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Endothelial dysfunction represents the critical pathophysiological mediator linking 
the modern epidemics of obesity, type 2 diabetes mellitus, and cardiovascular 
disease. Persistent hyperglycemia and metabolic dysregulation promote oxidative 
stress, reduce nitric oxide bioavailability, and activate inflammatory pathways, thereby 
accelerating atherosclerosis and cardiovascular complications. Therefore, strategies 
aimed at restoring endothelial function are crucial to mitigate cardiovascular 
complications in individuals with cardiometabolic disorders. Among antidiabetic 
therapies, glucagon-like peptide-1 receptor agonists have demonstrated cardiovascular 
benefits in large-scale outcome trials, but the underlying mechanisms remain 
only partially elucidated. In this mini-review, we critically examine both clinical 
and experimental evidence, with emphasis on the direct effects of glucagon-like 
peptide-1 receptor agonists on endothelial function. Moreover, we address the 
heterogeneity within this drug class, noting how differences may contribute to 
variability in vascular outcomes. By integrating clinical findings with molecular 
data, this review aims to refine our understanding of the potential endothelial 
mechanisms underlying cardiovascular protection. Our critical synthesis provides a 
clearer framework for interpreting the vascular effects of glucagon-like peptide-1 
receptor agonists beyond glycemic control, thereby offering a more comprehensive 
view of their role in managing cardiometabolic disease.
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1 Introduction

Cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), and obesity constitute 
a convergent triad representing a major global health burden. Diabetes affects an estimated 
463 million individuals worldwide, a number that has quadrupled since 1980 (1). More than 
half of these diabetes-related deaths are attributable to macrovascular complications, 
underscoring CVD as the principal driver of mortality in T2DM (2). This alarming overlap is 
not coincidental but rather reflects shared pathophysiological mechanisms, chief among them, 
endothelial dysfunction (ED). The vascular endothelium plays a pivotal role in maintaining 
vascular tone, regulating fibrinolytic and thrombotic activity, and preventing leukocyte and 
platelet adhesion (3). When compromised, the endothelium fosters a pro-inflammatory and 
pro-atherogenic environment, leading to impaired vasodilation and accelerated atherosclerosis 
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(4, 5). ED is widely considered an early hallmark of CVD and is 
particularly prevalent in individuals with insulin resistance, 
hyperglycemia, and T2DM (6). In parallel, obesity has reached 
pandemic proportions, affecting close to one billion people worldwide 
(7). It is not only a primary driver of T2DM, but also an independent 
contributor to CVD risk (2–8). For each unit increase in BMI, the risk 
of developing diabetes and cardiovascular complications rises 
significantly (9). Because ED biologically links type 2 diabetes, obesity, 
and CVD, therapies capable of acting across all three pathways are 
urgently needed. In this context, glucagon-like peptide-1 receptor 
agonists (GLP-1 RAs) have emerged not only as effective glucose-
lowering and weight-reducing agents but also as promising modulators 
of cardiovascular and endothelial health (10–12). The present mini-
review therefore aims to summarize the contribution of ED to CVD 
in obesity and T2DM, to synthesize the pre-clinical and clinical 
evidence supporting endothelial and cardiovascular benefits of 
GLP-1RAs, and to delineate current controversies and research 
priorities that will inform future incretin-modulating interventions.

