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Normal craniofacial development depends on the precise specification,
migration, and differentiation of cranial neural crest cells (CNCCs). Perturbations
in these processes result in a wide spectrum of congenital craniofacial anomalies,
which represent a major cause of birth defects worldwide. Xenopus has emerged
as a particularly powerful model for investigating craniofacial morphogenesis,
owing to its external fertilization, large and experimentally accessible embryos,
and evolutionarily conserved developmental pathways. These advantages allow
direct in vivo visualization and manipulation of CNCCs behaviors at single-
cell resolution, providing opportunities not readily achievable in mammalian
models. With the integration of advanced techniques such as high-resolution
imaging, lineage tracing, microsurgical manipulation, and genome editing, the
utility of Xenopus in craniofacial biology has been greatly expanded. In this
review, we outline the key stages of craniofacial development, summarize
representative craniofacial developmental disorders studied using Xenopus as a
model, and highlight how this system has provided critical mechanistic insights.
Importantly, the amenability of Xenopus embryos to small-molecule screening
underscores their translational potential as a rapid preclinical platform, linking
human genetic variants to disease pathogenesis and accelerating therapeutic
discovery for craniofacial disorders, as well as its translational potential as a rapid
preclinical platform, linking human genetic variants to disease pathogenesis and
accelerating therapeutic discovery for craniofacial disorders.

KEYWORDS

Xenopus, craniofacial developmental disorders, CNCCs, disease model, gene editing,
signaling pathway

1 Introduction

Craniofacial morphogenesis is a tightly regulated and dynamic developmental process
that governs the formation of head and facial structures through precise spatial
and temporal patterning during embryogenesis. This process depends on a transient,
pluripotent stem cell-like population known as neural crest cells (NCCs). Among
these, CNCCs serve as key contributors to the regulation and execution of craniofacial
morphogenesis (1). Any genetic or environmental perturbations affecting the induction,
migration, proliferation, or fate determination of these cells may result in pronounced
craniofacial developmental disorders (2).
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It is estimated that congenital craniofacial developmental
disorders represent about one-third of all congenital anomalies
globally (3). Among these, cleft lip and/or palate (CL/P) is
one of the most common, with a global incidence of around
1.7 per 1,000 live births (4). Another prominent condition,
craniosynostosis, occurs at a rate of approximately 5.2 per 10,000
live births, with non-syndromic cases being the most frequent (5,
6). Craniofacial developmental disorders not only impact essential
functions like feeding, breathing, and speech, but also impose
substantial psychological stress on patients. The lifelong medical
care, surgical interventions, and rehabilitative support required
place a considerable burden on affected families and healthcare
systems, underscoring the urgent need for deeper mechanistic
understanding and preventive strategies.

Congenital craniofacial developmental disorders often arise
from disruptions during early embryogenesis. To investigate
the underlying mechanisms, a variety of model organisms have
been employed, including the mouse (Mus musculus), chicken
(Gallus gallus), zebrafish (Danio rerio), and the African clawed
frog (Xenopus laevis). Among these, Xenopus stand out as a
classical and highly tractable model system, offering several key
advantages: external fertilization and development, high fecundity,
a stable genetic background, and large, easily manipulable
embryos. These features are particularly well-suited for live
imaging, microsurgical manipulations, and microinjection-based
gene perturbation, enabling precise analysis of early embryonic
events and organogenesis (7). Importantly, Xenopus exhibits
a high degree of genetic conservation with humans, sharing
over 80% of known human disease-associated gene orthologs,
including most genes implicated in craniofacial development,
and its branchial arch (BA) structures are homologous to the
pharyngeal arches (PA) that shape human facial development (8, 9).
This evolutionary conservation, combined with its experimental
accessibility, makes Xenopus a powerful and efficient model for
dissecting the molecular and cellular mechanisms underlying
congenital craniofacial disorders.

This review summarizes the key stages of craniofacial
development and highlights recent advances using Xenopus
models to study congenital craniofacial disorders. By integrating
developmental genetics with functional modeling, Xenopus
continues to offer critical insights into the etiology and potential
treatment strategies for these complex conditions.

2 Key stages of craniofacial
development

Craniofacial development is a temporally and spatially
coordinated process that progresses through a series of well-
defined stages, beginning at gastrulation and culminating in
postnatal tissue remodeling. The Xenopus model provides a
robust platform to investigate these stages in vivo due to its
external development, accessibility for molecular manipulation,
and conserved developmental pathways. Below, we summarize the
key stages of craniofacial development, highlighting critical cellular
events, regulatory signaling pathways, and clinically relevant
disease associations (Table 1).

2.1 Gastrulation and germ layer formation

During gastrulation, occurring around stages 10–12 in
Xenopus, the three primary germ layers—ectoderm, mesoderm,
and endoderm—are formed through highly coordinated cellular
movements such as invagination, involution, and epiboly (10).
These germ layers serve as the embryonic source for all
craniofacial tissues: the ectoderm gives rise to the neural crest
and surface epithelium, the mesoderm contributes to vasculature
and musculature, and the endoderm lines the pharyngeal foregut.
Key signaling pathways involved in this process include Nodal,
BMP, and Wnt, which establish the body axes and control cell
fate decisions (11, 12). Disruptions in these early patterning
signals can lead to severe craniofacial malformations. For example,
defects in midline specification and forebrain patterning may result
in holoprosencephaly, a condition often associated with facial
dysmorphisms such as cyclopia, cleft lip, and nasal anomalies
(13, 14).

