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Background: Familial hypercholesterolemia (FH) and non-genetic
hypercholesterolemia (HC) are both associated with elevated low-density
cholesterol (LDL-C) levels, which increase the risk of cardiovascular disease.
However, their underlying metabolic disturbances differ significantly.
Untargeted metabolomics offers a powerful approach for identifying disease-
specific metabolic signatures and potential biomarkers, thereby contributing to
precision medicine applications.

Methods: A high-resolution metabolomics analysis was performed using ultra-
performance liquid chromatography coupled with quadrupole time-of-flight
mass spectrometry (UPLC-Q-TOF/MS) on plasma samples from FH, HC, and
healthy Saudi individuals. Differentially expressed metabolites were identified
through univariate and multivariate analyses, followed by pathway enrichment
analysis using the KEGG database.

Results: Metabolic profiling revealed distinct alterations in bile acid biosynthesis
and steroid metabolism pathways in FH. Cholic acid was significantly
downregulated, while 17a-hydroxyprogesterone (17a-OHP) was significantly
elevated in FH. In contrast, HC was characterized by increased uric acid
and choline levels, along with dysregulation in oleic acid and linoleic acid
metabolism. Notably, both FH and HC groups were dysregulated in Sphinganine,
D-a-hydroxyglutaric acid, and pyridoxamine.

Conclusion: This study demonstrates the utility of untargeted metabolomics
in distinguishing FH from HC, identifying 17a-OHP and cholic acid as potential
FH biomarkers, while uric acid and choline may serve as HC-specific metabolic
markers. These findings provide new insights for personalized interventions,

01 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1670282&domain=pdf&date_stamp=2025-09-26
https://www.frontiersin.org/articles/10.3389/fmed.2025.1670282/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1670282/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1670282/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1670282/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1670282/full
mailto:bbabajan@kau.edu.sa
mailto:ammujalli@uqu.edu.sa
https://doi.org/10.3389/fmed.2025.1670282
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1670282

Al Mahdi et al.

10.3389/fmed.2025.1670282

enhancing disease stratification and therapeutic decision-making between
genetic and non-genetic hypercholesterolemia.
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1 Introduction

Hypercholesterolemia is a metabolic disorder characterized by
elevated low-density lipoprotein cholesterol (LDL-C), contributing
significantly to atherosclerosis and cardiovascular diseases (CVDs)
(1).  Primary  hypercholesterolemia  includes  familial
hypercholesterolemia (FH, OMIM #143890), a monogenic disorder
caused by variants in genes such as LDLR, APOB, and PCSK9
(autosomal dominant), or LDLRAPI (autosomal recessive) (2, 3).
These genetic alterations impair LDL-C clearance, leading to
persistently high cholesterol levels from an early age and an increased
risk of premature CVD. The global prevalence of FH is approximately
1 in 250, but it is substantially higher in the Gulf region, around 1 in
112, due to high consanguinity rates (4-7). Despite this, omics-based
studies, particularly metabolomics, remain limited in Middle Eastern
populations.  In  parallel, secondary or  non-genetic
hypercholesterolemia, which is driven by factors such as diet, obesity,
and metabolic syndrome, may exhibit clinical features similar to those
of inherited forms, making it difficult to distinguish between them
using standard lipid profiling (1, 8, 9). Given that genetic variants can
directly influence metabolic pathways, individuals with FH are likely
to exhibit distinct metabolic signatures compared to those with
secondary hypercholesterolemia (10). Understanding these differences
is critical for accurate diagnosis, personalized risk assessment, and
targeted treatment.

Untargeted metabolomics enables comprehensive profiling of
small molecules, offering a powerful approach to identify disease-
specific metabolic phenotypes and biomarkers that reflect both genetic
and environmental influences on lipid metabolism (11, 12). Among
various platforms, untargeted metabolomics using ultra-performance
liquid chromatography coupled with quadrupole time-of-flight mass
spectrometry (UPLC-Q-TOF/MS) offers high sensitivity and broad
metabolite coverage, enabling detailed profiling of both the
metabolome and lipidome (13, 14). This approach surpasses
traditional lipid panels by uncovering disturbances in key metabolic
pathways, such as in bile acid biosynthesis, steroid hormone
metabolism, and oxidative stress, while simultaneously providing
mechanistic insights into cholesterol-related pathologies like
atherosclerosis, thereby facilitating biomarker discovery, improving
disease classification, and advancing precision medicine strategies
(15-17). A recent cross-sectional study conducted, utilizing LC-
MS-based untargeted metabolomics, successfully identified unique
metabolites associated with different FH forms. The analysis identified
seven key discriminatory metabolites, including lithocholic acid
(LCA), triacylglycerol TAG 52:2, 3-phenylpropionate, pipecolic acid,
3-indolepropionic acid, isocitric acid, and glycerophosphocholine
(GPC) 38:5 (18).

