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Background: Eczema and psoriasis are common chronic dermatoses with
overlapping features, making early differential diagnosis difficult. While biopsy is
the gold standard, its invasiveness and dependence on clinician expertise restrict
routine application, especially in primary care. To overcome these limitations,
we developed a machine learning-based diagnostic tool using routine laboratory
data, enabling non-invasive, accurate, and practical differentiation between
eczema and psoriasis in outpatient settings.

Methods: We retrospectively analyzed clinical and routine laboratory data from
57,518 patients with eczema and psoriasis across three medical centers. Patients
with confirmed diagnoses and complete laboratory records were included,
while those with missing key data were excluded. Eight machine learning
models were trained using data from Shengjing Hospital. Model performance
was evaluated using accuracy, AUC, sensitivity, specificity, PPV, NPV, F1 score,
and confusion matrix. The best-performing model, XGBoost, was externally
validated on independent cohorts from two other hospitals. SHapley Additive
exPlanation (SHAP) were applied to assess feature importance. Finally, a web-
based tool was developed integrating the optimal model with optical character
recognition (OCR) for automatic data input.

Results: XGBoost demonstrated the best performance, with AUCs of 0.891,
0.830, and 0.812 for the training, internal test, and external test sets, respectively.
Key predictive features included dNLR, neutrophil count, SIRI, RDW, and
eosinophil count, which were consistent with known clinical patterns. The final
model was deployed as an interactive web tool, allowing manual or OCR-based
data input to provide real-time prediction probabilities.

Conclusion: This machine learning-based diagnostic tool showed strong
performance and interpretability in differentiating eczema from psoriasis using
routine laboratory data. The user-friendly web interface enables rapid, non-
invasive decision support in outpatient clinical settings.
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Introduction

Eczema and psoriasis are two of the most common chronic
inflammatory skin diseases worldwide, affecting millions of
individuals and imposing a significant burden on patients’ quality of
life and healthcare systems (1, 2). Despite distinct underlying
pathophysiological mechanisms, eczema and psoriasis can present
with overlapping clinical features such as erythema, scaling, and
pruritus, which poses challenges for accurate differential diagnosis (3,
4). Eczema is subdivided into atopic and non-atopic types. The atopic
variant, which primarily affects children, involves skin inflammation
mediated by T cells and Th2-type cytokines in its early stages. This
type is commonly linked to IgE-mediated hypersensitivity to
environmental allergens, often presenting with increased total IgE and
specific IgE levels. The non-atopic type of eczema, which is more
frequently observed in adults, is generally not associated with allergen-
specific sensitization and often presents with normal total IgE levels,
although elevated IgE can still be found in a subset of patients (5).
However, studies have shown that elevated IgE levels can also
be present in some non-atopic eczema patients, indicating that IgE
levels alone may not be a definitive marker to distinguish between
these two types (6). Pediatric atopic eczema typically affects
characteristic sites such as the antecubital and popliteal fossae.
However, adult eczema often presents with diverse and atypical lesion
morphology and distribution, making clinical identification more
challenging than that of the relatively well-defined pediatric form.
Without timely and effective treatment, eczema can become chronic
and recurrent, significantly impacting patientsquality of life and
increasing healthcare costs (7). Psoriasis, classified into several
subtypes, is dominated by plaque psoriasis, which accounts for
approximately 80-90% of cases. Its hallmark is well-demarcated
erythematous plaques with silvery scales (3). However, early-stage or
mild psoriasis may present with atypical or subtle lesions such as small
erythematous patches with minimal scaling, which may be confused
with eczema or other dermatoses. Delayed or missed diagnosis of
psoriasis not only delays appropriate treatment but also increases the
risk of serious comorbidities, including psoriatic arthritis,
cardiovascular disease, and psychological disorders like depression.
Given the lack of a definitive cure for psoriasis, early diagnosis and
timely intervention are crucial, as emphasized by international
guidelines (8). Diagnosis of both psoriasis and eczema is primarily
based on clinical presentation, dermoscopy and biopsy. However, each
of these methods has certain limitations. Clinical diagnosis is
inherently subjective and can be influenced by the individual
clinician’s experience, leading to variability in diagnostic consistency.
Dermoscopy can provide supplementary imaging information to aid
in the differentiation between eczema and psoriasis. However, due to
overlapping features and variations in presentation, its diagnostic
accuracy remains limited, particularly in atypical cases. Despite being
the gold standard, the invasive nature of biopsy imposes significant
limitations on its widespread adoption due to patient compliance
concerns. In addition, most county-level hospitals currently lack
specialized dermatologists, and it is common for internal medicine
physicians to assume dermatological responsibilities. Moreover,
advanced diagnostic technologies are often inaccessible in primary
healthcare facilities, further increasing the difficulty of differential
diagnosis. This highlights the more pressing demand for
dermatological services in township health centers. Therefore,
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developing an accurate, efficient, and easily accessible tool to
distinguish between eczema and psoriasis is crucial for improving the
quality of clinical decision-making, enhancing treatment outcomes,
and ultimately benefiting patients.

