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Objective: To evaluate the utility and effectiveness of the recombinant 
Mycobacterium tuberculosis fusion protein (EC) skin test for tuberculosis (TB) 
screening among student populations in high-altitude regions and to provide 
evidence-based recommendations for optimizing epidemic control strategies.
Methods: A total of 1,047 primary and secondary school students in Seda 
County were enrolled. Both the tuberculin skin test (TST/PPD) and EC skin 
test were administered to all participants. Data analysis was performed using 
R 4.3.0 and Python 12.0 statistical software. Descriptive analyses included 
skewed continuous data expressed as median (Q₁, Q₃) and analyzed using the 
Kruskal-Wallis test, while categorical data were presented as n (%) and analyzed 
using Chi-square or Fisher’s exact tests. Model construction and performance 
evaluation were implemented in Python, utilizing packages such as graphviz, 
matplotlib, and scikit-plot for visualization and metrics calculation.
Results: Based on expert consensus, participants were stratified into three groups: 
BCG vaccination (n = 29, 2.77%), uninfected (n = 975, 93.12%), and at least latent 
infection (including both latent TB infection and active TB, n = 43, 4.11%). The PPD 
test showed significant intergroup differences (p < 0.001), with AUC values of 0.98 
(BCG vaccination), 0.92 (uninfected), and 0.83 (at least latent infection), and an 
overall Kappa coefficient of 0.59. The EC test demonstrated perfect performance 
in identifying latent infections (precision, recall, F1-score, and AUC = 1.00) but 
failed to distinguish BCG-vaccinated individuals (all metrics = 0). A decision tree 
model combining EC + PPD demonstrated perfect classification performance on 
the current dataset, achieving accuracy, recall, and AUC values of 1.00 across all 
classifications, with a micro-average AUC of 1.00 and a Kappa coefficient of 1.00.
Conclusion: While the EC skin test exhibits 100% sensitivity for latent TB 
infection, it cannot differentiate between persistent post-vaccination positivity 
and true uninfected status. The EC + PPD decision tree model synergistically 
optimizes multi-dimensional metrics, enabling high-sensitivity detection of 
latent infections and precise exclusion of false positives, thereby improving 
overall diagnostic performance. This integrated approach could improve TB 
screening accuracy in high-altitude student populations, inform targeted 
public health interventions, and warrants further validation. While this study 
was conducted in a high-altitude region, the combined EC + PPD approach 
warrants evaluation in other settings with high BCG vaccination rates.
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1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), 
is a chronic infectious disease and one of the top 10 causes of death 
worldwide. As a global leader in TB control, China has achieved the 
TB-related targets of the United Nations Millennium Development 
Goals 5 years ahead of schedule (1), contributing valuable experience 
to global TB prevention efforts. However, the current prevention and 
control situation remains challenging. The 2024 WHO Global 
Tuberculosis Report indicates that China had an estimated 741,000 
new TB cases in 2023, accounting for 6.8% of global cases. Although 
this represents a decrease from 2022, China still ranks third in the 
world for TB incidence (2).

With dense populations, schools are high-risk settings for TB 
outbreaks. Given that children and adolescents— the primary 
population in schools— still bear an unacceptably high TB burden, 
school-based TB prevention has become a key focus of China’s TB 
control efforts (3, 4). The World Health Organization estimates that 
1.2 million children and young adolescents developed TB in 2022, 
with a staggering 50% of cases going undetected by public health 
systems (5). The root of this diagnostic crisis lies in the unique 
pathophysiology of TB in the young. Children often present with 
non-specific symptoms and paucibacillary disease, rendering 
pathogen-based tests like smear microscopy insensitive. Concurrently, 
their evolving immune systems result in variable performance of host-
based immune assays. Consequently, the failure to diagnose leads to 
a failure to treat, accounting for 96% of TB deaths in this age group 
(5). Therefore, the development and validation of novel diagnostic 
tests that can overcome these hurdles—such as those utilizing 
non-sputum samples or novel antigen targets—are paramount to 
closing the case detection gap and reducing mortality. In this context, 
early detection of latent TB infections is critical for preventing TB 
transmission within schools.