2.2 Neural plate border formation and
neural crest induction

NCCs possess unique multipotency, giving rise to a diverse
range of derivatives, including craniofacial bone and cartilage,
peripheral neurons, glial cells, melanocytes, and various connective
tissue types (Figure 1). NCCs are induced at the neural plate
border, a region between the prospective neural and non-neural
ectoderm. This induction is a result of a precise balance between
BMP, Wnt, and FGF signaling gradients (15). Transcription factors
such as Pax3/7, ZIC1, and Msx1/2 function as early neural crest
specifiers, integrating these signals to define the neural crest
territory (16). The induced neural crest progenitors then undergo
further maturation and are primed for delamination and migration.
Abnormal regulation of this process can impair neural crest
formation, contributing to a spectrum of craniofacial syndromes.
For instance, Treacher Collins syndrome arises from mutations
affecting ribosome biogenesis in neural crest progenitors, whereas
CHARGE syndrome involves mutations in CHD7, a chromatin
remodeler essential for NCCs specification (17).

2.3 Neural crest cell migration

Following their specification, CNCCs undergo epithelial-to-
mesenchymal transition (EMT), delaminate from the neural
tube, and migrate along stereotypical pathways to populate the
facial prominences and PA (Figure 2). This migration is tightly
regulated by intrinsic transcriptional programs and extracellular
cues. Key EMT regulators include SNAIL, SLUG, TWIST, and
SOX10, which suppress epithelial traits and promote motility
(18–20). In addition, SOX2 modulates EMT during neural crest
development, acting as a rheostat that fine-tunes the epithelial-
to-mesenchymal transition and thereby influences cranial neural
crest cell migration (21). Guidance signals, such as semaphorins,
ephrins, and chemokines, help direct CNCCs to their appropriate
destinations (22, 23). Defective migration or guidance can result
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TABLE 1 Key stages of craniofacial development: developmental events, molecular regulators, and disease associations.

Stage Key developmental events Major signaling
pathways/factors

Representative disorders

Gastrulation and germ layer formation Formation of ectoderm, mesoderm, and
endoderm via cell movements
(invagination, epiboly, involution)

Nodal, BMP, Wnt Holoprosencephaly (midline defects,
cyclopia, cleft lip)

Neural plate border formation and NCC
induction

Specification of NCCs at
neural/non-neural ectoderm boundary;
activation of neural crest specifiers

Pax3/7, ZIC1, Msx1/2; BMP, Wnt, FGF Treacher Collins syndrome, CHARGE
syndrome

NCC migration EMT, delamination, and directional
migration of CNCCs to craniofacial
primordia

SNAIL, SLUG, TWIST, SOX2 SOX10;
semaphorins, ephrins, chemokines

DiGeorge syndrome (TBX1),
craniofacial and cardiovascular defects

Pharyngeal arch formation and
patterning

Segmentation and patterning of arches;
contribution to bone, cartilage, muscle,
nerves

HOX, TBX1, DLX; RA, endothelin-1,
FGF

HOXA2 mutation (arch
transformation), TBX1loss (DiGeorge
syndrome)

Craniofacial skeletal morphogenesis Intramembranous and endochondral
ossification; cartilage and bone
formation

RUNX2, SOX9, COL2A1 Craniosynostosis (FGFR2, TWIST1,
EFNB1 mutations)

Facial prominence fusion and
palatogenesis

Growth and fusion of facial processes
and palatal shelves

Shh, TGF-β3, IRF6 Cleft lip/palate, Van der Woude
syndrome, Pierre Robin sequence

Postnatal growth and remodeling Bone remodeling, suture maintenance,
jaw shaping

Osteoblast/osteoclast regulation;
hormonal, nutritional cues

Malocclusion, TMJ disorders, facial
asymmetry

in craniofacial malformations due to failed colonization of
target tissues. DiGeorge syndrome, commonly caused by 22q11.2
deletions affecting TBX1, exemplifies how disrupted CNCCs
migration can impair pharyngeal arch development, leading to
mandibular hypoplasia, cleft palate, and cardiovascular defects (24).

2.4 Pharyngeal arch formation and
patterning

The pharyngeal arches are transient, segmented structures
composed of ectoderm, mesoderm, endoderm, and migrating
CNCCs, which differentiate into diverse derivatives including
bone, cartilage, nerves, and muscle. In Xenopus, the pharyngeal
arches begin to form at stage 23 and are sequentially patterned
along the anterior-posterior axis (25). Patterning is controlled by
combinatorial expression of transcription factors such as HOX,
TBX1, and the DLX family, along with signaling cues from RA,
endothelin-1, and FGF (26–28). The first arch gives rise to the
maxilla, mandible, and associated muscles and nerves, while the
second arch contributes to the hyoid bone and facial musculature
(29). Aberrant arch patterning leads to structural and functional
anomalies in the craniofacial region. Mutations in HOXA2 (30),
for example, can cause duplication or transformation of arch
derivatives, while defects in TBX1 underlie many of the craniofacial
and cardiovascular features in DiGeorge syndrome (31).

2.5 Craniofacial skeletal morphogenesis

Craniofacial skeletal development involves the differentiation
of CNCCs-derived mesenchyme into cartilage and bone, guided
by both genetic and environmental cues. Two primary modes of
ossification are employed: intramembranous ossification, which

forms flat bones such as the frontal and parietal bones of
the skull, and endochondral ossification, which produces bones
at the cranial base and parts of the pharyngeal skeleton (32,
33). Key transcription factors regulating this process include
RUNX2 for osteoblast differentiation, SOX9 for chondrogenesis,
and COL2A1 as a cartilage matrix component (34–36). In
Xenopus, these genes are expressed in a temporally and spatially
conserved manner relative to mammals, making it an effective
system for studying craniofacial skeletogenesis. Dysregulation
in these pathways can lead to skeletal disorders such as
craniosynostosis, characterized by the premature fusion of cranial
sutures, often associated with mutations in FGFR2, TWIST1, or
EFNB1 (37).

