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Background: Familial hypercholesterolemia (FH) and non-genetic 
hypercholesterolemia (HC) are both associated with elevated low-density 
cholesterol (LDL-C) levels, which increase the risk of cardiovascular disease. 
However, their underlying metabolic disturbances differ significantly. 
Untargeted metabolomics offers a powerful approach for identifying disease-
specific metabolic signatures and potential biomarkers, thereby contributing to 
precision medicine applications.
Methods: A high-resolution metabolomics analysis was performed using ultra-
performance liquid chromatography coupled with quadrupole time-of-flight 
mass spectrometry (UPLC-Q-TOF/MS) on plasma samples from FH, HC, and 
healthy Saudi individuals. Differentially expressed metabolites were identified 
through univariate and multivariate analyses, followed by pathway enrichment 
analysis using the KEGG database.
Results: Metabolic profiling revealed distinct alterations in bile acid biosynthesis 
and steroid metabolism pathways in FH. Cholic acid was significantly 
downregulated, while 17α-hydroxyprogesterone (17α-OHP) was significantly 
elevated in FH. In contrast, HC was characterized by increased uric acid 
and choline levels, along with dysregulation in oleic acid and linoleic acid 
metabolism. Notably, both FH and HC groups were dysregulated in Sphinganine, 
D-α-hydroxyglutaric acid, and pyridoxamine.
Conclusion: This study demonstrates the utility of untargeted metabolomics 
in distinguishing FH from HC, identifying 17α-OHP and cholic acid as potential 
FH biomarkers, while uric acid and choline may serve as HC-specific metabolic 
markers. These findings provide new insights for personalized interventions, 
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enhancing disease stratification and therapeutic decision-making between 
genetic and non-genetic hypercholesterolemia.
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familial hypercholesterolemia, untargeted metabolomics, KEGG database, biomarkers, 
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1 Introduction

Hypercholesterolemia is a metabolic disorder characterized by 
elevated low-density lipoprotein cholesterol (LDL-C), contributing 
significantly to atherosclerosis and cardiovascular diseases (CVDs) 
(1). Primary hypercholesterolemia includes familial 
hypercholesterolemia (FH, OMIM #143890), a monogenic disorder 
caused by variants in genes such as LDLR, APOB, and PCSK9 
(autosomal dominant), or LDLRAP1 (autosomal recessive) (2, 3). 
These genetic alterations impair LDL-C clearance, leading to 
persistently high cholesterol levels from an early age and an increased 
risk of premature CVD. The global prevalence of FH is approximately 
1 in 250, but it is substantially higher in the Gulf region, around 1 in 
112, due to high consanguinity rates (4–7). Despite this, omics-based 
studies, particularly metabolomics, remain limited in Middle Eastern 
populations. In parallel, secondary or non-genetic 
hypercholesterolemia, which is driven by factors such as diet, obesity, 
and metabolic syndrome, may exhibit clinical features similar to those 
of inherited forms, making it difficult to distinguish between them 
using standard lipid profiling (1, 8, 9). Given that genetic variants can 
directly influence metabolic pathways, individuals with FH are likely 
to exhibit distinct metabolic signatures compared to those with 
secondary hypercholesterolemia (10). Understanding these differences 
is critical for accurate diagnosis, personalized risk assessment, and 
targeted treatment.

Untargeted metabolomics enables comprehensive profiling of 
small molecules, offering a powerful approach to identify disease-
specific metabolic phenotypes and biomarkers that reflect both genetic 
and environmental influences on lipid metabolism (11, 12). Among 
various platforms, untargeted metabolomics using ultra-performance 
liquid chromatography coupled with quadrupole time-of-flight mass 
spectrometry (UPLC-Q-TOF/MS) offers high sensitivity and broad 
metabolite coverage, enabling detailed profiling of both the 
metabolome and lipidome (13, 14). This approach surpasses 
traditional lipid panels by uncovering disturbances in key metabolic 
pathways, such as in bile acid biosynthesis, steroid hormone 
metabolism, and oxidative stress, while simultaneously providing 
mechanistic insights into cholesterol-related pathologies like 
atherosclerosis, thereby facilitating biomarker discovery, improving 
disease classification, and advancing precision medicine strategies 
(15–17). A recent cross-sectional study conducted, utilizing LC–
MS-based untargeted metabolomics, successfully identified unique 
metabolites associated with different FH forms. The analysis identified 
seven key discriminatory metabolites, including lithocholic acid 
(LCA), triacylglycerol TAG 52:2, 3-phenylpropionate, pipecolic acid, 
3-indolepropionic acid, isocitric acid, and glycerophosphocholine 
(GPC) 38:5 (18).

Despite these advances, no studies to date have applied untargeted 
metabolomics to differentiate genetic and non-genetic forms of 

hypercholesterolemia in the Saudi population, which is characterized 
by unique genetic backgrounds and high rates of early-onset 
CVD. Therefore, this study aims to apply untargeted high-resolution 
metabolomics to distinguish between familial and secondary 
hypercholesterolemia in Saudi patients, identify disease-specific 
metabolic signatures, and uncover clinically relevant biomarkers. 
These insights are expected to advance disease classification and 
support the implementation of precision medicine strategies in 
hypercholesterolemia management.

