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Objective: To evaluate the utility and effectiveness of the recombinant
Mycobacterium tuberculosis fusion protein (EC) skin test for tuberculosis (TB)
screening among student populations in high-altitude regions and to provide
evidence-based recommendations for optimizing epidemic control strategies.

Methods: A total of 1,047 primary and secondary school students in Seda
County were enrolled. Both the tuberculin skin test (TST/PPD) and EC skin
test were administered to all participants. Data analysis was performed using
R 4.3.0 and Python 12.0 statistical software. Descriptive analyses included
skewed continuous data expressed as median (Q;, Qs) and analyzed using the
Kruskal-Wallis test, while categorical data were presented as n (%) and analyzed
using Chi-square or Fisher's exact tests. Model construction and performance
evaluation were implemented in Python, utilizing packages such as graphviz,
matplotlib, and scikit-plot for visualization and metrics calculation.

Results: Based on expert consensus, participants were stratified into three groups:
BCG vaccination (n = 29, 2.77%), uninfected (n = 975, 93.12%), and at least latent
infection (including both latent TB infection and active TB, n = 43, 4.11%). The PPD
test showed significant intergroup differences (p < 0.001), with AUC values of 0.98
(BCG vaccination), 0.92 (uninfected), and 0.83 (at least latent infection), and an
overall Kappa coefficient of 0.59. The EC test demonstrated perfect performance
in identifying latent infections (precision, recall, F1-score, and AUC = 1.00) but
failed to distinguish BCG-vaccinated individuals (all metrics = 0). A decision tree
model combining EC + PPD demonstrated perfect classification performance on
the current dataset, achieving accuracy, recall, and AUC values of 1.00 across all
classifications, with a micro-average AUC of 1.00 and a Kappa coefficient of 1.00.
Conclusion: While the EC skin test exhibits 100% sensitivity for latent TB
infection, it cannot differentiate between persistent post-vaccination positivity
and true uninfected status. The EC + PPD decision tree model synergistically
optimizes multi-dimensional metrics, enabling high-sensitivity detection of
latent infections and precise exclusion of false positives, thereby improving
overall diagnostic performance. This integrated approach could improve TB
screening accuracy in high-altitude student populations, inform targeted
public health interventions, and warrants further validation. While this study
was conducted in a high-altitude region, the combined EC + PPD approach
warrants evaluation in other settings with high BCG vaccination rates.
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1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB),
is a chronic infectious disease and one of the top 10 causes of death
worldwide. As a global leader in TB control, China has achieved the
TB-related targets of the United Nations Millennium Development
Goals 5 years ahead of schedule (1), contributing valuable experience
to global TB prevention efforts. However, the current prevention and
control situation remains challenging. The 2024 WHO Global
Tuberculosis Report indicates that China had an estimated 741,000
new TB cases in 2023, accounting for 6.8% of global cases. Although
this represents a decrease from 2022, China still ranks third in the
world for TB incidence (2).

With dense populations, schools are high-risk settings for TB
outbreaks. Given that children and adolescents— the primary
population in schools— still bear an unacceptably high TB burden,
school-based TB prevention has become a key focus of Chinas TB
control efforts (3, 4). The World Health Organization estimates that
1.2 million children and young adolescents developed TB in 2022,
with a staggering 50% of cases going undetected by public health
systems (5). The root of this diagnostic crisis lies in the unique
pathophysiology of TB in the young. Children often present with
non-specific symptoms and paucibacillary disease, rendering
pathogen-based tests like smear microscopy insensitive. Concurrently,
their evolving immune systems result in variable performance of host-
based immune assays. Consequently, the failure to diagnose leads to
a failure to treat, accounting for 96% of TB deaths in this age group
(5). Therefore, the development and validation of novel diagnostic
tests that can overcome these hurdles—such as those utilizing
non-sputum samples or novel antigen targets—are paramount to
closing the case detection gap and reducing mortality. In this context,
early detection of latent TB infections is critical for preventing TB
transmission within schools.