2.6 Facial prominence fusion and
palatogenesis

The vertebrate face forms through the coordinated growth and
fusion of several facial prominences: the frontonasal, maxillary,
and mandibular processes. Failure of these prominences to merge
appropriately leads to cleft lip and/or palate. Palatogenesis involves
the elevation, growth, and midline fusion of the palatal shelves,
derived from the maxillary prominences (38). This process is
intricately regulated by signaling molecules such as Shh (epithelial
patterning), TGF-β3 (palatal shelf fusion), and IRF6 (epithelial
adhesion and remodeling) (39, 40). In Xenopus, palatal analog
structures allow for the study of early patterning and epithelial-
mesenchymal interactions relevant to human pathology. Mutations
in TGF-β3 or IRF6 result in cleft palate or syndromic forms
of orofacial clefting such as Van der Woude syndrome and
Pierre Robin sequence, highlighting the clinical relevance of this
developmental stage (40, 41).
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FIGURE 1

Neural crest cells possess multipotent differentiation potential and give rise to diverse cell types that contribute to a wide range of tissues and
structures in vertebrates.

2.7 Postnatal growth and remodeling

Although Xenopus does not undergo mammalian-like postnatal
growth, early developmental processes related to bone remodeling
and jaw patterning provide insights into later craniofacial
maturation (42). Craniofacial bones continue to grow and reshape
through the coordinated actions of osteoblasts and osteoclasts,
influenced by hormonal, nutritional, and mechanical stimuli.
Remodeling is essential for accommodating dental eruption,
reshaping the jaw for mastication, and aligning cranial sutures.
Disruptions in these processes can lead to postnatal conditions
such as malocclusion, temporomandibular joint disorders, and
facial asymmetry (43). Studying early regulators of osteogenic
and chondrogenic remodeling in Xenopus can inform our
understanding of these pathologies in humans (44).

3 Model advantages of Xenopus in
craniofacial research

Currently, commonly used model organisms for studying
craniofacial development include the mouse, chick, zebrafish, and

Xenopus. As a mammalian model, the mouse remains the gold
standard for investigating the genetic underpinnings of craniofacial
disorders due to its extensive genetic toolbox, including conditional
knockouts and CRISPR/Cas9-based genome editing (45, 46).
However, the in utero development of mouse embryos presents
several limitations: a relatively long gestational period (∼21
days), high maintenance and experimental costs, and technical
challenges associated with real-time imaging. These factors reduce
the efficiency of using mice for high-throughput screening or live
imaging–based studies of early craniofacial development (47, 48)
(Table 2).

Chick embryos provide ex utero development,
micromanipulation feasibility, and established developmental
atlases (49–51). However, systematic genetic tools (e.g., conditional
KO) remain limited (52, 53).

Zebrafish embryos are transparent, develop ex utero, and
possess a well-characterized genetic background, making them
highly suitable for high-throughput compound screening and
live imaging–based analyses (54). With a mature and versatile
neural crest cell labeling system, zebrafish offer unique advantages
for investigating the early migratory phases of neural crest
development (55). However, as a basal teleost species, zebrafish
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FIGURE 2

Migration of cranial neural crest and its contribution to cranial skeletal structures. (a) Origin of the cranial neural crest in the human embryo (left) and
its derivatives in the adult head (right). (b) Migration pattern of cranial neural crest in Xenopus (left) and its contribution to cranial skeleton during the
tadpole stage (right).

display a relatively simplified craniofacial anatomy and lack
several mammalian-specific structures, such as the secondary
palate, thereby limiting their capacity to fully recapitulate
complex human craniofacial disease phenotypes (56). Moreover,
the zebrafish genome has undergone extensive chromosomal
rearrangements and transposon-driven expansions (57), resulting
in a marked loss of synteny with many human genomic loci
(58, 59). These structural alterations disrupt the spatial architecture
between cis-regulatory elements (e.g., enhancers) and their target
genes, complicating the conservation of transcriptional regulation.
Consequently, gene regulatory elements in zebrafish often exhibit
a more dispersed genomic organization and context-dependent
activity, which can hinder efforts to model higher-order regulatory
dynamics underlying human craniofacial disorders (60, 61).

Compared to zebrafish, Xenopus, as an amphibian model
organism, offers an optimal balance between evolutionary
conservation and experimental accessibility (62, 63). Xenopus
exhibits a higher degree of conservation with mammals in terms of
gene sequences, chromosomal synteny, cis-regulatory architecture,
and transcriptional regulatory networks (64, 65). These features
make Xenopus a powerful and versatile model for dissecting
the genetic and molecular mechanisms underlying craniofacial

development and associated disorders (64, 66). Xenopus is
increasingly recognized as a critical phylogenetic bridge between
lower vertebrate models and mammals, particularly with respect
to genome architecture and the organization of impose substantial
psychological stress on patients transcriptional regulatory networks
(44, 65).

Additionally, invertebrate models such as Drosophila
melanogaster and Caenorhabditis elegans have played significant
roles in elucidating conserved developmental pathways, including
Notch, Hedgehog, and Wnt signaling (67, 68). However, due to the
absence of craniofacial structures, neural crest cells, and vertebrate-
specific tissues such as bone and cartilage, these organisms cannot
serve as direct models for studying craniofacial development and
its associated disorders.