Rapid detection of TB infection (including both active TB and 
latent TB infection) is essential for TB eradication. However, latent 
cases lack clinical manifestations, and most active TB cases are difficult 
to identify in early stages, when bacteriological tests have low positive 
detection rates. Therefore, indirect testing methods are needed to 
support clinical TB diagnosis. The World Health Organization 
(WHO) recognizes two commercialized techniques for TB infection 
detection: the tuberculin skin test (TST) and interferon-gamma 
release assays (IGRAs) (2). The tuberculin skin test (TST) is a 
traditional detection method known for its simplicity and low cost, 
but it has low specificity in populations vaccinated with BCG or 
infected with non-tuberculous mycobacteria (NTM). Interferon-
gamma release assays (IGRAs) use mycobacterial protein peptides 
(including ESAT-6, CFP-10, and TB7.7) to stimulate effector 
lymphocytes to secrete IFN-γ, which is then detected and quantified 
to determine the presence of MTB-specific cellular immune responses 
(6). These tests are less affected by BCG vaccination or NTM infection 
but are more expensive and require laboratory support.

Currently, in addition to TST and IGRAs, China has 
independently developed a new diagnostic product called the 
recombinant Mycobacterium tuberculosis fusion protein (EC). This 
protein induces specific delayed-type hypersensitivity (DTH) 
reactions to distinguish MTB infection status, offering high 
sensitivity, strong specificity, and simple operation. It can be used for 
diagnosing latent TB infection (LTBI) and culture-negative 
pulmonary TB (7). However, there is limited research on EC’s 

application in TB screening in high-altitude regions. This study 
conducted EC and TST skin tests among students in a high-altitude 
area to evaluate the value of EC testing for TB screening in 
such settings.

2 Materials and methods

2.1 Study population

A total of 1,047 students from primary and secondary schools in 
Seda County, a high-altitude region, were enrolled for tuberculosis 
screening. All participants provided written informed consent and 
underwent both EC skin test and TST.

2.2 Diagnostic reagents

Recombinant Mycobacterium tuberculosis fusion protein (EC) 
50 U/1.0 mL/vial/box (Zhifei Longcom Biopharmaceutical Co., Ltd., 
Anhui); Tuberculin purified protein derivative (TB-PPD) 50 IU:1 mL/
vial×5/box (Beijing Xiangrui Biological Products Co., Ltd.).

2.3 Testing procedures

All 1,047 students underwent simultaneous bilateral arm testing 
with TB-PPD and EC. Using the Mantoux method, 0.1 mL (5 U) of 
EC was first injected intradermally on the volar aspect of the left 
forearm. After 5 min of observation with no abnormalities, 0.1 mL 
(5 IU) of TB-PPD was injected into the right forearm. Injection sites 
were examined 48–72 h post-injection. For EC, the larger of erythema 
or induration was recorded, while for TB-PPD, only induration was 
measured. The transverse and longitudinal diameters (mm) of 
reactions were documented, with an average diameter ≥5 mm 
considered positive. To facilitate direct result comparison under 
identical conditions, this study administered the EC and PPD tests 
simultaneously on the contralateral forearms of participants. Close 
monitoring throughout the process revealed no cross-reactivity or 
systemic adverse reactions—findings that validate the safety of this 
concurrent testing approach in our study cohort.

2.4 Diagnostic criteria

Reference: “expert consensus on clinical application of recombinant 
Mycobacterium tuberculosis fusion protein (EC).” any cases showing 
vesiculation, necrosis or lymphangitis were classified as strong positive 
reactions. Students under 15 years old with any positive screening 
result (PPD or EC) and all students above 15 years old received chest 
DR examinations (with CT and molecular biological tests when 
necessary). All screened subjects underwent sputum smear microscopy 
and mycobacterial culture. The final diagnostic classification was based 
on a comprehensive assessment integrating skin test results, 
radiographic findings (DR/CT), and microbiological confirmation 
(sputum smear and culture), in accordance with the expert consensus 
(7). Specifically: BCG vaccination group: PPD positive AND EC 
negative AND normal chest imaging AND negative microbiological 
results. Uninfected group: PPD negative AND EC negative AND 
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normal chest imaging (if performed). At least latent infection group 
(including LTBI and TB): defined by a positive EC test result. Those 
with normal chest imaging AND negative microbiological results are 
classified as latent tuberculosis infection (LTBI). Those with abnormal 
chest imaging AND positive microbiological results are classified as 
active tuberculosis (TB). A definitive diagnosis of active TB required a 
positive mycobacterial culture (7).