Studying hypercholesterolemia in the Saudi population with its 
unique genetic background and high incidence of early-onset CVD 
presents a valuable opportunity to fill a key knowledge gap and 
advance precision medicine strategies tailored to the region. This 
study aims to apply untargeted high-resolution metabolomics to 
differentiate familial and non-genetic hypercholesterolemia in Saudi 
patients, identify specific metabolic signatures, and discover potential 
biomarkers for clinical use. These insights are expected to support 
precision medicine by improving disease classification and 
individualized treatment strategies.

2 Materials and methods

2.1 Study population

This study was approved by the Biomedical Ethics and Research 
Committee at King Abdulaziz University, Jeddah, Saudi  Arabia 
(Reference Number: 220–22). Families were recruited from the Genetic 
Dyslipidemia and Familial Hypercholesterolemia Clinic at King 
Abdulaziz University Hospital, Jeddah, Saudi Arabia. The study included 
three groups of participants: familial hypercholesterolemia (FH), 
hypercholesterolemia (HC), and healthy controls (Healthy), consisting 
of both index patients and unaffected family members as controls.

2.2 Sample collection

A 3 mL blood EDTA tube was collected after 10–12 h of fasting, 
and only individuals without prior lipid-lowering treatment or 
medication were included. The groups were classified based on LDL-C 
levels determined through biochemical laboratory testing and genetic 
testing results (1, 8, 9). Participants were classified based on the results 
of biochemical and genetic testing, as reported previously (19).

The Healthy group included individuals with LDL-C levels below 
100 mg/dL and no detected pathogenic variants in the FH-related 
genes. The HC consisted of individuals with LDL-C levels ranging 
from 130 to 159 mg/dL, without confirmed variants in the FH-related 
genes. The FH group included individuals with LDL-C levels ≥190 mg/
dL and a confirmed pathogenic variant in the FH-related genes.
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2.3 Metabolites extraction

For a plasma separation, blood was centrifuged at 2,000 × g for 
15 min at 4 °C, and the supernatant was aliquoted (100–200 μL) into 
a sterile Eppendorf (EP) tube. Plasma samples were then stored at 
−80 °C until further sample processing.

For metabolite extraction, 100 μL of plasma was mixed with 700 μL 
of extraction solvent containing an internal standard (Methanol: 
Acetonitrile: Water, 4:2:1, v/v/v). The mixture was vortexed for 1 min 
and incubated at −20 °C for 2 h, then centrifuged at 25,000 × g at 4 °C 
for 15 min. After centrifugation, 600 μL of the supernatant was 
transferred to a new EP tube and dried using a vacuum concentrator. 
The dried extracts were reconstituted in 180 μL of Methanol: Water 
(1:1, v/v), vortexed for 10 min, and centrifuged again at 25,000 × g at 
4 °C for 15 min to remove any insoluble debris. The final supernatants 
were transferred to fresh EP tubes for downstream metabolomic analysis.

2.4 Liquid chromatography-mass 
spectrometry (LC–MS) workflow

The metabolomics analysis was conducted in collaboration with 
the Beijing Genomics Institute (BGI). Metabolite separation and 
detection were performed using a Waters UPLC I-Class Plus system 
(Waters, USA) coupled with a Q Exactive Orbitrap high-resolution 
tandem mass spectrometer (Thermo Fisher Scientific, USA). 
Chromatographic separation was carried out using a Waters 
ACQUITY UPLC BEH C18 column (1.7 μm, 2.1 mm × 100 mm, 
Waters, USA), with the column temperature maintained at 45 °C.

The mobile phase was prepared based on the ionization mode. 
In positive ion mode, the mobile phase consisted of 0.1% formic acid 
(A) and acetonitrile (B), whereas in negative ion mode, the mobile 
phase contained 10 mM ammonium formate (A) and acetonitrile 
(B). A gradient elution program was applied with an initial 0 to 1 min 
2% B, linearly increasing to 98% B from 1 to 9 min, maintaining 98% 
B from 9 to 12 min, then reverting to 2% B at 12.1 min, followed by 
equilibration at 2% B for 12.1 to 15 min. The flow rate was maintained 
at 0.35 mL/min, and the injection volume was 5 μL.

Mass spectrometric analysis was performed using full scan and 
tandem MS (MS/MS). The scan range was set from 70 to 1,050 m/z, with 
a resolution of 70,000 for full MS scans. The Automatic Gain Control 
(AGC) target was configured to 3 × 106, with a maximum ion injection 
time of 100 ms. For MS/MS fragmentation, the top 3 precursor ions were 
selected per cycle with an injection time of 50 ms, a resolution of 17,500, 
and the AGC was 1 × 105. The stepped normalized collision energy was 
20, 40, and 60 eV to enhance fragmentation efficiency. Electrospray 
ionization (ESI) settings were optimized as follows: the sheath gas flow 
rate was set to 40, and the auxiliary gas flow rate was set to 10. The spray 
voltage was adjusted to 3.80 kV for positive ion mode and 3.20 kV for 
negative ion mode. The capillary temperature was maintained at 320 °C, 
while the auxiliary gas heater temperature was set to 350 °C.