Despite these advances, no studies to date have applied untargeted
metabolomics to differentiate genetic and non-genetic forms of
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hypercholesterolemia in the Saudi population, which is characterized
by unique genetic backgrounds and high rates of early-onset
CVD. Therefore, this study aims to apply untargeted high-resolution
metabolomics to distinguish between familial and secondary
hypercholesterolemia in Saudi patients, identify disease-specific
metabolic signatures, and uncover clinically relevant biomarkers.
These insights are expected to advance disease classification and
support the implementation of precision medicine strategies in
hypercholesterolemia management.

Studying hypercholesterolemia in the Saudi population with its
unique genetic background and high incidence of early-onset CVD
presents a valuable opportunity to fill a key knowledge gap and
advance precision medicine strategies tailored to the region. This
study aims to apply untargeted high-resolution metabolomics to
differentiate familial and non-genetic hypercholesterolemia in Saudi
patients, identify specific metabolic signatures, and discover potential
biomarkers for clinical use. These insights are expected to support
precision medicine by improving disease classification and
individualized treatment strategies.

2 Materials and methods
2.1 Study population

This study was approved by the Biomedical Ethics and Research
Committee at King Abdulaziz University, Jeddah, Saudi Arabia
(Reference Number: 220-22). Families were recruited from the Genetic
Dyslipidemia and Familial Hypercholesterolemia Clinic at King
Abdulaziz University Hospital, Jeddah, Saudi Arabia. The study included
three groups of participants: familial hypercholesterolemia (FH),
hypercholesterolemia (HC), and healthy controls (Healthy), consisting
of both index patients and unaffected family members as controls.

2.2 Sample collection

A 3 mL blood EDTA tube was collected after 10-12 h of fasting,
and only individuals without prior lipid-lowering treatment or
medication were included. The groups were classified based on LDL-C
levels determined through biochemical laboratory testing and genetic
testing results (1, 8, 9). Participants were classified based on the results
of biochemical and genetic testing, as reported previously (19).

The Healthy group included individuals with LDL-C levels below
100 mg/dL and no detected pathogenic variants in the FH-related
genes. The HC consisted of individuals with LDL-C levels ranging
from 130 to 159 mg/dL, without confirmed variants in the FH-related
genes. The FH group included individuals with LDL-C levels >190 mg/
dL and a confirmed pathogenic variant in the FH-related genes.
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2.3 Metabolites extraction

For a plasma separation, blood was centrifuged at 2,000 x g for
15 min at 4 °C, and the supernatant was aliquoted (100-200 pL) into
a sterile Eppendorf (EP) tube. Plasma samples were then stored at
—80 °C until further sample processing.

For metabolite extraction, 100 pL of plasma was mixed with 700 pL
of extraction solvent containing an internal standard (Methanol:
Acetonitrile: Water, 4:2:1, v/v/v). The mixture was vortexed for 1 min
and incubated at —20 °C for 2 h, then centrifuged at 25,000 x g at 4 °C
for 15 min. After centrifugation, 600 pL of the supernatant was
transferred to a new EP tube and dried using a vacuum concentrator.
The dried extracts were reconstituted in 180 pL of Methanol: Water
(1:1, v/v), vortexed for 10 min, and centrifuged again at 25,000 x g at
4 °C for 15 min to remove any insoluble debris. The final supernatants
were transferred to fresh EP tubes for downstream metabolomic analysis.

2.4 Liquid chromatography-mass
spectrometry (LC-MS) workflow

The metabolomics analysis was conducted in collaboration with
the Beijing Genomics Institute (BGI). Metabolite separation and
detection were performed using a Waters UPLC I-Class Plus system
(Waters, USA) coupled with a Q Exactive Orbitrap high-resolution
tandem mass spectrometer (Thermo Fisher Scientific, USA).
Chromatographic separation was carried out using a Waters
ACQUITY UPLC BEH C18 column (1.7 pm, 2.1 mm x 100 mm,
Waters, USA), with the column temperature maintained at 45 °C.

The mobile phase was prepared based on the ionization mode.
In positive ion mode, the mobile phase consisted of 0.1% formic acid
(A) and acetonitrile (B), whereas in negative ion mode, the mobile
phase contained 10 mM ammonium formate (A) and acetonitrile
(B). A gradient elution program was applied with an initial 0 to 1 min
2% B, linearly increasing to 98% B from 1 to 9 min, maintaining 98%
B from 9 to 12 min, then reverting to 2% B at 12.1 min, followed by
equilibration at 2% B for 12.1 to 15 min. The flow rate was maintained
at 0.35 mL/min, and the injection volume was 5 pL.