2.5 Statistical analysis

2.5.1 Algorithm description
A Classification and Regression Tree (CART) algorithm was used 

to build the diagnostic model from the EC and PPD test results. The 
model was developed using a balanced dataset (n = 279 per group) to 
mitigate the impact of imbalanced group sizes. To optimize model 
performance and prevent overfitting, key parameters were tuned, and 
the complexity of the tree was intentionally limited (e.g., by restricting 
its maximum depth). The model’s generalizability was assessed using 
cross-validation.

2.5.2 Statistical methods
R 4.3.0 and Python 12.0 were used for statistical analysis. 

Descriptive analysis was performed using R: skewed continuous data 
were expressed as median (Q₁, Q₃) and analyzed using Kruskal-Wallis 
test; categorical data were presented as n (%) and analyzed using χ2 or 
Fisher’s exact tests, with p < 0.05 considered statistically significant. 
Python was used for model construction. Visualization and 
performance evaluation included: decision tree diagrams using 
graphviz package; ROC curves and AUC calculation using matplotlib 
and scikit-plot; radar charts using matplotlib to comprehensively 
display model metrics; and learning curves to evaluate model fit, 
accuracy and confidence interval variability. Comprehensive metrics 
(F1-score, recall, precision, accuracy and Kappa coefficient) were 
calculated to thoroughly assess diagnostic performance.

3 Results

3.1 Sample characteristics and overall 
screening results

The participant screening, evaluation, and classification workflow 
is summarized in Figure 1. This study included 1,047 adolescent TB 
screening participants from high-altitude regions. All subjects 
underwent both EC and PPD skin tests and were categorized into 
three groups according to EC expert consensus: BCG vaccination 
group (n = 29, 2.77%; persistent positivity due to BCG vaccination 
without infection), uninfected group (n = 975, 93.12%; no evidence of 
TB infection), and at least latent infection group (n = 43, 4.11%; with 
latent or active TB infection).

The median ages of the three groups were 12.0, 13.0, and 13.0 years 
respectively, with no statistically significant differences (H = 3.82, 
p = 0.148). Gender distribution (male 49.09%, female 50.91%) was 
also balanced across groups (χ2 = 0.44, p = 0.802).

TB-PPD testing showed 96.55% positivity in BCG vaccination 
group (58.62% moderate positivity), 100% negativity in uninfected 
group, and 72.09% positivity in at least latent infection group (44.19% 
moderate, 11.63% strong positivity), with significant intergroup 

differences (p < 0.001), indicating PPD’s effectiveness in identifying 
uninfected individuals but difficulty in distinguishing BCG 
vaccination effects from latent infection. EC testing showed 0% 
positivity in both BCG vaccination and uninfected groups, but 100% 
positivity in at least latent infection group, with statistically significant 
differences in positivity rates (p < 0.001), demonstrating EC’s complete 
exclusion of BCG vaccination interference and accurate identification 
of latent TB infection (Table 1).

All 1,047 screened subjects underwent microbiological culture, 
the gold standard for the diagnosis of active tuberculosis. Active 
pulmonary tuberculosis was confirmed in only 2 subjects (0.19%). 
Notably, both culture-positive cases were identified from the subgroup 
of 72 individuals (6.9% of the total cohort) who tested positive on 
either skin test, and critically, both were positive for the EC test but 
negative for the PPD test. This finding indicates that skin testing 
defined a higher-risk subgroup (comprising 6.9% of the population) 
for targeted evaluation. Within this subgroup, the positive predictive 
value (PPV) of a positive skin test for confirming active tuberculosis 
was 2.8% (2/72). Moreover, the specific pattern of EC-positive/
PPD-negative in both active TB cases suggests a potential advantage 
of the EC test in identifying active disease in this population.