4 Advances in modeling craniofacial
disorders using the Xenopus system

Compared with other vertebrate models, Xenopus uniquely
combines close evolutionary proximity to mammals with high
experimental accessibility, enabling direct in vivo visualization and
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TABLE 2 Comparative overview of vertebrate model organisms used in craniofacial developmental studies.

Comparative
dimensions

Mouse (Mus
musculus)

Chicken (Gallus
gallus)

Zebrafish (Danio
rerio)

African Clawed Frog
(Xenopus laevis)

Developmental mode Embryonic development
occurs in utero

Development occurs within
the egg

External development with
transparent embryos

External development with
large, partially transparent
embryos

Embryonic period Approximately 21 days Approximately 3 days (to
completion of development)

Approximately 3 days Approximately 2–4 days
(morphological stages)

Gene editing tools Cre/loxP, CRISPR
(well-established systems)

Electroporation, RNAi;
limited CRISPR application

Tol2 transposon, CRISPR,
morpholino

CRISPR, morpholino, mRNA
injection, transgenesis

Ease of embryonic
manipulation

Difficult, requires cesarean
section

Easy manipulation, suitable
for electroporation and
transplantation

Convenient for
high-throughput injections

Extremely simple
externalmicroinjection
manipulation

Complexity of craniofacial
structures

Complete (including
secondary palate, cranial
sutures, etc.)

Clearly defined pharyngeal
arches and prominences

Simplified structures, lacking
secondary palate

Developmental mechanisms
of pharyngeal arches and
prominences similar to
mammals

Suitability for neural crest cell
studies

Fate-mapping and lineage
labeling well established

Easily tracked via
electroporation

GFP labeling enables tracking Established tracking systems
such as Sox10-GFP

conservation of signaling
pathways

BMP/Wnt/FGF/Shh
conserved

Pathways conserved; widely
studied expression patterns

Conserved expression; slightly
lower collinearity

Strong pathway conservation;
regulatory logic closely
resembles humans

Limitations High cost, long
developmental cycle, and
complex in vivo manipulation

Lack of gene knockout
systems

Simplified anatomy, missing
some craniofacial structures,
partial lack of collinearity in
regulation

Certain structures differ from
humans (e.g., secondary
palate); genetic resources less
comprehensive than mouse

Representative applications Human disease modeling,
conditional mutation studies,
knockout validation

Migration studies,
electroporation, induction
analysis

High-throughput drug
screening, preliminary
developmental pathway
screening, mutation screening

Elucidation of early
embryonic development,
organogenesis processes,
functional validation of
signaling pathways

Major advantages Well-established genetic tools,
close relation to mammals

Intuitive manipulation, clear
tissue localization

Low cost, rapid development,
suitable for genetic screens

Real-time visualization, easy
manipulation, high
conservation of regulatory
mechanisms

manipulation of CNCCs development. Its external development
and large embryos facilitate single-cell–level imaging of CNCCs
specification, migration, and differentiation—advantages that
murine models lack. While zebrafish excel in real-time neural crest
tracking, their craniofacial complexity and regulatory architecture
are less representative of mammals. Amphibians thus strike an
optimal balance, retaining key mammalian craniofacial features
and gene networks while allowing high-throughput genetic
perturbation and microsurgical studies, making CNCCs biology
particularly tractable in Xenopus.

Clinically, craniofacial disorders are broadly classified into
two categories based on the presence or absence of associated
systemic anomalies: non-syndromic craniofacial malformations,
which occur in isolation, and syndromic craniofacial anomalies,
which are accompanied by defects in other organ systems.

4.1 Non-syndromic craniofacial
malformations

Non-syndromic craniofacial malformations are defined by
isolated structural defects confined to the craniofacial region,

without involvement of other organ systems. Representative
conditions in this category include non-syndromic orofacial clefts
(NSOC), non-syndromic craniosynostosis (NCS), and isolated
microtia. NSOC can be further subdivided into non-syndromic
cleft lip (NSCL), cleft lip with or without cleft palate (NSCLP), and
cleft palate alone (NSCP). NSOC are among the most common
congenital malformations, which can lead to feeding difficulties,
speech and language delays, and other developmental challenges.
Common clinical features include cleft lip and/or palate and
associated functional impairments. The condition can be caused by
pathogenic variants in IRF6, RYK, TBX22, FGFR1, NAT2, or GSTT1.

Studies utilizing the Xenopus model have significantly advanced
our understanding of NSOC pathogenesis. Inhibition of the RA
biosynthetic enzyme RALDH2 or its receptor RARγ induces
clefting of the upper lip, suggesting that RA signaling modulates
the expression of homeobox genes such as LHX8 and MSX2, which
are critical for boundary specification and tissue patterning during
craniofacial development (69). Disrupting folate metabolism (via
dhfr knockdown) combined with RA antagonism induces NSOC-
like phenotypes. These include cleft lip, maxillofacial hypoplasia,
and midfacial narrowing. Mechanistically, dhfr deficiency impairs
cell proliferation, promotes DNA damage and apoptosis, and
results in downregulation of FGF8, RARγ , and Wnt8. Notably,
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folate supplementation partially rescues these defects, underscoring
a functional interaction between folate metabolism and RA
signaling (70).

Additional studies have identified ISM1 as a crucial regulator
of craniofacial morphogenesis. Loss of ISM1 function leads
to cleft lip/palate, abnormal development of the pharyngeal
arches, reduced lhx8 expression, and disruption of FGF8–Sprouty
signaling, along with impaired expression of cell adhesion
molecules such as integrin αvβ5. The identification of copy number
variations and missense mutations in ISM1 among human patients
further supports its conserved role in orofacial development (71).