Machine learning (ML) is a branch of artificial intelligence that
allows computers to extract patterns from data and make predictions
or decisions with limited human input. In recent years, with the
growing demand for large-scale data analysis in medical research and
clinical practice, the importance of ML has become increasingly
prominent. Its powerful data processing capabilities provide valuable
tools for medical diagnosis and decision support (9-12). Similarly, ML
has attracted widespread attention in dermatology, especially in the
field of image analysis, where significant advancements have been
made (13-15). Numerous machine learning studies have enabled early
differentiation and staging of cutaneous melanoma and
non-melanoma skin cancers, demonstrating significant practical value
in community and primary care settings (16-18). Deep learning is a
subfield of machine learning. Vatsala Anand et al. employed deep
learning techniques to classify images of seven distinct skin disease
categories, including Melanoma, Vascular Lesions, Benign Keratosis —
Lesions, Dermatofibroma, Melanocytic Nevi, Basal Cell Carcinoma
and Actinic Keratoses, achieving high accuracy in their classification
(19). However, in actual clinical applications, some patients have skin
lesions in private lesions that are difficult to photograph, or the quality
of images is affected by scratching and secondary infections. Moreover,
image models typically require large amounts of data, high-
performance hardware, and privacy protection issues. In contrast,
basic laboratory test data, which can be easily obtained from
outpatient settings, can be readily integrated into hospital systems or
online auxiliary diagnostic platforms. Machine learning models
incorporating serological markers and clinical features have been
increasingly utilized across various medical specialties for differential
diagnosis and prognostic evaluation. For instance, Sebastian
Kraszewski et al. Effectively differentiated ulcerative colitis from
Crohn’s disease based on laboratory markers (20), while Yolanda
Sanchez-Carro et al. demonstrated that machine learning approaches
could be utilized to predict depression diagnoses and their clinical
subtypes based on immunometabolic indicators and lifestyle factors
(21). Similarly, Alcazer et al. developed an XGBoost model utilizing
ten routine laboratory parameters to classify three subtypes of acute
leukemia (APL, ALL, AML), achieving AUC:s of 0.97, 0.90, and 0.89,
with an overall accuracy of nearly 99% (22). Chih-Min Tsai et al.
applied demographic data and laboratory values extracted from
electronic health records, which included complete blood counts,
differential counts, urinalysis, and biochemical parameters, to
distinguish Kawasaki disease from other febrile illnesses in children
using an XGBoost model, thereby supporting early diagnosis and
timely intervention (23). Furthermore, Anoeska Schipper et al.
Developed a machine learning model for classifying appendicitis
among patients presenting with acute abdominal pain in the
emergency department. This model outperformed conventional
scoring systems and demonstrated comparable or superior accuracy
to emergency physicians, thereby enhancing rapid clinical decision-
making (24). However, ML models based on hematological parameters
for disease differentiation have been less frequently reported in
dermatology. Eczema and psoriasis exhibit certain differences in
hematological parameters, providing a rationale for further
investigation. Against this background, we conducted a multicenter
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retrospective study to develop multiple ML models based on clinical
features and hematological parameters, identify potential predictive
factors, and build an online diagnostic tool that integrates both optical
character recognition (OCR) technology and manual data entry. This
tool is intended to provide clinicians with a practical and efficient
decision support platform.

This study investigates the differential diagnosis between eczema
and psoriasis, the main contributions are summarized as follows:

1 Feature selection and data preparation: Based on clinical
guidelines for eczema and psoriasis, and incorporating expert
opinions from dermatologists, 31 candidate features were
initially selected. After rigorous screening, 14 key features were
retained. A high-quality dataset was constructed from three
medical centers through systematic data cleaning, classification,
and selection from a large-scale hospital-based database.

2 Model development and optimization: Eight machine learning
models were developed, including k-Nearest Neighbors
(KNN), Decision Tree (DT), Neural Network (NNet), Random
Forest (RF), Support Vector Machine (SVM), Light Gradient
Boosting Machine (LightGBM), and Extreme Gradient
Boosting (XGBoost). Multiple rounds of parameter tuning
were conducted, and a soft-voting ensemble model (SVEM)
was created by integrating the top five models. Among them,
the XGBoost model exhibited the best overall performance.

3 Model interpretation: To enhance interpretability, SHapley
Additive exPlanations (SHAP) was used to identify the most
influential features in the XGBoost model. These features were
consistent with clinical guidelines, suggesting that the model
has successfully learned key knowledge required for
distinguishing between eczema and psoriasis.

4 Clinical application: An online diagnostic tool was constructed
based on the final model, aiming to assist clinical diagnosis in
primary care institutions. The platform allows clinicians to
input routine laboratory and clinical data, either manually or
through OCR technology, which allows automatic extraction
of text data from images of laboratory reports, thereby reducing
workload and improving diagnostic efficiency.

Materials and methods
Data source

For this retrospective cohort study, we included patients with the
diagnosis of eczema or psoriasis who attended the dermatology
outpatient departments of Shengjing Hospital of China Medical
University, Shenyang Dermatology Hospital, and the First Affiliated
Hospital of Dalian Medical University between January 10, 2019 and
January 10, 2025. All three hospitals are tertiary general hospitals
directly managed by the National Health Commission of China,
ensuring the generalizability and reliability of the data. This study was
approved by the Ethics Committee of Shengjing Hospital of China
Medical University (approval number: 2025PS1210K). Authorized
physicians accessed the outpatient electronic systems to identify all
patients diagnosed with “eczema” or “psoriasis” from January 10,
2019 to January 10, 2025. Clinical and laboratory data for these
patients were then extracted for analysis. This cohort was
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subsequently screened according to the following exclusion criteria:
(1) patients with incomplete hematological parameters and basic
information; (2) age <18; (3) patients with other concomitant skin
diseases; (4) patients with other systemic diseases such as
hypertension, diabetes, or coronary heart disease; (5) non-first-time
visitors; (6) patients who used medications on their own before
the visit.