2.5 Peak area and metabolites 
identification

The generated mass spectrometry data were imported and 
processed using Compound Discoverer v3.3 (Thermo Fisher Scientific, 

USA)1. To ensure comprehensive metabolite identification, multiple 
databases, including BGI Metabolome Database (BMDB), mzCloud, 
and ChemSpider (HMDB, KEGG, LipidMaps) databases, were used 
for metabolite peak areas extraction and metabolite identification.

2.6 Data processing

The results file generated from Compound Discoverer v3.3 was 
imported into MetaX software (20) for data preprocessing and statistical 
analysis. To minimize technical variability and enhance the reliability of 
metabolomic data, the following preprocessing steps were implemented. 
Probabilistic Quotient Normalization (PQN) was applied to normalize 
metabolite intensities by generating a reference vector based on ion 
intensity distribution across all samples and adjusting each sample 
accordingly (21). Additionally, Quality Control-based Robust LOESS 
Signal Correction (QC-RLSC) was implemented to correct batch effects 
using local polynomial regression fitting based on QC samples to 
enhance signal consistency (22). To ensure high-quality and reproducible 
data for downstream analysis, metabolites with a Coefficient of Variation 
(CV) > 30% across QC samples were considered unstable and excluded.

The identified substances were classified into different credibility 
levels based on available matching criteria, including MS1 molecular 
weight, MS2 fragment spectra, column retention time, and the presence 
of reference standards. Level 1 represents the highest credibility, where 
substances are accurately identified using both the standard databases 
and laboratory data. Level 2 includes substances with a structural 
formula that matches the standard databases. Level 3 substances 
partially match the database but require further validation. Level 4 
substances are identified solely based on accurate MS1 molecular weight 
matching the database. Level 5 represents the lowest credibility, with no 
matches or identification results available in the database. The credibility 
of identification decreases progressively from Level 1 to Level 5.

2.7 Overall metabolites analysis

To gain more insight into the biological functions and 
classifications of the identified metabolites from levels 1 to 4. The 
identified metabolites were analyzed and annotated using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and the Human 
Metabolome Database (HMDB). The analysis of identified metabolites 
was categorized according to their Super Pathway. However, for lipid 
molecules, the Sub Pathway classification was used instead.

2.8 Differential metabolite screening

Univariate analysis was conducted to assess the statistical significance 
of differences in metabolite expression between comparison groups, with 
fold change (FC) calculated as the ratio of metabolite levels and t-tests 
used for statistical evaluation. Metabolites were considered differentially 
expressed if they met the threshold of FC ≥ 1.2 or ≤ 0.83 and adjusted 
p-value < 0.05. The log₂FC transformation was applied to normalize data 

1  https://mycompounddiscoverer.com
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distribution and enhance interpretability. Statistical significance was 
determined using t-tests, and adjusted p-values were adjusted for 
multiple comparisons using the Benjamini-Hochberg method to control 
the False Discovery Rate (FDR). The log₂FC and adjusted p-value were 
used for downstream statistical analysis. The volcano plots were 
generated to visualize differentially expressed metabolites (DEMs), 
highlighting significantly upregulated and downregulated metabolites 
based on their fold changes and adjusted p-values. Metabolites with a 
high absolute log₂ fold change and adjusted p-value were considered 
statistically significant. Heatmaps were generated to illustrate clustering 
patterns of DEMs between experimental groups.

In multivariate analysis, the orthogonal partial least squares 
discriminant analysis (OPLS-DA) is used to develop predictive models 
and identify key metabolites by distinguishing between systematic and 
orthogonal variance. This enhances classification accuracy and 
provides a robust evaluation of metabolic distinctions.

2.9 Correlation analysis

Chord diagrams were constructed to evaluate metabolite 
co-regulation relationships based on the Spearman correlation 
coefficient (|r| > 0.8, p < 0.05). These diagrams provide an intuitive 
visualization of metabolite-metabolite interactions, distinguishing 
between synergistic (positive correlations) and antagonistic (negative 
correlations), with color variations representing different correlation 
patterns. The primary objective of differential metabolite correlation 
analysis was to assess the consistency of metabolite fluctuations and 
determine their interdependence.

2.10 Pathway enrichment analysis

Metabolic pathway enrichment analysis of DEMs was performed 
using the KEGG database to identify significantly altered pathways 
and interpret biological phenotypes. Pathways with adjusted p-value < 
0.05 were considered significantly enriched, highlighting key 
metabolic shifts. To provide a comprehensive view of metabolic 
alterations, the Differential Abundance (DA) Score method was 
applied to evaluate cumulative metabolite changes within specific 
pathways. The DA score ranges from −1 to +1, where +1 indicates 
complete upregulation of a pathway, 0 represents no significant change, 
and −1 denotes complete downregulation. Intermediate values reflect 
partial upregulation or downregulation based on the proportion of 
upregulated and downregulated metabolites within the pathway.

