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Introduction: Growing evidence suggests that gut microbiota may influence renal 
function via the gut–kidney axis. This study assessed gut microbial composition, 
metabolic indicators, and inflammatory markers in elderly individuals with varying 
degrees of hypertensive kidney involvement.
Methods: Seventy participants were stratified into three groups: healthy controls, 
hypertensive without renal impairment, and hypertensive with chronic kidney disease.
Results: The chronic kidney disease group exhibited elevated serum urea and 
creatinine and reduced eGFR, along with increased levels of KIM-1, NGAL, IL-18, 
TNF-α, IL-6, NF-κB, and FMO3. Urinary TMAO was significantly decreased in both 
hypertensive groups, while serum TMAO remained unchanged. Although α- and 
β-diversity indices were comparable across groups, compositional shifts were noted, 
including higher relative abundance of Escherichia–Shigella and Haemophilus and 
lower levels of Faecalibacterium. Correlation analyses revealed associations between 
specific genera and host metabolic or inflammatory markers, such as a positive 
correlation between Enterobacter and urinary TMAO, and inverse correlations 
between Veillonella and both eGFR and urinary TMAO. Functional prediction 
indicated increased amino acid metabolism in the chronic kidney disease group.
Discussion: These findings suggest interrelated patterns involving gut microbial 
composition, toxin handling, and inflammatory status in elderly hypertensive 
individuals, supporting further investigation into microbiota-associated biomarkers 
within the framework of the gut–kidney axis.
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1 Introduction

Hypertension ranks among the most common chronic non-communicable diseases 
globally and serves as a major contributor to cardiovascular complications and premature 
mortality (1). In China, population aging has driven a sustained increase in hypertension 
prevalence, particularly among older adults (2). Renal dysfunction frequently co-occurs with 
hypertension, and the two conditions are interlinked through a reciprocal mechanism: 
persistent hypertension accelerates renal decline, whereas impaired renal function 
compromises blood pressure regulation (3, 4). This bidirectional deterioration between 
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hypertension and renal function is a critical factor in chronic kidney 
disease (CKD) progression and represents a principal pathway toward 
the development of end-stage renal disease (5).

Accumulating evidence suggests that alterations in gut microbial 
composition and metabolite profiles contribute to CKD development. 
Characteristic changes—such as reduced abundance of beneficial taxa 
like Lactobacillus johnsonii—have been linked to renal function and 
disease severity in microbiome-based studies (6). Bibliometric 
analyses have revealed a growing research focus on gut microbiota–
CKD interactions, particularly involving microbial toxins, short-chain 
fatty acids (SCFAs), and uremic solute metabolism (7). Among these, 
tryptophan metabolism via kynurenine, serotonin, and indole 
pathways has emerged as a key link between microbial activity and 
host immune–epithelial homeostasis (8). In diabetic kidney disease, 
microbial-derived toxins such as p-cresyl sulfate (PCS) and indoxyl 
sulfate (IS), along with altered bile acid and SCFAs metabolism, 
contribute to glomerular injury and fibrogenesis (9). Recent studies 
further indicate that probiotic interventions may mitigate 
inflammation and preserve kidney function in dialysis patients (10), 
while microbiota-targeted strategies alleviate renal fibrosis during the 
transition from acute kidney injury to chronic kidney disease in aged 
models (11).

Beyond SCFAs, bile acid, and trimethylamine pathways, protein-
bound and indole-derived solutes represent another major group of 
gut-derived toxins involved in CKD progression and immune–renal 
interaction. Protein-bound solutes such as PCS and IS—products of 
tyrosine and tryptophan fermentation, respectively—accumulate in 
patients with declining renal function and contribute to oxidative 
stress, inflammation, and tubulointerstitial fibrosis (12). Moreover, 
tryptophan-derived indole compounds, including indole-3-acetic acid 
(IAA) and indole-3-aldehyde (IAld), have been shown to activate the 
aryl hydrocarbon receptor (AhR) pathway, a key immunomodulatory 
axis implicated in glomerular injury and epithelial dysfunction (13). 
Recent studies have reported that reduced abundance of Lactobacillus 
and Bifidobacterium species is associated with lower serum levels of 
protective indole derivatives and increased activation of the AhR 
pathway in both membranous nephropathy models and patients with 
idiopathic nephropathy (14).

Recent findings highlight trimethylamine N-oxide (TMAO) as a 
critical gut-derived metabolite involved in CKD progression. 
Intestinal microbes convert dietary precursors such as choline and 
L-carnitine into trimethylamine (TMA), which is subsequently 
oxidized by hepatic flavin-containing monooxygenase 3 (FMO3) to 
produce TMAO (15). In CKD patients, reduced renal excretion and 
high consumption of animal-based foods contribute to elevated 
circulating TMAO levels, which have been associated with vascular 
dysfunction and increased cardiovascular risk (16, 17). Microbiota-
targeted interventions, such as modulation of bacterial composition 
or dietary strategies, have shown promise in reducing TMAO levels 
and mitigating organ damage in preclinical settings (18). Experimental 
evidence further indicates that trimethylamine N-oxide (TMAO) 
exacerbates renal fibrosis and immune activation through vascular 
damage and inflammatory signaling cascades (19–21). Nuclear factor 
kappa B (NF-κB), a central transcriptional regulator of inflammation-
related signaling cascades, is increasingly recognized as a key driver 
of immune activation and tissue injury in renal disease (22). 
Meanwhile, elevated levels of interleukin-6 (IL-6) and Tumor necrosis 
factor-alpha (TNF-α) have been associated with enhanced oxidative 

stress and leukocyte infiltration, thereby promoting nephron damage 
and fibrotic remodeling (23). Although certain population-based 
metabolomic studies have identified predictors of CKD risk beyond 
conventional measures such as estimated eGFR (24), most available 
evidence remains fragmented, as studies typically assess microbial 
metabolites, inflammatory mediators, or renal biomarkers in isolation. 
Moreover, existing studies have primarily focused on animal models 
or high-risk clinical cohorts, limiting their relevance to early renal 
impairment in community-dwelling elderly populations (25–31). Few 
investigations have integrated these mechanistic domains into a 
unified analytical framework appropriate for early-stage 
disease evaluation.

This fragmented approach limits a comprehensive understanding 
of gut–kidney axis disruption during the initial phase of disease 
progression. Among these fragmented indicators, TMAO has 
garnered particular attention. Notably, a recent meta-analysis reported 
that elevated TMAO levels have been linked to increased risks of 
all-cause and cardiovascular mortality among individuals with CKD 
(32), highlighting the need for integrated biomarker frameworks 
capable of capturing early pathological transitions.

This study aimed to characterize gut microbiota composition, 
TMAO-related metabolites, and selected serum biomarkers in elderly 
individuals with hypertension and early-stage hypertensive 
nephropathy. Comparative analysis across renal function subgroups 
was conducted to identify early biological alterations and potential 
associations within the gut–kidney axis in this high-risk population.