2 Incretins, GLP-1 receptors, and 
therapeutic agonists

Incretins are a class of gut-derived peptide hormones that enhance 
insulin secretion in response to nutrient ingestion, playing a key role 
in postprandial glucose regulation. The two primary incretins 
identified in humans are glucose-dependent insulinotropic 
polypeptide and glucagon-like peptide-1 (GLP-1). Both act through 
specific G protein–coupled receptors predominantly expressed on 
pancreatic β-cells, where they stimulate insulin release in a glucose-
dependent manner, thus minimizing hypoglycemia risk (13). Beyond 
their islet effects, incretins exert pleiotropic actions on the brain 
(appetite and satiety regulation), gastrointestinal tract (delayed gastric 
emptying), adipose tissue (lipolysis modulation), and liver (inhibition 
of hepatic glucose output) (13). These wide-ranging actions reflect the 
evolutionary importance of incretin signaling in nutrient metabolism 
and energy homeostasis. GLP-1, in particular, is secreted by 
enteroendocrine L-cells of the distal ileum and colon following food 
intake. It exists mainly as GLP-1 (7–36) amide and GLP-1 (7–37), both 
of which are rapidly degraded by the enzyme dipeptidyl peptidase-4 
(DPP-4) into the inactive metabolite GLP-1 (9–36), giving the active 
form a plasma half-life of only 1–2 min (14, 15). GLP-1 exerts its 
biological effects via the GLP-1 receptor (GLP-1R), a class B 
heptahelical G protein-coupled receptor coupled to Gs proteins that 
stimulate adenylyl cyclase and increase intracellular cyclic adenosine 
monophosphate (cAMP) (16). While the receptor is abundantly 
expressed in pancreatic β-cells, it is also present in cardiovascular 
tissues (heart, vasculature), kidneys, lungs, and central nervous system 
(17–18–19). However, the exact localization and functional 
significance of GLP-1R in the cardiovascular system are still being 
unraveled (16). The pharmacologic exploitation of GLP-1 signaling 
has led to two major therapeutic strategies: DPP-4 inhibitors, which 
prolong endogenous GLP-1 activity, and GLP-1 RAs, which mimic or 
enhance GLP-1 action while resisting enzymatic degradation (13). 
GLP-1 RAs are administered via injection and can be categorized by 
duration of action into short-acting (e.g., exenatide BID, lixisenatide) 
and long-acting forms (e.g., liraglutide, semaglutide, dulaglutide). 
These agents are derived either from human GLP-1 analogs or 

non-mammalian sequences such as exendin-4 (13). In addition to 
glycemic control, GLP-1 RAs induce significant weight loss, 
establishing them as foundational therapies in the management of 
T2DM and obesity (17).