Rapid detection of TB infection (including both active TB and
latent TB infection) is essential for TB eradication. However, latent
cases lack clinical manifestations, and most active TB cases are difficult
to identify in early stages, when bacteriological tests have low positive
detection rates. Therefore, indirect testing methods are needed to
support clinical TB diagnosis. The World Health Organization
(WHO) recognizes two commercialized techniques for TB infection
detection: the tuberculin skin test (TST) and interferon-gamma
release assays (IGRAs) (2). The tuberculin skin test (TST) is a
traditional detection method known for its simplicity and low cost,
but it has low specificity in populations vaccinated with BCG or
infected with non-tuberculous mycobacteria (NTM). Interferon-
gamma release assays (IGRAs) use mycobacterial protein peptides
(including ESAT-6, CFP-10, and TB7.7) to stimulate effector
lymphocytes to secrete IFN-y, which is then detected and quantified
to determine the presence of MTB-specific cellular immune responses
(6). These tests are less affected by BCG vaccination or NTM infection
but are more expensive and require laboratory support.

Currently, in addition to TST and IGRAs, China has
independently developed a new diagnostic product called the
recombinant Mycobacterium tuberculosis fusion protein (EC). This
protein induces specific delayed-type hypersensitivity (DTH)
reactions to distinguish MTB infection status, offering high
sensitivity, strong specificity, and simple operation. It can be used for
diagnosing latent TB infection (LTBI) and culture-negative
pulmonary TB (7). However, there is limited research on EC’s
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application in TB screening in high-altitude regions. This study
conducted EC and TST skin tests among students in a high-altitude
area to evaluate the value of EC testing for TB screening in
such settings.

2 Materials and methods
2.1 Study population

A total of 1,047 students from primary and secondary schools in
Seda County, a high-altitude region, were enrolled for tuberculosis
screening. All participants provided written informed consent and
underwent both EC skin test and TST.

2.2 Diagnostic reagents

Recombinant Mycobacterium tuberculosis fusion protein (EC)
50 U/1.0 mL/vial/box (Zhifei Longcom Biopharmaceutical Co., Ltd.,
Anhui); Tuberculin purified protein derivative (TB-PPD) 50 IU:1 mL/
vialx5/box (Beijing Xiangrui Biological Products Co., Ltd.).

2.3 Testing procedures

All 1,047 students underwent simultaneous bilateral arm testing
with TB-PPD and EC. Using the Mantoux method, 0.1 mL (5 U) of
EC was first injected intradermally on the volar aspect of the left
forearm. After 5 min of observation with no abnormalities, 0.1 mL
(51U) of TB-PPD was injected into the right forearm. Injection sites
were examined 48-72 h post-injection. For EC, the larger of erythema
or induration was recorded, while for TB-PPD, only induration was
measured. The transverse and longitudinal diameters (mm) of
reactions were documented, with an average diameter >5mm
considered positive. To facilitate direct result comparison under
identical conditions, this study administered the EC and PPD tests
simultaneously on the contralateral forearms of participants. Close
monitoring throughout the process revealed no cross-reactivity or
systemic adverse reactions—findings that validate the safety of this
concurrent testing approach in our study cohort.

2.4 Diagnostic criteria

Reference: “expert consensus on clinical application of recombinant
Mycobacterium tuberculosis fusion protein (EC)” any cases showing
vesiculation, necrosis or lymphangitis were classified as strong positive
reactions. Students under 15 years old with any positive screening
result (PPD or EC) and all students above 15 years old received chest
DR examinations (with CT and molecular biological tests when
necessary). All screened subjects underwent sputum smear microscopy
and mycobacterial culture. The final diagnostic classification was based
on a comprehensive assessment integrating skin test results,
radiographic findings (DR/CT), and microbiological confirmation
(sputum smear and culture), in accordance with the expert consensus
(7). Specifically: BCG vaccination group: PPD positive AND EC
negative AND normal chest imaging AND negative microbiological
results. Uninfected group: PPD negative AND EC negative AND
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normal chest imaging (if performed). At least latent infection group
(including LTBI and TB): defined by a positive EC test result. Those
with normal chest imaging AND negative microbiological results are
classified as latent tuberculosis infection (LTBI). Those with abnormal
chest imaging AND positive microbiological results are classified as
active tuberculosis (TB). A definitive diagnosis of active TB required a
positive mycobacterial culture (7).