3.2 Diagnostic performance of testing 
methods

3.2.1 PPD test performance
PPD skin test showed good performance for identifying 

uninfected individuals (precision = 0.99, recall = 0.99), but only 0.40 
precision and 0.57 recall for BCG vaccination group, and 0 for both 
precision and recall in at least latent infection group (Table 2). ROC 
curves (Figure 2B) showed AUC values of 0.98 (BCG vaccination), 
0.92 (uninfected), and 0.83 (at least latent infection), with a Micro-
average Kappa coefficient of 0.59, indicating moderate agreement with 
gold standard. While PPD effectively excluded uninfected individuals, 
it showed significant limitations in distinguishing BCG vaccination 
responses from latent infection.

3.2.2 EC test performance
EC skin test demonstrated perfect performance for identifying 

latent infections (precision = 1.00, recall = 1.00, F1-score = 1.00, 
AUC = 1.00; Figure 2C), but all performance metrics were 0 for BCG 
vaccination group (Table  2), indicating its inability to distinguish 
BCG-vaccinated individuals from truly uninfected ones. The EC test 
yielded a Micro-average AUC of 0.57 and a Kappa coefficient of 0.81. 
This disparity arises because the Micro-average AUC is heavily 
penalized by the model’s complete failure to classify the 
BCG-vaccinated group (AUC = 0.52), while the Kappa coefficient 
benefits from its perfect performance in identifying the uninfected 
and latent infection groups. (Table 2; Figure 2).

3.3 Construction and performance of 
combined diagnostic model

In high-altitude regions, widespread BCG vaccination leads to 
57% false-positive rate in PPD testing, significantly compromising 
screening specificity. While EC testing shows 100% sensitivity for 
latent TB infection, it cannot differentiate between post-vaccination 
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FIGURE 1

Participant screening, evaluation and classification flowchart. A total of 1,047 primary and secondary school students from Sertar County were 
enrolled.All participants underwent simultaneous tuberculin skin testing (TST/PPD) and recombinant Mycobacterium tuberculosis fusion protein (EC) 
testing, as well as microbiological culture (the gold standard for active TB diagnosis). Chest radiography (DR) was performed selectively for students 

(Continued)
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persistent positivity and true non-infection (AUC = 0.52). To 
overcome these limitations, we  integrated EC and PPD results to 
develop a concise and efficient combined diagnostic decision tree 
model. Using CART decision tree algorithm on 837 samples (balanced 
to n = 279 per group) with GridSearchCV optimization, 
we determined optimal parameters: max_depth = 3, min_samples_
leaf = 1, min_samples_split = 2. The final decision tree had depth of 2 
layers with 5 nodes (1 root, 2 decision, 2 leaf), using Gini impurity as 
splitting criterion. Primary splitting used “EC test result” (Gini 
gain = 0.67), classifying EC-positive cases as “at least latent infection” 

(n = 34, Gini = 0). Secondary splitting of EC-negative samples used 
“PPD result”: PPD-positive as “BCG vaccination” (n = 24, Gini = 0) 
and PPD-negative as “uninfected” (n = 779, Gini = 0.07). The model’s 
“EC-first then PPD” approach initially assumed all samples as 
“uninfected,” then progressively classified them based on test results 
(Figure 3). Compared to individual methods, achieved an accuracy, 
recall, and AUC of 1.00 for all three classifications on the present 
dataset, with Micro-average AUC = 1.00 and Kappa coefficient = 1.00 
(Table 2). Radar charts (Figure 4) visually demonstrated the combined 
model’s superior performance across all dimensions.

TABLE 1  Baseline characteristics of different groups.