Feature selection

A total of 31 candidate variables, comprising demographic
characteristics, standard hematological characteristics obtained from
complete blood count (CBC), and derived inflammatory markers were
initially collected. Hematological characteristics included white blood
cell count (WBC); percentages and absolute counts of neutrophils,
lymphocytes, monocytes, eosinophils, and basophils; red blood cell
count (RBC); hemoglobin (HGB); hematocrit (HCT); mean
corpuscular volume (MCV); mean corpuscular hemoglobin (MCH);
mean corpuscular hemoglobin concentration (MCHC); red cell
distribution width (RDW); platelet count (PLT); plateletcrit (PCT);
mean platelet volume (MPV); platelet distribution width (PDW); and
total IgE levels. Derived inflammatory indices included the neutrophil-
to-lymphocyte ratio (NLR), derived NLR (dNLR), monocyte-to-
lymphocyte ratio (MLR), neutrophil-plus-monocyte-to-lymphocyte
ratio (NMLR), systemic nflammation response index (SIRI), systemic
immune-inflammation index (SII), and hemoglobin-to-red blood cell
ratio (HRR) (25-27). Prior to analysis, all variables underwent
integrity and consistency checks. Records containing any missing
values were excluded. Categorical variables were factorized and
encoded as dummy variables. Specifically, gender was encoded as 0 for
female and 1 for male, while disease type was encoded as 0 for eczema
and 1 for psoriasis. To reduce the impact of extreme values on model
performance, outliers exceeding three standard deviations from the
mean were removed. All 31 variables were subjected to feature
selection using the Boruta algorithm, a robust and widely used
wrapper method based on random forest classification. Boruta
assesses the importance of each variable by creating “shadow features,”
which are randomized copies of the original variables, and then
comparing the Z-scores of the actual variables with those of the
shadow features. If a variable consistently exhibits a significantly
higher Z-score than the maximum among its shadow features across
multiple iterations, it is deemed “important” and retained for model
construction. Otherwise, it is labeled “unimportant” and excluded
(28). This process allows the algorithm to identify features that
meaningfully contribute to model performance, even in the presence
of complex and nonlinear relationships. Notably, Boruta focuses on
the overall relevance of each variable within the model context,
meaning that variables showing significance in univariate analysis may
still be excluded if their predictive contribution is limited (29). After
feature selection, Spearman correlation analysis was performed to
assess multicollinearity among the selected variables. While most
machine learning algorithms are relatively robust to multicollinearity,
it can still affect the interpretation of feature importance. When two
variables were highly correlated (defined as a Spearman correlation
coefficient >0.7), one was excluded based on clinical relevance or
statistical contribution (30). The final set of independent variables was
determined in conjunction with expert advice from dermatologists.
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Model construction and evaluation

After applying the inclusion and exclusion criteria, eligible
patient data from Shengjing Hospital were randomly divided into a
training set and an internal test set at a 6:4 ratio. To assess model
generalizability, an external test set was constructed using data from
916 patients collected at Shenyang Dermatology Hospital and the
First Affiliated Hospital of Dalian Medical University. The 14
predictive variables selected in the previous step were used as input
features. Seven machine learning models were applied, including
KNN, DT, NNet, RE SVM, LightGBM, and XGBoost (31-33). In
addition, SVEM was developed as the eighth model by combining the
probabilistic outputs of the five best-performing classifiers using
weighted averaging (34, 35). This ensemble approach aimed to
leverage the complementary strengths of different algorithms to
enhance robustness and reduce overfitting. All models were trained
using 10-fold cross-validation on the training set. To achieve optimal
model performance, hyperparameters were tuned with the aim of
maximizing the area under the receiver operating characteristic curve
(AUCQ). In addition to AUC, model performance was evaluated on
both internal and external test sets using multiple metrics, including
confusion matrix, accuracy, sensitivity (recall), specificity, positive
predictive value (PPV), negative predictive value (NPV), and
F1-score. To improve the interpretability of the model, we applied
SHAP to produce dependence plots that visualize the individual
contribution and influence of each feature on the prediction
outcomes (36). All analyses were conducted using R software (version
44.1).

Machine learning model

This study employed eight representative machine learning
algorithms for model development, including KNN, DT, NNet, RE,
SVM, LightGBM, XGBoost and SVEM. Brief introductions to each
classifier are as follows.

1 KNN: K-Nearest Neighbors is a non-parametric, instance-
based supervised learning algorithm. It classifies data points by
calculating distances and selecting the majority class among
the k-nearest neighbors in the feature space. Its simplicity and
interpretability make it suitable for small datasets with low
dimensionality and well-separated classes (37).

DT: Decision Tree is a supervised learning algorithm that
recursively splits data based on feature values, forming a tree-
like structure for classification or regression tasks. Each
internal node represents a decision based on a feature, and the
leaves correspond to class labels. It is highly interpretable and
effective for capturing non-linear relationships (38).

NNet: Neural Networks are computational models inspired by
biological neural systems, composed of layers of interconnected
nodes (neurons). They are capable of learning complex patterns
and are highly adaptable to various types of data, forming the
foundational architecture for many deep learning methods (39).
RF: Random Forest is an ensemble learning method that
constructs multiple decision trees and merges their results to
improve accuracy and control overfitting. It handles large
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datasets with higher dimensionality and provides estimates of
feature importance (40).