Mass spectrometric analysis was performed using full scan and
tandem MS (MS/MS). The scan range was set from 70 to 1,050 m/z, with
a resolution of 70,000 for full MS scans. The Automatic Gain Control
(AGC) target was configured to 3 x 106, with a maximum ion injection
time of 100 ms. For MS/MS fragmentation, the top 3 precursor ions were
selected per cycle with an injection time of 50 ms, a resolution of 17,500,
and the AGC was 1 x 105. The stepped normalized collision energy was
20, 40, and 60 eV to enhance fragmentation efficiency. Electrospray
ionization (ESI) settings were optimized as follows: the sheath gas flow
rate was set to 40, and the auxiliary gas flow rate was set to 10. The spray
voltage was adjusted to 3.80 kV for positive ion mode and 3.20 kV for
negative ion mode. The capillary temperature was maintained at 320 °C,
while the auxiliary gas heater temperature was set to 350 °C.

2.5 Peak area and metabolites
identification

The generated mass spectrometry data were imported and
processed using Compound Discoverer v3.3 (Thermo Fisher Scientific,
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USA)'. To ensure comprehensive metabolite identification, multiple
databases, including BGI Metabolome Database (BMDB), mzCloud,
and ChemSpider (HMDB, KEGG, LipidMaps) databases, were used
for metabolite peak areas extraction and metabolite identification.

2.6 Data processing

The results file generated from Compound Discoverer v3.3 was
imported into MetaX software (20) for data preprocessing and statistical
analysis. To minimize technical variability and enhance the reliability of
metabolomic data, the following preprocessing steps were implemented.
Probabilistic Quotient Normalization (PQN) was applied to normalize
metabolite intensities by generating a reference vector based on ion
intensity distribution across all samples and adjusting each sample
accordingly (21). Additionally, Quality Control-based Robust LOESS
Signal Correction (QC-RLSC) was implemented to correct batch effects
using local polynomial regression fitting based on QC samples to
enhance signal consistency (22). To ensure high-quality and reproducible
data for downstream analysis, metabolites with a Coeficient of Variation
(CV) > 30% across QC samples were considered unstable and excluded.

The identified substances were classified into different credibility
levels based on available matching criteria, including MS1 molecular
weight, MS2 fragment spectra, column retention time, and the presence
of reference standards. Level 1 represents the highest credibility, where
substances are accurately identified using both the standard databases
and laboratory data. Level 2 includes substances with a structural
formula that matches the standard databases. Level 3 substances
partially match the database but require further validation. Level 4
substances are identified solely based on accurate MS1 molecular weight
matching the database. Level 5 represents the lowest credibility, with no
matches or identification results available in the database. The credibility
of identification decreases progressively from Level 1 to Level 5.

2.7 Overall metabolites analysis

To gain more insight into the biological functions and
classifications of the identified metabolites from levels 1 to 4. The
identified metabolites were analyzed and annotated using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and the Human
Metabolome Database (HMDB). The analysis of identified metabolites
was categorized according to their Super Pathway. However, for lipid
molecules, the Sub Pathway classification was used instead.

2.8 Differential metabolite screening

Univariate analysis was conducted to assess the statistical significance
of differences in metabolite expression between comparison groups, with
fold change (FC) calculated as the ratio of metabolite levels and t-tests
used for statistical evaluation. Metabolites were considered differentially
expressed if they met the threshold of FC > 1.2 or < 0.83 and adjusted
p-value < 0.05. The log,FC transformation was applied to normalize data

1 https://mycompounddiscoverer.com
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distribution and enhance interpretability. Statistical significance was
determined using f-tests, and adjusted p-values were adjusted for
multiple comparisons using the Benjamini-Hochberg method to control
the False Discovery Rate (FDR). The log,FC and adjusted p-value were
used for downstream statistical analysis. The volcano plots were
generated to visualize differentially expressed metabolites (DEMs),
highlighting significantly upregulated and downregulated metabolites
based on their fold changes and adjusted p-values. Metabolites with a
high absolute log, fold change and adjusted p-value were considered
statistically significant. Heatmaps were generated to illustrate clustering
patterns of DEMs between experimental groups.

In multivariate analysis, the orthogonal partial least squares
discriminant analysis (OPLS-DA) is used to develop predictive models
and identify key metabolites by distinguishing between systematic and
orthogonal variance. This enhances classification accuracy and
provides a robust evaluation of metabolic distinctions.

2.9 Correlation analysis

Chord diagrams were constructed to evaluate metabolite
co-regulation relationships based on the Spearman correlation
coefficient (|r| > 0.8, p < 0.05). These diagrams provide an intuitive
visualization of metabolite-metabolite interactions, distinguishing
between synergistic (positive correlations) and antagonistic (negative
correlations), with color variations representing different correlation
patterns. The primary objective of differential metabolite correlation
analysis was to assess the consistency of metabolite fluctuations and
determine their interdependence.