Variables Total (n = 1,047) BCG vaccination 
(n = 29)

Non-infected 
(n = 975)

At least latent 
infection (n = 43)

Statistic p

Age, M (Q₁, Q₃) 13.00 (12.00, 13.00) 12.00 (7.00, 13.00) 13.00 (12.00, 13.00) 13.00 (12.00, 13.50) H = 3.82 0.148

Sex, n(%) χ2 = 0.44 0.802

 � Male 514 (49.09) 15 (51.72) 476 (48.82) 23 (53.49)

 � Female 533 (50.91) 14 (48.28) 499 (51.18) 20 (46.51)

PPD test result, n(%) − <0.001

 � +++ 8 (0.76) 3 (10.34) 0 (0.00) 5 (11.63)

 � ++ 36 (3.44) 17 (58.62) 0 (0.00) 19 (44.19)

 � ++ 15 (1.43) 8 (27.59) 0 (0.00) 7 (16.28)

 � − 988 (94.36) 1 (3.45) 975 (100.00) 12 (27.91)

EC test result, n(%) − <0.001

 � Positive 43 (4.11) 0 (0.00) 0 (0.00) 43 (100.00)

 � Negative 1,004 (95.89) 29 (100.00) 975 (100.00) 0 (0.00)

H, Kruskal-wallis test, χ2, Chi-square test, −, Fisher exact; M, Median, Q₁, 1st Quartile, Q₃, 3rd Quartile. In the PPD test results, “+++” represents strongly positive, “++” represents moderately 
positive, “+” represents generally positive, and “-” represents negative.

TABLE 2  Comparison of diagnostic performance for individual categories and kappa coefficients.

Model Diagnostic Category Accuracy Precision Recall F1 AUC Kappa

Combined diagnosis BCG vaccination 1.00 1.00 1.00 1.00 1.00 1.00

PPD test BCG vaccination 1.00 0.40 0.57 0.99 0.98 0.59

EC test BCG vaccination 0.00 0.00 0.00 0.52 0.52 0.81

Combined diagnosis Uninfected 1.00 1.00 1.00 1.00 1.00 1.00

PPD test Uninfected 1.00 0.99 0.99 0.88 0.92 0.59

EC test Uninfected 1.00 0.98 0.99 0.85 0.76 0.81

Combined diagnosis At least latent infection 1.00 1.00 1.00 1.00 1.00 1.00

PPD test At least latent infection 0.00 0.00 0.00 0.82 0.83 0.59

EC test At least latent infection 1.00 1.00 1.00 1.00 1.00 0.81

Combined diagnosis Micro-average 1.00 1.00 1.00 1.00 1.00 1.00

PPD test Micro-average 0.96 0.96 0.96 0.99 0.99 0.59

EC test Micro-average 0.98 0.98 0.98 0.99 0.57 0.81

AUC, Area under the curve. Kappa represents the consistency with the gold standard. Micro-average: A summary metric that calculates the overall performance by counting the total true 
positives, false negatives, and false positives across all classes. It is useful for evaluating the model’s overall performance in multi-class tasks, especially when class distribution is unbalanced.

under 15 years with any positive skin test result and for all students aged 15 years or older. Final classification was based on expert consensus criteria 
integrating all available diagnostic results. The “At least latent infection” group (n = 43) includes individuals with latent tuberculosis infection (n = 41) 
and those with active, culture-confirmed tuberculosis (n = 2). Notably, both active TB cases exhibited EC-positive/PPD-negative skin test results. 
Abbreviations: PPD, purified protein derivative; EC, recombinant Mycobacterium tuberculosis fusion protein; DR, digital radiography; TB, tuberculosis.