2.5 Statistical analysis

2.5.1 Algorithm description

A Classification and Regression Tree (CART) algorithm was used
to build the diagnostic model from the EC and PPD test results. The
model was developed using a balanced dataset (n = 279 per group) to
mitigate the impact of imbalanced group sizes. To optimize model
performance and prevent overfitting, key parameters were tuned, and
the complexity of the tree was intentionally limited (e.g., by restricting
its maximum depth). The model’s generalizability was assessed using
cross-validation.

2.5.2 Statistical methods

R 4.3.0 and Python 12.0 were used for statistical analysis.
Descriptive analysis was performed using R: skewed continuous data
were expressed as median (Q;, Qs) and analyzed using Kruskal-Wallis
test; categorical data were presented as n (%) and analyzed using y* or
Fisher’s exact tests, with p < 0.05 considered statistically significant.
Python was used for model construction. Visualization and
performance evaluation included: decision tree diagrams using
graphviz package; ROC curves and AUC calculation using matplotlib
and scikit-plot; radar charts using matplotlib to comprehensively
display model metrics; and learning curves to evaluate model fit,
accuracy and confidence interval variability. Comprehensive metrics
(F1-score, recall, precision, accuracy and Kappa coefficient) were
calculated to thoroughly assess diagnostic performance.

3 Results

3.1 Sample characteristics and overall
screening results

The participant screening, evaluation, and classification workflow
is summarized in Figure 1. This study included 1,047 adolescent TB
screening participants from high-altitude regions. All subjects
underwent both EC and PPD skin tests and were categorized into
three groups according to EC expert consensus: BCG vaccination
group (n = 29, 2.77%; persistent positivity due to BCG vaccination
without infection), uninfected group (n = 975, 93.12%; no evidence of
TB infection), and at least latent infection group (n = 43, 4.11%; with
latent or active TB infection).

The median ages of the three groups were 12.0, 13.0, and 13.0 years
respectively, with no statistically significant differences (H = 3.82,
p =0.148). Gender distribution (male 49.09%, female 50.91%) was
also balanced across groups (y* = 0.44, p = 0.802).

TB-PPD testing showed 96.55% positivity in BCG vaccination
group (58.62% moderate positivity), 100% negativity in uninfected
group, and 72.09% positivity in at least latent infection group (44.19%
moderate, 11.63% strong positivity), with significant intergroup
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differences (p < 0.001), indicating PPD’s effectiveness in identifying
uninfected individuals but difficulty in distinguishing BCG
vaccination effects from latent infection. EC testing showed 0%
positivity in both BCG vaccination and uninfected groups, but 100%
positivity in at least latent infection group, with statistically significant
differences in positivity rates (p < 0.001), demonstrating EC’s complete
exclusion of BCG vaccination interference and accurate identification
of latent TB infection (Table 1).

All 1,047 screened subjects underwent microbiological culture,
the gold standard for the diagnosis of active tuberculosis. Active
pulmonary tuberculosis was confirmed in only 2 subjects (0.19%).
Notably, both culture-positive cases were identified from the subgroup
of 72 individuals (6.9% of the total cohort) who tested positive on
either skin test, and critically, both were positive for the EC test but
negative for the PPD test. This finding indicates that skin testing
defined a higher-risk subgroup (comprising 6.9% of the population)
for targeted evaluation. Within this subgroup, the positive predictive
value (PPV) of a positive skin test for confirming active tuberculosis
was 2.8% (2/72). Moreover, the specific pattern of EC-positive/
PPD-negative in both active TB cases suggests a potential advantage
of the EC test in identifying active disease in this population.

