminary work provides valuable insights into

the potential and limitations of applying large language models for

scar diagnosis.

While the above research works exemplifies the potential

of large-scale, general-purpose foundation models, task-specific

architectures leveraging key components of such models-

particularly Transformers-have also shown notable promise.
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FIGURE 14

A generic architecture of large-scale foundation models. The model accepts various types of input (e.g., text, image, or multimodal data), processes

them through a unified backbone—typically based on Transformer architecture—and supports a range of downstream tasks such as text generation,

classification, and segmentation. Lightweight finetuning methods (e.g., LoRA, adapters) can be employed to adapt the model to specific applications.

For instance, Yang et al. (122) proposed MFMA-Net, a dual-

encoder segmentation network that integrates a CNN and a Swin

Transformer to capture both local textures and global context.

Through a multi-scale feature fusion module and a multi-pooling

channel-spatial attention mechanism, the model achieved state-

of-the-art performance on clinical scar segmentation tasks (e.g.,

96.01% accuracy, 83.21% Dice coefficient), outperforming classical

and Transformer-based baselines alike. Though MFMA-Net is not

a foundation model per se, it demonstrates how Transformer-based

designs can be effectively adapted for high-precision, task-specific

applications in scar assessment.

It is worth noting that, to date, only the aforementioned

study has specifically applied Transformer-based or foundation

model-inspired architectures to scar diagnosis. However, similar

advanced artificial intelligence techniques have been extensively

explored in related domains, including the detection, segmentation,

and classification of skin lesions and skin cancer (123–149).

Beyond these dermatological applications, other biomedical-

image analysis tasks have also benefited from novel Transformer

architectures. Xiang et al. (150) propose a two-stage Multimodal

Masked Autoencoder (Multi-MAE) for vitiligo stage classification.

The approach integrates an adaptive masking module that

leverages self-attention to dynamically mask and discard non-

salient patches, a unified Vision Transformer encoder shared

by clinical and Wood’s lamp images, and a cross-attention

fusion decoder for multimodal reconstruction pre-training. On

a modest multimodal dataset, Multi-MAE achieved 95.48%

accuracy, outperforming MobileNet, DenseNet, VGG, ResNet-

50, BEIT, MaskFeat, SimMIM, and standard MAE by 2.58%–

5.16%. Similarly, Song et al. (151) introduce CenterFormer, an

end-to-end transformer-based framework for unconstrained dental

plaque segmentation. It features a Cluster Center Encoder (CCE)

that applies K-means clustering on multi-level feature maps to

produce coarse region representations, a pyramid-style Multiple

Granularity Perceptions module to fuse local and global contexts,

and an MLP decoder for final mask prediction. Evaluated on

nearly 3,000 intraoral images, CenterFormer attained an IoU of

60.91% and a pixel accuracy of 76.81%, surpassing SegFormer and

other state-of-the-art models by 2.34%–6.08%. Although tailored

to vitiligo staging and dental imagery, respectively, both methods

employ adaptive, self-supervised pre-training, multimodal fusion,

clustering-guided attention, and multi-scale feature integration

strategies that are methodologically relevant and technically

transferable to scar-related tasks. We expect that such techniques

will play an increasingly important role in future developments of

intelligent scar analysis.

6.9 Clinical integration

Technical accuracy alone is insufficient to deliver patient-

centered value in scar care. Given the documented inter-rater

variability of visual/tactile scales, AI systems should be embedded

across the care pathway with explicitly defined links to psychosocial

wellbeing and satisfaction. Below we outline practical integration

points, implementation guardrails, and evaluation strategies,

drawing on evidence from dermatology and other clinical domains.