2.10 Pathway enrichment analysis

Metabolic pathway enrichment analysis of DEMs was performed
using the KEGG database to identify significantly altered pathways
and interpret biological phenotypes. Pathways with adjusted p-value <
0.05 were considered significantly enriched, highlighting key
metabolic shifts. To provide a comprehensive view of metabolic
alterations, the Differential Abundance (DA) Score method was
applied to evaluate cumulative metabolite changes within specific
pathways. The DA score ranges from —1 to +1, where +1 indicates
complete upregulation of a pathway, 0 represents no significant change,
and —1 denotes complete downregulation. Intermediate values reflect
partial upregulation or downregulation based on the proportion of
upregulated and downregulated metabolites within the pathway.

3 Results
3.1 Sample description

In this study, 16 fasting plasma samples were analyzed and
categorized into three groups: FH (n = 7), HC (n = 4), and Healthy
(n=5). The average LDL-C levels were 367.3 + 101.8 mg/dL in the FH
group. This level was approximately 3.9 times higher than that of the
Healthy group (94.6 + 11.4 mg/dL) and 2.6 times higher than that of the
HC group (139.2 £ 4.5 mg/dL). Genetically, all participants in the FH
group carried a heterozygous mutation in the LDLR gene (c.2416dupG
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and ¢.103C > T), while other groups were negative for FH-related
genes. For comparative analysis, three pairwise comparisons were
conducted: FH vs. Healthy, HC vs. Healthy, and FH vs. HC to assess
metabolic variations across groups. Sample characteristics, including
LDL-C measurement, are detailed in the Supplementary Table 1.

3.2 Chromatographic and mass
spectrometric analysis

Untargeted metabolomics profiling in both positive and negative
ion modes revealed a diverse range of metabolites across the 15-min
chromatographic run. As shown in the Base Peak Chromatograms
(BPC) (Supplementary Figure 1), the wide distribution of peaks in
both ionization modes confirms broad metabolite coverage and
efficient chromatographic separation.

In positive ion mode, prominent features were observed at 7.36,
9.71, and 12.75min, corresponding to abundant hydrophobic
metabolites, while earlier peaks (at 0.88 and 2.67 min) indicated the
presence of polar compounds. The negative mode captured a distinct
profile of acidic and polar metabolites, with major peaks detected at
9.73,10.32, and 12.83 min.

3.3 Metabolites detection and identification

After data preprocessing, a total of 4,850 metabolites were detected,
of which 4,329 metabolites had a CV < 30%. These metabolites were
mapped and classified based on their level of credibility as described in
the methods (section 2.6). Figure 1 shows that only 1,359 substances
were mapped from Level 1 to Level 4, considered identified, while the
remaining metabolites were classified as Level 5 (unidentified).
Furthermore, identified metabolites with putative names were
annotated using the HMDB and KEGG databases and subsequently
classified into four major categories: lipids, phytochemical compounds,
biologically active compounds, and others. Among these, lipids
(n=132) and amino acids, peptides, and analogues (n = 64) represented
the two largest classes. Detailed metabolite classifications and KEGG
pathway annotations are provided in Supplementary Figure 2.

3.4 Differential metabolites screening and
analysis

Univariate analysis across the three groups identified DMEs and
revealed distinct distribution patterns (Figure 2). In the FH vs. Healthy
group, 98 DEMs were identified, with 60 upregulated and 38
downregulated. For the HC vs. Healthy group, 175 DEMs were
identified, comprising 75 upregulated and 100 downregulated. Finally,
in the FH vs. HC group, 83 DEMs were identified, including 38
upregulated and 45 downregulated (Figure 3). The significant DEMs
annotated with HMDB and KEGG IDs were included in the
enrichment analysis (Supplementary Table 2).

We then performed a multivariate statistical analysis using
OPLS-DA, which revealed clear ellipses among the FH, HC, and
Healthy groups.

The FH vs. Healthy comparison showed a T score of 12.4% and an
Orthogonal T score of 13.2%. The HC vs. Healthy comparison had a
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FIGURE 1
Metabolite identification. (A) The pie chart illustrates the proportion of identified metabolites (1,359) versus unidentified metabolites (2,970). Identified
metabolites are classified into five levels based on credibility, with Level 1 representing the highest credibility and Level 5 the lowest. (B) The bar chart
displays the distribution of identified metabolites across different databases (BMDB, mzCloud, KEGG, and HMDB), with each bar segmented by
credibility levels (Level 1 to Level 3), demonstrating the contribution of each database to metabolite classification and functional annotation.

T score of 22.8% and an Orthogonal T score of 17.4%. The FH vs. HC
comparison showed a T score of 11.7% and an Orthogonal T score of
12.9% (Figure 4).