FIGURE 1  Continued
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3.4 Model stability and generalizability 
validation

Learning curve analysis using 837 balanced samples (n = 279 
per group; Figure  5) showed training accuracy rapidly reached 
0.99–1.00 after ~150 samples, with cross-validation stabilizing at 
150–200 samples. Difference between training and validation 
narrowed with increasing samples, stabilizing at 0.98–1.00 accuracy 
at 800 samples (slope≈0). For all three classifications, training 
accuracy consistently maintained at 1.00, while cross-validation 
accuracy rose rapidly after inflection points (650, 47, and 650 
samples respectively), finally stabilizing at 0.98–1.00. With training/
validation accuracy fluctuations <0.01 and 95% CI width <0.03 at 
maximum sample size, the model demonstrated both low bias (high 
fit) and low variance (strong generalizability). Appropriate tree 
depth limits and leaf node sample settings ensured ideal bias-
variance balance. The combined EC + PPD decision tree model 
reached optimal fitting state at 150–650 samples and maintained 
highly consistent accuracy beyond 800 samples, demonstrating 

both efficiency and robustness for large-scale screening in high-
altitude regions with excellent reproducibility.

4 Discussion

Our study adds to the growing body of evidence for recombinant 
protein skin tests. The high performance of the EC test corroborates 
findings from a recent systematic review which reported that novel 
skin tests, including Diaskintest® (Generium, Russian Federation) and 
C-Tb (Serum Institute of India), demonstrate performance 
comparable to established tests for LTBI screening (8). These findings 
collectively demonstrate the utility of this new test class, particularly 
in BCG-vaccinated populations.

TB is an infectious disease caused by Mycobacterium tuberculosis 
that can affect multiple organs, with pulmonary infection being the 
most common. It remains a significant global health threat due to its 
insidious onset, long incubation period, prolonged treatment course, 
and the potential for drug resistance (2, 9). China is one of the 

FIGURE 2

Receiver operating characteristic (ROC) curves evaluating the diagnostic performance. (A) The combined EC + PPD decision tree model achieved 
perfect discrimination (AUC = 1.00) among all three groups. (B) The PPD test showed variable performance, with high accuracy in identifying BCG-
vaccinated (AUC = 0.98) and uninfected (AUC = 0.92) individuals, but lower performance in identifying infection (AUC = 0.83). (C) EC test perfectly 
identified latent infection (AUC = 1.00) but failed to distinguish BCG-vaccinated individuals.
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countries with a high burden of tuberculosis. Since the founding of 
the People’s Republic, advancements in public health and 
improvements in living standards have led to a marked decline in the 
incidence and mortality rates of TB. However, China is still one of the 
30 high-burden countries for TB globally, with approximately 900,000 
new cases annually, ranking third in the world (10). Geographically, 
the distribution of TB in China is uneven, with the western regions, 
particularly the plateau pastoral areas, showing a significantly higher 
disease burden. For example, Seda County, a typical plateau pastoral 
region, faces a particularly severe tuberculosis situation (11). 
Additionally, occupational and ethnic factors also influence TB 
distribution, with farmers, herders, and Tibetans showing a 
significantly higher incidence compared to other groups (12, 13). 
These characteristics pose challenges for screening strategies, 
necessitating the development of diagnostic tools with high sensitivity 
and specificity.

The diagnosis of active tuberculosis (TB) remains challenging due 
to the limited sensitivity of tests like sputum smear microscopy, which 
has a positivity rate of only approximately 30% (14, 15). Consequently, 
many cases are diagnosed based on clinical presentation and imaging, 
which can lead to delays and misdiagnosis (16, 17). Given these 
limitations in active case finding, the accurate detection of latent TB 
infection (LTBI) becomes even more critical for preventing disease 
progression and transmission. In this context, our study evaluated the 
recombinant Mycobacterium tuberculosis fusion protein (EC) skin test 
for LTBI screening in a high-altitude area. The EC skin test showed 
high sensitivity and specificity in identifying latent infections in our 
cohort, but fails to classify BCG-vaccinated individuals (overall 
performance = 0.00). This is because EC includes antigens such as 
ESAT-6 and CFP-10, which are absent in BCG and most 
non-tuberculous mycobacteria, thus effectively preventing cross-
reactivity (18). However, it is theoretically important to note that these 

antigens are also present in a limited number of NTM species (e.g., 
M. kansasii, M. marinum). Nevertheless, as evidenced by the literature 
(19), NTM are not a significant cause of false-positive skin test results 
in high TB burden regions like ours. Consequently, the high specificity 
of the EC test is maintained, and a positive result in this specific 
population is overwhelmingly indicative of M. tuberculosis complex 
infection, warranting clinical follow-up. In contrast, while the TB-PPD 
test has a high accuracy rate of 99% for detecting non-infected 
individuals, it has a false-positive rate of 57% in the BCG-vaccinated 
group. This is primarily attributed to cross-reactivity due to prior 
BCG vaccination.

