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Background: Eczema and psoriasis are common chronic dermatoses with 
overlapping features, making early differential diagnosis difficult. While biopsy is 
the gold standard, its invasiveness and dependence on clinician expertise restrict 
routine application, especially in primary care. To overcome these limitations, 
we developed a machine learning-based diagnostic tool using routine laboratory 
data, enabling non-invasive, accurate, and practical differentiation between 
eczema and psoriasis in outpatient settings.
Methods: We retrospectively analyzed clinical and routine laboratory data from 
57,518 patients with eczema and psoriasis across three medical centers. Patients 
with confirmed diagnoses and complete laboratory records were included, 
while those with missing key data were excluded. Eight machine learning 
models were trained using data from Shengjing Hospital. Model performance 
was evaluated using accuracy, AUC, sensitivity, specificity, PPV, NPV, F1 score, 
and confusion matrix. The best-performing model, XGBoost, was externally 
validated on independent cohorts from two other hospitals. SHapley Additive 
exPlanation (SHAP) were applied to assess feature importance. Finally, a web-
based tool was developed integrating the optimal model with optical character 
recognition (OCR) for automatic data input.
Results: XGBoost demonstrated the best performance, with AUCs of 0.891, 
0.830, and 0.812 for the training, internal test, and external test sets, respectively. 
Key predictive features included dNLR, neutrophil count, SIRI, RDW, and 
eosinophil count, which were consistent with known clinical patterns. The final 
model was deployed as an interactive web tool, allowing manual or OCR-based 
data input to provide real-time prediction probabilities.
Conclusion: This machine learning-based diagnostic tool showed strong 
performance and interpretability in differentiating eczema from psoriasis using 
routine laboratory data. The user-friendly web interface enables rapid, non-
invasive decision support in outpatient clinical settings.
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Introduction

Eczema and psoriasis are two of the most common chronic 
inflammatory skin diseases worldwide, affecting millions of 
individuals and imposing a significant burden on patients’ quality of 
life and healthcare systems (1, 2). Despite distinct underlying 
pathophysiological mechanisms, eczema and psoriasis can present 
with overlapping clinical features such as erythema, scaling, and 
pruritus, which poses challenges for accurate differential diagnosis (3, 
4). Eczema is subdivided into atopic and non-atopic types. The atopic 
variant, which primarily affects children, involves skin inflammation 
mediated by T cells and Th2-type cytokines in its early stages. This 
type is commonly linked to IgE-mediated hypersensitivity to 
environmental allergens, often presenting with increased total IgE and 
specific IgE levels. The non-atopic type of eczema, which is more 
frequently observed in adults, is generally not associated with allergen-
specific sensitization and often presents with normal total IgE levels, 
although elevated IgE can still be found in a subset of patients (5). 
However, studies have shown that elevated IgE levels can also 
be present in some non-atopic eczema patients, indicating that IgE 
levels alone may not be a definitive marker to distinguish between 
these two types (6). Pediatric atopic eczema typically affects 
characteristic sites such as the antecubital and popliteal fossae. 
However, adult eczema often presents with diverse and atypical lesion 
morphology and distribution, making clinical identification more 
challenging than that of the relatively well-defined pediatric form. 
Without timely and effective treatment, eczema can become chronic 
and recurrent, significantly impacting patients’quality of life and 
increasing healthcare costs (7). Psoriasis, classified into several 
subtypes, is dominated by plaque psoriasis, which accounts for 
approximately 80–90% of cases. Its hallmark is well-demarcated 
erythematous plaques with silvery scales (3). However, early-stage or 
mild psoriasis may present with atypical or subtle lesions such as small 
erythematous patches with minimal scaling, which may be confused 
with eczema or other dermatoses. Delayed or missed diagnosis of 
psoriasis not only delays appropriate treatment but also increases the 
risk of serious comorbidities, including psoriatic arthritis, 
cardiovascular disease, and psychological disorders like depression. 
Given the lack of a definitive cure for psoriasis, early diagnosis and 
timely intervention are crucial, as emphasized by international 
guidelines (8). Diagnosis of both psoriasis and eczema is primarily 
based on clinical presentation, dermoscopy and biopsy. However, each 
of these methods has certain limitations. Clinical diagnosis is 
inherently subjective and can be  influenced by the individual 
clinician’s experience, leading to variability in diagnostic consistency. 
Dermoscopy can provide supplementary imaging information to aid 
in the differentiation between eczema and psoriasis. However, due to 
overlapping features and variations in presentation, its diagnostic 
accuracy remains limited, particularly in atypical cases. Despite being 
the gold standard, the invasive nature of biopsy imposes significant 
limitations on its widespread adoption due to patient compliance 
concerns. In addition, most county-level hospitals currently lack 
specialized dermatologists, and it is common for internal medicine 
physicians to assume dermatological responsibilities. Moreover, 
advanced diagnostic technologies are often inaccessible in primary 
healthcare facilities, further increasing the difficulty of differential 
diagnosis. This highlights the more pressing demand for 
dermatological services in township health centers. Therefore, 

developing an accurate, efficient, and easily accessible tool to 
distinguish between eczema and psoriasis is crucial for improving the 
quality of clinical decision-making, enhancing treatment outcomes, 
and ultimately benefiting patients.