Together, these findings highlight the utility of the Xenopus
model in uncovering the genetic and signaling mechanisms
underlying non-syndromic orofacial clefts, and support its
relevance for studying multifactorial and environmentally
modulated craniofacial anomalies.

4.2 Syndromic craniofacial anomalies

This group of disorders features craniofacial malformations as
a central component of complex syndromes, often accompanied by
abnormalities in other organ systems. In Xenopus models, studies
of such syndromic conditions can be broadly categorized based on
the affected systems:

4.2.1 Multiple craniofacial malformation
syndromes
4.2.1.1 Treacher collins syndrome

Treacher Collins Syndrome (TCS) is an autosomal dominant
disorder. Features of TCS include microtia with conductive hearing
loss, slanting palpebral fissures with possible coloboma of the lateral
part of the lower eyelids, midface hypoplasia, micrognathia, as well
as sporadically cleft palate and choanal atresia or stenosis. TCS is
caused by pathogenic variants in the TCOF1, POLR1D, POLR1C,
and POLR1B genes, with mutations in TCOF1 accounting for more
than 90% of cases (72, 73). The TCOF1 gene codes for the nucleolar
phosphoprotein Treacle (known as xtreacle in Xenopus), which is
essential for ribosomal DNA transcription. Mutations in TCOF1
lead to impaired rRNA synthesis, nucleolar stress, and apoptosis of
neural crest cells (74, 75). In Xenopus, knockdown of xtreacle results
in rDNA transcriptional defects consistent with the ribosome
biogenesis abnormalities observed in human TCS patients. The
resulting reduction in ribosome production mimics the nucleolar
stress caused by TCOF1 haploinsufficiency in TCS (76).

4.2.1.2 Auriculocondylar syndrome
Auriculocondylar syndrome (ARCND) can be inherited in

either an autosomal dominant or autosomal recessive manner.
Features of ARCND include congenital ear clefts, mandibular
condyle hypoplasia, temporomandibular joint abnormalities,
micrognathia, small mouth, round facial appearance, and
prominent cheeks. ARCND is caused by pathogenic variants
in GNAI3, PLCB4, or EDN1 (77–79). Xenopus models have
demonstrated that both wild-type and ACS-mutant forms of
gαi3 can result in embryonic developmental defects. The mutant
gαi3, which is unable to bind GTP, interferes with downstream

signaling and disrupts neural crest differentiation by antagonizing
Gαq activity. These findings highlight a conserved cross-species
mechanism underlying ACS pathogenesis (80).

4.2.2 Multisystem syndromes
4.2.2.1 Floating-Harbor syndrome

Floating-Harbor Syndrome (FHS) is an autosomal
dominant disorder. Features of FHS include short stature, facial
dysmorphism, delayed bone mineralization, speech impairment,
and intellectual disability. FHS is caused by heterozygous
truncating variants in the SRCAP gene (81, 82). A Xenopus
model of FHS was generated using morpholino oligonucleotides
targeting srcap to mimic human C-terminal truncating mutations,
inducing typical craniofacial malformations. SRCAP mutations
impaired CNCCs migration and downregulated key genes, such as
twist1 and sox9, suggesting neural crest dysfunction underlies the
phenotype. The defects were rescued by wild-type SRCAP but not
by the FHS-associated mutant. Mechanistically, SRCAP mutations
disrupted nuclear localization, H2A.Z.2 deposition, and AT-rich
enhancer activity, highlighting the role of H2A.Z.2 in neural crest
development (8).

4.2.2.2 CHARGE syndrome
CHARGE syndrome is an autosomal dominant disorder that

presents with a broad range of congenital malformations affecting
multiple organ systems. Common clinical features include external
ear malformations, cranial nerve dysfunction (often with facial
palsy), semicircular canal dysplasia or aplasia, choanal atresia,
and craniofacial abnormalities such as cleft lip and/or palate. In
addition, anosmia, genital hypoplasia, congenital heart defects,
and tracheoesophageal anomalies are frequently observed. The
syndrome is caused by heterozygous loss-of-function mutations
in the CHD7 gene (83). Patients often exhibit severe feeding
difficulties, motor developmental delays, intellectual disabilities,
and growth retardation. The majority of CHARGE syndrome cases
result from haploinsufficiency of CHD7, a chromatin remodeling
protein (84). In Xenopus embryos, knockdown of chd7 leads to
impaired expression of NCCs effector genes (e.g., twist1, sox9),
disruption of its interaction with the PBAF complex, and aberrant
pharyngeal arch development, recapitulating phenotypes such as
choanal atresia. These effects are associated with dysregulation of
guidance molecules such as Sema3a (85, 86).