3.2 Diagnostic performance of testing
methods

3.2.1 PPD test performance

PPD skin test showed good performance for identifying
uninfected individuals (precision = 0.99, recall = 0.99), but only 0.40
precision and 0.57 recall for BCG vaccination group, and 0 for both
precision and recall in at least latent infection group (Table 2). ROC
curves (Figure 2B) showed AUC values of 0.98 (BCG vaccination),
0.92 (uninfected), and 0.83 (at least latent infection), with a Micro-
average Kappa coeflicient of 0.59, indicating moderate agreement with
gold standard. While PPD effectively excluded uninfected individuals,
it showed significant limitations in distinguishing BCG vaccination
responses from latent infection.

3.2.2 EC test performance

EC skin test demonstrated perfect performance for identifying
latent infections (precision = 1.00, recall = 1.00, F1-score = 1.00,
AUC = 1.00; Figure 2C), but all performance metrics were 0 for BCG
vaccination group (Table 2), indicating its inability to distinguish
BCG-vaccinated individuals from truly uninfected ones. The EC test
yielded a Micro-average AUC of 0.57 and a Kappa coefficient of 0.81.
This disparity arises because the Micro-average AUC is heavily
penalized by the models complete failure to classify the
BCG-vaccinated group (AUC = 0.52), while the Kappa coefficient
benefits from its perfect performance in identifying the uninfected
and latent infection groups. (Table 2; Figure 2).

3.3 Construction and performance of
combined diagnostic model

In high-altitude regions, widespread BCG vaccination leads to
57% false-positive rate in PPD testing, significantly compromising
screening specificity. While EC testing shows 100% sensitivity for
latent TB infection, it cannot differentiate between post-vaccination
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Assessment for Eligibility
Primary &amp; Secondary School Students
in Sertar County
N =1047
Enrolled &mp; Completed Simultaneous
esting
All participants received both PPD &amp; EC
Skin Tests
N =1047
All Participants Underwent
Sputum Smear Microscopy &mp;
Mycobacterial Culture
=1,047
Met Criteria for Chest DR?
Mycobacterial Culture Result Age 215 years OR
Any Skin Test Positive
Culture Positive Culture Negative Underwent Chest DR Examination .
n= n=1045 + CT &mp; Molecular Tests if needed DidNot Receive Chest DR
A
Diagnosed: Acti_ve Tuberculosis Final g)l(;ses:i(c:ztrizg nbszssed on
iR Integrating all available results
EC Positive — <b>At Least Latent EC Negative &mp; PPD Positive = BCG EC Negative &mp; PPD Negative —
Infection</b> Vaccination Group Uninfected Group
n=43 n=29 n=975
Including
Active TBn =2
Latent TB Infection n = 41

FIGURE 1

Participant screening, evaluation and classification flowchart. A total of 1,047 primary and secondary school students from Sertar County were

enrolled.All participants underwent simultaneous tuberculin skin testing (TST/PPD) and recombinant Mycobacterium tuberculosis fusion protein (EC)

testing, as well as microbiological culture (the gold standard for active TB diagnosis). Chest radiography (DR) was performed selectively for students

(Continued)
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FIGURE 1 Continued

under 15 years with any positive skin test result and for all students aged 15 years or older. Final classification was based on expert consensus criteria
integrating all available diagnostic results. The "At least latent infection” group (n = 43) includes individuals with latent tuberculosis infection (n = 41)
and those with active, culture-confirmed tuberculosis (n = 2). Notably, both active TB cases exhibited EC-positive/PPD-negative skin test results.
Abbreviations: PPD, purified protein derivative; EC, recombinant Mycobacterium tuberculosis fusion protein; DR, digital radiography; TB, tuberculosis.

TABLE 1 Baseline characteristics of different groups.