3 Cardiovascular effects of GLP-1 
receptor agonists: clinical evidence 
beyond glycemic control

Since the FDA mandate in 2008 to demonstrate cardiovascular 
safety for new glucose-lowering agents, a series of large randomized 
cardiovascular outcome trials have evaluated GLP-1 RAs in patients 
with T2DM, many of whom had established atherosclerotic 
cardiovascular disease (ASCVD) or multiple risk factors. These trials, 
while originally designed to establish non-inferiority, have consistently 
revealed a broader cardioprotective signal in several agents, suggesting 
that the benefits extend beyond glucose control. The LEADER trial 
enrolled patients with T2DM and high cardiovascular risk, defined as 
established CVD (81%) or age ≥60 years with at least one risk factor, 
and showed that liraglutide significantly reduced the incidence of 
3-point major adverse cardiovascular events (MACE) (i.e., CV death, 
non-fatal myocardial infarction, non-fatal stroke) by 13% compared 
to placebo (HR 0.87; p = 0.01), along with a reduction in all-cause 
mortality (HR 0.85; p = 0.02) over a median follow-up of 3.8 years 
(18). Similarly, the SUSTAIN-6 trial, which enrolled patients with 
T2DM and either established CVD, stage ≥3 chronic kidney disease, 
or age ≥60 with risk factors, showed that semaglutide reduced MACE 
by 26% (HR 0.74), primarily driven by a 39% reduction in non-fatal 
stroke (19). Albiglutide in the Harmony Outcomes trial showed a 22% 
reduction in MACE in patients with established ASCVD (20), while 
exenatide (EXSCEL trial) (21) and lixisenatide (ELIXA trial) (22) did 
not meet superiority, though both demonstrated CV safety. Notably, 
the EXSCEL trial had a high treatment discontinuation rate (~43%), 
potentially diluting its results. In the PIONEER 6 trial, involving 
patients with T2D and high CV risk (including established CVD, 
chronic kidney disease, or age ≥50 years with risk factors), oral 
semaglutide demonstrated non-inferiority for MACE (HR 0.79; 95% 
CI, 0.57–1.11), with significant reductions in CV death (HR 0.49) and 
all-cause mortality (HR 0.51), though the trial was not powered to 
demonstrate superiority (23). The REWIND trial, which notably 
included a broader population-only 31% of participants had 
established CVD-showed that dulaglutide still reduced MACE by 12% 
(HR 0.88; p = 0.026), suggesting potential benefit even in primary 
prevention contexts (24). Finally, the AMPLITUDE-O trial, which 
included patients with T2D and either a history of CVD (90%) or 
CKD, demonstrated that efpeglenatide significantly reduced MACE 
by 27% (HR 0.73; p < 0.001), confirming the class effect even with 
agents structurally distinct from native GLP-1 (25). Overall, meta-
analyses suggest a class effect in reducing MACE, particularly with 
long-acting agents (26). Importantly, the magnitude and consistency 
of MACE reduction in several trials exceed what would be expected 
from glycemic or weight improvements alone. Blood pressure, lipid 
profile, and body weight all improved modestly, but not sufficiently to 
explain the full cardiovascular benefit. This suggests a possible direct 
action of GLP-1 RAs on the cardiovascular system (27). Recent trials 
in heart failure (HF) have further clarified the therapeutic potential of 
GLP-1 RAs beyond glycemic control. While earlier trials in HFrEF 
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(28, 29) were neutral or inconclusive, the STEP-HFpEF and SELECT 
trials highlighted robust improvements in patients with heart failure 
with preserved ejection fraction (HFpEF), particularly in obese 
phenotypes. In STEP-HFpEF, semaglutide led to improvements in 
symptoms, physical function, and quality of life metrics, with 
associated reductions in body weight and inflammation (30). Similarly, 
in the SUMMIT trial, tirzepatide significantly reduced a composite of 
death and HF worsening in obese HFpEF patients (HR 0.41–0.67), 
along with measurable improvements in functional status and exercise 
tolerance (31). Most strikingly, the SELECT trial demonstrated that 
semaglutide significantly reduced MACE in individuals without 
T2DM but with overweight or obesity and established CV risk (HR 
0.80), making it the first GLP-1 RA approved for CV risk reduction in 
a non-diabetic population (32). This is a critical proof-of-concept that 
GLP-1 RAs effects are not mediated solely through glycemic control 
but may involve direct modulation of vascular inflammation, 
endothelial dysfunction, and myocardial energetics. Taken together, 
these findings establish GLP-1 RAs as agents with 
multidimensional benefits.

4 Endothelial dysfunction as a central 
mechanism in cardiovascular disease: 
molecular insights

ED plays a central role in the pathogenesis and progression of 
CVD, including atherosclerosis, hypertension, HF, stroke, and 
peripheral artery disease. The endothelium is not merely a passive 
barrier lining blood vessels but a highly dynamic and heterogenous 
organ with autocrine, paracrine, and endocrine functions. It regulates 
vascular tone, blood flow, hemostasis, inflammation, and angiogenesis 
(33, 34). One of the hallmark features of ED is reduced nitric oxide 
(NO) bioavailability. NO is a vasodilator synthesized by endothelial 
nitric oxide synthase (eNOS) in response to shear stress and stimuli 
such as acetylcholine. It inhibits vascular smooth muscle cell (VSMC) 
proliferation, platelet aggregation, and leukocyte adhesion (35). 
Impaired NO synthesis or increased NO degradation due to oxidative 
stress reduces vasodilatory capacity, promotes vasoconstriction, and 
enhances vascular tone, contributing to hypertension and ischemia 
(36, 37). Reduced NO levels also induce the expression of adhesion 
molecules, such as intercellular adhesion molecule-1 (ICAM-1), 
vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, which 
mediate leukocyte recruitment to sites of endothelial injury (38). 
These leukocytes internalize oxidized low-density lipoprotein 
(oxLDL), promoting foam cell formation and early atherogenesis. 
Endothelial activation, marked by increased permeability and 
leukocyte adhesion, further fuels vascular inflammation and plaque 
progression (39). Oxidative stress is a key driver of ED. Reactive 
oxygen species (ROS), generated by nicotinamide-adenine-
dinucleotide-phosphate (NADPH) oxidases, mitochondrial 
dysfunction, and uncoupled eNOS, deplete NO and oxidize cellular 
lipids and proteins (40). Exogenous factors such as hyperglycemia, 
smoking, and dyslipidemia exacerbate ROS production (41). ROS 
compromise tight junction integrity, increase endothelial permeability, 
and permit inflammatory cell infiltration, amplifying vascular damage. 
In a translational context, targeting ROS, through NADPH oxidase 
inhibitors or mitochondrial antioxidants, have shown promise in 
restoring endothelial function, with emerging biomarkers of oxidative 