2 Materials and methods

2.1 Study populations

This cross-sectional study evaluated gut microbiota composition, 
TMAO levels, and metabolic parameters in three elderly groups: 
healthy elderly controls (EldGrp), hypertensive without renal 
impairment (HTNGrp), and hypertensive with chronic kidney disease 
(HTNCKDGrp). Participants were recruited from a local hospital and 
classified based on clinical records, recent physical examinations, and 
laboratory findings. A total of 70 elderly participants were enrolled 
and stratified into the three groups as follows: EldGrp (n = 24), 
HTNGrp (n = 23), and HTNCKDGrp (n = 23).

Hypertension in this study was defined based on a documented 
clinical diagnosis and the presence of antihypertensive treatment, as 
recorded in participants’ community health records. This approach 
was chosen to reflect the chronic hypertensive status of participants, 
rather than relying solely on transient blood pressure values. 
Participants were considered hypertensive if they had a previous 
clinical diagnosis of hypertension based on the 2018 Chinese 
Guidelines for the Management of Hypertension, which define it as 
systolic blood pressure ≥140 mmHg and/or diastolic blood pressure 
≥90 mmHg measured on three separate, non-consecutive occasions 
in untreated individuals. Alternatively, participants receiving 
antihypertensive medications, as documented in medical records, 
were also classified as hypertensive regardless of their current blood 
pressure levels. Although blood pressure values were measured at the 
time of study enrollment, they were not used for group classification 
and are presented only as part of the clinical characteristics. Based on 
recent laboratory evaluations, CKD was defined as an eGFR ≤ 
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60 mL/min/1.73 m2 and a urinary albumin-to-creatinine (CREA) 
ratio between 30 and 300 mg/g. Individuals meeting the diagnostic 
criteria for hypertension and CKD were assigned to 
the HTNCKDGrp.

Eligible participants were aged 60 years or older and capable of 
completing study procedures and providing biological specimens. 
Primary exclusion criteria included a history of malignancy, recent 
cardiovascular events, major gastrointestinal disorders or surgeries, 
and recent use of antibiotics, probiotics, or other microbiota-
modulating agents. Written informed consent was obtained from all 
participants. The study was conducted according to the guidelines of 
the Declaration of Helsinki and approved by the Ethics Committee of 
the Chengdu Center for Disease Control and Prevention (Approval 
No. 2024028).

2.2 Blood and urine sample collection and 
biomarker detection

Fasting venous blood (5 mL) and first-morning urine samples 
were collected at the community health facility and stored at −80°C 
under cold-chain conditions.

Routine serum biochemical parameters, including aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), TBIL, 
UREA, CREA, eGFR, uric acid (UA), glucose (GLU), triglycerides 
(TG), total cholesterol (TC), high-density lipoprotein cholesterol 
(HDL-C), and low-density lipoprotein cholesterol (LDL-C), were 
analyzed using a fully automated biochemical analyzer (Model 
BS-450, Mindray Medical International Co., Ltd., Shenzhen, China; 
Registration No. 20152221143).

Serum and urine samples were submitted to Shanghai Enzyme-
linked Biotechnology Co., Ltd. for enzyme-linked immunosorbent 
assay (ELISA)-based measurement of inflammation, renal injury, and 
toxin metabolism biomarkers. Analytes included TMAO, FMO3, IL-6, 
TNF-α, NF-κB, IL-18, KIM-1, NGAL, PERK, ANGII, and calcium/
calmodulin-dependent protein kinase II (CaMKII). All ELISA tests 
were conducted using commercially available kits from mlbio.cn 
(Shanghai Enzyme-linked Biotechnology Co., Ltd.). According to the 
manufacturer’s general specifications, the kits have a typical detection 
limit of ~1.5 pg./mL, intra- and inter-assay coefficients of variation 
(CV) below 10%, and average recovery rates between 90 and 110% 
across serum and urine matrices. Concentration values were 
calculated from four-parameter logistic (4-PL) standard curves. 
Technical replicates were not included during testing.

2.3 Fecal sample collection and gut 
microbiota analysis

Fecal samples (1–3 g) were self-collected using sterile sampling 
kits and immediately transported on dry ice to the Chengdu Center 
for Disease Control and Prevention, where they were temporarily 
stored at −80°C. All samples were subsequently transferred in a single 
batch to Tsingke Biotechnology Co., Ltd. for gut microbiota profiling 
using 16S rRNA gene sequencing.

High-throughput paired-end sequencing was performed on 
the Illumina NovaSeq platform, targeting the V3–V4 hypervariable 
regions of the bacterial 16S rRNA gene. The primer sequences 

were as follows: Forward primer: 5′-ACTCCTACGGGAGG 
CAGCA-3′, Reverse primer: 5′-GGACTACHVGGGTWTCTA 
AT-3′.

Raw sequencing reads were permanently deleted by the 
sequencing provider after contract-mandated retention, and due to 
human subject confidentiality cannot be  provided. Processed 
microbiome data (OTU tables, diversity indices, taxonomic 
annotation) are available upon reasonable request.

2.4 Statistical analysis

Statistical analyses of baseline demographic and serum biomarker 
data were performed using Statistical Package for the Social Sciences 
software (version 22.0). Continuous variables were screened for 
outliers using the robust regression and outlier removal (ROUT) 
method (Q = 1%) and excluded if identified. Normally distributed 
variables are expressed as mean ± standard deviation (SD) and 
compared across the three groups using one-way analysis of variance 
(ANOVA) followed by Tukey’s post hoc test. Non-normally distributed 
variables are presented as a median and interquartile range, with 
group comparisons conducted using the Kruskal–Wallis and Dunn’s 
multiple comparisons tests. Categorical variables are summarized as 
frequencies and percentages, with group differences assessed using the 
chi-square test or Fisher’s exact test, as appropriate. A two-sided 
p-value < 0.05 was considered statistically significant.

Spearman rank correlation analysis was performed to evaluate the 
associations between the relative abundances of selected microbial 
genera (e.g., Escherichia–Shigella, Veillonella) and host clinical 
parameters, including inflammatory cytokines (e.g., IL-6, IL-18), 
kidney function markers (e.g., serum creatinine, eGFR), and microbial 
metabolites (e.g., serum and urinary TMAO, FMO3). Correlation 
coefficients (r) and corresponding p-values were calculated based on 
genus-level relative abundance data and matched clinical 
measurements. Associations with a two-sided p-value < 0.05 were 
considered statistically significant. The results were visualized using a 
color-scaled heatmap representing the magnitude and direction 
of correlations.