SVM: Support Vector Machine constructs optimal separating
hyperplanes in high-dimensional spaces to distinguish between
classes with maximum margin. It is highly effective for small
sample sizes and high-dimensional data, and can handle
non-linear problems through the use of kernel functions (41).
LightGBM: Light Gradient Boosting Machine is a gradient
boosting framework that uses tree-based learning algorithms,
designed for speed and efficiency. It offers faster training speed
and lower memory usage. It employs a histogram-based decision
tree algorithm and a leaf-wise growth strategy to enhance
computational efficiency. The model supports native handling
of categorical features and enables efficient multi-threaded
training. Light GBM is particularly suitable for large-scale, high-
dimensional datasets requiring fast and accurate learning (42).

XGBoost: Extreme Gradient Boosting is an advanced and
efficient implementation of the gradient boosting framework,
specifically optimized for computational speed and model
performance. It incorporates regularization techniques to
reduce overfitting, supports parallel processing to accelerate
training, and is capable of handling missing values natively.
Due to its high predictive accuracy and robustness, XGBoost
has been widely adopted in both academic research and
practical machine learning applications (43).

SVEM: The Soft Voting Ensemble Model combines the
predicted probabilities from multiple base classifiers and
performs weighted averaging to determine the final class. By
leveraging the complementary strengths of different models, it
enhances predictive performance, improves generalizability,
and reduces the risk of overfitting compared to individual
classifiers (34, 35).

Model evaluation indices

To comprehensively evaluate the model’s ability to discriminate
between patients with eczema (defined as the negative class) and those
with psoriasis (defined as the positive class), we applied several
evaluation metrics including the confusion matrix, AUC, accuracy,
sensitivity, specificity, PPV, NPV, and F1 score (44, 45). The definitions
and corresponding formulas are provided below.

Confusion matrix
The confusion matrix is a 2 x 2 table that compares predicted and
actual class labels. It includes:

TP (True positive): Psoriasis cases correctly identified.

FP (False positive): Eczema cases incorrectly predicted
as psoriasis.

TN (True negative): Eczema cases correctly identified.

FN (False negative): Psoriasis cases incorrectly predicted
as eczema.
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Actual positive Actual negative
(psoriasis) (eczema)
Predicted positive TP FP ‘
Predicted negative FN N ‘
Accuracy
TP+TN
Accuracy =———————
TP+TN+FP+FN

Reflects the overall proportion of correct predictions.

Sensitivity/recall

- TP
Sensitivity = ————
TP+EN

Measures the model’s ability to correctly identify psoriasis cases,
reflecting its capability to minimize false negatives.

Specificity

Specificity = N
P Y TN +FP

Indicates the model’s ability to correctly identify eczema cases,
reflecting its capability to minimize false positives.

Positive predictive value (PPV)/precision

TP

PPV =
TP+FP

Represents the proportion of true psoriasis cases among all

predicted  positive cases, reflecting the accuracy of

positive predictions.

Negative predictive value (NPV)

TN

NPV =—--—-—
TN+FN

Represents the proportion of true eczema cases among all
predicted negative cases, reflecting the accuracy of negative predictions.

F1 score

Precision x Recall
Fl =2X—
Precision + Recall

The F1 score is the harmonic mean of precision (positive
predictive value) and recall (sensitivity). It is particularly useful in
evaluating the model’s ability to diagnose psoriasis when both false
positives and false negatives need to be minimized. The F1 score
provides a balanced measure that is especially valuable in cases of
class imbalance.

Frontiers in Medicine

10.3389/fmed.2025.1667794

Area under the curve (AUC)

AUC represents the area under the receiver operating
characteristic curve and reflects the model’s overall ability to
discriminate between eczema and psoriasis. A higher AUC indicates
better classification performance and is robust to class imbalance,
making it one of the most important metrics for differential diagnosis
in this study.

Web deployment of the model

The final prediction model is intended to be implemented as an
online web application. When users input the relevant features, the
system will generate a prediction indicating whether the patient is
more likely to have psoriasis or eczema, along with the corresponding
probability score. To enhance usability and reduce the time burden on
clinicians, an OCR function has been integrated, allowing users to
either enter data manually or upload laboratory reports for automated
extraction of relevant information.

Results
Data resource

After applying inclusion and exclusion criteria, a total of 1,014
patients were selected from 29,872 cases at Shengjing Hospital,
including 541 cases of eczema and 473 cases of psoriasis. Additionally,
an external validation cohort consisting of 916 patients (485 eczema
and 431 psoriasis) was selected from 27,646 cases at Shenyang
Dermatology Hospital and the First Affiliated Hospital of Dalian
Medical University. The detailed cohort selection process is illustrated
in Figure 1.

Feature selection

A total of 1,014 patients from Shengjing Hospital were included
for initial analysis using the full dataset. The normality of continuous
variables was evaluated with the Shapiro-Wilk test. Normally
distributed variables were compared by independent samples t-tests
and expressed as mean + standard deviation (Mean + SD). For
variables not normally distributed, the Mann-Whitney U test was
applied, and results were reported as median and interquartile range
(Medians and IQRs). Categorical data were analyzed using the
chi-square test. The baseline characteristics are shown in Table 1,
indicating that 16 out of 31 variables significantly differed between
patients with psoriasis and those with eczema.

Subsequently, the dataset was randomly divided into a training
set (n = 607) and a test set (n = 407) with a 6:4 ratio, where 60% of the
data were used for model development and 40% for internal
validation. Feature selection was performed exclusively on the
training set to avoid data leakage. The Boruta algorithm, a wrapper
method based on random forest classification, was applied to the
training set to identify important features. The results are illustrated
in Figure 2.