4.2.2.3 Axenfeld-Rieger syndrome
Axenfeld-Rieger Syndrome (ARS) is an autosomal dominant

disorder. Features of ARS include anterior segment dysgenesis,
glaucoma, dental anomalies, craniofacial dysmorphism, growth
retardation, cardiovascular defects, redundant periumbilical skin,
and pituitary defects leading to secondary endocrine disorders.
ARS can be caused by pathogenic variants in the PITX2, FOXC1,
and FOXO1A genes (87, 88). Studies using Xenopus models have
demonstrated that foxc1 expression is regulated by VegT via the
Nodal signaling pathway. Loss of foxc1 results in downregulation
of adhesion molecules such as E-cadherin and the Ephrin/Eph
system, causing mesodermal cell dissociation, axial shortening, and
neural tube malformations. Injection of mutant FOXC1 mRNA can
partially rescue these phenotypes (89).
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4.2.2.4 Mowat-Wilson syndrome
Mowat-Wilson Syndrome (MWS) is an autosomal dominant

disorder that presents with neural crest defects and distinctive
craniofacial features, accompanied by a broad spectrum of
multisystem abnormalities. Common clinical features include
mild to severe intellectual disability, epilepsy, and congenital
Hirschsprung disease. In addition, congenital malformations such
as genital anomalies, congenital heart defects, corpus callosum
agenesis, and ocular abnormalities are frequently observed. The
syndrome results from heterozygous deletions or truncating
mutations of the ZFHX1B gene (90). Patients typically exhibit
a characteristic facial phenotype accompanied by a spectrum of
multisystem abnormalities including mild to severe intellectual
disability (ID), epilepsy, congenital Hirschsprung disease (HSCR),
and frequently associated congenital malformations such as
genital anomalies (most commonly hypospadias), congenital heart
defects, corpus callosum agenesis, and ocular abnormalities (91).
Knockdown of mi-2β in Xenopus reduces the expression of neural
marker genes induced by zfhx1b and attenuates repression of
BMP signaling pathway genes. Mutant ZFHX1B fails to effectively
suppress BMP signaling, indicating that defective recruitment of
the NuRD complex is a key pathogenic mechanism underlying
craniofacial developmental defects (92).

4.2.2.5 Cardiofaciocutaneous syndrome
Cardiofaciocutaneous syndrome (CFC) is an autosomal

dominant disorder that presents with multisystem congenital
anomalies and moderate to severe intellectual disability. Common
clinical features include postnatal growth retardation with
relative macrocephaly, characteristic craniofacial features such
as prominent forehead, bitemporal narrowing, absent eyebrows,
downslanting palpebral fissures with epicanthal folds, depressed
nasal bridge, bulbous nasal tip, and distal limb anomalies. In
addition, skin abnormalities such as dry, hyperkeratotic, scaly
skin, sparse curly hair, and capillary malformations are frequently
observed, along with congenital heart defects, most commonly
pulmonary valve stenosis and hypertrophic cardiomyopathy. The
syndrome is the result of heterozygous pathogenic variants
in BRAF, MAP2K1/MEK1, MAP2K2/MEK2, KRAS, or YWHAZ
(93). In Xenopus models, injection of the S230W variant of
YWHAZ mRNA induces severe craniofacial malformations. Co-
expression with Craf enhances GFP-Erk2 phosphorylation and
rescues mesodermal defects, implicating sustained activation of the
RAF–ERK signaling pathway in the pathogenesis (94).

4.2.2.6 DDX3 syndrome
DDX3 syndrome is an X-linked dominant disorder that

presents with neurodevelopmental delay, and intellectual disability,
accompanied by a spectrum of multisystem abnormalities.
Common clinical features include motor and language delay,
autism spectrum disorder, epilepsy, and congenital brain and
cardiac malformations (95), craniofacial anomalies are observed in
the majority of affected individuals (96). The syndrome is the result
of pathogenic variants in the DDX3 gene. In Xenopus embryos,
ddx3 is specifically expressed at the neural plate border, pharyngeal
arches (regions of neural crest cell migration), and head tissues.
Knockdown of ddx3 results in craniofacial cartilage hypoplasia,
such as reduced size of the ceratohyal cartilage, along with

downregulation of neural crest cell markers, indicating impaired
neural crest induction (97).

4.2.2.7 Fetal alcohol spectrum disorders
Fetal Alcohol Spectrum Disorders (FASD) affect 1%−5%

of newborns in high-risk populations, characterized by smooth
philtrum, thin vermilion border, and micrognathia. These
craniofacial dysmorphisms correlate with neurocognitive deficits
and require lifelong supportive care. Prenatal alcohol exposure is a
critical factor causing FASD, which are characterized primarily by
neurodevelopmental abnormalities and may be accompanied by
craniofacial malformations, congenital organ defects, and growth
retardation among other multisystem impairments (98). Exposure
of Xenopus embryos to ethanol disrupts the expression of genes
associated with later-stage NCCs migration. Supplementation
with 5-methyltetrahydrofolate can partially rescue the observed
phenotypes (99).

4.2.2.8 Kabuki syndrome
Kabuki Syndrome (KS) is a rare neuro-developmental disorder

caused by variants in genes of histone modification, including
KMT2D and KDM6A (100) it is considered a Mendelian disorder
of epigenetic regulation, affecting multiple organ systems including
the nervous, sensory, immune, cardiac, renal, and skeletal systems,
significantly impacting patients’ quality of life (101). Knockdown
of the kmt2d gene in Xenopus models recapitulates phenotypes
of mandibular, hyoid, and pharyngeal arch cartilage hypoplasia.
The underlying mechanism involves defects in CNCCs formation
and migration, evidenced by downregulation of marker genes such
as twist, abnormal cell dispersal capacity, and decreased levels of
histone modifications H3K4me1 and H3K27ac. Further studies
revealed that kmt2d regulates CNCCs migration by modulating the
secreted factor Sema3F, and overexpression of Sema3F can partially
rescue the migration defects (102).

4.2.2.9 Wolf-Hirschhorn syndrome
Wolf-Hirschhorn syndrome (WHS) is araredisorderwithan

estimated prevalence being around 1 in 50,000 births. The
syndrome is caused by the deletion of a critical region (Wolf-
Hirschhorn Syndrome Critical region—WHSCR) on chromosome
4p16.3. WHS is clinically characterized by pre-and postnatal
growth restriction, hypotonia, intellectual disability, craniofacial
dysmorphismand congenital fusion anomalies (103, 104), which
are associated with aberrant development of CNCCs. Modeling
this in Xenopus revealed that whsc1/tacc3 knockdown disrupts
neural crest migration, directly linking genetic loss to craniofacial
pathogenesis (105).