Microbiota sequencing, diversity analysis, differential abundance 
assessment, and functional prediction were performed by a 
commercial provider (Beijing Tsingke Biotechnology Co., Ltd.). Raw 
sequencing data were first subjected to quality filtering using 
Trimmomatic (version 0.33) (33), followed by primer sequence 
identification and removal using Cutadapt (version 1.9.1) (34). 
Paired-end reads were then merged using USEARCH (version 10) 
(35), and chimeric sequences were removed using the UCHIME 
algorithm (version 8.1) (36). The resulting high-quality reads were 
used for downstream analysis.

Amplicon sequence variant (ASV) inference was performed using 
the Divisive Amplicon Denoising Algorithm 2 (DADA2) implemented 
in Quantitative Insights Into Microbial Ecology 2 (QIIME2) platform 
(version 2020.6) (37, 38). A relative abundance threshold of 0.005% of 
total sequences was applied to filter ASVs. Taxonomic classification 
was conducted based on the SILVA database (Release 138) (39). 
Annotation was performed using a hybrid approach: first, the classify-
consensus-blast method was applied with ≥90% identity, ≥90% 
coverage, and ≥51% consensus threshold; for sequences not meeting 
these thresholds, the classify-sklearn method with a naive Bayes 
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classifier and a confidence threshold of 0.7 was used as a 
supplementary tool.

Alpha diversity metrics were calculated using QIIME2 (version 
2020.6), and beta diversity was analyzed to assess the compositional 
similarity between microbial communities across samples. Specifically, 
five alpha diversity indices were used: ACE and Chao1 indices 
estimate species richness within each sample; Shannon and Simpson 
indices reflect community diversity by incorporating both species 
richness and evenness; and PD_whole_tree evaluates phylogenetic 
diversity based on evolutionary relationships among taxa. Group 
comparisons of these indices were conducted using Student’s t-test, 
and visualization was performed using boxplots. Only statistically 
significant differences (p < 0.05) are indicated in the plots. Linear 
Discriminant Analysis Effect Size (LEfSe) was used to identify 
differentially abundant taxa between groups (40). This approach 
employs linear discriminant analysis (LDA) to estimate the 
contribution of each taxon to observed group differences, thereby 
identifying potential microbial biomarkers. Microbial co-occurrence 
network analysis was performed using Spearman rank correlation 
based on taxonomic abundance profiles. Only associations with 
|r| > 0.1 and p < 0.05 were retained for network construction. 
Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States 2 (PICRUSt2) was used for functional pathway 
prediction (41). Specifically, 16S rRNA feature sequences were aligned 
against reference sequences from the Integrated Microbial Genomes 
database to construct a phylogenetic tree and identify the closest 
reference organisms. Based on known gene content and abundance in 
these organisms, gene content in the sample was inferred. Functional 
pathways were then predicted using gene-to-pathway mapping from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. As 
a predictive tool, PICRUSt2 is limited by the coverage and accuracy of 
reference databases and does not reflect directly measured gene 
expression or activity.

3 Results

3.1 Group-wise characteristics and 
molecular indicators

Baseline demographic characteristics, biochemical parameters, 
and molecular biomarkers are summarized in Table 1. To highlight 
group-wise differences in key renal and metabolic markers, six 
representative indicators were visualized, including serum creatinine, 
CREA, eGFR, TMAO, urinary TMAO, and FMO3 (Figure 1). Among 
the demographic and lifestyle variables, only sex distribution differed 
significantly across groups (p = 0.0026); other factors such as age, 
body mass index (BMI), smoking, and alcohol use showed no 
significant differences. Several biochemical and molecular biomarkers, 
however, exhibited marked intergroup variation. The observed sex 
imbalance largely reflects the actual demographic profile of the 
community-based HTNCKD population. Several biochemical and 
molecular biomarkers, however, exhibited marked 
intergroup variation.

Liver enzyme levels demonstrated partial group-specific 
variations. ALT was significantly elevated in the HTNCKDGrp 
(p = 0.0137), whereas AST levels did not differ significantly 
(p = 0.4375). Total bilirubin (TBIL) remained significantly higher in 

the HTNCKDGrp (p = 0.0053). Renal function indicators followed a 
similar pattern: urea and CREA were significantly increased in the 
HTNCKDGrp (both p < 0.0001), whereas eGFR was significantly 
reduced (p < 0.0001), with the EldGrp exhibiting the highest values.

Regarding toxin metabolism, urinary TMAO levels were 
significantly decreased in both hypertensive groups relative to the 
EldGrp (p < 0.0001), whereas serum TMAO levels did not differ 
significantly. Conversely, serum FMO3 concentrations were 
significantly elevated in the HTNCKDGrp compared to the EldGrp 
(p < 0.05).

Inflammatory markers TNF-α, IL-6, and NF-κB were significantly 
elevated in the HTNCKDGrp relative to the other groups (p < 0.0001, 
p = 0.0004, and p = 0.0010, respectively).

Renal injury indicators, including KIM-1, NGAL, and IL-18 
levels, were significantly increased in the HTNCKDGrp compared to 
the other groups (p < 0.0001, p = 0.0025, and p = 0.0030, respectively).

Regarding blood pressure-associated biomarkers, PERK and 
ANGII were significantly elevated in the HTNGrp and HTNCKDGrp 
compared to the EldGrp (p = 0.0003 and p < 0.0001, respectively). No 
significant group differences were identified for CaMKII.

3.2 Group-wise differences in gut 
microbiota composition

3.2.1 Clustering patterns and interpretative 
analysis

Figure 2A illustrates that the predominant phyla across all groups 
were Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteriota. In 
the HTNCKDGrp, Firmicutes appeared less abundant, while 
Proteobacteria and Actinobacteriota showed relatively higher 
proportions compared to the EldGrp and HTNGrp.

While genus-level profiles (Figure  2B) varied visually across 
groups, statistical analyses did not indicate significant compositional 
differences. The HTNCKDGrp exhibited a higher relative abundance 
of Escherichia-Shigella, Faecalibacterium, Bifidobacterium, 
Parabacteroides, Roseburia, and Lachnoclostridium compared to the 
other groups. Conversely, Prevotella_9 and Bacteroides were less 
abundant in the HTNCKDGrp relative to EldGrp and HTNGrp.

However, these apparent differences were not statistically 
significant based on Kruskal–Wallis tests (all p > 0.05). Detailed test 
statistics and groupwise medians are provided in 
Supplementary Table S1 (Sheet: Phylum_Level_Stats and 
Genus_Level_Stats).

3.2.2 α-diversity and β-diversity across three 
groups

Alpha diversity indices were employed to assess gut microbiota 
richness and diversity within each group. As shown in Figures 3A–E, 
no statistically significant differences were observed among groups. 
However, the HTNCKDGrp group showed a downward trend in both 
diversity-related indices (Shannon and Simpson) and richness-related 
indices (ACE, Chao1, and PD_whole_tree). Detailed test statistics, 
p-values, and group medians are provided in Supplementary Table S1 
(Sheet: Alpha_diversity).