stress offering potential for clinical monitoring and therapeutic 
stratification (42). Persistent oxidative stress creates a self-perpetuating 
cycle of endothelial injury, inflammation, and vascular remodeling 
(33). Inflammation is both a cause and consequence of 
ED. Pro-inflammatory cytokines like tumor necrosis factor-alpha 
(TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), along with 
chemokines such as monocyte chemoattractant protein-1 (MCP-1), 
are upregulated in ED and drive immune cell recruitment and 
cytokine release (39–43). Chronic low-grade inflammation, as seen in 
diabetes, hypertension, and metabolic syndrome, initiates and 
perpetuates ED, ultimately leading to plaque destabilization and 
thrombosis. A more recently recognized contributor to ED is the 
endothelial-to-mesenchymal transition, a process by which 
endothelial cells acquire mesenchymal characteristics, losing markers 
such as VE-cadherin and gaining fibrotic and migratory phenotypes 
(47–37). Endothelial-to-mesenchymal transition is induced by high 
glucose, TGF-β signaling, and inflammatory cytokines, and is 
implicated in fibrosis and plaque instability (33, 34). In conclusion, ED 
is not merely a marker but a mechanistic driver of CVD. It integrates 
hemodynamic, metabolic, and inflammatory insults through 
molecular pathways centered around NO deficiency, oxidative stress, 
and immune activation. Several therapeutic strategies aim to restore 
endothelial function, with growing evidence supporting GLP-1RAs.

5 Endothelial-protective effects of 
GLP-1 receptor agonists: mechanistic 
insights from preclinical and clinical 
evidence

GLP-1RAs exert profound protective effects on the vascular 
endothelium, impacting key pathways involved in endothelial 
homeostasis, inflammation, oxidative stress, and vascular 
regeneration. These pleiotropic effects are increasingly recognized as 
central to the cardiovascular benefits observed in major clinical trials 
of GLP-1RAs. Below, we  synthesize current evidence from both 
experimental and clinical studies elucidating how GLP-1R activation 
promotes endothelial health and counteracts atherogenesis (Figure 1).