Machine learning (ML) is a branch of artificial intelligence that 
allows computers to extract patterns from data and make predictions 
or decisions with limited human input. In recent years, with the 
growing demand for large-scale data analysis in medical research and 
clinical practice, the importance of ML has become increasingly 
prominent. Its powerful data processing capabilities provide valuable 
tools for medical diagnosis and decision support (9–12). Similarly, ML 
has attracted widespread attention in dermatology, especially in the 
field of image analysis, where significant advancements have been 
made (13–15). Numerous machine learning studies have enabled early 
differentiation and staging of cutaneous melanoma and 
non-melanoma skin cancers, demonstrating significant practical value 
in community and primary care settings (16–18). Deep learning is a 
subfield of machine learning. Vatsala Anand et al. employed deep 
learning techniques to classify images of seven distinct skin disease 
categories, including Melanoma, Vascular Lesions, Benign Keratosis – 
Lesions, Dermatofibroma, Melanocytic Nevi, Basal Cell Carcinoma 
and Actinic Keratoses, achieving high accuracy in their classification 
(19). However, in actual clinical applications, some patients have skin 
lesions in private lesions that are difficult to photograph, or the quality 
of images is affected by scratching and secondary infections. Moreover, 
image models typically require large amounts of data, high-
performance hardware, and privacy protection issues. In contrast, 
basic laboratory test data, which can be  easily obtained from 
outpatient settings, can be readily integrated into hospital systems or 
online auxiliary diagnostic platforms. Machine learning models 
incorporating serological markers and clinical features have been 
increasingly utilized across various medical specialties for differential 
diagnosis and prognostic evaluation. For instance, Sebastian 
Kraszewski et  al. Effectively differentiated ulcerative colitis from 
Crohn’s disease based on laboratory markers (20), while Yolanda 
Sánchez-Carro et al. demonstrated that machine learning approaches 
could be utilized to predict depression diagnoses and their clinical 
subtypes based on immunometabolic indicators and lifestyle factors 
(21). Similarly, Alcazer et al. developed an XGBoost model utilizing 
ten routine laboratory parameters to classify three subtypes of acute 
leukemia (APL, ALL, AML), achieving AUCs of 0.97, 0.90, and 0.89, 
with an overall accuracy of nearly 99% (22). Chih-Min Tsai et al. 
applied demographic data and laboratory values extracted from 
electronic health records, which included complete blood counts, 
differential counts, urinalysis, and biochemical parameters, to 
distinguish Kawasaki disease from other febrile illnesses in children 
using an XGBoost model, thereby supporting early diagnosis and 
timely intervention (23). Furthermore, Anoeska Schipper et  al. 
Developed a machine learning model for classifying appendicitis 
among patients presenting with acute abdominal pain in the 
emergency department. This model outperformed conventional 
scoring systems and demonstrated comparable or superior accuracy 
to emergency physicians, thereby enhancing rapid clinical decision-
making (24). However, ML models based on hematological parameters 
for disease differentiation have been less frequently reported in 
dermatology. Eczema and psoriasis exhibit certain differences in 
hematological parameters, providing a rationale for further 
investigation. Against this background, we conducted a multicenter 
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retrospective study to develop multiple ML models based on clinical 
features and hematological parameters, identify potential predictive 
factors, and build an online diagnostic tool that integrates both optical 
character recognition (OCR) technology and manual data entry. This 
tool is intended to provide clinicians with a practical and efficient 
decision support platform.

This study investigates the differential diagnosis between eczema 
and psoriasis, the main contributions are summarized as follows:

	 1	 Feature selection and data preparation: Based on clinical 
guidelines for eczema and psoriasis, and incorporating expert 
opinions from dermatologists, 31 candidate features were 
initially selected. After rigorous screening, 14 key features were 
retained. A high-quality dataset was constructed from three 
medical centers through systematic data cleaning, classification, 
and selection from a large-scale hospital-based database.

	 2	 Model development and optimization: Eight machine learning 
models were developed, including k-Nearest Neighbors 
(KNN), Decision Tree (DT), Neural Network (NNet), Random 
Forest (RF), Support Vector Machine (SVM), Light Gradient 
Boosting Machine (LightGBM), and Extreme Gradient 
Boosting (XGBoost). Multiple rounds of parameter tuning 
were conducted, and a soft-voting ensemble model (SVEM) 
was created by integrating the top five models. Among them, 
the XGBoost model exhibited the best overall performance.

	 3	 Model interpretation: To enhance interpretability, SHapley 
Additive exPlanations (SHAP) was used to identify the most 
influential features in the XGBoost model. These features were 
consistent with clinical guidelines, suggesting that the model 
has successfully learned key knowledge required for 
distinguishing between eczema and psoriasis.

	 4	 Clinical application: An online diagnostic tool was constructed 
based on the final model, aiming to assist clinical diagnosis in 
primary care institutions. The platform allows clinicians to 
input routine laboratory and clinical data, either manually or 
through OCR technology, which allows automatic extraction 
of text data from images of laboratory reports, thereby reducing 
workload and improving diagnostic efficiency.

Materials and methods

Data source

For this retrospective cohort study, we included patients with the 
diagnosis of eczema or psoriasis who attended the dermatology 
outpatient departments of Shengjing Hospital of China Medical 
University, Shenyang Dermatology Hospital, and the First Affiliated 
Hospital of Dalian Medical University between January 10, 2019 and 
January 10, 2025. All three hospitals are tertiary general hospitals 
directly managed by the National Health Commission of China, 
ensuring the generalizability and reliability of the data. This study was 
approved by the Ethics Committee of Shengjing Hospital of China 
Medical University (approval number: 2025PS1210K). Authorized 
physicians accessed the outpatient electronic systems to identify all 
patients diagnosed with “eczema” or “psoriasis” from January 10, 
2019 to January 10, 2025. Clinical and laboratory data for these 
patients were then extracted for analysis. This cohort was 

subsequently screened according to the following exclusion criteria: 
(1) patients with incomplete hematological parameters and basic 
information; (2) age <18; (3) patients with other concomitant skin 
diseases; (4) patients with other systemic diseases such as 
hypertension, diabetes, or coronary heart disease; (5) non-first-time 
visitors; (6) patients who used medications on their own before 
the visit.