Principal coordinate analysis (PCoA) based on Bray–Curtis 
distance was conducted to evaluate overall differences in gut 
microbiota structure among the three groups (Figure 4A). While the 
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three groups showed substantial overlap, a slightly wider distribution 
was observed in the HTNCKDGrp, suggesting potential within-group 
variability (Figure 4A).

Non-metric multidimensional scaling (NMDS) based on the same 
distance metric revealed a similar clustering pattern (Figure 4B).

Permutational multivariate analysis of variance (PERMANOVA) 
demonstrated statistically non-significant differences among groups 
(R2 = 0.032, p = 0.187), indicating that the overall microbial 

community structure remained largely consistent across groups 
(Figure 4C).

3.2.3 Differentially enriched taxa identified by 
LEfSe analysis

As shown in Figures 5, 6, LEfSe analysis identified several taxa 
with significant discriminative power among the three groups at the 
genus level. Enterobacter and Veillonella were identified as 

TABLE 1  Baseline characteristics and serum biochemical and biomarkers profiles in elderly participants.

Variable EldGrp (n = 24) HTNGrp (n = 23) HTNCKDGrp (n = 23) P-value

Age (years) 69.54 ± 5.61 74.61 ± 9.949 69.26 ± 11.67 0.1002

Sex (Male), n (%) 6 (25.0%) 6 (26.1%) 16 (69.6%) 0.0026**

BMI (kg/m2) 24.7 ± 3.554 25.03 ± 4.169 24.6 ± 3.117 0.917

Current smoker, n (%) 0 (0.0%) 2 (8.7%) 3 (13.0%) 0.1923

Current Alcohol Use, n (%) 3 (12.5%) 1 (4.3%) 6 (26.1%) 0.1095

Systolic Blood Pressure 

(mmHg) 149.2 ± 22.44 144 ± 23.08 142.7 ± 27.28 0.6266

Diastolic Blood Pressure 

(mmHg) 84.21 ± 12.48 81.61 ± 11.18 82.22 ± 14.32 0.7642

ALT (U/L) 17.73 ± 6.873ᵇ 18.02 ± 7.423ᵇ 24.70 ± 11.45ᵃ 0.0137*

AST (U/L) 21.78 ± 5.204 21.76 ± 5.921 23.80 ± 6.529 0.4375

TBIL (μmol/L) 12.11 ± 3.024ᵇ 11.95 ± 3.674ᵇ 15.97 ± 6.431ᵃ 0.0053**

UREA (mmol/L) 5.660 ± 1.493ᵇ 4.997 ± 1.272ᵇ 7.760 ± 2.113 <0.0001****

CREA (mmol/L) 58.89 ± 8.244ᵇ 60.77 ± 5.747ᵇ 142.8 ± 15.94ᵃ <0.0001****

eGFR (min*1.73 m2) 126.0 ± 24.31ᵃ 120.1 ± 16.83ᵃ 51.36 ± 6.865ᵇ <0.0001****

UA (mmol/L) 302.4 ± 50.01 325.2 ± 93.45 353.9 ± 112.3 0.1536

GLU (mmol/L) 5.722 ± 1.142 5.481 ± 0.9023 6.165 ± 1.403 0.1477

TG (mmol/L) 1.480 ± 0.7203 1.624 ± 0.7710 1.335 ± 0.5378 0.3743

TC (mmol/L) 4.787 ± 0.8606 4.866 ± 1.274 4.554 ± 0.9473 0.5743

HDL-C (mmol/L) 1.400 ± 0.3052 1.470 ± 0.3356 1.403 ± 0.2958 0.2931

LDL-C (mmol/L) 2.873 ± 0.7793 2.995 ± 0.9921 2.765 ± 0.8545 0.6764

TMAO (pg/mL) 280.5 ± 127.7 304.9 ± 136.0 363.5 ± 136.2 0.0992

Urinary TMAO (pg/mL) 283.1 ± 116.2ᵃ 84.39 ± 62.31ᵇ 101.6 ± 80.49ᵇ <0.0001****

FMO3 (ng/mL) 0.4718 ± 0.1698ᵇ 0.5652 ± 0.2311ᵃᵇ 0.6943 ± 0.3391ᵃ 0.0180*

TNF-α (pg/mL) 4.165 ± 2.627ᵇ 5.169 ± 3.067ᵇ 10.40 ± 6.404ᵃ <0.0001****

IL-6 (pg/mL) 1.272 ± 0.6794ᵇ 1.760 ± 0.4508ᵃᵇ 2.299 ± 1.141ᵃ 0.0004***

NF-κB (pg/mL) 37.43 ± 18.69ᵇ 41.15 ± 15.48ᵇ 59.59 ± 25.35ᵃ 0.0010***

KIM-1 (pg/mL) 44.54 ± 23.21c 59.48 ± 21.36ᵇ 77.88 ± 24.15ᵃ <0.0001****

NGAL (pg/mL) 94.40 ± 52.83ᵇ 95.13 ± 37.75ᵇ 137.0 ± 43.24ᵃ 0.0025**

IL-18 (pg/mL) 49.46 ± 18.50ᵇ 47.21 ± 14.65ᵇ 73.67 ± 40.17ᵃ 0.0030**

PERK (pg/mL) 152.9 ± 79.00ᵇ 226.3 ± 105.8ᵃ 271.6 ± 100.3ᵃ 0.0003***

CaMKII (pg/mL) 336.9 ± 114.6 326.1 ± 115.5 371.5 ± 127.4 0.4062

ANGII (pg/mL) 64.34 ± 26.48ᵇ 79.55 ± 31.09ᵇ 119.8 ± 47.98ᵃ <0.0001****

Data are presented as mean ± SD. Outliers were identified and excluded using the ROUT method (Q = 1%).
p-values were calculated using one-way ANOVA or Kruskal–Wallis tests. Post hoc comparisons were conducted using Tukey’s or Dunn’s tests, as appropriate.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Different lowercase letters (a, b, c) indicate statistically significant differences between groups (p < 0.05).
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FIGURE 1

Group-wise comparisons of key renal and TMAO-related metabolic indicators among elderly participants. Group-wise comparisons of key renal and 
TMAO-related metabolic indicators among elderly participants. (A) CREA, (B) eGFR, (C) serum urea, (D) serum TMAO, (E) urinary TMAO, and (F) FMO3 
levels were compared across three groups: healthy elderly controls (EldGrp), elderly with hypertension (HTNGrp), and elderly with hypertension and 
chronic kidney disease (HTNCKDGrp). Data are presented as mean ± standard deviation. Statistical comparisons were performed using one-way 
ANOVA followed by Tukey’s post hoc test. Significance levels:  *p < 0.05; ***p < 0.001; ****p < 0.0001.
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representative genera in the EldGrp, while Bilophila and 
Christensenella were enriched in the HTNGrp. In the HTNCKDGrp, 
Haemophilus was identified as a discriminative genus. Additional 
differentially abundant taxa at other taxonomic levels are presented in 
the corresponding figures.