Following preliminary feature selection, Spearman correlation
analysis was conducted to evaluate multicollinearity among the
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Electronic Medical Record (EMR) System
N =57,518
e
Exclusive criteria
* incomplete hematological and basic
information (n=30,258)
| - age<18years(n=20,199) STEP 1
"1 -+ with other skin diseases (n=752) Data collection
*  with other systemic diseases (n=1,791)
* non-first-time visitors (n=2,060)
» used medications before the visit (n=528)
A 4
i i e e et ]
I A. Shengjing hospital + B. Shenyang dermatology + C. the First Affiliated Hospital of -
(n=1,014) hospital (n=609) Dalian Medical University (n=307)
L — e ——F === =—F ==—=1 T
v l
Training set Internal testset External testset STEP 2
(n=607) n=(407) (n=916) Model construction
I -~ I and validation
DT .
| NNet | . |
- RF Xterna
Eight models Iq—] sVM | validation
i LightGBM I
Q) XGBoost
l ‘LO ) I SVEM I -
STEP 3
Thelbestmodell € - :
Online web
1 application
— - development
Web development ====p Clinical usability testing
FIGURE 1
Patient flowchart and study design

selected variables. The correlation heatmap is presented in
Figure 3A. Based on the correlation analysis results and clinical expert
the final
Figure 3B. Ultimately, 14 independent features were retained for
subsequent model development, including SIRI, dNLR, IgE, PDW,
PCT, MPV, RDW, MCV, EosCount, MonoCount, BasoPercent,
NeutCount, WBC, age.

The baseline characteristics of the training and test sets after

opinion, set of selected features is shown in

feature selection are shown in Supplementary Table S1, with all
p-values greater than 0.05, indicating no statistically significant
differences and confirming the adequacy of the random split.

Model construction and validation

Using 14 variables, we developed eight machine learning models,
including RE SVM, LightGBM, XGBoost, DT, KNN, NNet and
SVEM. Given that psoriasis may have more severe clinical
consequences and practical significance for patients, psoriasis was
designated as the positive class (1) and eczema as the negative class (0)
in the analysis. Table 2 presents the performance metrics, including
Accuracy, Sensitivity/Recall, Specificity, PPV, NPV, F1 score, and AUC
for both the training and internal test sets. To facilitate direct
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comparison of the models, bar plots were generated as shown in
Figure 4.

Figure 5 presents the ROC curves for all eight ML models on the
test set.

Figure 6 presents the confusion matrix on the testset, which
visually contrasts the performance of different models. The heatmap
employs a color gradient where intensity scales with magnitude, with
darker hues representing higher values.

In both the training and internal test sets, XGBoost, RE,
LightGBM, SVM, and SVEM all demonstrated strong classification
capabilities. The performance on the test set serves as a more reliable
indicator of the model’s generalization ability, as the test data was not
involved in the training process and provides a more accurate
assessment of the model’s predictive power on unseen data. Therefore,
the following comparisons and analyses are based on the results from
the internal test set. XGBoost performed the most balanced in the
internal test set, with a sensitivity of 0.716 (indicating its ability to
correctly identify psoriasis patients) and a specificity of 0.830
(indicating its ability to correctly identify eczema patients). The AUC
was 0.830, demonstrating the strongest overall classification ability.
The AUC values for the SVEM, LightGBM, RE, and SVM were 0.829,
0.828, 0.822, and 0.816, respectively. In contrast, DT, NNet, and KNN
models performed less favorably, with KNN exhibiting the lowest
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TABLE 1 Baseline characteristics of the study population.