Feature selection

A total of 31 candidate variables, comprising demographic 
characteristics, standard hematological characteristics obtained from 
complete blood count (CBC), and derived inflammatory markers were 
initially collected. Hematological characteristics included white blood 
cell count (WBC); percentages and absolute counts of neutrophils, 
lymphocytes, monocytes, eosinophils, and basophils; red blood cell 
count (RBC); hemoglobin (HGB); hematocrit (HCT); mean 
corpuscular volume (MCV); mean corpuscular hemoglobin (MCH); 
mean corpuscular hemoglobin concentration (MCHC); red cell 
distribution width (RDW); platelet count (PLT); plateletcrit (PCT); 
mean platelet volume (MPV); platelet distribution width (PDW); and 
total IgE levels. Derived inflammatory indices included the neutrophil-
to-lymphocyte ratio (NLR), derived NLR (dNLR), monocyte-to-
lymphocyte ratio (MLR), neutrophil-plus-monocyte-to-lymphocyte 
ratio (NMLR), systemic nflammation response index (SIRI), systemic 
immune-inflammation index (SII), and hemoglobin-to-red blood cell 
ratio (HRR) (25–27). Prior to analysis, all variables underwent 
integrity and consistency checks. Records containing any missing 
values were excluded. Categorical variables were factorized and 
encoded as dummy variables. Specifically, gender was encoded as 0 for 
female and 1 for male, while disease type was encoded as 0 for eczema 
and 1 for psoriasis. To reduce the impact of extreme values on model 
performance, outliers exceeding three standard deviations from the 
mean were removed. All 31 variables were subjected to feature 
selection using the Boruta algorithm, a robust and widely used 
wrapper method based on random forest classification. Boruta 
assesses the importance of each variable by creating “shadow features,” 
which are randomized copies of the original variables, and then 
comparing the Z-scores of the actual variables with those of the 
shadow features. If a variable consistently exhibits a significantly 
higher Z-score than the maximum among its shadow features across 
multiple iterations, it is deemed “important” and retained for model 
construction. Otherwise, it is labeled “unimportant” and excluded 
(28). This process allows the algorithm to identify features that 
meaningfully contribute to model performance, even in the presence 
of complex and nonlinear relationships. Notably, Boruta focuses on 
the overall relevance of each variable within the model context, 
meaning that variables showing significance in univariate analysis may 
still be excluded if their predictive contribution is limited (29). After 
feature selection, Spearman correlation analysis was performed to 
assess multicollinearity among the selected variables. While most 
machine learning algorithms are relatively robust to multicollinearity, 
it can still affect the interpretation of feature importance. When two 
variables were highly correlated (defined as a Spearman correlation 
coefficient >0.7), one was excluded based on clinical relevance or 
statistical contribution (30). The final set of independent variables was 
determined in conjunction with expert advice from dermatologists.
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Model construction and evaluation

After applying the inclusion and exclusion criteria, eligible 
patient data from Shengjing Hospital were randomly divided into a 
training set and an internal test set at a 6:4 ratio. To assess model 
generalizability, an external test set was constructed using data from 
916 patients collected at Shenyang Dermatology Hospital and the 
First Affiliated Hospital of Dalian Medical University. The 14 
predictive variables selected in the previous step were used as input 
features. Seven machine learning models were applied, including 
KNN, DT, NNet, RF, SVM, LightGBM, and XGBoost (31–33). In 
addition, SVEM was developed as the eighth model by combining the 
probabilistic outputs of the five best-performing classifiers using 
weighted averaging (34, 35). This ensemble approach aimed to 
leverage the complementary strengths of different algorithms to 
enhance robustness and reduce overfitting. All models were trained 
using 10-fold cross-validation on the training set. To achieve optimal 
model performance, hyperparameters were tuned with the aim of 
maximizing the area under the receiver operating characteristic curve 
(AUC). In addition to AUC, model performance was evaluated on 
both internal and external test sets using multiple metrics, including 
confusion matrix, accuracy, sensitivity (recall), specificity, positive 
predictive value (PPV), negative predictive value (NPV), and 
F1-score. To improve the interpretability of the model, we applied 
SHAP to produce dependence plots that visualize the individual 
contribution and influence of each feature on the prediction 
outcomes (36). All analyses were conducted using R software (version 
4.4. 1).

Machine learning model

This study employed eight representative machine learning 
algorithms for model development, including KNN, DT, NNet, RF, 
SVM, LightGBM, XGBoost and SVEM. Brief introductions to each 
classifier are as follows.

	 1	 KNN: K-Nearest Neighbors is a non-parametric, instance-
based supervised learning algorithm. It classifies data points by 
calculating distances and selecting the majority class among 
the k-nearest neighbors in the feature space. Its simplicity and 
interpretability make it suitable for small datasets with low 
dimensionality and well-separated classes (37).

	 2	 DT: Decision Tree is a supervised learning algorithm that 
recursively splits data based on feature values, forming a tree-
like structure for classification or regression tasks. Each 
internal node represents a decision based on a feature, and the 
leaves correspond to class labels. It is highly interpretable and 
effective for capturing non-linear relationships (38).

	 3	 NNet: Neural Networks are computational models inspired by 
biological neural systems, composed of layers of interconnected 
nodes (neurons). They are capable of learning complex patterns 
and are highly adaptable to various types of data, forming the 
foundational architecture for many deep learning methods (39).