3.5 DEMs co-regulation relationships

The correlation analysis revealed distinct patterns of metabolite
interactions across the three comparison groups (Figure 5). In the FH
vs. Healthy comparison (Figure 5A), strong positive intra-class
correlations were observed among glycerophospholipids and steroid
derivatives, suggesting a tightly regulated lipid metabolic network in
individuals with FH. In contrast, negative correlations were noted
between glycerophospholipids and amino sugar-related metabolites,
indicating a possible dysregulation in membrane lipid signaling and
transport. The FH vs. HC analysis demonstrated more divergent
correlation patterns, where glycerophospholipids showed both
positive and negative correlations with fatty acyls and bile acid
derivatives (Figure 5B). These findings may reflect distinct bile acid
biosynthesis, lipid remodeling, and oxidative stress response pathways
that characterize genetically driven FH compared to HC. In the HC
vs. Healthy group, a broader range of negative correlations was found
across fatty acyls and glycerophospholipids, consistent with disrupted
lipid regulation and systemic metabolic imbalance in HC (Figure 5C).
These findings highlight the distinct metabolic network reorganization
observed between FH and HC, emphasizing the role of lipid subclass-
specific interactions as key contributors to the pathophysiology of
different forms of hypercholesterolemia.

3.6 Pathway enrichment analysis

Metabolic pathway enrichment analysis was performed using the
KEGG database to identify significantly altered pathways across the
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comparison groups. The top enriched pathways were visualized using
a bubble plot in Figure 6, with detailed results presented in Table 1 and
Supplementary Table 3.

Shared and unique pathways are illustrated in Figure 6A. The
Venn diagram showed the shared metabolites between the comparison
groups (Figure 6B). Interestingly, the lysine degradation pathway
(KEGG: map00310) was consistently enriched across all three
comparative groups. In the FH vs. Healthy comparison, the pathway
was significantly altered (adjusted p-value =0.0499) due to the
upregulation of D-a-hydroxyglutaric acid. In the HC vs. Healthy
group, this pathway exhibited stronger significance (adjusted
p-value = 0.0062) and involved two metabolites: D-a-hydroxyglutaric
acid and glutaric acid. However, glutaric acid displayed opposite
expression in the two comparisons: it was downregulated in HC vs.
Healthy, but upregulated in FH vs. HC, where the lysine degradation
pathway remained significant (adjusted p-value =0.0344). The
sphingolipid signaling pathway (KEGG: map04071) and sphingolipid
metabolism pathway (KEGG: map00600) were significantly enriched
in both FH and HC groups compared to healthy controls. In the FH
vs. Healthy comparison, these pathways were enriched with
sphinganine (KEGG: C00836) (adjusted p-value = 0.0113 and 0.0124,
respectively). In contrast, in the HC vs. Healthy comparison,
enrichment was driven by elevated levels of sphinganine and
phytosphingosine (adjusted p-value =0.0260 and 0.0004,
respectively).

In the FH vs. Healthy comparison, the cortisol synthesis and
secretion pathway (KEGG: map04927) was significantly enriched
(adjusted  p-value =0.0136), with upregulation of D-a-
hydroxyglutaric acid (Figures 7A,D). In the HC vs. Healthy
comparison, significant alterations were observed in the bile
secretion pathway (KEGG: map04976, adjusted p-value = 0.0249)
and insulin resistance pathway (KEGG: map04931, adjusted
p-value = 0.0311), accompanied by upregulation of uric acid, choline,
and L-acetylcarnitine. Meanwhile, the fatty acid biosynthesis
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FIGURE 2

Visualization of differential metabolite analysis across comparison groups. (A—C) Volcano plots for FH vs. Healthy (left), HC vs. Healthy (middle), and FH
vs. HC (right), illustrating the relationship between log, (Fold Change) (X-axis) and —log;q (p-value) (Y-axis). Metabolites are classified as upregulated
(red), downregulated (green), or non-significant (blue). (D—F) Heatmaps displaying the expression patterns of differentially expressed metabolites
across FH vs. Healthy (left), HC vs. Healthy (middle), and FH vs. HC (right). Hierarchical clustering reveals metabolic variations between groups. The
color scale represents log,-transformed expression values, where red indicates upregulation and blue indicates downregulation.
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Distribution of differential metabolites across comparison groups. (A) Bar plot displaying the number of upregulated (red) and downregulated (blue)
metabolites in FH vs. Healthy, FH vs. HC, and HC vs. Healthy groups. (B) Venn diagram illustrating the overlap of differentially expressed metabolites
among the three comparison groups, highlighting both shared and unique metabolites.

pathway (KEGG: map00061, adjusted p-value =0.0311) was 4 Discussion

downregulated, reflected by decreased oleic and linoleic acid levels
(Figures 7B,E).