Variables Total (n = 1,047) BCG vaccination = Non-infected At least latent Statistic
(n =29) (n = 975) infection (n = 43)
Age, M (Q1, Qs) 13.00 (12.00, 13.00) 12.00 (7.00, 13.00) 13.00 (12.00, 13.00) 13.00 (12.00, 13.50) H=382 0.148
Sex, n(%) ¥ = 0.44 0.802
Male 514 (49.09) 15 (51.72) 476 (48.82) 23 (53.49)
Female 533 (50.91) 14 (48.28) 499 (51.18) 20 (46.51)
PPD test result, n(%) - <0.001
En_— 8 (0.76) 3(10.34) 0 (0.00) 5(11.63)
++ 36 (3.44) 17 (58.62) 0 (0.00) 19 (44.19)
++ 15 (1.43) 8 (27.59) 0 (0.00) 7(16.28)
- 988 (94.36) 1(3.45) 975 (100.00) 12 (27.91)
EC test result, n(%) - <0.001
Positive 43 (4.11) 0 (0.00) 0 (0.00) 43 (100.00)
Negative 1,004 (95.89) 29 (100.00) 975 (100.00) 0 (0.00)

H, Kruskal-wallis test, x, Chi-square test, —, Fisher exact; M, Median, Q,, 1st Quartile, Qs, 3rd Quartile. In the PPD test results, “+++” represents strongly positive, “++” represents moderately

positive, “+” represents generally positive, and “-” represents negative.

TABLE 2 Comparison of diagnostic performance for individual categories and kappa coefficients.

Diagnostic Category

Accuracy

Precision

Recall

Combined diagnosis BCG vaccination 1.00 1.00 1.00 1.00 1.00 1.00
PPD test BCG vaccination 1.00 0.40 0.57 0.99 0.98 0.59
EC test BCG vaccination 0.00 0.00 0.00 0.52 0.52 0.81
Combined diagnosis Uninfected 1.00 1.00 1.00 1.00 1.00 1.00
PPD test Uninfected 1.00 0.99 0.99 0.88 0.92 0.59
EC test Uninfected 1.00 0.98 0.99 0.85 0.76 0.81
Combined diagnosis At least latent infection 1.00 1.00 1.00 1.00 1.00 1.00
PPD test At least latent infection 0.00 0.00 0.00 0.82 0.83 0.59
EC test At least latent infection 1.00 1.00 1.00 1.00 1.00 0.81
Combined diagnosis Micro-average 1.00 1.00 1.00 1.00 1.00 1.00
PPD test Micro-average 0.96 0.96 0.96 0.99 0.99 0.59
EC test Micro-average 0.98 0.98 0.98 0.99 0.57 0.81

AUC, Area under the curve. Kappa represents the consistency with the gold standard. Micro-average: A summary metric that calculates the overall performance by counting the total true

positives, false negatives, and false positives across all classes. It is useful for evaluating the model’s overall performance in multi-class tasks, especially when class distribution is unbalanced.

persistent positivity and true non-infection (AUC =0.52). To
overcome these limitations, we integrated EC and PPD results to
develop a concise and efficient combined diagnostic decision tree
model. Using CART decision tree algorithm on 837 samples (balanced
to n=279 per group) with GridSearchCV optimization,
we determined optimal parameters: max_depth = 3, min_samples_
leaf = 1, min_samples_split = 2. The final decision tree had depth of 2
layers with 5 nodes (1 root, 2 decision, 2 leaf), using Gini impurity as
splitting criterion. Primary splitting used “EC test result” (Gini
gain = 0.67), classifying EC-positive cases as “at least latent infection”

Frontiers in Medicine

(n = 34, Gini = 0). Secondary splitting of EC-negative samples used
“PPD result”: PPD-positive as “BCG vaccination” (n = 24, Gini = 0)
and PPD-negative as “uninfected” (n = 779, Gini = 0.07). The model’s
“EC-first then PPD” approach initially assumed all samples as
“uninfected,” then progressively classified them based on test results
(Figure 3). Compared to individual methods, achieved an accuracy,
recall, and AUC of 1.00 for all three classifications on the present
dataset, with Micro-average AUC = 1.00 and Kappa coefficient = 1.00
(Table 2). Radar charts (Figure 4) visually demonstrated the combined
model’s superior performance across all dimensions.
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0‘00.0 0.2 04 0.6 08 1.0
1-Specificity
FIGURE 2
Receiver operating characteristic (ROC) curves evaluating the diagnostic performance. (A) The combined EC + PPD decision tree model achieved
perfect discrimination (AUC = 1.00) among all three groups. (B) The PPD test showed variable performance, with high accuracy in identifying BCG-
vaccinated (AUC = 0.98) and uninfected (AUC = 0.92) individuals, but lower performance in identifying infection (AUC = 0.83). (C) EC test perfectly
identified latent infection (AUC = 1.00) but failed to distinguish BCG-vaccinated individuals.