10.3389/fmed.2025.1667794

Variable category Variables Total (n = 1,014) Psoriasis Eczema (n = 541) p value
(n = 473)
Age 38 (29, 54) 37 (28, 50) 41(30, 59) <0.01
Personal history
Gender
Male 466 (45.96) 221 (46.72) 245 (45.29)
Female 548 (54.04) 252 (53.28) 296 (54.71) 0
WBC, 10A9/L 6.74 (5.70, 8.15) 6.95 (5.93, 8.33) 6.60 (5.56,7.91) <0.01
NeutPercent, % 60.48 + 8.97 61.79 + 8.81 59.34 + 8.96 <0.01
LymphPercent, % 29.32 +£8.42 29.06 +7.88 29.56 + 8.87 0.34
MonoPercent, % 6.30 (5.20, 7.70) 6.40 (5.30, 7.70) 6.20 (5.20, 7.70) 0.26
EosPercent, % 2.00 (1.10, 3.60) 1.40 (0.90, 2.40) 2.80 (1.60, 4.80) <0.01
BasoPercent, % 0.50 (0.30, 0.70) 0.50 (0.30, 0.70) 0.40 (0.30, 0.60) <0.01
NeutCount, 10A9/L 4.10 (3.30, 5.10) 4.30 (3.50, 5.40) 3.90 (3.10, 4.90) <0.01
LymphCount, 10A9/L 1.90 (1.50, 2.40) 2.00 (1.60, 2.40) 1.90 (1.50, 2.30) 0.05
MonoCount, 10A9/L 0.40 (0.30, 0.50) 0.40 (0.40, 0.60) 0.40 (0.30, 0.50) <0.01
EosCount, 1009/L 0.13 (0.08, 0.25) 0.10 (0.06, 0.17) 0.19 (0.10, 0.31) <0.01
RBC, 10712/L 4.71 (4.40, 5.15) 4.78 (4.40, 5.10) 4.70 (4.40, 5.15) 0.73
Clinical blood tests
HGB, g/L 143.00 (133.00, 156.00) 143.00 (134.00, 156.00) 143.00 (133.00, 156.00) 0.35
HCT, % 43.00 (39.80, 46.30) 43.10 (40.10, 46.20) 42.70 (39.50, 46.30) 0.24
MCV, fL 90.00 (88.00, 93.00) 91.00 (88.00, 93.00) 90.00 (87.40, 92.40) <0.01
MCH, pg 30.30 (29.30, 31.20) 30.40 (29.40, 31.30) 30.20 (29.30, 31.20) 0.07
MCHGC, g/L 335.00 (330.00, 340.00) 335.00 (330.00, 340.00) 336.00 (330.00, 341.00) 0.47
RDW, % 13.00 (12.60, 13.50) 13.10 (12.70, 13.60) 12.90 (12.50, 13.40) <0.01
PLT, 1079/L 246.00 (206.00, 288.00) 244.00 (208.00, 288.00) 248.00 (205.00, 287.00) 0.50
MPYV, fL 8.80 (8.10,9.58) 8.40 (7.80, 9.30) 9.10 (8.30, 9.70) <0.01
PCT, % 0.21 (0.18, 0.25) 0.21(0.18, 0.24) 0.22 (0.19, 0.26) <0.01
PDW, % 16.50 (16.10, 16.90) 16.60 (16.20, 17.00) 16.30 (16.00, 16.70) <0.01
IgE 63.47 (23.70, 196.50) 49.15 (17.94, 129.00) 85.70 (31.96, 269.30) <0.01
NLR 2.10 (1.58,2.76) 2.14 (1.64, 2.84) 2.07 (1.54, 2.69) 0.10
dNLR 0.87(0.83, 0.89) 0.88 (0.85, 0.90) 0.86 (0.81, 0.89) <0.01
MLR 0.22(0.17,0.29) 0.23(0.17,0.29) 0.21(0.17,0.29) 0.36
Derived inflammatory
s NMLR 2.33 (1.78, 3.00) 2.38 (1.82, 3.10) 2.29 (1.74, 2.96) 0.11
SIRI 0.89 (0.62, 1.34) 0.95 (0.68, 1.41) 0.84 (0.57, 1.29) <0.01
SIT 520.45 (367.79, 697.10) 528.75 (380.27, 748.64) 505.89 (360.21, 671.05) 0.07
HRR 11.07 (10.22, 12.13) 10.98 (10.14, 12.10) 11.15 (10.29, 12.15) 0.31

*NLR, Neutrophil-lymphocyte ratio; dNLR, Derived neutrophil-to-lymphocyte ratio; MLR, Monocyte-to-lymphocyte ratio; NMLR, Neutrophil-to-monocyte-plus-lymphocyte ratio; SIRI, Systemic
inflammation response index; SII, Systemic immune-inflammation index; HRR, Hemoglobin-to-red blood cell distribution width ratio. Bold values indicate statistical significance at p < 0.05.

accuracy and AUC across all datasets. In the internal test set, KNN’s
accuracy was 0.592 and AUC was 0.584, indicating its relatively weak
classification capability and limited clinical application value. In
summary, although different models show strengths in various
metrics, XGBoost’s consistently superior performance in both the
training and internal test sets makes it the optimal choice. To further
assess its generalization ability, we performed external validation of
XGBoost. The XGBoost model demonstrated strong performance on
the external test set, with an AUC of 0.812. Together with an accuracy
of 0.741, sensitivity of 0.704, specificity of 0.783, PPV of 0.742, NPV
0f 0.743, and an F1 score of 0.722, these results collectively confirmed
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the model's robustness and generalizability in real-world
clinical settings.

Feature importance analysis

According to the above results, the XGBoost model demonstrated
the best performance among all candidate models, showing excellent
classification ability in distinguishing between eczema and psoriasis.
Although ML models are often considered ‘black boxes’ due to their
lack of interpretability, this study introduced the SHAP method to
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Feature importance ridge plot based on Boruta.
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Importance

perform feature importance analysis, which significantly enhanced the
model’s transparency. SHAP quantifies the marginal contribution of
each feature to the model’s predictions, revealing not only the overall
importance through absolute SHAp values, but also the direction of
influence (Figure 7). This helps to deepen understanding of the
model’s decision-making process and expands its potential utility in
clinical practice.

SHAP analysis showed that among the 14 included features, the
most important variables ranked in descending order were: dNLR,
NeutCount, SIRI, RDW, EosCount, IgE, PDW, MonoCount, MCV,
WBC, age, MPV, BasoPercent, and PCT. These key variables help
reveal potential differences between eczema and psoriasis, providing
strong data support for clinical differential diagnosis.

Web deployment of the model

As shown in Figure 8, we developed an intelligent auxiliary
diagnostic webpage that integrates machine learning with OCR
technology, based on the XGBoost model. The specific operating
procedure of the web-based diagnostic system is illustrated in Video 1.