	 4	 RF: Random Forest is an ensemble learning method that 
constructs multiple decision trees and merges their results to 
improve accuracy and control overfitting. It handles large 

datasets with higher dimensionality and provides estimates of 
feature importance (40).

	 5	 SVM: Support Vector Machine constructs optimal separating 
hyperplanes in high-dimensional spaces to distinguish between 
classes with maximum margin. It is highly effective for small 
sample sizes and high-dimensional data, and can handle 
non-linear problems through the use of kernel functions (41).

	 6	 LightGBM: Light Gradient Boosting Machine is a gradient 
boosting framework that uses tree-based learning algorithms, 
designed for speed and efficiency. It offers faster training speed 
and lower memory usage. It employs a histogram-based decision 
tree algorithm and a leaf-wise growth strategy to enhance 
computational efficiency. The model supports native handling 
of categorical features and enables efficient multi-threaded 
training. LightGBM is particularly suitable for large-scale, high-
dimensional datasets requiring fast and accurate learning (42).

	 7	 XGBoost: Extreme Gradient Boosting is an advanced and 
efficient implementation of the gradient boosting framework, 
specifically optimized for computational speed and model 
performance. It incorporates regularization techniques to 
reduce overfitting, supports parallel processing to accelerate 
training, and is capable of handling missing values natively. 
Due to its high predictive accuracy and robustness, XGBoost 
has been widely adopted in both academic research and 
practical machine learning applications (43).

	 8	 SVEM: The Soft Voting Ensemble Model combines the 
predicted probabilities from multiple base classifiers and 
performs weighted averaging to determine the final class. By 
leveraging the complementary strengths of different models, it 
enhances predictive performance, improves generalizability, 
and reduces the risk of overfitting compared to individual 
classifiers (34, 35).

Model evaluation indices

To comprehensively evaluate the model’s ability to discriminate 
between patients with eczema (defined as the negative class) and those 
with psoriasis (defined as the positive class), we  applied several 
evaluation metrics including the confusion matrix, AUC, accuracy, 
sensitivity, specificity, PPV, NPV, and F1 score (44, 45). The definitions 
and corresponding formulas are provided below.

Confusion matrix
The confusion matrix is a 2 × 2 table that compares predicted and 

actual class labels. It includes:

	•	 TP (True positive): Psoriasis cases correctly identified.
	•	 FP (False positive): Eczema cases incorrectly predicted 

as psoriasis.
	•	 TN (True negative): Eczema cases correctly identified.
	•	 FN (False negative): Psoriasis cases incorrectly predicted 

as eczema.
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Actual positive 
(psoriasis)

Actual negative 
(eczema)

Predicted positive TP FP

Predicted negative FN TN

Accuracy

	
+

=
+ + +
TP TNAccuracy

TP TN FP FN

Reflects the overall proportion of correct predictions.

Sensitivity/recall

	
=

+
TPSensitivity

TP FN

Measures the model’s ability to correctly identify psoriasis cases, 
reflecting its capability to minimize false negatives.

Specificity

	
=

+
TNSpecificity

TN FP

Indicates the model’s ability to correctly identify eczema cases, 
reflecting its capability to minimize false positives.

Positive predictive value (PPV)/precision

	
=

+
TPPPV

TP FP

Represents the proportion of true psoriasis cases among all 
predicted positive cases, reflecting the accuracy of 
positive predictions.

Negative predictive value (NPV)

	
=

+
TNNPV

TN FN

Represents the proportion of true eczema cases among all 
predicted negative cases, reflecting the accuracy of negative predictions.

F1 score

	
×

= ×
+

Precision Recall
F1 2

Precision Recall

The F1 score is the harmonic mean of precision (positive 
predictive value) and recall (sensitivity). It is particularly useful in 
evaluating the model’s ability to diagnose psoriasis when both false 
positives and false negatives need to be  minimized. The F1 score 
provides a balanced measure that is especially valuable in cases of 
class imbalance.

Area under the curve (AUC)
AUC represents the area under the receiver operating 

characteristic curve and reflects the model’s overall ability to 
discriminate between eczema and psoriasis. A higher AUC indicates 
better classification performance and is robust to class imbalance, 
making it one of the most important metrics for differential diagnosis 
in this study.

Web deployment of the model

The final prediction model is intended to be implemented as an 
online web application. When users input the relevant features, the 
system will generate a prediction indicating whether the patient is 
more likely to have psoriasis or eczema, along with the corresponding 
probability score. To enhance usability and reduce the time burden on 
clinicians, an OCR function has been integrated, allowing users to 
either enter data manually or upload laboratory reports for automated 
extraction of relevant information.

Results

Data resource

After applying inclusion and exclusion criteria, a total of 1,014 
patients were selected from 29,872 cases at Shengjing Hospital, 
including 541 cases of eczema and 473 cases of psoriasis. Additionally, 
an external validation cohort consisting of 916 patients (485 eczema 
and 431 psoriasis) was selected from 27,646 cases at Shenyang 
Dermatology Hospital and the First Affiliated Hospital of Dalian 
Medical University. The detailed cohort selection process is illustrated 
in Figure 1.

Feature selection

A total of 1,014 patients from Shengjing Hospital were included 
for initial analysis using the full dataset. The normality of continuous 
variables was evaluated with the Shapiro–Wilk test. Normally 
distributed variables were compared by independent samples t-tests 
and expressed as mean ± standard deviation (Mean ± SD). For 
variables not normally distributed, the Mann–Whitney U test was 
applied, and results were reported as median and interquartile range 
(Medians and IQRs). Categorical data were analyzed using the 
chi-square test. The baseline characteristics are shown in Table 1, 
indicating that 16 out of 31 variables significantly differed between 
patients with psoriasis and those with eczema.