3.4 Model stability and generalizability
validation

Learning curve analysis using 837 balanced samples (n = 279
per group; Figure 5) showed training accuracy rapidly reached
0.99-1.00 after ~150 samples, with cross-validation stabilizing at
150-200 samples. Difference between training and validation
narrowed with increasing samples, stabilizing at 0.98-1.00 accuracy
at 800 samples (slopex0). For all three classifications, training
accuracy consistently maintained at 1.00, while cross-validation
accuracy rose rapidly after inflection points (650, 47, and 650
samples respectively), finally stabilizing at 0.98-1.00. With training/
validation accuracy fluctuations <0.01 and 95% CI width <0.03 at
maximum sample size, the model demonstrated both low bias (high
fit) and low variance (strong generalizability). Appropriate tree
depth limits and leaf node sample settings ensured ideal bias-
variance balance. The combined EC + PPD decision tree model
reached optimal fitting state at 150-650 samples and maintained
highly consistent accuracy beyond 800 samples, demonstrating
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both efficiency and robustness for large-scale screening in high-
altitude regions with excellent reproducibility.

4 Discussion

Our study adds to the growing body of evidence for recombinant
protein skin tests. The high performance of the EC test corroborates
findings from a recent systematic review which reported that novel
skin tests, including Diaskintest® (Generium, Russian Federation) and
C-Tb (Serum Institute of India), demonstrate performance
comparable to established tests for LTBI screening (8). These findings
collectively demonstrate the utility of this new test class, particularly
in BCG-vaccinated populations.

TB is an infectious disease caused by Mycobacterium tuberculosis
that can affect multiple organs, with pulmonary infection being the
most common. It remains a significant global health threat due to its
insidious onset, long incubation period, prolonged treatment course,
and the potential for drug resistance (2, 9). China is one of the
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EC test_Negative <= 0.5
gini = 0.67
samples = 837

class = Uninfected

value = [279.0, 279.0, 279.0]

True

FIGURE 3

Decision Tree Rules for Combined Diagnosis

False

PPD test_-<=0.5
gini=0.5
samples = 803
value =[0.0, 279.0, 279.0]
class = Uninfected

Decision tree model for TB infection classification. The tree uses EC result as the primary split (EC-positive classified as ‘At least Latent infection’) and
PPD result for secondary split of EC-negative individuals (PPD-positive classified as ‘BCG-vaccinated’, PPD-negative as ‘Uninfected’).

countries with a high burden of tuberculosis. Since the founding of
the People’s Republic, advancements in public health and
improvements in living standards have led to a marked decline in the
incidence and mortality rates of TB. However, China is still one of the
30 high-burden countries for TB globally, with approximately 900,000
new cases annually, ranking third in the world (10). Geographically,
the distribution of TB in China is uneven, with the western regions,
particularly the plateau pastoral areas, showing a significantly higher
disease burden. For example, Seda County, a typical plateau pastoral
region, faces a particularly severe tuberculosis situation (11).
Additionally, occupational and ethnic factors also influence TB
distribution, with farmers, herders, and Tibetans showing a
significantly higher incidence compared to other groups (12, 13).
These characteristics pose challenges for screening strategies,
necessitating the development of diagnostic tools with high sensitivity
and specificity.