The system was designed with a focus on user-friendliness and
clinical applicability, supporting two modes of data entry: (1) manual
input of key laboratory indicators by clinicians, and (2) image upload
of laboratory reports, from which the system identifies and extracts
item values and automatically matches them to a predefined list of
medical indicators, greatly improving the efficiency and accuracy of
data entry.
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After the data input is completed, the system uses the trained
XGBoost classification model to distinguish between eczema and
psoriasis, and simultaneously outputs the corresponding prediction
probability. The diagnostic results are presented through a
combination of text and visual outputs, enabling clinicians to quickly
interpret the models decision tendencies. This system integrates
Al-based modeling, automated data collection, and a clinical interface,
demonstrating the practical potential of intelligent auxiliary diagnosis
for dermatological diseases in clinical settings. To further validate the
usability of the web-based tool after deployment, we evaluated it using
an external dataset comprising 469 patients from Shengjing Hospital,
all of whom were pathologically diagnosed and excluded from the
original model training. Among them, 343 cases were correctly
classified by the model, yielding an accuracy of 73.13%.

Discussion

In this multicenter retrospective cohort study, we select 14
features from clinical and serological indicators and developed
eight machine learning models for the differential diagnosis of
eczema and psoriasis. Among all candidate models, the XGBoost
model achieved the best performance, with an AUC of 0.891 in
the training set, 0.830 in the internl test set, and 0.812 in the
external test set. These results indicate a strong classification
ability in distinguishing between two common but frequently
misdiagnosed inflammatory skin diseases in dermatology
outpatient settings. To enhance the interpretability of the machine
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learning model, we further introduced SHAP analysis to assess
feature importance in the XGBoost model. This approach helped
reveal the specific contributions of key variables in the prediction
process, thereby improving the clinical transparency and
trustworthiness of the model. According to the SHAP analysis, the
ten most influential variables among the 14 selected features were:
dNLR, NeutCount, SIRI, RDW, EosCount, IgE, PDW, MonoCount,
MCYV, and WBC.

Overall, inflammatory markers were generally higher in the
psoriasis group than in the eczema group (46, 47). Among them,
dNLR, neutrophil count, and SIRI were identified as the top three
most important features. Both dNLR and SIRI are neutrophil-based
indices that reflect systemic immune activation. Previous studies have
shown that these markers, particularly dNLR and SIRI, are
significantly elevated in patients with psoriasis and may be associated
with disease activity or severity (48). Neutrophils play a role not only
in local inflammation but also in promoting systemic immune
responses by releasing pro-inflammatory cytokines such as IL-17 and
TNF-a, thereby contributing to the chronic and relapsing nature of
psoriasis. In psoriatic lesions, neutrophil accumulation within the
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stratum corneum is commonly observed and may lead to the
formation of Munros microabscesses. This classic histopathological
feature, known for its high diagnostic specificity, reflects the ongoing
infiltration of neutrophils into the epidermis (49). This local
histological feature is consistent with elevated peripheral neutrophil
counts and increased inflammatory ratios such as dNLR and SIRI,
indicating systemic immune activation. Although tissue and blood
neutrophil levels are not always linearly correlated, both represent
distinct aspects of the inflammatory response and contribute to the
overall inflammatory burden in psoriasis. In psoriasis patients, RDW
was significantly elevated, which may be attributed to red blood cell
dysregulation, chronic inflammation, or oxidative stress (50). PDW
and MonoCount were also increased, indicating platelet activation
and monocyte involvement in inflammatory signaling pathways (51).
While WBC elevation is common across various inflammatory
conditions and lacks disease specificity, it still ranked among the top
ten important features in this study. Given that blood samples were
collected during outpatient visits and most psoriasis patients were in
the active stage of the disease, peripheral white blood cell counts likely
reflect systemic inflammatory activity. WBC levels have been shown
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TABLE 2 Performance metrics of machine learning models on the training and test sets.

Metric/Model
Training set

LightGBM XGBoost
Accuracy 0.636 0.723 0.764 0.815 0.806 0.832 0.806 0.811
Sensitivity/Recall 0.562 0.650 0.735 0.742 0.788 0.781 0.728 0.749
Specificity 0.701 0.787 0.790 0.880 0.821 0.877 0.874 0.864
PPV/Precision 0.621 0.727 0.754 0.843 0.794 0.847 0.834 0.828
NPV 0.647 0.720 0.773 0.796 0.816 0.821 0.786 0.798
F1_Score 0.590 0.687 0.744 0.789 0.791 0.813 0.777 0.787
AUC 0.631 0.748 0.763 0.906 0.875 0.904 0.891 0.894
Testset

LightGBM XGBoost
Accuracy 0.592 0.688 0.700 0.764 0.735 0.754 0.776 0.762
Sensitivity/Recall 0.468 0.621 0.695 0.690 0.726 0711 0716 0.716
Specificity 0.701 0.747 0.705 0.830 0.742 0.793 0.830 0.802
PPV/Precision 0.578 0.682 0.674 0.780 0711 0.750 0.786 0.760
NPV 0.601 0.692 0.725 0.753 0.756 0.758 0.769 0.763
F1_Score 0.517 0.650 0.684 0.732 0.719 0.730 0.749 0.737
AUC 0.584 0.717 0.700 0.822 0.816 0.828 0.830 0.829