6.9.1 Pre-visit intake and education
Smartphone-guided image capture with automated quality

control can reduce uncertainty before clinic visits, while brief

electronic patient-reported outcomes (ePROs)-for example,

POSAS-patient items, itch/pain numerical rating scales, and short

dermatology quality-of-life screens-establish a baseline and flag

high-risk psychosocial profiles for clinician review. Educational

feedback (expectation setting; capture tips for darker skin tones

and various illumination conditions) may lower anxiety and

improve perceived preparedness. Teledermatology workflows

that combine images with structured questionnaires have shown

high patient satisfaction and shorter time-to-advice in multiple

evaluations (152, 153).
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6.9.2 In-clinic decision support and shared
decision-making

AI-aided segmentation, severity scoring, and

progression/recurrence risk prediction can be surfaced within the

electronic record to support share decision-making. Calibrated

risk displays, standardized visual aids (e.g., 3D surface metrics),

and curated exemplar galleries help align expectations, reduce

decisional conflict, and personalize plans (e.g., prophylaxis for

keloid-prone patients). Experience from other specialties (e.g.,

autonomous diabetic retinopathy screening deployed in primary

care) illustrates how validated AI can be safely integrated into

routine pathways with defined scopes of use, audit trails, and

referral rules (154, 155).

6.9.3 Longitudinal follow-up and remote
monitoring

Between visits, remote monitoring can pair periodic photos

with short ePROs to track trajectory and symptoms (itch, pain,

appearance concerns, sleep impact). Drift-aware alerts notify

teams of worsening objective metrics or deteriorating ePROs

and can trigger timely intervention or referral to psychological

support. Evidence from ePRO programs in other fields shows that

structured symptom monitoring can improve quality of life and

care experience, and in some settings clinical outcomes (156).

6.9.4 Implementation guardrails and equity
Deployment should adopt human-in-the-loop oversight, clear

scope-of-use statements, fail-safes for uncertainty, and governance

for updates. Equity safeguards include validated performance

across skin tones, scar architectures, and acquisition settings,

plus multilingual, accessible capture instructions. Integration with

EHRs (e.g., via HL7 FHIR) should store AI outputs, timestamps,

and ePROs with audit trails. Privacy and consent must explicitly

cover image content and per-image metadata, consistent with

international guidance on trustworthy AI in health (157, 158).

In sum, integrating AI into routine scar care can translate

technical accuracy into patient-centered value. Embedding decision

support at pre-visit, in-clinic, and follow-up stages reduces

uncertainty, aligns expectations, and enables timely escalation,

while remote monitoring pairs objective image metrics with

brief ePROs to track psychosocial needs. Human-in-the-loop

oversight, clear scopes of use, and privacy-by-design safeguard

safety and trust. Ultimately, success should be judged not only

by diagnostic performance but also by improvements in patient-

reported outcomes, adherence, and satisfaction, demonstrating

tangible clinical benefit.

7 Conclusion

This review systematically summarized and analyzed

recent advancements in intelligent recognition and diagnosis

methods for skin scars, encompassing traditional machine

learning methods, convolutional neural network (CNN)-based

approaches, and hybrid methods integrating 3D reconstruction

and deep learning. Traditional clinical scar assessment methods,

although valuable in clinical practice, inherently suffer from

subjectivity and inconsistencies arising from varied expertise

levels among clinicians (159). In contrast, intelligent diagnostic

methods leveraging artificial intelligence (AI) provide objective,

reproducible, and efficient tools that can significantly enhance

clinical assessments and patient care.

Traditional machine learning methods, such as clustering

algorithms, texture analysis techniques, and rule-based models,

have demonstrated efficacy primarily due to their simplicity,

computational efficiency, and interpretability. These methods

typically involve handcrafted feature extraction strategies tailored

to specific scar characteristics, enabling successful segmentation

and classification tasks even with limited computational resources.

However, the heavy reliance on manual feature engineering and the

susceptibility of these methods to variations in image quality and

environmental conditions restrict their generalization capability

and applicability across diverse clinical scenarios.