3 Results

3.1 Sample description

In this study, 16 fasting plasma samples were analyzed and 
categorized into three groups: FH (n = 7), HC (n = 4), and Healthy 
(n = 5). The average LDL-C levels were 367.3 ± 101.8 mg/dL in the FH 
group. This level was approximately 3.9 times higher than that of the 
Healthy group (94.6 ± 11.4 mg/dL) and 2.6 times higher than that of the 
HC group (139.2 ± 4.5 mg/dL). Genetically, all participants in the FH 
group carried a heterozygous mutation in the LDLR gene (c.2416dupG 

and c.103C > T), while other groups were negative for FH-related 
genes. For comparative analysis, three pairwise comparisons were 
conducted: FH vs. Healthy, HC vs. Healthy, and FH vs. HC to assess 
metabolic variations across groups. Sample characteristics, including 
LDL-C measurement, are detailed in the Supplementary Table 1.

3.2 Chromatographic and mass 
spectrometric analysis

Untargeted metabolomics profiling in both positive and negative 
ion modes revealed a diverse range of metabolites across the 15-min 
chromatographic run. As shown in the Base Peak Chromatograms 
(BPC) (Supplementary Figure 1), the wide distribution of peaks in 
both ionization modes confirms broad metabolite coverage and 
efficient chromatographic separation.

In positive ion mode, prominent features were observed at 7.36, 
9.71, and 12.75 min, corresponding to abundant hydrophobic 
metabolites, while earlier peaks (at 0.88 and 2.67 min) indicated the 
presence of polar compounds. The negative mode captured a distinct 
profile of acidic and polar metabolites, with major peaks detected at 
9.73, 10.32, and 12.83 min.

3.3 Metabolites detection and identification

After data preprocessing, a total of 4,850 metabolites were detected, 
of which 4,329 metabolites had a CV ≤ 30%. These metabolites were 
mapped and classified based on their level of credibility as described in 
the methods (section 2.6). Figure 1 shows that only 1,359 substances 
were mapped from Level 1 to Level 4, considered identified, while the 
remaining metabolites were classified as Level 5 (unidentified). 
Furthermore, identified metabolites with putative names were 
annotated using the HMDB and KEGG databases and subsequently 
classified into four major categories: lipids, phytochemical compounds, 
biologically active compounds, and others. Among these, lipids 
(n = 132) and amino acids, peptides, and analogues (n = 64) represented 
the two largest classes. Detailed metabolite classifications and KEGG 
pathway annotations are provided in Supplementary Figure 2.

3.4 Differential metabolites screening and 
analysis

Univariate analysis across the three groups identified DMEs and 
revealed distinct distribution patterns (Figure 2). In the FH vs. Healthy 
group, 98 DEMs were identified, with 60 upregulated and 38 
downregulated. For the HC vs. Healthy group, 175 DEMs were 
identified, comprising 75 upregulated and 100 downregulated. Finally, 
in the FH vs. HC group, 83 DEMs were identified, including 38 
upregulated and 45 downregulated (Figure 3). The significant DEMs 
annotated with HMDB and KEGG IDs were included in the 
enrichment analysis (Supplementary Table 2).

We then performed a multivariate statistical analysis using 
OPLS-DA, which revealed clear ellipses among the FH, HC, and 
Healthy groups.

The FH vs. Healthy comparison showed a T score of 12.4% and an 
Orthogonal T score of 13.2%. The HC vs. Healthy comparison had a 
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T score of 22.8% and an Orthogonal T score of 17.4%. The FH vs. HC 
comparison showed a T score of 11.7% and an Orthogonal T score of 
12.9% (Figure 4).

3.5 DEMs co-regulation relationships

The correlation analysis revealed distinct patterns of metabolite 
interactions across the three comparison groups (Figure 5). In the FH 
vs. Healthy comparison (Figure  5A), strong positive intra-class 
correlations were observed among glycerophospholipids and steroid 
derivatives, suggesting a tightly regulated lipid metabolic network in 
individuals with FH. In contrast, negative correlations were noted 
between glycerophospholipids and amino sugar-related metabolites, 
indicating a possible dysregulation in membrane lipid signaling and 
transport. The FH vs. HC analysis demonstrated more divergent 
correlation patterns, where glycerophospholipids showed both 
positive and negative correlations with fatty acyls and bile acid 
derivatives (Figure 5B). These findings may reflect distinct bile acid 
biosynthesis, lipid remodeling, and oxidative stress response pathways 
that characterize genetically driven FH compared to HC. In the HC 
vs. Healthy group, a broader range of negative correlations was found 
across fatty acyls and glycerophospholipids, consistent with disrupted 
lipid regulation and systemic metabolic imbalance in HC (Figure 5C). 
These findings highlight the distinct metabolic network reorganization 
observed between FH and HC, emphasizing the role of lipid subclass-
specific interactions as key contributors to the pathophysiology of 
different forms of hypercholesterolemia.