3.2.4 Correlation and network analysis
As shown in Figure  7, Spearman correlation analysis was 

performed for representative genera identified by LEfSe analysis. 
Bilophila was negatively correlated with Veillonella (r = −0.32, 
p = 0.03). Haemophilus showed a significant positive correlation with 
total bilirubin (TBIL) (r = 0.40, p = 0.003), a positive correlation with 
Veillonella (r = 0.31, p = 0.038), and was negatively correlated with 
Escherichia–Shigella (r = −0.35, p = 0.019). Escherichia–Shigella was 
negatively correlated with Faecalibacterium (r = −0.38, p = 0.01), 
positively correlated with Enterobacter (r = 0.35, p = 0.03), and 
negatively correlated with IL-6 (r = −0.31, p = 0.03). Faecalibacterium 
showed a positive correlation with Veillonella (r = 0.28, p = 0.05) and 
a negative correlation with Enterobacter (r = −0.28, p = 0.05). 
Veillonella was positively correlated with serum creatinine (CREA) 
(r = 0.35, p = 0.01) and negatively correlated with eGFR (r = −0.35, 
p = 0.01) and TMAO (r = −0.27, p = 0.046). Enterobacter was 
positively correlated with urinary TMAO (r = 0.33, p = 0.02).

Additionally, TMAO showed positive correlations with uric acid 
(UA) (r = 0.24, p = 0.04) and NGAL (r = 0.25, p = 0.04). Urinary 
TMAO was negatively correlated with CREA (r = −0.28, p = 0.02), 
IL-6 (r = −0.36, p = 0.02), KIM-1 (r = −0.24, p < 0.01), and ANG-II 
(r = −0.29, p = 0.02), and positively correlated with eGFR (r = 0.31, 
p = 0.01). FMO3 was positively correlated with IL-18 (r = 0.27, 
p = 0.04) and PERK (r = 0.30, p = 0.02).

Complete correlation coefficients and p-values are provided in 
Supplementary Table S1 (Sheet: Genus_and_Metabolite_Correlation).

A genus-level co-occurrence network was constructed to evaluate 
microbial interactions across all samples. Figure 8A presents correlations 
between the positive (pink edges) and negative (green edges) of multiple 
genera. Notably, Bacteroides, Faecalibacterium, and Escherichia-Shigella 
demonstrated high connectivity within the network.

At the KEGG Level 2 functional level, amino acid metabolism was 
significantly enriched in the HTNCKDGrp compared to the EldGrp 
(p = 0.035), while no other pathways showed significant differences 
(Figure 8B).

4 Discussion

This study compared EldGrp, HTNGrp, and HTNCKDGrp to 
capture the dynamic changes in gut microbiota and metabolites 
during the progression from hypertension to early renal impairment. 
This setup helps reveal how microbial and metabolic patterns shift as 
kidney disease develops.

This study observed differences in selected biochemical and 
clinical indicators among the EldGrp, HTNGrp, and HTNCKDGrp. 
In this study, elevated urea and serum creatinine levels, along with 
reduced eGFR in the HTNCKDGrp, were suggestive of renal 
impairment. These findings are consistent with previous reports 
indicating that hypertension contributes to CKD progression (42). No 
significant differences in renal function indicators, including eGFR 
and serum creatinine, were observed between the EldGrp and 
HTNGrp. This supports the classification of the HTNGrp as 
hypertensive individuals without overt renal impairment (43).

FIGURE 2

Relative abundance of gut microbiota at the phylum and genus levels across the three study groups. (A) Gut microbiota composition at the phylum 
level in EldGrp, HTNGrp, and HTNCKDGrp. The predominant phyla included Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteriota. (B) Gut 
microbiota composition at the genus level, highlighting the relative abundance of dominant genera such as Bacteroides, Faecalibacterium, Blautia, and 
Escherichia-Shigella. Notable compositional shifts were observed in the HTNCKDGrp, characterized by increased Escherichia-Shigella and decreased 
beneficial genera such as Faecalibacterium and Bifidobacterium.
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Regarding liver function, ALT and TBIL were significantly 
elevated in the HTNCKDGrp (p = 0.0137 and p = 0.0053, 
respectively), whereas AST levels remained unchanged (p = 0.4375). 
Although hepatic involvement is not a primary focus in hypertensive 
pathophysiology, previous studies have reported liver abnormalities 
in patients with hypertension and CKD, potentially mediated by 
systemic inflammation or dysregulated metabolic processes (44). 
These findings may reflect a broader systemic metabolic burden and 

suggest that hepatic markers could serve as supportive indicators of 
systemic stress in hypertensive nephropathy.

Multiple serum biomarkers associated with inflammation, cellular 
stress, renal injury, and toxin metabolism were significantly elevated 
in the HTNCKDGrp, reflecting activation of systemic stress and 
injury responses. Inflammatory cytokines TNF-α, IL-6, and NF-κB 
were markedly increased compared to the other groups. TNF-α has 
been closely associated with salt-sensitive hypertension and kidney 

FIGURE 3

Alpha diversity indices of gut microbiota among the three study groups. Box plots compare gut microbial diversity and richness among EldGrp, 
HTNGrp, and HTNCKDGrp, based on the following indices: (A) ACE, (B) Shannon, (C) Chao1, (D) PD_whole_tree, and (E) Simpson. ACE and Chao1 
indices estimate species richness; Shannon and Simpson indices reflect community diversity, incorporating both species count and distribution 
evenness; PD_whole_tree evaluates phylogenetic diversity based on evolutionary relationships. Group comparisons were performed using Student’s 
t-test. Only statistically significant differences (p < 0.05) are annotated in the figure; comparisons without annotations are not statistically significant. All 
calculations and plots were generated by the contracted bioinformatics service provider. The HTNCKDGrp exhibited a decreasing trend across all 
indices, though group-wise differences were not statistically significant.