5.1 Promotion of angiogenesis and 
endothelial progenitor cell function

Endothelial progenitor cells (EPCs) play a pivotal role in 
endothelial repair and post-ischemic angiogenesis. These cells, derived 
from bone marrow, can differentiate into mature endothelial cells, 
contributing to vascular regeneration, particularly in response to 
injury or ischemia. Their number and function are highly sensitive to 
oxidative stress, glycation end products, and inflammation (44). 
GLP-1RAs enhance EPC number and function through multiple 
mechanisms. Clinical studies in patients with T2DM have shown that 
treatment with dulaglutide increases circulating EPCs and boosts their 
proliferative, adhesive, migratory, and tubulogenic capacity (45, 46). 
This improvement correlates with reductions in pro-inflammatory 
markers such as IL-6, TNF-α, C-reactive protein, and advanced 
glycation end-products, supporting a role for GLP-1RAs in 
modulating EPC function through anti-inflammatory and 
antioxidative pathways (45, 46). Furthermore, high glucose reduces 
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GLP-1R expression in EPCs, impairing their function and promoting 
apoptosis. Restoration of GLP-1 signaling using exendin-4 reverses 
these effects, highlighting the direct role of GLP-1R in EPC biology 
(44, 47). Moreover, GLP-1RAs stimulate endothelial VEGF expression, 
a fundamental trigger for angiogenesis, leading to activation of 
downstream VEGF receptors (VEGFR-2), which initiate angiogenic 
cascades involving phospholipase C gamma/extracellular signal-
regulated kinase/phosphoinositide 3-kinase/protein kinase B 
pathways. This molecular signaling enhances EC proliferation, 
migration, and tubulogenesis. In primary human umbilical vein 
endothelial cells (HUVECs) treated with GLP-1RAs, increased VEGF 
production is accompanied by improved proliferation and tube 
formation, reflecting restored angiogenic capacity (44).

5.2 Reduction of oxidative stress and 
endoplasmic reticulum stress

Chronic hyperglycemia and endothelial activation drive 
excessive generation of ROS, promoting mitochondrial dysfunction, 
endothelial apoptosis, and reduced NO bioavailability. GLP-1RAs 
mitigate these effects through a combination of antioxidant, anti-
apoptotic, and mitochondrial-stabilizing actions. Several studies 

report that GLP-1RAs reduce ROS production, recover 
mitochondrial membrane potential, and improve oxygen 
consumption in endothelial cells. These effects are accompanied by 
increased leukocyte rolling velocity and reduced leukocyte adhesion-
indicators of improved endothelial barrier function (45). At the 
molecular level, exendin-4 activates adenosine monophosphate-
activated protein kinase (AMPK) and upregulates endoplasmic 
reticulum oxidoreductin 1 alpha, which enhances the protein-
folding machinery in endothelial cells, suppressing ER stress and 
ROS overproduction (48). In hyperhomocysteinemia models, this 
mechanism restores endothelial function and suppresses oxidative 
damage. Moreover, GLP-1RAs inhibit NADPH oxidase (NOX4)-
dependent ROS production and downregulate NLRP3 
inflammasome activation, both critical mediators of endothelial 
injury in diabetes (49). Liraglutide has also been shown to reduce 
TRIB3/nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB)/inhibitor of κB alpha signaling, thereby attenuating 
oxidative stress and pyroptosis in HUVECs (50). Translational 
studies demonstrate that GLP-1RAs, such as liraglutide, restore 
endothelial redox balance by reducing NOX4-derived ROS and 
enhancing mitochondrial function, effects corroborated in both 
HUVECs and diabetic animal models of vascular dysfunction. These 
findings support their emerging role in preserving endothelial 

FIGURE 1

Effects of GLP1-RA on endothelium.
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integrity and preventing atherosclerotic progression beyond 
glycemic control (45).

5.3 Improvement of vasodilation and NO 
bioavailability

A defining feature of GLP-1RA-mediated endothelial protection 
is the restoration of endothelial-dependent vasodilation. Clinical and 
preclinical data consistently demonstrate enhanced NO production 
and eNOS phosphorylation following GLP-1RA treatment (44–51). 
In ApoE−/− mice, liraglutide increased endothelium-derived NO as 
evidenced by enhanced contractile response to Nitro-L-Arginine 
Methyl Ester, confirming improved NO availability (43). Parallel 
in vitro studies showed increased eNOS and expression mediated by 
AMPK and Phosphoinositide 3-Kinase / Protein Kinase B signaling 
pathways, implicating a GLP-1R/cAMP/protein kinase A (PKA) axis 
in the upregulation of endothelial NO production (51). These effects 
are functionally significant: GLP-1RAs improve coronary and brachial 
artery flow, as shown in both healthy individuals and patients with 
diabetes, independent of glucose control (51). Notably, exenatide also 
enhances ATP-sensitive potassium channel activity, contributing to 
improved vasomotor responsiveness following ischemia-reperfusion 
injury (52).