3.6 Pathway enrichment analysis

Metabolic pathway enrichment analysis was performed using the 
KEGG database to identify significantly altered pathways across the 

comparison groups. The top enriched pathways were visualized using 
a bubble plot in Figure 6, with detailed results presented in Table 1 and 
Supplementary Table 3.

Shared and unique pathways are illustrated in Figure 6A. The 
Venn diagram showed the shared metabolites between the comparison 
groups (Figure  6B). Interestingly, the lysine degradation pathway 
(KEGG: map00310) was consistently enriched across all three 
comparative groups. In the FH vs. Healthy comparison, the pathway 
was significantly altered (adjusted p-value = 0.0499) due to the 
upregulation of D-α-hydroxyglutaric acid. In the HC vs. Healthy 
group, this pathway exhibited stronger significance (adjusted 
p-value = 0.0062) and involved two metabolites: D-α-hydroxyglutaric 
acid and glutaric acid. However, glutaric acid displayed opposite 
expression in the two comparisons: it was downregulated in HC vs. 
Healthy, but upregulated in FH vs. HC, where the lysine degradation 
pathway remained significant (adjusted p-value = 0.0344). The 
sphingolipid signaling pathway (KEGG: map04071) and sphingolipid 
metabolism pathway (KEGG: map00600) were significantly enriched 
in both FH and HC groups compared to healthy controls. In the FH 
vs. Healthy comparison, these pathways were enriched with 
sphinganine (KEGG: C00836) (adjusted p-value = 0.0113 and 0.0124, 
respectively). In contrast, in the HC vs. Healthy comparison, 
enrichment was driven by elevated levels of sphinganine and 
phytosphingosine (adjusted p-value  = 0.0260 and 0.0004, 
respectively).

In the FH vs. Healthy comparison, the cortisol synthesis and 
secretion pathway (KEGG: map04927) was significantly enriched 
(adjusted p-value = 0.0136), with upregulation of D-α-
hydroxyglutaric acid (Figures  7A,D). In the HC vs. Healthy 
comparison, significant alterations were observed in the bile 
secretion pathway (KEGG: map04976, adjusted p-value = 0.0249) 
and insulin resistance pathway (KEGG: map04931, adjusted 
p-value = 0.0311), accompanied by upregulation of uric acid, choline, 
and L-acetylcarnitine. Meanwhile, the fatty acid biosynthesis 

FIGURE 1

Metabolite identification. (A) The pie chart illustrates the proportion of identified metabolites (1,359) versus unidentified metabolites (2,970). Identified 
metabolites are classified into five levels based on credibility, with Level 1 representing the highest credibility and Level 5 the lowest. (B) The bar chart 
displays the distribution of identified metabolites across different databases (BMDB, mzCloud, KEGG, and HMDB), with each bar segmented by 
credibility levels (Level 1 to Level 3), demonstrating the contribution of each database to metabolite classification and functional annotation.
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pathway (KEGG: map00061, adjusted p-value  = 0.0311) was 
downregulated, reflected by decreased oleic and linoleic acid levels 
(Figures 7B,E).

The FH vs. HC analysis revealed significant enrichment in the 
primary bile acid biosynthesis pathway (KEGG: map00120, adjusted 
p-value = 0.0359), with downregulation of cholic acid 
(Figures 7C,F).

4 Discussion

Familial hypercholesterolemia is a metabolic disorder associated 
with a significantly increased risk of cardiovascular diseases and other 
health complications (23). Metabolomics, the comprehensive study of 
metabolites within biological systems, has emerged as a powerful tool 
in elucidating hyperlipidemic conditions characterized by elevated lipid 

FIGURE 2

Visualization of differential metabolite analysis across comparison groups. (A–C) Volcano plots for FH vs. Healthy (left), HC vs. Healthy (middle), and FH 
vs. HC (right), illustrating the relationship between log₂ (Fold Change) (X-axis) and −log₁₀ (p-value) (Y-axis). Metabolites are classified as upregulated 
(red), downregulated (green), or non-significant (blue). (D–F) Heatmaps displaying the expression patterns of differentially expressed metabolites 
across FH vs. Healthy (left), HC vs. Healthy (middle), and FH vs. HC (right). Hierarchical clustering reveals metabolic variations between groups. The 
color scale represents log₂-transformed expression values, where red indicates upregulation and blue indicates downregulation.

FIGURE 3

Distribution of differential metabolites across comparison groups. (A) Bar plot displaying the number of upregulated (red) and downregulated (blue) 
metabolites in FH vs. Healthy, FH vs. HC, and HC vs. Healthy groups. (B) Venn diagram illustrating the overlap of differentially expressed metabolites 
among the three comparison groups, highlighting both shared and unique metabolites.
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levels in the bloodstream (24, 25). This approach not only enables the 
identification of novel biomarkers for early diagnosis but also provides 
insights into the efficacy of therapeutic interventions (17, 26). In this 
study, untargeted metabolomics revealed distinct metabolic alterations 
in both FH patients carrying LDLR variants (c.2416dupG, c.103C > T) 
and in individuals with HC, compared to healthy controls. KEGG 
pathway enrichment analysis (adjusted p < 0.05) showed significant 
disruptions in lipid metabolism across both groups. Although both FH 
and HC are characterized by elevated LDL-C levels, their underlying 
metabolic mechanisms differ. This distinction is clinically important, 
as FH is a monogenic disorder caused by inherited variants in lipid-
regulating genes, whereas HC typically results from environmental 
factors, dietary habits, and broader metabolic dysregulation (1, 8, 9).