4.2.2.10 Musculocontractural Ehlers–Danlos syndrome
Musculocontractural Ehlers–Danlos syndrome (MC-EDS) is an

autosomal recessive disease characterized primarily by increased
connective tissue fragility, craniofacial structural abnormalities,
congenital contractures, and impaired growth and development
(106). It is caused by mutations in DSE or CHST14, which
result in defects in craniofacial cartilage development. In Xenopus
models, dse knockdown results in the downregulation of key
EMT regulators in neural crest cells, including snail2 and twist1,
and impairs cell migration on fibronectin substrates, providing a

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2025.1671687
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kong et al. 10.3389/fmed.2025.1671687

cellular dynamic basis for the craniofacial anomalies associated
with the disease (107).

4.2.2.11 Branchio-oto-renal syndrome
Branchio-oto-renal (BOR) syndrome is an autosomal dominant

disorder typically characterized by branchial cleft anomalies,
ear developmental defects, and renal malformations. Additional
clinical features may include abnormalities of the face, maxilla,
ureters, and bladder, lacrimal system dysfunction, otitis media, and
shoulder anomalies (108). About 40% of patients with BOS carry
aberrations of EYA1 gene which is the most important cause of
BOS. A total of 240 kinds of pathogenic variations of EYA1 have
been reported in different populations so far, including frameshift,
nonsense, missense, aberrant splicing, deletion and complex
rearrangements (109). Knockdown of the eya1 gene in Xenopus
leads to defects in otic vesicle development (inner ear structural
abnormalities) and hypoplasia of branchial arch cartilages, such
as Meckel’s cartilage, thereby recapitulating the craniofacial
skeletal malformations observed in patients. Mechanistically, eya1
deficiency downregulates neural crest cell marker genes, including
sox10 and snail2, suggesting that eya1 regulates craniofacial
development through modulation of neural crest cell migration and
differentiation. Furthermore, wild-type human EYA1 mRNA can
partially rescue the phenotype (110, 111).

4.2.2.12 Campomelic dysplasia
Campomelic Dysplasia (CD) is an autosomal dominant,

perinatal lethal skeletal dysplasia characterized by a small chest
and short long bones with bowing of the lower extremities. CD
is the result of heterozygosity for mutations in the gene encoding
the chondrogenesis master regulator, SOX9 (112). It is caused by
SOX9 haploinsufficiency, manifesting as mandibular hypoplasia
and craniosynostosis. Knockdown of sox9 in Xenopus suppresses
the expression of neural crest effector genes such as snail2 and
foxd3, resulting in complete loss of pharyngeal arch cartilages,
including Meckel’s cartilage, and malformation of the otic capsule,
thereby recapitulating sensorineural hearing loss phenotypes (35).

4.2.2.13 Oral-facial-digital syndrome
Oral-facial-digital (OFD) represent a heterogeneous group

of rare developmental disorders affecting the mouth, the face
and the digits. Additional signs may involve brain, kidneys and
other organs thus better defining the different clinical subtypes.
With the exception of OFD types I and VIII, which are X-
linked, the majority of OFDS is transmitted as an autosomal
recessive syndrome. A number of genes have already found to
be mutated in OFDS and most of the encoded proteins are
predicted or proven to be involved in primary cilia/basal body
function (113). Injection of morpholino oligonucleotides targeting
ints13 into Xenopus embryos to knock down ints13 expression
results in developmental defects including microcephaly, shortened
body axis, and tail curvature. Additionally, differentiation of
multiciliated cells (MCCs) is impaired, accompanied by reduced
cilia number and functional abnormalities, thereby recapitulating
craniofacial hypoplasia phenotypes (114)

4.2.2.14 Hamamy syndrome
Hamamy syndrome is a rare genetic disorder characterized by

intellectual disability, sensorineural hearing loss, congenital cardiac

anomalies with intraventricular conduction delay, hypopigmented
microcytic anemia, and skeletal abnormalities of the long bones
with recurrent fractures. Craniofacial features include severe
hypertelorism and craniofacial skeletal dysmorphisms (115).
Homozygous mutations in IRX5 are associated with this syndrome.
Knockdown of irx5 in Xenopus disrupts the expression of the key
chemokine cxcl12 involved in cranial neural crest cell migration,
impeding pharyngeal arch mesenchymal condensation. Moreover,
knockdown of cxcl12 partially rescues the phenotype, suggesting
that IRX5 regulates neural crest migration through negative
modulation of chemotactic signaling (1).

4.2.2.15 Nager syndrome
Nager syndrome is a rare human developmental disorder

characterized by craniofacial defects including the downward
slanting of the palpebral fissures, cleft palate, limb deformities,
mandibular hypoplasia, hypoplasia or absence of thumbs,
microretrognathia, and ankylosis of the temporomandibular joint.
There is evidence of autosomal dominant and autosomal recessive
inheritance for Nager syndrome, suggesting genetic heterogeneity.
The majority of the described causes of Nager syndrome
include pathogenic variants in the SF3B4 gene, which encodes a
component of the spliceosome; therefore, the syndrome belongs to
the spliceosomopathy group of diseases (116). Knockdown of sf3b4
in Xenopus results in downregulation of neural crest marker genes
(sox10, twist1) and induces ectodermal apoptosis, suggesting that
aberrant RNA splicing leads to craniofacial defects by impairing
the survival of neural crest progenitor cells (117).

