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Interpretable machine learning
model to predict 90-day
radiographically confirmed
pneumonia after chemotherapy
initiation in non-Hodgkin
lymphoma: development and
internal validation of a
single-center cohort

Zhanna Zhang?, Manqi Su?, Panruo Jiang?, Xiaoxia Wang?,
Lingling Kong?, Xiangmin Tong?*' and Gonggiang Wu'*!

!Department of Hematology, Dongyang Hospital Affiliated with Wenzhou Medical University, Jinhua,
China, ?Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, School of
Medicine, WestLake University, Hangzhou, China

Background: Radiographically confirmed pneumonia within 90 days of
chemotherapy initiation is a frequent and clinically important complication
in patients with non-Hodgkin lymphoma, yet interpretable tools for early
individualized risk estimation are limited.

Objective: To develop and internally validate an interpretable machine-learning
model that predicts the 90-day risk of radiographically confirmed pneumonia
after chemotherapy initiation in non-Hodgkin lymphoma.

Methods: We retrospectively analyzed 205 chemotherapy-treated NHL
patients. A two-step feature selection (LASSO followed by random-forest—
based recursive feature elimination) identified four predictors: high-grade
malignancy, drinking (alcohol use), estimated glomerular filtration rate (eGFR),
and smoking. Five algorithms were trained and compared under a stratified
70/30 split (training n = 145; internal hold-out test set n = 60) with leakage-safe
preprocessing (within-fold kNN imputation, SMOTE, and scaling). The gradient
boosting machine (GBM) performed best and was interpreted using SHAP. A
web-based prototype was implemented for research use only.

Results: On the internal hold-out test set (n = 60), the GBM achieved an AUC
of 0.855 (95% Cl 0.746-0.964), an F1 score of 0.679, and a Brier score of 0.155.
SHAP identified reduced eGFR, smoking, drinking, and high-grade malignancy
as influential contributors; case-level waterfall and force plots enhanced
transparency. These estimates reflect internal validation only and were obtained
without systematic microbiological confirmation or standardized radiologic
rescoring. Accordingly, performance may be optimistic, and real-world use is
not advised pending temporal and multicenter external validation (with potential
recalibration) and prospective evaluation.

Conclusion: The interpretable GBM model demonstrated promising
discrimination and calibration on an internal hold-out test set; however, clinical
deployment requires temporal and multicenter external validation (as well as
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prospective assessment with potential recalibration). The accompanying web
calculator is a research-only prototype and is not intended for clinical decision-
making until such validation is completed.

KEYWORDS

non-Hodgkin lymphoma, pneumonia, machine learning, risk prediction, Shapley

additive explanations

1 Introduction

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of
lymphoid malignancies for which global incidence continues to rise,
reaching an estimated 545,000 new cases and 260,000 deaths in 2020
(1, 2). The widespread use of immunochemotherapy regimens, such
as R-CHOP, along with the introduction of targeted therapies, has
significantly improved survival. However, infectious complications—
particularly pneumonia—remain among the most common and
clinically significant adverse events during chemotherapy. In elderly
NHL patients treated with R-CHOP, pulmonary complications have
been reported in up to 40 percent of cases, with approximately 10
percent experiencing severe infections (3). A previous study involving
229 newly diagnosed NHL patients reported that 91 (39.7%)
developed bacterial pneumonia, including 76 with isolated respiratory
tract infection and 15 with concurrent bacteremia (4). Despite its
frequency, pneumonia is often underrecognized in the early stages due
to insidious and nonspecific symptoms, which can delay diagnosis and
treatment, thereby adversely affecting clinical outcomes (5, 6).
Although pneumonia is clinically burdensome—especially during the
first 90 days after chemotherapy initiation, when patients are most
vulnerable, validated tools for early risk prediction in this critical
period remain limited. Few studies have developed individualized
prediction models tailored to this early and high-risk phase
of treatment.

Pneumonia in patients with NHL most commonly occurs within
the first 90 days after chemotherapy initiation. This period is typically
marked by bone marrow suppression, disruption of mucosal barriers,
and compromised immune function (6-8). Early identification of
high-risk individuals during this timeframe is essential to guide timely
preventive interventions, such as empiric antimicrobial therapy,
antifungal prophylaxis, or chemotherapy dose adjustments. However,
existing risk stratification tools, including the MASCC score, were not
specifically designed to predict pneumonia in patients with NHL,
highlighting a critical gap in early risk assessment (9).