Subsequently, the dataset was randomly divided into a training 
set (n = 607) and a test set (n = 407) with a 6:4 ratio, where 60% of the 
data were used for model development and 40% for internal 
validation. Feature selection was performed exclusively on the 
training set to avoid data leakage. The Boruta algorithm, a wrapper 
method based on random forest classification, was applied to the 
training set to identify important features. The results are illustrated 
in Figure 2.

Following preliminary feature selection, Spearman correlation 
analysis was conducted to evaluate multicollinearity among the 
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selected variables. The correlation heatmap is presented in 
Figure 3A. Based on the correlation analysis results and clinical expert 
opinion, the final set of selected features is shown in 
Figure  3B. Ultimately, 14 independent features were retained for 
subsequent model development, including SIRI, dNLR, IgE, PDW, 
PCT, MPV, RDW, MCV, EosCount, MonoCount, BasoPercent, 
NeutCount, WBC, age.

The baseline characteristics of the training and test sets after 
feature selection are shown in Supplementary Table S1, with all 
p-values greater than 0.05, indicating no statistically significant 
differences and confirming the adequacy of the random split.

Model construction and validation

Using 14 variables, we developed eight machine learning models, 
including RF, SVM, LightGBM, XGBoost, DT, KNN, NNet and 
SVEM. Given that psoriasis may have more severe clinical 
consequences and practical significance for patients, psoriasis was 
designated as the positive class (1) and eczema as the negative class (0) 
in the analysis. Table 2 presents the performance metrics, including 
Accuracy, Sensitivity/Recall, Specificity, PPV, NPV, F1 score, and AUC 
for both the training and internal test sets. To facilitate direct 

comparison of the models, bar plots were generated as shown in 
Figure 4.

Figure 5 presents the ROC curves for all eight ML models on the 
test set.

Figure  6 presents the confusion matrix on the testset, which 
visually contrasts the performance of different models. The heatmap 
employs a color gradient where intensity scales with magnitude, with 
darker hues representing higher values.

In both the training and internal test sets, XGBoost, RF, 
LightGBM, SVM, and SVEM all demonstrated strong classification 
capabilities. The performance on the test set serves as a more reliable 
indicator of the model’s generalization ability, as the test data was not 
involved in the training process and provides a more accurate 
assessment of the model’s predictive power on unseen data. Therefore, 
the following comparisons and analyses are based on the results from 
the internal test set. XGBoost performed the most balanced in the 
internal test set, with a sensitivity of 0.716 (indicating its ability to 
correctly identify psoriasis patients) and a specificity of 0.830 
(indicating its ability to correctly identify eczema patients). The AUC 
was 0.830, demonstrating the strongest overall classification ability. 
The AUC values for the SVEM, LightGBM, RF, and SVM were 0.829, 
0.828, 0.822, and 0.816, respectively. In contrast, DT, NNet, and KNN 
models performed less favorably, with KNN exhibiting the lowest 

FIGURE 1

Patient flowchart and study design.
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accuracy and AUC across all datasets. In the internal test set, KNN’s 
accuracy was 0.592 and AUC was 0.584, indicating its relatively weak 
classification capability and limited clinical application value. In 
summary, although different models show strengths in various 
metrics, XGBoost’s consistently superior performance in both the 
training and internal test sets makes it the optimal choice. To further 
assess its generalization ability, we performed external validation of 
XGBoost. The XGBoost model demonstrated strong performance on 
the external test set, with an AUC of 0.812. Together with an accuracy 
of 0.741, sensitivity of 0.704, specificity of 0.783, PPV of 0.742, NPV 
of 0.743, and an F1 score of 0.722, these results collectively confirmed 

the model’s robustness and generalizability in real-world 
clinical settings.

Feature importance analysis

According to the above results, the XGBoost model demonstrated 
the best performance among all candidate models, showing excellent 
classification ability in distinguishing between eczema and psoriasis. 
Although ML models are often considered ‘black boxes’ due to their 
lack of interpretability, this study introduced the SHAP method to 

TABLE 1  Baseline characteristics of the study population.

Variable category Variables Total (n = 1,014) Psoriasis 
(n = 473)

Eczema (n = 541) p value

Personal history
Age 38 (29, 54) 37 (28, 50) 41(30, 59) <0.01

Gender

 �  Male 466 (45.96) 221 (46.72) 245 (45.29)
0.65

 �  Female 548 (54.04) 252 (53.28) 296 (54.71)

Clinical blood tests

WBC, 10^9/L 6.74 (5.70, 8.15) 6.95 (5.93, 8.33) 6.60 (5.56, 7.91) <0.01

NeutPercent, % 60.48 ± 8.97 61.79 ± 8.81 59.34 ± 8.96 <0.01

LymphPercent, % 29.32 ± 8.42 29.06 ± 7.88 29.56 ± 8.87 0.34

MonoPercent, % 6.30 (5.20, 7.70) 6.40 (5.30, 7.70) 6.20 (5.20, 7.70) 0.26

EosPercent, % 2.00 (1.10, 3.60) 1.40 (0.90, 2.40) 2.80 (1.60, 4.80) <0.01

BasoPercent, % 0.50 (0.30, 0.70) 0.50 (0.30, 0.70) 0.40 (0.30, 0.60) <0.01

NeutCount, 10^9/L 4.10 (3.30, 5.10) 4.30 (3.50, 5.40) 3.90 (3.10, 4.90) <0.01

LymphCount, 10^9/L 1.90 (1.50, 2.40) 2.00 (1.60, 2.40) 1.90 (1.50, 2.30) 0.05

MonoCount, 10^9/L 0.40 (0.30, 0.50) 0.40 (0.40, 0.60) 0.40 (0.30, 0.50) <0.01

EosCount, 10^9/L 0.13 (0.08, 0.25) 0.10 (0.06, 0.17) 0.19 (0.10, 0.31) <0.01

RBC, 10^12/L 4.71 (4.40, 5.15) 4.78 (4.40, 5.10) 4.70 (4.40, 5.15) 0.73

HGB, g/L 143.00 (133.00, 156.00) 143.00 (134.00, 156.00) 143.00 (133.00, 156.00) 0.35