4.2.2.16 Coronal craniosynostosis
Craniosynostosis is one of the most common congenital

cranial malformations affecting approximately 6/10,000 live births
(118), with increasing incidence trends reported over the recent
decades (119). The condition, which is characterized by premature
fusion of one or more cranial sutures, is classified according
to the type (e.g., sagittal, coronal, lambdoid) and/or number
(single/multiple) of affected sutures. Involvement of the coronal
suture is relatively rare and accounts for only 11%−13% of all cases
of single-suture craniosynostosis. Injection of mRNA encoding
human ZIC1 mutations (such as p. Ser388∗ and p. Glu402) into
Xenopus embryos enhances the expression of the downstream
target gene engrailed-2 (en-2), leading to aberrant neural crest
signaling. Truncating variants, such as p. Ala437, retain the zinc
finger domain and aberrantly activate En-2, thereby recapitulating
craniosynostosis-like phenotypes in the model organism (120).

4.2.2.17 Smith-Magenis syndrome
Smith-Magenis syndrome (SMS) is a complex genetic disorder

characterized by distinctive physical features, developmental delay,
cognitive impairment, and a typical behavioral phenotype. SMS
is caused by interstitial 17p11.2 deletions (90%), encompassing
multiple genes and including the retinoic acid-induced 1 gene
(RAI1), or by pathogenic variants in RAI1 itself (10%). RAI1 is
a dosage-sensitive gene expressed in many tissues and acting as
transcriptional regulator. The majority of individuals exhibit a
mild-to-moderate range of intellectual disability (121). Knockdown
of ra11 has been shown to reduce the expression of the neural
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crest cell marker tfap2a, leading to decreased craniofacial cartilage
formation and increased apoptosis in the forebrain (122).

The Xenopus model has been employed to faithfully
recapitulate a wide spectrum of craniofacial disease
phenotypes—including cartilage hypoplasia, craniosynostosis,
and hypertelorism—thus enabling precise in vivo and in vitro
functional analyses such as gene knockdown/overexpression,
phenotype rescue assays, pathway interrogation, and cellular
behavior studies. These investigations have collectively revealed a
shared pathological basis underlying craniofacial malformations:
disrupted developmental programs of CNCCs, and the central
roles of key signaling pathways including FGF, Wnt, BMP/TGFβ,
RA, and Shh. Furthermore, critical cellular processes such as EMT,
directed migration, differentiation, and apoptosis are shown to
be perturbed. The Xenopus model therefore provides robust in
vivo evidence and a unique experimental platform for elucidating
disease mechanisms, identifying pathogenic genes, and developing
therapeutic strategies.

5 Translational applications and
challenges in clinical implementation

The clinical translational potential of Xenopus laevis in
the study of craniofacial developmental disorders is becoming
increasingly evident, offering multiple avenues for application.
Its remarkable self-regeneration capacity has elucidated cartilage-
dependent repair mechanisms involving matrix metalloproteinases
such as Mmp1 and Mmp13, highlighting the possibility of
developing therapeutic strategies that do not rely on exogenous
interventions (123). Through gene editing and embryological
approaches, the Xenopus model has also clarified the central
role of the RSPO2–RNF43/ZNRF3–WNT signaling axis in limb
regeneration, offering key molecular targets and theoretical
frameworks for regenerative medicine (124, 125). Additionally,
serotonergic signaling has been shown to mediate structural repair,
suggesting that neurotransmitter pathways may serve as novel
therapeutic avenues (126). Xenopus efficiently screens teratogens
(e.g., e-cigarette-derived vanillin), which disrupt retinoic acid
signaling to induce malformations (127, 128). Some recent studies
have used Xenopus oocytes to test new targets and identify new
active drug candidates. Romero et al. developed the novel peptide
RgIA4 through high-throughput screening of >200 synthetic
analogs on α9α10 nAChR-expressing Xenopus oocytes, identifying
a candidate with 100-fold higher potency than conventional
analgesics for human and rodent targets (129).

Despite the unique advantages of Xenopus in the study of
craniofacial developmental disorders, several limitations continue
to hinder its translational applications. First, Xenopus laevis is an
allotetraploid species (130), and its genomic complexity renders
gene knockout and editing more technically challenging than
in diploid models, thereby limiting precise genetic manipulation
(131). Second, notable physiological and immunological differences
exist between Xenopus and mammals, particularly the absence of
placental and lactational systems, which constrains its ability to
faithfully model certain human syndromes. Moreover, Xenopus is
not suitable for investigating complex behavioral phenotypes or
modeling chronic adult-onset diseases over extended periods, areas

where murine models remain indispensable. Although Xenopus
excels in elucidating developmental mechanisms, its findings
must often be validated in human organoids, cell lines, or
mammalian systems to ensure clinical relevance and translatability
(132). Finally, the experimental toolkit for Xenopus remains
underdeveloped; tissue-specific Cre-lox systems, comprehensive
reporter gene libraries, and high-resolution imaging technologies
are still lacking, which limits its utility for high-throughput
screening and fine-scale mechanistic dissection.

6 Conclusion

In summary, Xenopus serves as a powerful model to investigate
craniofacial development and associated disorders, offering insights
into fundamental mechanisms and translational relevance. Future
work should focus on integrating high-resolution single-cell and
multi-omics approaches with in vivo functional assays in Xenopus,
to systematically link candidate human variants to developmental
mechanisms and accelerate the discovery of diagnostic and
therapeutic targets for craniofacial anomalies.
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