A key finding is that the EC test, due to its high specificity, 
completely eliminates interference from BCG vaccination, a major 
drawback of the PPD test. While the EC test itself cannot identify 
whether a person has been vaccinated with BCG (as this is not its 
purpose), the combined EC + PPD algorithm successfully 
distinguishes the BCG-vaccinated group. This is clinically crucial not 
for identifying vaccination history per se, but for accurately classifying 
individuals and avoiding the misclassification of BCG responses as 
latent infection, thereby preventing unnecessary treatment 
and anxiety.

To address the limitations inherent in individual diagnostic 
methods for tuberculosis (TB), this study introduces an innovative 
approach: a “EC first, then PPD” combined Classification and 
Regression Tree (CART) decision tree model specifically tailored for 
screening populations in high-altitude regions. This model overcomes 
the shortcomings of traditional single-test approaches by 
incorporating two complementary diagnostic methods—the 
recombinant Mycobacterium tuberculosis fusion protein (EC) skin test 
and the purified protein derivative (PPD) test—in a sequential 
manner. By combining these tests, the model enhances diagnostic 
accuracy, particularly in populations that face unique environmental 

FIGURE 3

Decision tree model for TB infection classification. The tree uses EC result as the primary split (EC-positive classified as ‘At least Latent infection’) and 
PPD result for secondary split of EC-negative individuals (PPD-positive classified as ‘BCG-vaccinated’, PPD-negative as ‘Uninfected’).
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and genetic factors, such as those found in high-altitude Tibetan 
regions. The optimization of this combined model was conducted 
using a grid search method on a sample of 837 balanced individuals 
(n = 279 per group). Through this process, the model’s optimal 
parameters were determined, including a maximum tree depth (max_
depth) of 3, a minimum number of samples per leaf (min_samples_
leaf) of 1, and a minimum number of samples required to split a node 
(min_samples_split) of 2. These settings ensure that the model 
remains simple and interpretable, while still maintaining high 
diagnostic performance. The decision tree structure is carefully 
designed to first eliminate all EC-positive samples, regardless of 
whether the infection is latent or active, with a Gini gain of 0.67, 
indicating a high discriminatory power for identifying infected 
individuals. Subsequently, the model differentiates between those who 
are EC-negative but PPD-positive (likely due to BCG vaccination, 
resulting in false positives) and those who are both EC-negative and 
PPD-negative (indicating a non-infected status), with Gini values of 0 

for BCG false positives and 0.07 for non-infected individuals. These 
Gini values reflect the purity and accuracy of the decision-making 
process at each node, aligning with known immunological 
mechanisms of tuberculosis infection and BCG vaccination response.

The combined “EC first, then PPD” decision tree model 
demonstrated high diagnostic performance on our data, achieving an 
accuracy, recall, and AUC of 1.00 on the present dataset, with a 
Micro-AUC score of 1.00 and a Kappa coefficient of 1.00. These results 
underscore the model’s ability to accurately classify TB infection status 
into three distinct categories: at least latent infection, BCG false 
positives, and non-infected individuals. The model’s performance is 
further supported by learning curve analysis, which indicates that it 
reaches optimal fitting with sample sizes between 150 and 650 cases, and 
maintains consistent accuracy when sample sizes exceed 800 cases. This 
highlights the model’s robustness and its potential for large-scale, high-
altitude screening efforts, where the burden of tuberculosis is often 
underestimated due to challenging environmental conditions.