HCT, % 43.00 (39.80, 46.30) 43.10 (40.10, 46.20) 42.70 (39.50, 46.30) 0.24

MCV, fL 90.00 (88.00, 93.00) 91.00 (88.00, 93.00) 90.00 (87.40, 92.40) <0.01

MCH, pg 30.30 (29.30, 31.20) 30.40 (29.40, 31.30) 30.20 (29.30, 31.20) 0.07

MCHC, g/L 335.00 (330.00, 340.00) 335.00 (330.00, 340.00) 336.00 (330.00, 341.00) 0.47

RDW, % 13.00 (12.60, 13.50) 13.10 (12.70, 13.60) 12.90 (12.50, 13.40) <0.01

PLT, 10^9/L 246.00 (206.00, 288.00) 244.00 (208.00, 288.00) 248.00 (205.00, 287.00) 0.50

MPV, fL 8.80 (8.10, 9.58) 8.40 (7.80, 9.30) 9.10 (8.30, 9.70) <0.01

PCT, % 0.21 (0.18, 0.25) 0.21 (0.18, 0.24) 0.22 (0.19, 0.26) <0.01

PDW, % 16.50 (16.10, 16.90) 16.60 (16.20, 17.00) 16.30 (16.00, 16.70) <0.01

IgE 63.47 (23.70, 196.50) 49.15 (17.94, 129.00) 85.70 (31.96, 269.30) <0.01

Derived inflammatory 

indices*

NLR 2.10 (1.58, 2.76) 2.14 (1.64, 2.84) 2.07 (1.54, 2.69) 0.10

dNLR 0.87 (0.83, 0.89) 0.88 (0.85, 0.90) 0.86 (0.81, 0.89) <0.01

MLR 0.22 (0.17, 0.29) 0.23 (0.17, 0.29) 0.21 (0.17, 0.29) 0.36

NMLR 2.33 (1.78, 3.00) 2.38 (1.82, 3.10) 2.29 (1.74, 2.96) 0.11

SIRI 0.89 (0.62, 1.34) 0.95 (0.68, 1.41) 0.84 (0.57, 1.29) <0.01

SII 520.45 (367.79, 697.10) 528.75 (380.27, 748.64) 505.89 (360.21, 671.05) 0.07

HRR 11.07 (10.22, 12.13) 10.98 (10.14, 12.10) 11.15 (10.29, 12.15) 0.31

*NLR, Neutrophil-lymphocyte ratio; dNLR, Derived neutrophil-to-lymphocyte ratio; MLR, Monocyte-to-lymphocyte ratio; NMLR, Neutrophil-to-monocyte-plus-lymphocyte ratio; SIRI, Systemic 
inflammation response index; SII, Systemic immune-inflammation index; HRR, Hemoglobin-to-red blood cell distribution width ratio. Bold values indicate statistical significance at p < 0.05.
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perform feature importance analysis, which significantly enhanced the 
model’s transparency. SHAP quantifies the marginal contribution of 
each feature to the model’s predictions, revealing not only the overall 
importance through absolute SHAp values, but also the direction of 
influence (Figure  7). This helps to deepen understanding of the 
model’s decision-making process and expands its potential utility in 
clinical practice.

SHAP analysis showed that among the 14 included features, the 
most important variables ranked in descending order were: dNLR, 
NeutCount, SIRI, RDW, EosCount, IgE, PDW, MonoCount, MCV, 
WBC, age, MPV, BasoPercent, and PCT. These key variables help 
reveal potential differences between eczema and psoriasis, providing 
strong data support for clinical differential diagnosis.

Web deployment of the model

As shown in Figure  8, we  developed an intelligent auxiliary 
diagnostic webpage that integrates machine learning with OCR 
technology, based on the XGBoost model. The specific operating 
procedure of the web-based diagnostic system is illustrated in Video 1.

The system was designed with a focus on user-friendliness and 
clinical applicability, supporting two modes of data entry: (1) manual 
input of key laboratory indicators by clinicians, and (2) image upload 
of laboratory reports, from which the system identifies and extracts 
item values and automatically matches them to a predefined list of 
medical indicators, greatly improving the efficiency and accuracy of 
data entry.

After the data input is completed, the system uses the trained 
XGBoost classification model to distinguish between eczema and 
psoriasis, and simultaneously outputs the corresponding prediction 
probability. The diagnostic results are presented through a 
combination of text and visual outputs, enabling clinicians to quickly 
interpret the model’s decision tendencies. This system integrates 
AI-based modeling, automated data collection, and a clinical interface, 
demonstrating the practical potential of intelligent auxiliary diagnosis 
for dermatological diseases in clinical settings. To further validate the 
usability of the web-based tool after deployment, we evaluated it using 
an external dataset comprising 469 patients from Shengjing Hospital, 
all of whom were pathologically diagnosed and excluded from the 
original model training. Among them, 343 cases were correctly 
classified by the model, yielding an accuracy of 73.13%.