The FH group, when compared to healthy controls, exhibited 
significant enrichment in three metabolic pathways, including cortisol 
synthesis and secretion, Cushing syndrome, and ovarian 
steroidogenesis, primarily driven by elevated levels of 
17α-hydroxyprogesterone (17α-OHP). As cholesterol is the precursor 
for all steroid hormones, these findings suggest FH caused by LDLR 
variants may prompt alternative tissues, such as the adrenal glands, 

cells can maintain high intracellular cholesterol by increasing 
cholesterol uptake via HDL pathways via scavenger receptors (27) and 
under sustained ACTH stimulation (28) which together upregulate 
steroidogenic enzymes such as CYP17A1 (17α-hydroxylase) (29, 30); 
consequently, the heightened steroidogenic flux can exceed the 
capacity of downstream steps like 21-hydroxylation by CYP21A2, 
leading to a bottleneck that causes accumulation of precursor steroids, 
notably 17α-OHP. Previous studies show that Elevated LDL enhances 
adrenal steroidogenesis by increased ACTH stimulation, commonly 
associated with metabolic stress in FH, resulting in elevated 17α-OHP 
levels due to a bottleneck at the CYP21A2 enzyme step (31–33). 
Clinically, 17α-OHP is a key diagnostic biomarker for congenital 
adrenal hyperplasia (34–36). In addition, elevated 17α-OHP can lead 
to an increased risk of cardiovascular (37). These alterations may 
contribute to broader metabolic and endocrine dysregulation in FH 
patients, particularly in the context of our study, where the majority 
of participants were female, suggesting potential sex-specific metabolic 
responses. The upregulation of 17α-OHP highlights a potential 
crosstalk between lipid metabolism and adrenal steroidogenesis in FH 
patients, and this metabolite is considered a secondary metabolite.

FIGURE 4

OPLS-DA score plots for metabolic differentiation across groups. (A) FH vs. Healthy, (B) HC vs. Healthy, and (C) FH vs. HC, illustrating distinct clustering 
patterns that highlight metabolic differences between groups. The separation of ellipses indicates variations in metabolic profiles across the groups.

FIGURE 5

Correlation chord diagrams of metabolite relationships for comparison groups. (A) FH vs. Healthy. (B) FH vs. HC. (C) HC vs. Healthy. Color Key: Red: 
Positive correlations. Blue: Negative correlations. Connections represent significant correlations (p < 0.05) between metabolite pairs.
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On the other hand, comparisons of FH and HC patients revealed 
a significant dysregulation in primary bile acid biosynthesis, showing 
that cholic acid levels were significantly downregulated in FH (38, 39). 
This indicates impaired primary bile acid biosynthesis, likely due to 
increased intracellular cholesterol that suppresses bile acid synthesis 
via negative feedback on CYP7A1 (40). Disruption of bile acid 
metabolism in FH may hinder lipid digestion and feedback regulation, 
contributing to further cholesterol accumulation (41–43). Moreover, 
the bile acid impairment observed in familial hypercholesterolemia 
highlights a significant therapeutic gap. Traditional bile acid 
sequestrants (BASs), such as cholestyramine, may be  insufficient. 
Emerging biopolymer-based BASs could provide improved FH 
management by modulating both cholesterol and bile acid metabolic 
pathways (44–46). These findings indicate that cholic acid has the 

potential to serve as a discriminative biomarker between familial and 
non-genetic forms of hypercholesterolemia.

In the HC group, there was a significant downregulation in the 
biosynthesis pathways of unsaturated fatty acids (UFAs), including oleic 
acid, linoleic acid, and 11(Z),14(Z)-eicosadienoic acid, alongside 
alterations in insulin resistance-related metabolites such as 
L-acetylcarnitine. It is plausible that these shifts reflect lipid 
accumulation and impaired fatty acid oxidation, both of which are 
known to contribute to insulin resistance and metabolic inflexibility 
(47). These UFAs, particularly monounsaturated (MUFAs) and 
polyunsaturated fatty acids (PUFAs), are vital for cholesterol transport 
and CVD prevention (48–51). Reduced levels may be driven by insulin 
resistance, which suppresses stearoyl-CoA desaturase-1 (SCD1), the 
enzyme converting saturated fatty acids into MUFAs, including oleic 

FIGURE 6

Shared and unique pathways and metabolites among comparison groups. (A) Venn diagram showing the number of significant metabolic pathways 
(adjusted p-value < 0.05) shared and unique among the three pairwise comparisons: FH vs. Healthy, FH vs. HC, and HC vs. Healthy. (B) Venn diagram 
displaying the significant metabolites contributing to those pathways, categorized by their regulation status (upregulated or downregulated) in each 
comparison.
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TABLE 1  KEGG pathway enrichment analysis across comparison groups.