The diagnosis of active tuberculosis (TB) remains challenging due
to the limited sensitivity of tests like sputum smear microscopy, which
has a positivity rate of only approximately 30% (14, 15). Consequently,
many cases are diagnosed based on clinical presentation and imaging,
which can lead to delays and misdiagnosis (16, 17). Given these
limitations in active case finding, the accurate detection of latent TB
infection (LTBI) becomes even more critical for preventing disease
progression and transmission. In this context, our study evaluated the
recombinant Mycobacterium tuberculosis fusion protein (EC) skin test
for LTBI screening in a high-altitude area. The EC skin test showed
high sensitivity and specificity in identifying latent infections in our
cohort, but fails to classify BCG-vaccinated individuals (overall
performance = 0.00). This is because EC includes antigens such as
ESAT-6 and CFP-10, which are absent in BCG and most
non-tuberculous mycobacteria, thus effectively preventing cross-
reactivity (18). However, it is theoretically important to note that these
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antigens are also present in a limited number of NTM species (e.g.,
M. kansasii, M. marinum). Nevertheless, as evidenced by the literature
(19), NTM are not a significant cause of false-positive skin test results
in high TB burden regions like ours. Consequently, the high specificity
of the EC test is maintained, and a positive result in this specific
population is overwhelmingly indicative of M. tuberculosis complex
infection, warranting clinical follow-up. In contrast, while the TB-PPD
test has a high accuracy rate of 99% for detecting non-infected
individuals, it has a false-positive rate of 57% in the BCG-vaccinated
group. This is primarily attributed to cross-reactivity due to prior
BCG vaccination.

A key finding is that the EC test, due to its high specificity,
completely eliminates interference from BCG vaccination, a major
drawback of the PPD test. While the EC test itself cannot identify
whether a person has been vaccinated with BCG (as this is not its
combined EC + PPD
distinguishes the BCG-vaccinated group. This is clinically crucial not

purpose), the algorithm  successfully
for identifying vaccination history per se, but for accurately classifying
individuals and avoiding the misclassification of BCG responses as
latent infection, thereby preventing unnecessary treatment
and anxiety.

To address the limitations inherent in individual diagnostic
methods for tuberculosis (TB), this study introduces an innovative
approach: a “EC first, then PPD” combined Classification and
Regression Tree (CART) decision tree model specifically tailored for
screening populations in high-altitude regions. This model overcomes
the shortcomings of traditional single-test approaches by
incorporating two complementary diagnostic methods—the
recombinant Mycobacterium tuberculosis fusion protein (EC) skin test
and the purified protein derivative (PPD) test—in a sequential
manner. By combining these tests, the model enhances diagnostic

accuracy, particularly in populations that face unique environmental
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Radar charts visualizing diagnostic performance metrics. (A—D) Represent BCG-vaccinated, uninfected, at least latent infection, and micro-average
results, respectively. The combined EC + PPD model (blue) demonstrates superior and balanced performance across all metrics (Precision, Recall,
F1-Score, AUC, Accuracy) compared to the individual EC (green) or PPD (orange) tests.

and genetic factors, such as those found in high-altitude Tibetan
regions. The optimization of this combined model was conducted
using a grid search method on a sample of 837 balanced individuals
(n =279 per group). Through this process, the model’s optimal
parameters were determined, including a maximum tree depth (max_
depth) of 3, a minimum number of samples per leaf (min_samples_
leaf) of 1, and a minimum number of samples required to split a node
(min_samples_split) of 2. These settings ensure that the model
remains simple and interpretable, while still maintaining high
diagnostic performance. The decision tree structure is carefully
designed to first eliminate all EC-positive samples, regardless of
whether the infection is latent or active, with a Gini gain of 0.67,
indicating a high discriminatory power for identifying infected
individuals. Subsequently, the model differentiates between those who
are EC-negative but PPD-positive (likely due to BCG vaccination,
resulting in false positives) and those who are both EC-negative and
PPD-negative (indicating a non-infected status), with Gini values of 0
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for BCG false positives and 0.07 for non-infected individuals. These
Gini values reflect the purity and accuracy of the decision-making
process at each node, aligning with known immunological
mechanisms of tuberculosis infection and BCG vaccination response.
The combined “EC first, then PPD” decision tree model
demonstrated high diagnostic performance on our data, achieving an
accuracy, recall, and AUC of 1.00 on the present dataset, with a
Micro-AUC score of 1.00 and a Kappa coeflicient of 1.00. These results
underscore the model’s ability to accurately classify TB infection status
into three distinct categories: at least latent infection, BCG false
positives, and non-infected individuals. The model’s performance is
further supported by learning curve analysis, which indicates that it
reaches optimal fitting with sample sizes between 150 and 650 cases, and
maintains consistent accuracy when sample sizes exceed 800 cases. This
highlights the model’s robustness and its potential for large-scale, high-
altitude screening efforts, where the burden of tuberculosis is often
underestimated due to challenging environmental conditions.
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FIGURE 5
Learning curves assessing model stability and generalizability. (A) Micro-average accuracy. (B—D) Accuracy for the BCG-vaccinated, Uninfected, and At
least latent infection groups, respectively. The convergence of training and cross-validation accuracy curves at high performance levels (0.98-1.00)
with increasing sample size indicates the model has low bias and variance, confirming its robustness.