The FH vs. HC analysis revealed significant enrichment in the
primary bile acid biosynthesis pathway (KEGG: map00120, adjusted

Familial hypercholesterolemia is a metabolic disorder associated
with a significantly increased risk of cardiovascular diseases and other
health complications (23). Metabolomics, the comprehensive study of

p-value = 0.0359), with downregulation of cholic acid  metabolites within biological systems, has emerged as a powerful tool
(Figures 7C,F). in elucidating hyperlipidemic conditions characterized by elevated lipid
Frontiers in Medicine 06 frontiersin.org
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Correlation chord diagrams of metabolite relationships for comparison groups. (A) FH vs. Healthy. (B) FH vs. HC. (C) HC vs. Healthy. Color Key: Red:
Positive correlations. Blue: Negative correlations. Connections represent significant correlations (p < 0.05) between metabolite pairs.

levels in the bloodstream (24, 25). This approach not only enables the
identification of novel biomarkers for early diagnosis but also provides
insights into the efficacy of therapeutic interventions (17, 26). In this
study, untargeted metabolomics revealed distinct metabolic alterations
in both FH patients carrying LDLR variants (c.2416dupG, ¢.103C > T)
and in individuals with HC, compared to healthy controls. KEGG
pathway enrichment analysis (adjusted p < 0.05) showed significant
disruptions in lipid metabolism across both groups. Although both FH
and HC are characterized by elevated LDL-C levels, their underlying
metabolic mechanisms differ. This distinction is clinically important,
as FH is a monogenic disorder caused by inherited variants in lipid-
regulating genes, whereas HC typically results from environmental
factors, dietary habits, and broader metabolic dysregulation (1, 8, 9).
The FH group, when compared to healthy controls, exhibited
significant enrichment in three metabolic pathways, including cortisol
synthesis and secretion, Cushing syndrome, and ovarian
by elevated of
17a-hydroxyprogesterone (17a-OHP). As cholesterol is the precursor
for all steroid hormones, these findings suggest FH caused by LDLR
variants may prompt alternative tissues, such as the adrenal glands,

steroidogenesis, ~primarily driven levels
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cells can maintain high intracellular cholesterol by increasing
cholesterol uptake via HDL pathways via scavenger receptors (27) and
under sustained ACTH stimulation (28) which together upregulate
steroidogenic enzymes such as CYP17A1 (17a-hydroxylase) (29, 30);
consequently, the heightened steroidogenic flux can exceed the
capacity of downstream steps like 21-hydroxylation by CYP21A2,
leading to a bottleneck that causes accumulation of precursor steroids,
notably 17a-OHP. Previous studies show that Elevated LDL enhances
adrenal steroidogenesis by increased ACTH stimulation, commonly
associated with metabolic stress in FH, resulting in elevated 17a-OHP
levels due to a bottleneck at the CYP21A2 enzyme step (31-33).
Clinically, 17a-OHP is a key diagnostic biomarker for congenital
adrenal hyperplasia (34-36). In addition, elevated 17a-OHP can lead
to an increased risk of cardiovascular (37). These alterations may
contribute to broader metabolic and endocrine dysregulation in FH
patients, particularly in the context of our study, where the majority
of participants were female, suggesting potential sex-specific metabolic
responses. The upregulation of 17a-OHP highlights a potential
crosstalk between lipid metabolism and adrenal steroidogenesis in FH
patients, and this metabolite is considered a secondary metabolite.
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On the other hand, comparisons of FH and HC patients revealed
a significant dysregulation in primary bile acid biosynthesis, showing
that cholic acid levels were significantly downregulated in FH (38, 39).
This indicates impaired primary bile acid biosynthesis, likely due to
increased intracellular cholesterol that suppresses bile acid synthesis
via negative feedback on CYP7A1 (40). Disruption of bile acid
metabolism in FH may hinder lipid digestion and feedback regulation,
contributing to further cholesterol accumulation (41-43). Moreover,
the bile acid impairment observed in familial hypercholesterolemia
highlights a significant therapeutic gap. Traditional bile acid
sequestrants (BASs), such as cholestyramine, may be insufficient.
Emerging biopolymer-based BASs could provide improved FH
management by modulating both cholesterol and bile acid metabolic
pathways (44-46). These findings indicate that cholic acid has the

Frontiers in Medicine

potential to serve as a discriminative biomarker between familial and
non-genetic forms of hypercholesterolemia.

In the HC group, there was a significant downregulation in the
biosynthesis pathways of unsaturated fatty acids (UFAs), including oleic
acid, linoleic acid, and 11(Z),14(Z)-eicosadienoic acid, alongside
alterations in insulin resistance-related metabolites such as
L-acetylcarnitine. It is plausible that these shifts reflect lipid
accumulation and impaired fatty acid oxidation, both of which are
known to contribute to insulin resistance and metabolic inflexibility
(47). These UFAs, particularly monounsaturated (MUFAs) and
polyunsaturated fatty acids (PUFAs), are vital for cholesterol transport
and CVD prevention (48-51). Reduced levels may be driven by insulin
resistance, which suppresses stearoyl-CoA desaturase-1 (SCD1), the

enzyme converting saturated fatty acids into MUFAs, including oleic
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TABLE 1 KEGG pathway enrichment analysis across comparison groups.