5.4 Anti-inflammatory effects and 
endothelial adhesion molecule regulation

GLP-1RAs exert potent anti-inflammatory effects on the 
endothelium and immune cell interfaces, inhibiting key processes in 
leukocyte recruitment and adhesion. A hallmark of atherosclerosis is 
endothelial expression of adhesion molecules such as ICAM-1, 
VCAM-1, and E-selectin, which mediate monocyte recruitment. 
GLP-1RAs reduce the expression of these molecules in  vitro and 
in vivo. For instance, liraglutide suppresses TNF-α-induced ICAM-1 
and VCAM-1 expression in endothelial cells, an effect mediated via 
NF-κB inhibition (14–43, 53–55). Similarly, exenatide reduces soluble 
ICAM-1 and VCAM-1 in patients with type 2 diabetes, indicating 
systemic anti-inflammatory action (51). Additionally, semaglutide 
alters the secretory profile of epicardial adipose tissue, increasing its 
anti-thrombotic and anti-inflammatory properties by downregulating 
FABP4 expression (56). In vascular macrophages, exendin-4 
suppresses lipopolysaccharide-induced pro-inflammatory gene 
expression by activating the cAMP/PKA pathway and inhibiting 
NF-κB nuclear translocation, further supporting a systemic 
immunomodulatory role (57).

5.5 Inhibition of atherosclerotic plaque 
formation and stabilization

Collectively, the endothelial and immunological actions of 
GLP-1RAs culminate in reduced atherogenesis and enhanced plaque 
stability. Preclinical models have demonstrated that GLP-1RAs reduce 
plaque area, monocyte/macrophage accumulation, and plaque 
vulnerability (37–48–49). For example, treatment with semaglutide 
reverses Western diet-induced aortic gene expression patterns related 

to leukocyte trafficking, lipid metabolism, and extracellular matrix 
turnover-key contributors to atherogenesis (58). Moreover, GLP-1RA 
therapy leads to plaques characterized by reduced inflammation and 
increased stability due to suppression of matrix metalloproteinases 
and promotion of fibrous cap formation (44, 45). Human data further 
support these findings: GLP-1RA treatment is associated with reduced 
carotid intima-media thickness and lower circulating inflammatory 
biomarkers, suggesting tangible antiatherogenic effects in patients (45, 
46, 48–52, 56–59). Finally, beyond their effect on the vascular wall, 
GLP-1RAs may reduce thrombosis risk by inhibiting platelet 
aggregation, although the precise mechanisms-whether endothelial-
dependent or independent-remain under investigation (35).

5.6 Effects of GLP-1 receptor agonists on 
endothelial function in vivo

Flow-mediated dilation (FMD) is a well-established, noninvasive, 
endothelium-dependent method for assessing vascular function. It 
measures the change in brachial artery diameter in response to 
ischemia via ultrasound and reflects vascular elasticity and endothelial 
integrity (60). Systematic reviews and meta-analyses have explored the 
impact of antidiabetic agents on vascular function, showing that 
GLP-1RAs significantly improve FMD compared to placebo (61, 62). 
Notably, GLP-1RAs demonstrated superior improvements in FMD 
compared to sulfonylureas and lifestyle interventions in multiple 
randomized controlled trials, including in patients with T2DM 
without overt CVD. Network meta-analyses have confirmed these 
effects with robust consistency (I2 = 0%) and no significant 
heterogeneity (61). However, some individual studies reported 
variable results (63). Conversely, treatment with exenatide LAR was 
associated with improved FMD and carotid intima-media thickness, 
alongside metabolic benefits, in patients with type 2 diabetes (64).