Although a formal health economic evaluation was beyond the
scope of this study, the proposed “EC first, then PPD” algorithm has
practical implications for resource-limited settings. The EC test is
highly specific and can first definitively identify all infected
individuals (Latent and Active). The subsequent PPD test, which is
low-cost and widely available, is then only needed for the
EC-negative group to further distinguish between BCG vaccination
effects and true non-infection. This sequential approach could
potentially reduce the number of unnecessary chest X-rays and
further investigations compared to using either test alone or in
parallel, optimizing the use of limited healthcare resources. Future
studies should include a cost-effectiveness analysis to confirm
this advantage.

The promising performance of the EC test and the combined
model in our adolescent cohort suggests a valuable tool for TB
screening in high-altitude schools. However, the performance of
immune-based tests like the EC test can be influenced by age-related
factors. As reviewed by Basu and Chakraborty (20), immune-based
tests like EC may show reduced sensitivity in young children and
immunocompromised individuals due to non-specific immune
responses and the paucibacillary nature of pediatric TB.

This study has certain limitations. Firstly, the study population
is predominantly composed of adolescents, and a recent study on
differential diagnosis of active pulmonary TB suggests that age may
influence the sensitivity and specificity of the EC skin test (21).
Therefore, multi-center, large-sample studies in adult and elderly
populations are necessary to evaluate the diagnostic performance
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across different age groups. Secondly, the small sample sizes in the
at least latent infection group (n = 43) and the BCG-vaccinated
group (n = 29), along with uneven distribution across categories,
may have weakened the model’s ability to learn from minority
categories. Future research should expand the sample size and
consider refined weighting or data augmentation strategies. Thirdly,
the study was limited to Seda County, a plateau pastoral area, and
does not cover other high-burden regions with varying altitudes,
climates, and BCG vaccination rates. Additionally, the lack of a
health economics evaluation limits the generalizability of the
findings. Future studies should validate the model in multi-center
settings and conduct cost-effectiveness analyses. Fourthly, our
diagnostic classification algorithm, while based on expert
consensus, simplifies complex immunological states. It does not
account for individuals who may have received BCG revaccination
at age 7, those in whom the post-vaccination immune response has
waned (leading to false-negative PPD results), or the possibility of
true MTB infection in BCG-vaccinated individuals. Furthermore,
potential allergic reactions or energy, which could lead to false-
negative results, were not analyzed. The potential ‘booster effect’ of
sequential skin testing was also not considered in this cross-
sectional study design. Lastly, all participants in this study
underwent both EC and PPD tests, which is not standard clinical
practice and may lead to cross-reactivity or operational bias. Future
studies should optimize testing protocols based on real-world
clinical pathways to further improve the model’s practicality
and scalability.
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5 Conclusion

This high-altitude TB screening study demonstrated the EC skin
test’s high sensitivity and specificity, supporting its utility in regions
with high BCG vaccination rates. The combined EC + PPD decision
tree model showed potential for precise classification of at least latent
infections, BCG vaccinations, and uninfected individuals in this
setting, exhibiting high performance on the study data. The model’s
simple structure could facilitate field application, suggesting it is a
promising tool for resource-limited high-altitude regions. Future
multicenter studies are needed to verify its applicability across diverse
populations and regions, and health economic evaluations are
warranted to promote its widespread adoption in global high-
burden areas.
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