CNN-based methods address many limitations inherent in

traditional approaches by automatically extracting hierarchical

features from extensive datasets, resulting in higher accuracy,

improved robustness, and greater adaptability. CNN architectures

such as ResNet, VGG, EfficientNet, and Mask R-CNN have

demonstrated impressive results in tasks ranging from scar severity

assessment and subtype classification to detailed collagen structure

analysis. Despite their superior performance, CNN-based methods

face challenges, including substantial computational demands,

dependence on large-scale, high-quality annotated datasets, and

concerns regarding interpretability and transparency, which

remain critical barriers to widespread clinical adoption (160).

Hybrid approaches integrating 3D reconstruction techniques

with deep learning represent a promising research frontier in scar

assessment, offering precise quantitative analysis and non-contact

measurement capabilities. These methods have shown exceptional

promise for applications requiring accurate dimensional analysis,

particularly in complex surface evaluations such as forensic

investigations (112). However, the computational complexity,

time-consuming data acquisition, and reliance on high-quality

3D data continue to pose significant practical challenges that

need addressing through optimized computational strategies and

improved imaging protocols.

Despite significant progress, several critical challenges persist

in intelligent scar recognition research. A paramount limitation is

the scarcity of standardized, publicly accessible scar image datasets,

compounded by patient privacy and ethical considerations. The

current dataset availability is insufficient to fully support robust

model training and validation, impeding the reproducibility

and generalization of research outcomes. Future advancements

critically depend on establishing comprehensive, ethically sourced

datasets, adopting standardized image acquisition protocols, and

developing innovative data augmentation techniques to mitigate

dataset limitations.

Additionally, future research should focus on addressing the

interpretability and transparency of AI models to build trust among

clinicians and ensure the practical applicability of these tools in

real-world medical environments. Enhanced interpretability would

allow clinicians not only to understand model predictions but also

facilitate the integration of AI-based diagnostic tools within routine

clinical workflows, ultimately improving patient care quality.

To address these challenges and propel the field forward, we

propose several key research directions:
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• Development of hybrid models: future research should

focus on developing hybrid approaches that combine

traditional image processing and deep learning techniques,

such as linear-transformation-based dehazing to enhance

scar image contrast and suppress illumination artifacts

(161), and spectrum-based image enhancement methods that

convert RGB images into narrowband or hyperspectral-like

representations to boost dermatological lesion classification

and detection performance (162–164). By leveraging the

interpretability and low computational cost of classical

preprocessing alongside the powerful feature extraction

of modern networks, these hybrids can improve lesion

boundary separability and enable more accurate, real-time

scar diagnosis.

• Improvement of dataset accessibility and quality: the

establishment of large-scale, publicly available datasets

specifically curated for scar analysis is essential. Encouraging

collaboration between clinical institutions, research

communities, and regulatory bodies can facilitate the creation

of diverse, ethically sourced datasets that adhere to strict

privacy standards.

• Clinical validation and trials: rigorous clinical validation

through well-designed prospective studies and multicenter

clinical trials is crucial to evaluate the real-world effectiveness,

reliability, and safety of intelligent diagnostic systems (165).

Such validation efforts would ensure that AI technologies meet

clinical standards and demonstrate tangible patient benefits.

• Advancement in ethical AI application: ethical

considerations and patient privacy must be integral to

the development and deployment of AI-based diagnostic

tools. Implementing transparent, explainable AI practices and

stringent data governance frameworks can address ethical

concerns and foster broader acceptance among patients and

healthcare providers (166).

In conclusion, the integration of intelligent diagnostic

technologies into scar recognition and management signifies a

transformative shift toward more objective, efficient, and patient-

centered healthcare solutions. While substantial progress has been

achieved, ongoing efforts in methodological innovation, dataset

improvement, clinical validation, and ethical governance are

essential for fully realizing the potential of AI in dermatological

care. By addressing these critical aspects, future research will

undoubtedly pave the way for the broader and more effective

adoption of intelligent diagnostic systems, ultimately improving

the quality of life for individuals affected by scars.
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