FIGURE 4

Beta analysis of gut microbiota among the three groups. (A) Principal coordinates analysis (PCoA) based on Bray–Curtis distance. Axes indicate the 
percentage of variation explained: PC1 = 10.53%, PC2 = 6.33%. (B) Non-metric multidimensional scaling (NMDS) plot based on Bray–Curtis distance. 
The stress value of the NMDS projection is 0.2376, indicating moderate ordination reliability. (C) Boxplots of Bray–Curtis distances representing intra- 
and inter-group comparisons. Ellipses in (A,B) represent 95% confidence intervals. PERMANOVA showed no statistically significant differences in 
microbial community composition among groups (R2 = 0.032, p = 0.187). “All within EldGrp” denotes distances among samples within the EldGrp 
group, and “All between EldGrp” denotes distances between EldGrp and the other two groups (HTNGrp and HTNCKDGrp).
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injury, and is known to influence renal hemodynamics, excretory 
function, and the renin–angiotensin system (31). IL-6 has been 
identified as a downstream effector of angiotensin II, contributing to 
the expression of fibrotic mediators such as endothelin-1 and 
transforming growth factor β (TGF-β) (45), and along with TNF-α, is 
known to promote oxidative stress and immune cell infiltration in 
renal tissue (23, 27, 28, 46). NF-κB functions as a central 
transcriptional regulator that amplifies inflammatory cascades (22), 
and its excessive activation has been widely implicated in the 
progression of renal inflammation and fibrotic remodeling (47). 
Consistent with these observations, IL-18 was also elevated and has 
been linked to tubular injury and chronic inflammatory responses in 
the kidney (48).

Renal injury biomarkers KIM-1, NGAL, and IL-18 were elevated 
in the HTNCKDGrp, reinforcing evidence of nephron damage. 
KIM-1 is a sensitive indicator of early tubular injury, particularly in 
hypertensive renal damage, whereas NGAL, which is released in 
response to ischemic and inflammatory stimuli, reflects both acute 
and chronic nephron injury (27, 48–50). PERK, a well-recognized 
marker of endoplasmic reticulum stress (51), was found to be elevated 
in the HTNCKDGrp and may reflect intracellular stress responses 
secondary to hypertension-induced damage. CaMKII and ANGII 
were also significantly upregulated in the HTNCKDGrp. ANGII is the 
principal effector of the renin–angiotensin–aldosterone system 
(RAAS), promoting vasoconstriction, sodium retention, and 
pro-inflammatory signaling in renal tissues. CaMKII is activated 
downstream of ANGII and mediates calcium signaling, contributing 
to vascular remodeling and hypertension-induced renal damage (52–
54). Collectively, these alterations suggest the activation of calcium 
signaling and the renin–angiotensin–aldosterone system, both of 
which are involved in vascular remodeling and renal impairment in 
hypertensive individuals (55). However, as this is a cross-sectional 

study, no causal relationship can be inferred from these associations, 
and the proposed mechanistic links remain speculative.

In addition to host biomarkers, we  assessed host metabolites 
influenced by gut microbial activity. Although serum TMAO 
concentrations remained unchanged across groups, urinary TMAO 
levels were significantly reduced in both hypertensive groups 
compared to the EldGrp. Studies have shown that the renal clearance 
rate of TMAO is approximately twice that of CREA, indicating that its 
excretion is primarily dependent on glomerular filtration. Due to its 
small volume of distribution and lack of protein binding in plasma, 
serum TMAO levels may remain within the normal range during 
early-stage renal dysfunction, whereas urinary excretion may already 
be markedly reduced. This characteristic suggests that urinary TMAO 
could serve as a sensitive early indicator of renal function decline (56). 
The observed reduction likely reflects impaired renal clearance, as 
TMAO is primarily eliminated via glomerular filtration (57). 
Furthermore, reduced urinary TMAO in hypertensive individuals 
may indicate early alterations in renal handling, even in the absence 
of overt dysfunction. Simultaneously, hepatic FMO3 levels—the key 
enzyme catalyzing the conversion of microbial TMA to TMAO—were 
increased, suggesting enhanced host enzymatic capacity for TMA 
oxidation (58, 59). However, since TMA levels were not measured in 
this study, we  cannot determine whether the observed FMO3 
elevation reflects a compensatory response to increased microbial 
TMA production. Nevertheless, prior studies have demonstrated that 
gut microbiota composition—particularly the abundance of 
Enterobacteriaceae—can influence TMA synthesis, thereby potentially 
altering hepatic FMO3 activity (60). These findings support the 
potential value of urinary TMAO as an early and sensitive marker of 
renal impairment. Recent studies have highlighted that elevated 
circulating TMAO is associated with CKD progression and may serve 
not only as a biomarker but also as a potential therapeutic target (61).

FIGURE 5

Differentially abundant taxa identified by LEfSe analysis. Cladogram illustrating the phylogenetic distribution of bacterial taxa differentially enriched 
among the three study groups. Nodes are colored by the group in which each taxon is overrepresented: red for EldGrp, green for HTNCKD, and blue 
for HTNGrp. The LDA threshold was set at 2.0.
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FIGURE 6

Histogram of LDA scores for differentially enriched genera among study groups. Histogram showing the LDA scores (log10) of bacterial taxa 
differentially enriched across the three study groups. Colors represent the enriched group: red for EldGrp, green for HTNCKD, and blue for HTNGrp. 
The LDA threshold was set at 2.0.
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Gut microbiota analysis identified compositional shifts in the 
HTNCKDGrp, with a relative decrease in Firmicutes and a trend 
toward increased proportions of Proteobacteria and Actinobacteriota 
at the phylum level. Similar alterations in phylum-level 
composition—characterized by reduced Firmicutes and increased 
Proteobacteria and Actinobacteriota—have been associated with 
impaired gut barrier function and systemic inflammation in 
previous studies (62–64). At the genus level, enrichment of 
Escherichia-Shigella and depletion of Faecalibacterium and 
Bifidobacterium were noted. Escherichia-Shigella has been associated 
with NOD-like receptor protein 3 (NLRP3) inflammasome 
activation and elevated TNF-α production, contributing to renal 
inflammation (65–67), whereas Faecalibacterium and 
Bifidobacterium exert SCFA-mediated anti-inflammatory effects 
(68). Decreased abundance of Prevotella_9 and Bacteroides suggests 
impaired carbohydrate fermentation and SCFA production (69–71), 
while compensatory increases in Parabacteroides, Roseburia, and 

Lachnoclostridium may represent adaptive responses to preserve gut 
barrier integrity and immune homeostasis (72–76).

Although alpha and beta diversity metrics were not significantly 
different, the HTNCKDGrp exhibited a downward trend in Shannon, 
Simpson, and Chao1 indices, suggesting subtle reductions in microbial 
richness and ecological resilience. This pattern is consistent with 
previous findings that the gut microbiota in elderly individuals tends 
to maintain overall compositional stability unless exposed to strong 
perturbations, such as antibiotic use or severe disease. It has been 
reported that despite age-related declines in mucosal immunity, 
including reductions in taxon-specific immunoglobulin A, the gut 
microbiota composition remains largely stable in elderly 
individuals (77).