Discussion

In this multicenter retrospective cohort study, we select 14 
features from clinical and serological indicators and developed 
eight machine learning models for the differential diagnosis of 
eczema and psoriasis. Among all candidate models, the XGBoost 
model achieved the best performance, with an AUC of 0.891 in 
the training set, 0.830  in the internl test set, and 0.812  in the 
external test set. These results indicate a strong classification 
ability in distinguishing between two common but frequently 
misdiagnosed inflammatory skin diseases in dermatology 
outpatient settings. To enhance the interpretability of the machine 

FIGURE 2

Feature importance ridge plot based on Boruta.
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learning model, we further introduced SHAP analysis to assess 
feature importance in the XGBoost model. This approach helped 
reveal the specific contributions of key variables in the prediction 
process, thereby improving the clinical transparency and 
trustworthiness of the model. According to the SHAP analysis, the 
ten most influential variables among the 14 selected features were: 
dNLR, NeutCount, SIRI, RDW, EosCount, IgE, PDW, MonoCount, 
MCV, and WBC.

Overall, inflammatory markers were generally higher in the 
psoriasis group than in the eczema group (46, 47). Among them, 
dNLR, neutrophil count, and SIRI were identified as the top three 
most important features. Both dNLR and SIRI are neutrophil-based 
indices that reflect systemic immune activation. Previous studies have 
shown that these markers, particularly dNLR and SIRI, are 
significantly elevated in patients with psoriasis and may be associated 
with disease activity or severity (48). Neutrophils play a role not only 
in  local inflammation but also in promoting systemic immune 
responses by releasing pro-inflammatory cytokines such as IL-17 and 
TNF-α, thereby contributing to the chronic and relapsing nature of 
psoriasis. In psoriatic lesions, neutrophil accumulation within the 

stratum corneum is commonly observed and may lead to the 
formation of Munro’s microabscesses. This classic histopathological 
feature, known for its high diagnostic specificity, reflects the ongoing 
infiltration of neutrophils into the epidermis (49). This local 
histological feature is consistent with elevated peripheral neutrophil 
counts and increased inflammatory ratios such as dNLR and SIRI, 
indicating systemic immune activation. Although tissue and blood 
neutrophil levels are not always linearly correlated, both represent 
distinct aspects of the inflammatory response and contribute to the 
overall inflammatory burden in psoriasis. In psoriasis patients, RDW 
was significantly elevated, which may be attributed to red blood cell 
dysregulation, chronic inflammation, or oxidative stress (50). PDW 
and MonoCount were also increased, indicating platelet activation 
and monocyte involvement in inflammatory signaling pathways (51). 
While WBC elevation is common across various inflammatory 
conditions and lacks disease specificity, it still ranked among the top 
ten important features in this study. Given that blood samples were 
collected during outpatient visits and most psoriasis patients were in 
the active stage of the disease, peripheral white blood cell counts likely 
reflect systemic inflammatory activity. WBC levels have been shown 

FIGURE 3

(A) Spearman correlation heatmap (preliminary features). (B) Spearman correlation heatmap (final features).
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TABLE 2  Performance metrics of machine learning models on the training and test sets.

Metric/Model

Training set

KNN DT NNet RF SVM LightGBM XGBoost SVEM

Accuracy 0.636 0.723 0.764 0.815 0.806 0.832 0.806 0.811

Sensitivity/Recall 0.562 0.650 0.735 0.742 0.788 0.781 0.728 0.749

Specificity 0.701 0.787 0.790 0.880 0.821 0.877 0.874 0.864

PPV/Precision 0.621 0.727 0.754 0.843 0.794 0.847 0.834 0.828

NPV 0.647 0.720 0.773 0.796 0.816 0.821 0.786 0.798

F1_Score 0.590 0.687 0.744 0.789 0.791 0.813 0.777 0.787

AUC 0.631 0.748 0.763 0.906 0.875 0.904 0.891 0.894

Testset

KNN DT NNet RF SVM LightGBM XGBoost SVEM

Accuracy 0.592 0.688 0.700 0.764 0.735 0.754 0.776 0.762

Sensitivity/Recall 0.468 0.621 0.695 0.690 0.726 0.711 0.716 0.716

Specificity 0.701 0.747 0.705 0.830 0.742 0.793 0.830 0.802

PPV/Precision 0.578 0.682 0.674 0.780 0.711 0.750 0.786 0.760

NPV 0.601 0.692 0.725 0.753 0.756 0.758 0.769 0.763

F1_Score 0.517 0.650 0.684 0.732 0.719 0.730 0.749 0.737

AUC 0.584 0.717 0.700 0.822 0.816 0.828 0.830 0.829

Bold values indicate the best performance values for each evaluation metric.