Pathway ID Pathway Count Adjusted KEGG Names KEGG IDs

p-value

FH vs. Healthy
map04071 Sphingolipid signaling 1 10 0.0113 Sphinganine C00836
pathway
map00600 Sphingolipid metabolism 1 11 0.0124 Sphinganine C00836
map04927 Cortisol synthesis and 1 12 0.0136 17alpha-Hydroxyprogesterone C01176
secretion
map04934 Cushing syndrome 1 13 0.0147 17alpha-Hydroxyprogesterone Co01176
map04913 Ovarian steroidogenesis 1 23 0.0258 17alpha-Hydroxyprogesterone C01176
map00740 Riboflavin metabolism 1 24 0.0269 Ribitol C00474
map00970 Aminoacyl-tRNA 1 24 0.0269 L-Proline C00148
biosynthesis
map04978 Mineral absorption 1 29 0.0325 L-Proline C00148
map00750 Vitamin B6 metabolism 1 29 0.0325 Pyridoxamine C00534
map04977 Vitamin digestion and 1 30 0.0336 Pyridoxamine C00534
absorption
map05230 Central carbon 1 37 0.0412 L-Proline C00148
metabolism in cancer
map00310 Lysine degradation 1 45 0.0499 D-alpha-Hydroxyglutaric acid C01087
HC vs. Healthy
map00600 Sphingolipid metabolism 2 11 0.0004 Sphinganine; C00836
Phytosphingosine C12144
map01040 Biosynthesis of 3 69 0.0008 Oleic acid; Linoleic acid; C00712
unsaturated fatty acids 11(Z),14(Z)-Eicosadienoic C01595
acid C16525
map00380 Tryptophan metabolism 3 83 0.0013 L-Kynurenine; Indoleacetic C00328
acid;5-Hydroxyindoleacetic C00954
acid C05635
map00750 Vitamin B6 metabolism 2 29 0.0026 4-Pyridoxic acid; C00847
Pyridoxamine C00534
map00310 Lysine degradation 2 45 0.0062 D-alpha-Hydroxyglutaric C01087
acid; Glutaric acid C00489
map05231 Choline metabolism in 1 5 0.0131 Choline C00114
cancer
map05143 African trypanosomiasis 1 7 0.0183 L-Kynurenine C00328
map04976 Bile secretion 2 93 0.0249 Uric acid; Choline C00366
C00114
map04071 Sphingolipid signaling 1 10 0.0260 Sphinganine C00836
pathway
map04725 Cholinergic synapse 1 10 0.0260 Choline C00114
map00061 Fatty acid biosynthesis 1 12 0.0311 Oleic acid C00712
map04931 Insulin resistance 1 12 0.0311 L-Acetylcarnitine C02571
map02010 ABC transporters 2 118 0.0385 L-Histidine; Choline C00135
C00114
map04723 Retrograde 1 15 0.0388 2-Arachidonoyl glycerol C13856
endocannabinoid
signaling
map04714 Thermogenesis 1 17 0.0438 2-Arachidonoyl glycerol C13856
(Continued)
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TABLE 1 (Continued)

Pathway ID Pathway i Count Adjusted KEGG Names KEGG IDs
p-value
FH vs. HC
map00470 D-Amino acid 2 65 0.0011 D-Aspartic acid; D-Serine C00402
metabolism C00740
map00250 Alanine, aspartate and 1 28 0.0216 D-Aspartic acid C00402
glutamate metabolism
map04977 Vitamin digestion and 1 30 0.0231 Menadione C05377
absorption
map04742 Taste transduction 1 32 0.0246 D-Serine C00740
map00071 Fatty acid degradation 1 39 0.0299 Glutaric acid C00489
map00260 Glycine, serine and 1 44 0.0337 D-Serine C00740
threonine metabolism
map00310 Lysine degradation 1 45 0.0344 Glutaric acid C00489
map04974 Protein digestion and 1 46 0.0352 4-Methylphenol C01468
absorption
map00120 Primary bile acid 1 47 0.0359 Cholic acid C00695
biosynthesis
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FIGURE 7
Metabolic pathway enrichment and differential abundance analysis across comparison groups. (A—C) Bubble plots representing metabolic pathway
enrichment for FH vs. Healthy (left), HC vs. Healthy (middle), and FH vs. HC (right). The X-axis denotes the Rich Factor, while the Y-axis lists enriched
pathways. Bubble size corresponds to the number of metabolites mapped to each pathway, and color intensity represents statistical significance
(adjusted p-value), with darker colors indicating higher significance. (D—F) Differential Abundance (DA) Score plots for FH vs. Healthy (left), HC vs.
Healthy (middle), and FH vs. HC (right). The X-axis represents the DA score, indicating the direction and magnitude of pathway regulation. Pink bars
represent upregulated pathways, while blue bars indicate downregulated pathways. Bubble size corresponds to the number of metabolites associated
with each pathway.