LEfSe analysis revealed distinct microbial signatures at the genus 
level across different clinical states in elderly participants. In the 
EldGrp, Enterobacter and Veillonella were identified as representative 
taxa, suggesting potential involvement in maintaining metabolic 

FIGURE 7

Spearman correlation analysis between key gut microbes, TMAO-related biomarkers, and clinical parameters. The color gradient represents the 
strength and direction of the correlation (blue for positive and red for negative). Full correlation coefficients are shown for exploratory purposes, while 
representative significant associations (p < 0.05) are detailed in the main text. “*”Indicates statistical significance at p< 0.05.
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balance and microbial homeostasis. Although Enterobacter is 
typically low in abundance, it belongs to the Enterobacteriaceae 
family and has been implicated in anaerobic niche formation, vitamin 
synthesis, and inhibition of pathogens, potentially contributing to a 
stable microbial environment (78). Veillonella, a commensal 
anaerobe, utilizes lactate to produce short-chain fatty acids such as 
propionate and acetate, which are involved in immune regulation and 
energy metabolism (79).

Bilophila was enriched in the HTNGrp and is associated with bile 
acid dysregulation, high-fat diet-induced inflammation, and intestinal 
barrier impairment (80). Its expansion has also been linked to glucose 
metabolism disturbances and hepatic steatosis and may be partially 
modulated by probiotic interventions (81). In the HTNCKDGrp, 
Haemophilus was identified as a characteristic taxon. As a conditional 
pathogen, its abundance tends to increase under chronic inflammatory 
or immunocompromised conditions. A recent study using long-read 
sequencing showed a progressive rise in Haemophilus across different 
stages of CKD, suggesting its potential involvement in microbial 
imbalance and pro-inflammatory processes (82).

The observed microbial shifts may reflect a gradual reorganization 
of the gut community along the progression of hypertension and renal 
impairment, with a relative decrease in potentially beneficial taxa and 
an increase in pathobionts. Although mechanisms remain unclear, 
previous studies have noted that renal dysfunction often co-occurs 
with epithelial barrier disruption and microbial alterations, and 
experimental models suggest similar trends along the gut–kidney axis 
(83). Moreover, TMAO has been proposed as a metabolic link between 

cardiac and renal dysfunction, contributing to systemic inflammation 
and adverse outcomes in cardiorenal syndrome (84).

Correlation analysis revealed significant associations between 
representative genera and clinical parameters or microbial metabolites, 
suggesting their potential involvement in host metabolic regulation 
and inflammatory responses. Veillonella showed a positive correlation 
with serum creatinine and negative correlations with both eGFR and 
urinary TMAO, while Enterobacter was positively correlated with 
urinary TMAO, indicating their potential roles in toxin metabolism or 
kidney dysfunction. Escherichia–Shigella showed a negative correlation 
with IL-6, a positive correlation with Enterobacter, and a negative 
correlation with Faecalibacterium, suggesting a potential synergistic 
expansion under pro-inflammatory and dysbiotic conditions. This 
genus is commonly associated with microbial imbalance, inflammation, 
and epithelial barrier disruption, and its abundance has been shown to 
fluctuate dynamically across disease stages. Growing evidence indicates 
that gut microbiota contributes to oxidative stress and inflammation 
in CKD, exacerbating toxin translocation and fibrotic remodeling in 
the kidney (85). Notably, reduced levels of Escherichia–Shigella have 
been observed in end-stage renal disease patients undergoing 
hemodialysis, highlighting its possible role as a marker of gut dysbiosis 
(86). In addition, TMAO was positively correlated with uric acid and 
NGAL, while urinary TMAO showed negative correlations with 
creatinine, IL-6, KIM-1, and ANG II, and a positive correlation with 
eGFR. FMO3 was positively associated with IL-18 and markers of 
cellular stress. These findings support the potential role of microbially 
derived metabolites in linking gut dysbiosis to host inflammation and 

FIGURE 8

Correlation network and predicted functions of gut microbiota. (A) Co-occurrence network of gut microbial genera based on Spearman correlation 
analysis. Node size represents relative abundance, and edge color indicates positive (pink) or negative (green) correlations. (B) Predicted functional 
pathways of microbial communities across the three groups, based on PICRUSt2 analysis and presented at KEGG level 2. Among all pairwise 
comparisons, a significant difference was observed only between EldGrp and HTNCKDGrp.
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kidney injury. Experimental studies have demonstrated that TMAO 
can activate inflammatory pathways and promote the release of 
interleukins, contributing to renal inflammation and fibrosis (87).

Co-occurrence network analysis indicated that Bacteroides, 
Faecalibacterium, and Escherichia–Shigella had high centrality within 
the network, suggesting that these genera may occupy key ecological 
positions and that their interactions could be altered under disease 
conditions. A previous study in chronic kidney disease reported 
increased network complexity during disease progression, with 
Oscillibacter and Veillonella showing strong central roles, supporting 
the link between microbial network shifts and disease evolution (88). 
Functional prediction revealed a significant increase in amino acid 
metabolism pathways in the HTNCKD group, while other metabolic 
pathways remained relatively stable. This may reflect a limited capacity 
for functional resilience within the altered microbial community. 
Prior studies have shown that amino acid metabolism disorders in 
CKD are linked to the generation of protein-derived toxins and are 
accompanied by genomic structural changes (89). Multi-omics 
analyses further indicate that with advancing CKD severity, microbial 
composition and function undergo remodeling, including disruptions 
in glutathione and proline metabolism, suggesting that altered amino 
acid metabolism may play a central role in gut–host interactions (90).

Integrating these findings, our data suggest that the gut–kidney axis 
may be involved in the pathophysiological processes associated with 
hypertensive nephropathy. These changes observed in HTNCKDGrp 
may compromise gut barrier function. A previous study has shown that 
microbial products such as lipopolysaccharide can translocate across 
impaired gut barriers and activate innate immunity via TLR4–NF-κB 
signaling (91). This potential inflammatory cascade is supported by the 
elevated levels of circulating cytokines, including TNF-α, IL-6, and 
NF-κB (61), and may be further influenced by the accumulation of 
uremic toxins associated with reduced urinary TMAO and increased 
FMO3 levels (58, 59, 92). These alterations may be linked to tubular 
injury, interstitial inflammation, and cellular stress responses, as 
reflected by the elevated levels of KIM-1, NGAL, and PERK (48, 51, 52).

These findings raise the possibility that changes in gut microbial 
composition and host metabolic responses may be linked to systemic 
immune activation and toxin accumulation. Such interactions could 
be relevant to renal inflammation in hypertensive individuals. The 
gut–kidney axis may therefore represent a meaningful target for future 
research and therapeutic strategies in hypertensive nephropathy.

This study still has several limitations. First, the cross-sectional 
design precludes causal inference regarding the relationship between 
gut microbiota alterations and hypertensive nephropathy. Longitudinal 
or interventional studies are needed to clarify temporal relationships 
and potential mechanisms.