FIGURE 4

Bar plot comparison of model performance metrics.
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to correlate closely with disease activity in psoriasis, thereby 
contributing valuable discriminative power to the model. In contrast, 
eczema patients displayed more prominent characteristics in IgE, 
EosCount, and MCV. The rise in eosinophils indicates Th2-driven 
eosinophilic inflammation, highlighting an allergic background in 
eczema. Eosinophils can release various inflammatory factors, 
contributing to skin barrier damage and inflammation, playing a 
significant pathogenic role in chronic eczema. Their effects are not 
limited to local inflammation but may also influence systemic immune 
balance, promoting allergic reactions. Elevated IgE further supports 
the association between eczema and allergic constitution. As a key 
mediator of hypersensitivity, IgE levels are significantly increased in 
atopic dermatitis and other forms of eczema, closely correlating with 
disease severity, and thus has high importance in the model as a 

clinical biomarker. MCV was slightly higher in eczema, which may 
reflect abnormal red blood cell maturation or potential nutritional 
status differences under chronic inflammation. Chronic inflammation 
can affect bone marrow hematopoiesis through released cytokines, 
leading to increased red blood cell volume. Furthermore, eczema 
patients often have nutritional absorption issues or dietary restrictions, 
which could be another reason for the increased MCV. Deficiencies in 
key nutrients like vitamin B12 and folate can disrupt red blood cell 
maturation, leading to elevated MCV (52). Additionally, the variables 
ranked 11th to 14th were age, MPV, BasoPercent, and PCT. Age was 
slightly higher in the eczema group, which may reflect a broader age 
distribution or different patient characteristics since psoriasis 
primarily affects younger to middle-aged individuals. BasoPercent was 
relatively higher in the eczema group, though basophils constitute a 

FIGURE 5

ROC curves of eight machine learning models on the internal test set.

FIGURE 6

Confusion matrices of eight machine learning models on the internal test set.
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FIGURE 7

SHAP summary plot of feature importance.

FIGURE 8

Web interface of the ML-based diagnostic system with OCR integration.
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small proportion in peripheral blood. As important cells mediating 
allergic inflammation, basophils release histamine, leukotrienes, and 
other inflammatory mediators, increasing vascular permeability and 
promoting inflammatory cell migration. Their activation in eczema 
patients may be related to Th2-driven immune responses, particularly 
in chronic or recurrent eczema, where basophil involvement 
exacerbates local skin inflammation and itching. The mild increase in 
BasoPercent suggests a potential regulatory role in eczema’s immune 
microenvironment, reflecting the involvement of Type 
I hypersensitivity and chronic allergic inflammation (53, 54). MCV, 
although primarily used to evaluate anemia types, may indirectly 
reflect systemic inflammation responses in inflammatory diseases, 
serving as an indicator of metabolic inflammatory processes. PCT has 
recently been recognized as closely related to chronic inflammation. 
Platelets in diseases like psoriasis can participate in the inflammatory 
response by releasing chemokines, regulating leukocyte adhesion, and 
activating endothelial functions. PCT may indirectly indicate platelet 
activation levels and their role in inflammatory cascade reactions, 
potentially contributing to the immune microenvironment of the 
disease (55). The prominent performance of these features not only 
reflects the potential differences in systemic inflammatory 
characteristics between eczema and psoriasis, but also provides 
valuable clues for further investigation into their distinct pathogenic 
mechanisms, including immune responses, inflammatory pathways, 
and disease progression. Moreover, the SHAP summary plots clearly 
visualized the directional impact and relative contribution of each 
feature to individual predictions, thereby improving the 
interpretability of the model and enhancing its credibility and 
applicability in clinical practice. Importantly, this study not only 
established multiple machine learning models with favorable 
performance but also translated the algorithmic output into a practical 
clinical tool. By deploying the model on a web-based platform and 
integrating OCR technology, we enabled users to enter data either 
manually or by uploading laboratory reports, significantly improving 
diagnostic efficiency. This approach is particularly suited for primary 
care settings and resource-limited environments, where it can facilitate 
rapid preliminary screening and assist frontline clinicians in 
differentiating between eczema and psoriasis to a certain extent.

Although the machine learning models developed in this study 
demonstrated favorable classification performance in both the 
training and independent external validation sets, and the data were 
sourced from multiple hospitals across different cities, indicating a 
certain degree of generalizability, several aspects still warrant 
further improvement. First, our study relied on retrospective data. 
Second, although measures such as cross-validation and early 
stopping were applied to minimize overfitting, the possibility of 
residual overfitting cannot be fully excluded. Therefore, the findings 
should be  interpreted with caution. Future prospective studies 
utilizing larger datasets from broader geographic regions and 
diverse healthcare settings are warranted to validate the robustness 
of our results. Finally, the study relied on standardized 
hematological test results. However, in practical clinical settings, 
variability in testing protocols, instruments, and reference ranges 
across different laboratories may affect model performance. Future 
work could consider incorporating calibration mechanisms or 
center-specific adjustments to address inter-laboratory variability. 
In conclusion, this study demonstrates the feasibility and clinical 
potential of combining machine learning algorithms with SHAP 

interpretability techniques for the intelligent differential diagnosis 
of dermatological diseases. By closely aligning algorithm 
development with real-world clinical workflows, we have developed 
an accessible, objective, and efficient diagnostic support tool. This 
approach offers a new perspective for promoting precision and 
intelligence in dermatological diagnosis and holds promise for 
broader application in future disease classification and decision-
support tasks.

Conclusion

We developed a machine learning model for the differential 
diagnosis of eczema and psoriasis based on serum biomarkers and 
demographic features. Furthermore, an OCR-enabled web platform 
was constructed to deploy this model. By providing rapid, 
non-invasive diagnostic support, it can reduce diagnostic delays and 
improve care quality in primary care or resource-constrained 
environments. The platform can also be integrated with electronic 
health records (EHRs), helping streamline workflows and enhance 
clinical efficiency. Future research should validate the model in 
larger, prospective, multicenter cohorts to confirm its 
generalizability and robustness. In terms of practical applications, 
the web-based tool integrated with OCR technology could 
be deployed in outpatient settings to provide rapid, non-invasive 
diagnostic support. It also has potential to assist clinicians in 
primary care or resource-limited settings, where dermatology 
specialists may be scarce, and integration into hospital EHR systems 
could further streamline clinical workflows and reduce 
diagnostic delays.
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