6 Discussion

The global rise in obesity and T2DM has led to a parallel pandemic 
of CVD, forming a cardio-metabolic triad that now represents a 
leading cause of morbidity and mortality worldwide (65). At the 
intersection of these conditions lies the endothelium, a dynamic 
regulator of vascular homeostasis, whose dysfunction initiates and 
accelerates atherosclerosis and associated complications. GLP-1RAs 
first emerged as glucose-lowering drugs, but recent findings highlight 
their multifactorial role in endothelial protection, particularly in the 
context of metabolic and atherosclerotic disease (44). Rather than 
acting through a single pathway, these agents exert coordinated effects 
across several levels of vascular regulation. This pleiotropic profile 
suggests that GLP-1RAs may go beyond glycemic control to provide 
direct vascular benefits, a hypothesis increasingly supported by both 
preclinical and clinical data. Among the most relevant effects, the 
ability of GLP-1RAs to restore EPC number and function deserves 
particular attention, especially considering the impairment of EPCs 
in diabetes and their central role in endothelial repair (14–37– 50). By 
promoting VEGF and NO signaling, these agents enhance angiogenic 
potential that may translate into improved microvascular integrity. 
Similarly, the reduction of ROS and restoration of mitochondrial 
function (14) position GLP-1RAs as valuable tools against oxidative 
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stress-driven endothelial injury. Lastly GLP1-RA proved to reduce 
inflammation (14–49–54–57). These effects might represent the 
potential mechanisms underlying the reduction in cardiovascular 
events observed in some clinical trials. Collectively, these trials 
reinforce that the cardiovascular benefits of GLP-1RAs are not 
restricted to one molecule or only injectable formulations, and may 
extend to lower-risk populations. Despite the consistency of MACE 
reduction across several agents, different trial designs, population, and 
exposure, argues for a true class effect, yet several critical issues remain 
unresolved. First, the heterogeneity among GLP-1RAs, particularly 
regarding their molecular structure and pharmacokinetics, may 
account for divergent cardiovascular outcomes. Human GLP-1 
analogs such as liraglutide and semaglutide demonstrate more 
consistent cardioprotection compared to exendin-4-based agents like 
exenatide, which may suffer from lower receptor affinity, greater 
immunogenicity, and less favorable pharmacokinetic profiles (49). 
These differences might partly explain the neutral results of the 
EXSCEL trial with exenatide (22). Second, the translational relevance 
of in  vitro studies remains uncertain. Many experiments utilize 
supraphysiological concentrations of GLP-1RAs, potentially engaging 
non-canonical receptors or producing artifacts not reflective of clinical 
scenarios (34). This calls for a more cautious interpretation of 
molecular findings and underlines the need for dose–response studies 
in vivo. Lastly, while current CVOTs have provided encouraging data, 
they have largely focused on patients with T2DM. The ongoing 
SURPASS-CVOT and SYNCHRONIZE-CVOT trials will expand this 
landscape, testing the cardiovascular efficacy of dual agonists like 
tirzepatide and survodutide in broader populations, including those 
with obesity and established cardiovascular risk (ClinicalTrials.gov 
identifiers: NCT04255433, NCT05556512). These studies may help 
clarify whether the endothelial benefits observed preclinically translate 
into meaningful clinical outcomes across diverse patient groups. In 
summary, GLP-1RAs exhibit substantial potential in reversing ED via 
multiple integrated mechanisms. However, further investigation is 
warranted to clarify drug-specific actions, confirm the translational 
relevance of preclinical findings, and evaluate long-term vascular 
outcomes in broader patient populations, including those without 
T2DM. Comparative studies and real-world data will be crucial to 
better define their cardiovascular impact. Future research should also 
explore potential synergies with other antidiabetic agents and assess 
effects on validated clinical vascular biomarkers such FMD. Notably, 
despite the central role of ED in the pathogenesis of CVD, its clinical 
application as a prognostic or diagnostic tool remains limited. Various 
biomarkers and functional assessments of endothelial health, have 
demonstrated predictive value in research settings; however, their 
integration into routine clinical practice for cardiovascular risk 

stratification is still lacking. Bridging this gap between mechanistic 
insight and clinical utility represents a critical challenge for future 
translational research.
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