Pathway ID Pathway Hit Count Adjusted
p-value

KEGG Names KEGG IDs

FH vs. Healthy

map04071 Sphingolipid signaling 

pathway

1 10 0.0113 Sphinganine C00836

map00600 Sphingolipid metabolism 1 11 0.0124 Sphinganine C00836

map04927 Cortisol synthesis and 

secretion

1 12 0.0136 17alpha-Hydroxyprogesterone C01176

map04934 Cushing syndrome 1 13 0.0147 17alpha-Hydroxyprogesterone C01176

map04913 Ovarian steroidogenesis 1 23 0.0258 17alpha-Hydroxyprogesterone C01176

map00740 Riboflavin metabolism 1 24 0.0269 Ribitol C00474

map00970 Aminoacyl-tRNA 

biosynthesis

1 24 0.0269 L-Proline C00148

map04978 Mineral absorption 1 29 0.0325 L-Proline C00148

map00750 Vitamin B6 metabolism 1 29 0.0325 Pyridoxamine C00534

map04977 Vitamin digestion and 

absorption

1 30 0.0336 Pyridoxamine C00534

map05230 Central carbon 

metabolism in cancer

1 37 0.0412 L-Proline C00148

map00310 Lysine degradation 1 45 0.0499 D-alpha-Hydroxyglutaric acid C01087

HC vs. Healthy

map00600 Sphingolipid metabolism 2 11 0.0004 Sphinganine; 

Phytosphingosine

C00836

C12144

map01040 Biosynthesis of 

unsaturated fatty acids

3 69 0.0008 Oleic acid; Linoleic acid; 

11(Z),14(Z)-Eicosadienoic 

acid

C00712

C01595

C16525

map00380 Tryptophan metabolism 3 83 0.0013 L-Kynurenine; Indoleacetic 

acid;5-Hydroxyindoleacetic 

acid

C00328

C00954

C05635

map00750 Vitamin B6 metabolism 2 29 0.0026 4-Pyridoxic acid; 

Pyridoxamine

C00847

C00534

map00310 Lysine degradation 2 45 0.0062 D-alpha-Hydroxyglutaric 

acid; Glutaric acid

C01087

C00489

map05231 Choline metabolism in 

cancer

1 5 0.0131 Choline C00114

map05143 African trypanosomiasis 1 7 0.0183 L-Kynurenine C00328

map04976 Bile secretion 2 93 0.0249 Uric acid; Choline C00366

C00114

map04071 Sphingolipid signaling 

pathway

1 10 0.0260 Sphinganine C00836

map04725 Cholinergic synapse 1 10 0.0260 Choline C00114

map00061 Fatty acid biosynthesis 1 12 0.0311 Oleic acid C00712

map04931 Insulin resistance 1 12 0.0311 L-Acetylcarnitine C02571

map02010 ABC transporters 2 118 0.0385 L-Histidine; Choline C00135

C00114

map04723 Retrograde 

endocannabinoid 

signaling

1 15 0.0388 2-Arachidonoyl glycerol C13856

map04714 Thermogenesis 1 17 0.0438 2-Arachidonoyl glycerol C13856

(Continued)
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acid (52, 53). Concurrently, insulin resistance and impaired efficient 
fatty acid oxidation, evidenced by accumulation of β-oxidation 
intermediates like L-acetylcarnitine (54). These findings suggest that 
dietary interventions and metabolic therapies targeting fatty acid 
metabolism and insulin resistance may be especially beneficial for HC 
patients, more so than for those with FH.

HC patients also showed upregulation in the Bile secretion 
pathway with elevated levels of uric acid and choline, both of which 
are involved in cholesterol metabolism and inflammatory responses. 
Elevated uric acid levels have been linked with dyslipidemia and 
insulin resistance (55, 56). Choline is involved in lipoprotein synthesis 
and can reduce inflammatory markers (57, 58). These metabolites 

TABLE 1  (Continued)