Bold values indicate the best performance values for each evaluation metric.
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Bar plot comparison of model performance metrics.
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to correlate closely with disease activity in psoriasis, thereby
contributing valuable discriminative power to the model. In contrast,
eczema patients displayed more prominent characteristics in IgE,
EosCount, and MCV. The rise in eosinophils indicates Th2-driven
eosinophilic inflammation, highlighting an allergic background in
eczema. Eosinophils can release various inflammatory factors,
contributing to skin barrier damage and inflammation, playing a
significant pathogenic role in chronic eczema. Their effects are not
limited to local inflammation but may also influence systemic immune
balance, promoting allergic reactions. Elevated IgE further supports
the association between eczema and allergic constitution. As a key
mediator of hypersensitivity, IgE levels are significantly increased in
atopic dermatitis and other forms of eczema, closely correlating with
disease severity, and thus has high importance in the model as a
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clinical biomarker. MCV was slightly higher in eczema, which may
reflect abnormal red blood cell maturation or potential nutritional
status differences under chronic inflammation. Chronic inflammation
can affect bone marrow hematopoiesis through released cytokines,
leading to increased red blood cell volume. Furthermore, eczema
patients often have nutritional absorption issues or dietary restrictions,
which could be another reason for the increased MCV. Deficiencies in
key nutrients like vitamin B12 and folate can disrupt red blood cell
maturation, leading to elevated MCV (52). Additionally, the variables
ranked 11th to 14th were age, MPV, BasoPercent, and PCT. Age was
slightly higher in the eczema group, which may reflect a broader age
distribution or different patient characteristics since psoriasis
primarily affects younger to middle-aged individuals. BasoPercent was
relatively higher in the eczema group, though basophils constitute a
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small proportion in peripheral blood. As important cells mediating
allergic inflammation, basophils release histamine, leukotrienes, and
other inflammatory mediators, increasing vascular permeability and
promoting inflammatory cell migration. Their activation in eczema
patients may be related to Th2-driven immune responses, particularly
in chronic or recurrent eczema, where basophil involvement
exacerbates local skin inflammation and itching. The mild increase in
BasoPercent suggests a potential regulatory role in eczema’s immune
the
I hypersensitivity and chronic allergic inflammation (53, 54). MCV,

microenvironment, reflecting involvement of Type
although primarily used to evaluate anemia types, may indirectly
reflect systemic inflammation responses in inflammatory diseases,
serving as an indicator of metabolic inflammatory processes. PCT has
recently been recognized as closely related to chronic inflammation.
Platelets in diseases like psoriasis can participate in the inflammatory
response by releasing chemokines, regulating leukocyte adhesion, and
activating endothelial functions. PCT may indirectly indicate platelet
activation levels and their role in inflammatory cascade reactions,
potentially contributing to the immune microenvironment of the
disease (55). The prominent performance of these features not only
reflects the potential differences in systemic inflammatory
characteristics between eczema and psoriasis, but also provides
valuable clues for further investigation into their distinct pathogenic
mechanisms, including immune responses, inflammatory pathways,
and disease progression. Moreover, the SHAP summary plots clearly
visualized the directional impact and relative contribution of each
thereby the
interpretability of the model and enhancing its credibility and

feature to individual predictions, improving
applicability in clinical practice. Importantly, this study not only
established multiple machine learning models with favorable
performance but also translated the algorithmic output into a practical
clinical tool. By deploying the model on a web-based platform and
integrating OCR technology, we enabled users to enter data either
manually or by uploading laboratory reports, significantly improving
diagnostic efficiency. This approach is particularly suited for primary
care settings and resource-limited environments, where it can facilitate
rapid preliminary screening and assist frontline clinicians in
differentiating between eczema and psoriasis to a certain extent.
Although the machine learning models developed in this study
demonstrated favorable classification performance in both the
training and independent external validation sets, and the data were
sourced from multiple hospitals across different cities, indicating a
certain degree of generalizability, several aspects still warrant
further improvement. First, our study relied on retrospective data.
Second, although measures such as cross-validation and early
stopping were applied to minimize overfitting, the possibility of
residual overfitting cannot be fully excluded. Therefore, the findings
should be interpreted with caution. Future prospective studies
utilizing larger datasets from broader geographic regions and
diverse healthcare settings are warranted to validate the robustness
of our results. Finally, the study relied on standardized
hematological test results. However, in practical clinical settings,
variability in testing protocols, instruments, and reference ranges
across different laboratories may affect model performance. Future
work could consider incorporating calibration mechanisms or
center-specific adjustments to address inter-laboratory variability.
In conclusion, this study demonstrates the feasibility and clinical
potential of combining machine learning algorithms with SHAP
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interpretability techniques for the intelligent differential diagnosis
of dermatological diseases. By closely aligning algorithm
development with real-world clinical workflows, we have developed
an accessible, objective, and efficient diagnostic support tool. This
approach offers a new perspective for promoting precision and
intelligence in dermatological diagnosis and holds promise for
broader application in future disease classification and decision-
support tasks.

Conclusion

We developed a machine learning model for the differential
diagnosis of eczema and psoriasis based on serum biomarkers and
demographic features. Furthermore, an OCR-enabled web platform
was constructed to deploy this model. By providing rapid,
non-invasive diagnostic support, it can reduce diagnostic delays and
improve care quality in primary care or resource-constrained
environments. The platform can also be integrated with electronic
health records (EHRs), helping streamline workflows and enhance
clinical efficiency. Future research should validate the model in
larger, prospective, multicenter cohorts to confirm its
generalizability and robustness. In terms of practical applications,
the web-based tool integrated with OCR technology could
be deployed in outpatient settings to provide rapid, non-invasive
diagnostic support. It also has potential to assist clinicians in
primary care or resource-limited settings, where dermatology
specialists may be scarce, and integration into hospital EHR systems
workflows and reduce

could further streamline clinical

diagnostic delays.
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