FIGURE 4

Radar charts visualizing diagnostic performance metrics. (A–D) Represent BCG-vaccinated, uninfected, at least latent infection, and micro-average 
results, respectively. The combined EC + PPD model (blue) demonstrates superior and balanced performance across all metrics (Precision, Recall, 
F1-Score, AUC, Accuracy) compared to the individual EC (green) or PPD (orange) tests.
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Although a formal health economic evaluation was beyond the 
scope of this study, the proposed “EC first, then PPD” algorithm has 
practical implications for resource-limited settings. The EC test is 
highly specific and can first definitively identify all infected 
individuals (Latent and Active). The subsequent PPD test, which is 
low-cost and widely available, is then only needed for the 
EC-negative group to further distinguish between BCG vaccination 
effects and true non-infection. This sequential approach could 
potentially reduce the number of unnecessary chest X-rays and 
further investigations compared to using either test alone or in 
parallel, optimizing the use of limited healthcare resources. Future 
studies should include a cost-effectiveness analysis to confirm 
this advantage.

The promising performance of the EC test and the combined 
model in our adolescent cohort suggests a valuable tool for TB 
screening in high-altitude schools. However, the performance of 
immune-based tests like the EC test can be influenced by age-related 
factors. As reviewed by Basu and Chakraborty (20), immune-based 
tests like EC may show reduced sensitivity in young children and 
immunocompromised individuals due to non-specific immune 
responses and the paucibacillary nature of pediatric TB.

This study has certain limitations. Firstly, the study population 
is predominantly composed of adolescents, and a recent study on 
differential diagnosis of active pulmonary TB suggests that age may 
influence the sensitivity and specificity of the EC skin test (21). 
Therefore, multi-center, large-sample studies in adult and elderly 
populations are necessary to evaluate the diagnostic performance 

across different age groups. Secondly, the small sample sizes in the 
at least latent infection group (n = 43) and the BCG-vaccinated 
group (n = 29), along with uneven distribution across categories, 
may have weakened the model’s ability to learn from minority 
categories. Future research should expand the sample size and 
consider refined weighting or data augmentation strategies. Thirdly, 
the study was limited to Seda County, a plateau pastoral area, and 
does not cover other high-burden regions with varying altitudes, 
climates, and BCG vaccination rates. Additionally, the lack of a 
health economics evaluation limits the generalizability of the 
findings. Future studies should validate the model in multi-center 
settings and conduct cost-effectiveness analyses. Fourthly, our 
diagnostic classification algorithm, while based on expert 
consensus, simplifies complex immunological states. It does not 
account for individuals who may have received BCG revaccination 
at age 7, those in whom the post-vaccination immune response has 
waned (leading to false-negative PPD results), or the possibility of 
true MTB infection in BCG-vaccinated individuals. Furthermore, 
potential allergic reactions or energy, which could lead to false-
negative results, were not analyzed. The potential ‘booster effect’ of 
sequential skin testing was also not considered in this cross-
sectional study design. Lastly, all participants in this study 
underwent both EC and PPD tests, which is not standard clinical 
practice and may lead to cross-reactivity or operational bias. Future 
studies should optimize testing protocols based on real-world 
clinical pathways to further improve the model’s practicality 
and scalability.

FIGURE 5

Learning curves assessing model stability and generalizability. (A) Micro-average accuracy. (B–D) Accuracy for the BCG-vaccinated, Uninfected, and At 
least latent infection groups, respectively. The convergence of training and cross-validation accuracy curves at high performance levels (0.98–1.00) 
with increasing sample size indicates the model has low bias and variance, confirming its robustness.
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5 Conclusion

This high-altitude TB screening study demonstrated the EC skin 
test’s high sensitivity and specificity, supporting its utility in regions 
with high BCG vaccination rates. The combined EC + PPD decision 
tree model showed potential for precise classification of at least latent 
infections, BCG vaccinations, and uninfected individuals in this 
setting, exhibiting high performance on the study data. The model’s 
simple structure could facilitate field application, suggesting it is a 
promising tool for resource-limited high-altitude regions. Future 
multicenter studies are needed to verify its applicability across diverse 
populations and regions, and health economic evaluations are 
warranted to promote its widespread adoption in global high-
burden areas.
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