Pathway ID Pathway Hit Count Adjusted
p-value

KEGG Names KEGG IDs

FH vs. HC

map00470 D-Amino acid 

metabolism

2 65 0.0011 D-Aspartic acid; D-Serine C00402

C00740

map00250 Alanine, aspartate and 

glutamate metabolism

1 28 0.0216 D-Aspartic acid C00402

map04977 Vitamin digestion and 

absorption

1 30 0.0231 Menadione C05377

map04742 Taste transduction 1 32 0.0246 D-Serine C00740

map00071 Fatty acid degradation 1 39 0.0299 Glutaric acid C00489

map00260 Glycine, serine and 

threonine metabolism

1 44 0.0337 D-Serine C00740

map00310 Lysine degradation 1 45 0.0344 Glutaric acid C00489

map04974 Protein digestion and 

absorption

1 46 0.0352 4-Methylphenol C01468

map00120 Primary bile acid 

biosynthesis

1 47 0.0359 Cholic acid C00695

FIGURE 7

Metabolic pathway enrichment and differential abundance analysis across comparison groups. (A–C) Bubble plots representing metabolic pathway 
enrichment for FH vs. Healthy (left), HC vs. Healthy (middle), and FH vs. HC (right). The X-axis denotes the Rich Factor, while the Y-axis lists enriched 
pathways. Bubble size corresponds to the number of metabolites mapped to each pathway, and color intensity represents statistical significance 
(adjusted p-value), with darker colors indicating higher significance. (D–F) Differential Abundance (DA) Score plots for FH vs. Healthy (left), HC vs. 
Healthy (middle), and FH vs. HC (right). The X-axis represents the DA score, indicating the direction and magnitude of pathway regulation. Pink bars 
represent upregulated pathways, while blue bars indicate downregulated pathways. Bubble size corresponds to the number of metabolites associated 
with each pathway.
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likely reflect compensatory metabolic responses in HC and may act as 
HC-specific metabolic indicators.

Pathway enrichment analysis revealed that both FH and HC shared 
disruptions in sphingolipid metabolism and signaling. FH patients 
showed upregulation of sphinganine, while HC patients upregulated 
both sphinganine and phytosphingosine. These sphingolipids are 
involved in ceramide synthesis, which regulates cholesterol storage, 
efflux, and inflammation (59–61). In particular, sphinganine may 
contribute to disease progression and serve as a potential biomarker for 
cardiovascular risk in both HC and FH (12, 61–65). The broader 
sphingolipid remodeling in HC likely reflects the added effects of 
insulin resistance and inflammation. Additionally, lysine degradation 
was enriched by increased D-alpha-hydroxyglutaric acid in FH and HC, 
and decreased glutaric acid in HC only. Increased D-alpha-
hydroxyglutaric acid, likely reflecting mitochondrial stress and 
disrupted energy metabolism (66). In HC only, glutaric acid was 
decreased, suggesting altered metabolic flux or increased downstream 
utilization toward lipid biosynthesis. These shifts may influence 
acetyl-CoA availability, a key precursor in cholesterol and fatty acid 
synthesis (67).

Vitamin B6 metabolism was also altered, with pyridoxamine 
upregulated in both FH and HC, likely reflecting oxidative stress and 
inflammation (68, 69). Interestingly, 4-pyridoxic acid was only 
elevated in HC, suggesting increased B6 turnover driven by metabolic 
stress, inflammation, and insulin resistance (70, 71).

Sphinganine, D-α-hydroxyglutaric acid, and pyridoxamine were 
altered in both FH and HC, suggesting shared disruptions in lipid 
metabolism and oxidative stress. In contrast, dysregulation of 
4-pyridoxic acid, glutaric acid, and phytosphingosine was more 
pronounced in HC, likely driven by metabolic and lifestyle factors 
such as diet, obesity, and insulin resistance.

Our data have certain limitations that should be considered when 
interpreting the results. The relatively small sample size may limit the 
statistical power and the ability to capture the full spectrum of metabolic 
variation among individuals with FH and HC. In addition, several 
detected metabolic features remained unannotated, reflecting the 
current limitations of metabolite databases and highlighting 
opportunities for the discovery of novel biomarkers. While this study 
focused on untargeted profiling, the functional roles of the identified 
metabolites were not explored, which may serve as a valuable direction 
for future investigations to understand the mechanistic basis of 
the disease.

5 Conclusion

This first untargeted metabolomics study in Saudi patients 
comparing FH and HC revealed distinct metabolic profiles. FH 
showed altered bile acid and steroid hormone metabolism, marked by 
reduced cholic acid, elevated sphinganine, and 17α-OHP. In contrast, 
HC exhibited lifestyle-related changes, including reduced UFAs, 
increased L-acetylcarnitine, uric acid, and choline, reflecting insulin 
resistance. Shared elevation of D-α-hydroxyglutaric acid and 
pyridoxamine suggests common mitochondrial stress, while glutaric 
acid, phytosphingosine, and 4-pyridoxic acid were more disrupted in 
HC. These metabolites may serve as biomarkers to distinguish FH 
from HC and support early diagnosis and personalized therapeutic 
strategies in different hypercholesterolemia forms.
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Glossary

FH - Familial Hypercholesterolemia

HC - Non-genetic Hypercholesterolemia

LDL-C - Low-Density Lipoprotein Cholesterol

LDLR - Low-Density Lipoprotein Receptor

PCSK9 - Proprotein Convertase Subtilisin/Kexin Type 9

LDLRAP1 - Low-Density Lipoprotein Receptor Adaptor Protein 1

17-OHP - 17α-Hydroxyprogesterone

CVDs - Cardiovascular Diseases

GPC - Glycerophosphocholine

EP - Eppendorf

BGI - Beijing Genomics Institute

AGC - Automatic Gain Control

ESI - Electrospray Ionization

BMDB - BGI Metabolome Database

PQN - Probabilistic Quotient Normalization

QC-RLSC - Quality Control-based Robust LOESS Signal Correction

CV - Coefficient of Variation

KEGG - Kyoto Encyclopedia of Genes and Genomes

HMDB - Human Metabolome Database

DEM - Differentially Expressed Metabolite
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