Second, although the overall sample size was relatively adequate, 
the number of participants in each group remained limited. This may 
reduce statistical power, particularly when detecting subtle changes in 
metabolic or inflammatory markers. Larger, multi-center studies are 
recommended to enhance the robustness of the findings.

Third, there were significant differences in sex distribution across 
groups. Because hypertensive nephropathy is more prevalent in males 
(93), eligible female participants were scarce and nearly all were included. 
Therefore, the imbalance largely reflects the actual demographic 
structure of the target population rather than selection bias. Nevertheless, 
sex-related differences in gut microbiota and inflammatory responses 
may still confound the results. Previous studies have shown that sex 

hormones and fat distribution can influence gut microbiota composition 
and its metabolic roles in obesity (94). Sex differences also modulate 
immune responses and microbial susceptibility to disease, suggesting 
that our findings may not fully capture sex-specific microbial interactions 
(95). Moreover, the current sample size was insufficient to perform 
sex-stratified analyses. In addition, the low healthcare utilization and 
disease recognition rates in community populations may have limited 
the inclusion of individuals with more advanced disease (96), potentially 
underestimating the magnitude of observed microbial differences in 
progressive hypertensive nephropathy. Although our current sample size 
precluded sex-specific comparisons, future studies should consider 
stratified recruitment to better examine potential gender-related 
differences in gut microbiota and immune responses.

Fourth, the classification of hypertension was based on diagnoses 
and antihypertensive medication use recorded in community health 
archives, rather than on-site blood pressure measurements. This 
approach aimed to reflect chronic hypertensive status more accurately. 
However, the study was conducted during a seasonal transition from 
summer to autumn, with notable temperature fluctuations. On the 
sampling day, some participants walked to the examination site early 
in the morning on an empty stomach and waited outdoors, possibly 
experiencing mild physical exertion, cold exposure, and psychological 
stress (97). These factors may have triggered transient elevations in 
blood pressure due to sympathetic activation. Given the age-related 
decline in vascular regulation, such short-term blood pressure 
increases are common in the elderly and may have obscured group 
differences in measured values. We also attempted a subgroup analysis 
based on antihypertensive medication use; however, the small number 
of cases precluded meaningful statistical comparisons. Additionally, 
information on blood pressure control status was not consistently 
available, preventing subgroup analysis based on hypertension control.

Fifth, although this study integrated gut microbiota, toxin 
metabolism, and inflammatory indicators, microbial functional 
inference relied primarily on PICRUSt2-based gene prediction. No 
validation was performed at the transcriptomic or metabolic flux level, 
and no in vitro or animal experiments were conducted. Future studies 
should incorporate metagenomic, transcriptomic, or metabolomic 
approaches, along with experimental models, to elucidate microbe-
mediated pathogenic mechanisms.

Sixth, although key confounders were addressed in the study 
design, residual confounding from variables such as diet, medication 
adherence, and genetic background cannot be fully excluded. Future 
longitudinal studies should consider microbiota-targeted 
interventions—such as probiotics, prebiotics, and dietary modulation—
to evaluate their potential in reducing inflammation, optimizing toxin 
metabolism, and mitigating renal injury. Fecal microbiota 
transplantation has shown promising therapeutic potential in preclinical 
models of CKD by modulating the renin–angiotensin system, restoring 
intestinal barrier integrity, and reducing inflammatory responses (98). 
Expanding participant diversity across ethnic and geographic 
backgrounds will also help improve the generalizability of the findings.

5 Conclusion

In elderly individuals with hypertensive nephropathy, elevated 
levels of NGAL, KIM-1, IL-18, TNF-α, IL-6, NF-κB, and FMO3 were 
observed, accompanied by reduced urinary TMAO concentrations 
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and impaired renal function, as indicated by increased serum 
creatinine and decreased eGFR. These alterations were paralleled by 
shifts in gut microbial composition, including a higher relative 
abundance of Escherichia–Shigella and Haemophilus, and decreased 
levels of potentially beneficial taxa. Correlation and network analyses 
further revealed associations between representative genera and host 
inflammatory or renal markers, while functional prediction indicated 
enhanced microbial amino acid metabolism in the HTNCKD group. 
Although no causal inference can be drawn from this cross-sectional 
study, the findings highlight interconnected patterns involving 
inflammation, toxin metabolism, and gut microbiota along the early 
stages of hypertensive kidney injury. These results may provide a 
mechanistic basis for future research and support the potential utility 
of microbiota-related indicators—such as urinary TMAO and specific 
microbial taxa—as exploratory biomarkers in this population.
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Glossary

AhR - Aryl hydrocarbon Receptor

ALT - Alanine aminotransferase

ANGII - Angiotensin II

ANOVA - Analysis of variance

AST - Aspartate aminotransferase

ASV - Amplicon sequence variant

BMI - Body mass index

CaMKII - Calcium/calmodulin-dependent protein kinase II

CKD - Chronic kidney disease

CREA - Creatinine

DADA2 - Divisive Amplicon Denoising Algorithm 2

eGFR - Estimated glomerular filtration rate

EldGrp - Healthy elderly control group

ELISA - Enzyme-linked immunosorbent assay

FMO3 - Flavin-containing monooxygenase 3

GLU - Glucose

HDL-C - High-density lipoprotein cholesterol

HTNCKDGrp - Hypertensive with chronic kidney disease

HTNGrp - Hypertensive without renal impairment

IAA - Indole-3-acetic acid

IAld - Indole-3-aldehyde

IS - Indoxyl sulfate

IL-18 - Interleukin-18

IL-6 - Interleukin-6

KEGG - Kyoto Encyclopedia of Genes and Genomes

KIM-1 - Kidney injury molecule-1

LDA - Linear discriminant analysis

LDL-C - Low-density lipoprotein cholesterol

LEfSe - Linear Discriminant Analysis Effect Size

NF-κB - Nuclear factor kappa B

NGAL - Neutrophil gelatinase-associated lipocalin

NLRP3 - NOD-like receptor protein 3

NMDS - Non-metric multidimensional scaling

PCoA - Principal coordinate analysis

PCS - P-cresyl sulfate

PERK - Protein kinase R-like endoplasmic reticulum kinase

PERMANOVA - Permutational multivariate analysis of variance

PICRUSt2 - Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States 2

QIIME2 - Quantitative Insights Into Microbial Ecology 2

RAAS - Renin–Angiotensin–Aldosterone System

ROUT - Robust regression and outlier removal

rRNA - Ribosomal RNA

SCFAs - Short-chain fatty acids

SD - Standard deviation

TBIL - Total bilirubin

TC - Total cholesterol

TG - Triglycerides

TGF-β - Transforming Growth Factor Beta

TLR4 - Toll-like receptor 4

TMA - Trimethylamine

TMAO - Trimethylamine N-oxide

TNF-α - Tumor necrosis factor-alpha

UA - Uric acid
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