acid (52, 53). Concurrently, insulin resistance and impaired efficient HC patients also showed upregulation in the Bile secretion
fatty acid oxidation, evidenced by accumulation of S-oxidation  pathway with elevated levels of uric acid and choline, both of which
intermediates like L-acetylcarnitine (54). These findings suggest that  are involved in cholesterol metabolism and inflammatory responses.
dietary interventions and metabolic therapies targeting fatty acid  Elevated uric acid levels have been linked with dyslipidemia and
metabolism and insulin resistance may be especially beneficial for HC ~ insulin resistance (55, 56). Choline is involved in lipoprotein synthesis
patients, more so than for those with FH. and can reduce inflammatory markers (57, 58). These metabolites
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likely reflect compensatory metabolic responses in HC and may act as
HC-specific metabolic indicators.

Pathway enrichment analysis revealed that both FH and HC shared
disruptions in sphingolipid metabolism and signaling. FH patients
showed upregulation of sphinganine, while HC patients upregulated
both sphinganine and phytosphingosine. These sphingolipids are
involved in ceramide synthesis, which regulates cholesterol storage,
efflux, and inflammation (59-61). In particular, sphinganine may
contribute to disease progression and serve as a potential biomarker for
cardiovascular risk in both HC and FH (12, 61-65). The broader
sphingolipid remodeling in HC likely reflects the added effects of
insulin resistance and inflammation. Additionally, lysine degradation
was enriched by increased D-alpha-hydroxyglutaric acid in FH and HC,
and decreased glutaric acid in HC only. Increased D-alpha-
hydroxyglutaric acid, likely reflecting mitochondrial stress and
disrupted energy metabolism (66). In HC only, glutaric acid was
decreased, suggesting altered metabolic flux or increased downstream
utilization toward lipid biosynthesis. These shifts may influence
acetyl-CoA availability, a key precursor in cholesterol and fatty acid
synthesis (67).

Vitamin B6 metabolism was also altered, with pyridoxamine
upregulated in both FH and HG, likely reflecting oxidative stress and
inflammation (68, 69). Interestingly, 4-pyridoxic acid was only
elevated in HC, suggesting increased B6 turnover driven by metabolic
stress, inflammation, and insulin resistance (70, 71).

Sphinganine, D-a-hydroxyglutaric acid, and pyridoxamine were
altered in both FH and HC, suggesting shared disruptions in lipid
metabolism and oxidative stress. In contrast, dysregulation of
4-pyridoxic acid, glutaric acid, and phytosphingosine was more
pronounced in HC, likely driven by metabolic and lifestyle factors
such as diet, obesity, and insulin resistance.

Our data have certain limitations that should be considered when
interpreting the results. The relatively small sample size may limit the
statistical power and the ability to capture the full spectrum of metabolic
variation among individuals with FH and HC. In addition, several
detected metabolic features remained unannotated, reflecting the
current limitations of metabolite databases and highlighting
opportunities for the discovery of novel biomarkers. While this study
focused on untargeted profiling, the functional roles of the identified
metabolites were not explored, which may serve as a valuable direction
for future investigations to understand the mechanistic basis of
the disease.

5 Conclusion

This first untargeted metabolomics study in Saudi patients
comparing FH and HC revealed distinct metabolic profiles. FH
showed altered bile acid and steroid hormone metabolism, marked by
reduced cholic acid, elevated sphinganine, and 17a-OHP. In contrast,
HC exhibited lifestyle-related changes, including reduced UFAs,
increased L-acetylcarnitine, uric acid, and choline, reflecting insulin
resistance. Shared elevation of D-a-hydroxyglutaric acid and
pyridoxamine suggests common mitochondrial stress, while glutaric
acid, phytosphingosine, and 4-pyridoxic acid were more disrupted in
HC. These metabolites may serve as biomarkers to distinguish FH
from HC and support early diagnosis and personalized therapeutic
strategies in different hypercholesterolemia forms.
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Glossa ry BGI - Beijing Genomics Institute

FH - Familial Hypercholesterolemia AGC - Automatic Gain Control

HC - Non-genetic Hypercholesterolemia ESI - Electrospray Ionization

LDL-C - Low-Density Lipoprotein Cholesterol BMDB - BGI Metabolome Database

LDLR - Low-Density Lipoprotein Receptor PQN - Probabilistic Quotient Normalization

PCSKO9 - Proprotein Convertase Subtilisin/Kexin Type 9 QC-RLSC - Quality Control-based Robust LOESS Signal Correction

LDLRAP1 - Low-Density Lipoprotein Receptor Adaptor Protein 1 CV - Coefficient of Variation

17-OHP - 17a-Hydroxyprogesterone KEGG - Kyoto Encyclopedia of Genes and Genomes
CVDs - Cardiovascular Diseases HMDB - Human Metabolome Database
GPC - Glycerophosphocholine DEM - Differentially Expressed Metabolite

EP - Eppendorf
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