Several predictive tools exist in oncology for infection-related
adverse outcomes, but they target different questions than organ-
specific pneumonia risk. Febrile neutropenia (FN) risk stratification
models—such as the Multinational Association for Supportive Care
in Cancer (MASCC) Risk Index, Talcott classification, and the Clinical
Index of Stable Febrile Neutropenia (CISNE)—were designed to
identify low- versus high-risk FN episodes and guide outpatient
management, not to estimate a patient’s individualized probability of
developing pneumonia in the early chemotherapy period (10-13). In
parallel, risk scores for invasive fungal disease (e.g., invasive mold
disease) have been proposed primarily for hematologic malignancies
or transplant settings, but these focus on a fungal subset rather than
the broader spectrum of bacterial, viral, and fungal pneumonia
encountered during NHL chemotherapy (14, 15). Consequently,
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current tools leave a gap for early, organ-specific prediction of
pneumonia risk in NHL.

Pneumonia warrants prioritization for several clinically relevant
reasons. First, the lung is a common infection site in patients with
hematologic malignancies receiving chemotherapy; pneumonia
contributes disproportionately to ICU admissions and mortality
compared with many other infection sites (16, 17). Second, early
detection is actionable: timely imaging, empiric antimicrobial therapy,
selective antifungal prophylaxis, vaccination strategies, and—when
appropriate—chemotherapy dose adjustments can be targeted to those
at highest risk (18). Third, pneumonia’s insidious early presentation in
immunocompromised hosts underscores the need for individualized,
pre-emptive risk estimation to avoid delays in diagnosis and treatment.

To address this need, we developed and validated a machine-
learning-based model to predict radiographically confirmed
pneumonia occurring within 90 days after chemotherapy initiation in
patients with NHL. Key predictors were identified using random
forest-based recursive feature elimination (RF-RFE), and five machine
learning algorithms were constructed and compared. Among these,
the gradient boosting machine (GBM) model demonstrated superior
predictive performance. To enhance interpretability and clinical
applicability, SHAP (Shapley Additive Explanations) was applied to
explain model predictions at the individual level, and the final model
was implemented as an interactive web-based tool (19). This study
provides a practical and individualized solution for early risk
assessment of pneumonia in patients with NHL undergoing
chemotherapy.

2 Methods
2.1 Study design and data source

2.1.1 Study setting and cohort

This retrospective study was conducted at Dongyang Hospital
Affiliated with Wenzhou Medical University included consecutive
patients with pathologically confirmed non-Hodgkin lymphoma
(NHL) who initiated systemic chemotherapy between October 2018
and October 2024. Eligibility required receipt of at least one
chemotherapy cycle and follow-up for at least 90 days after initiation
or until the earlier occurrence of pneumonia or death. We excluded
patients with radiographically confirmed pneumonia prior to the
initiation of chemotherapy and those with incomplete baseline or
follow-up data.

2.1.2 Primary outcome

The primary outcome was radiographically confirmed pneumonia
occurring within 90 days of chemotherapy initiation. Case
ascertainment required (i) a new or progressive pulmonary infiltrate
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on chest radiography or computed tomography and (ii) > 1 clinical
criterion: new or worsened cough or sputum; fever; auscultatory
findings consistent with consolidation (e.g., crackles/wet rales,
bronchial breath sounds, or egophony); or an abnormal peripheral
leukocyte count > 10 x 10°/L or < 4 x 10°/L (with or without left shift).
Episodes without a new infiltrate (e.g., tracheobronchitis/URTI,
COPD/asthma exacerbation) and non-infectious mimics (drug- or
radiation-induced pneumonitis, cardiogenic pulmonary edema,
diffuse alveolar hemorrhage, pulmonary embolism/infarction, tumor
progression/lymphangitic carcinomatosis) were excluded. Both
community-onset and hospital-onset episodes meeting this definition
were eligible. Because the 2019 ATS/IDSA community-acquired
pneumonia guideline excludes immunocompromised hosts,
we adopted its radiographic—clinical framework for case ascertainment
only and did not apply CAP-specific care pathways.

2.1.3 Data availability for phenotyping

Microbiological data (e.g., culture/PCR panels) were not
systematically collected, and imaging studies were not centrally
reviewed or scored using a standardized severity metric; case
ascertainment relied on clinical radiology reports according to the
operational definition.

2.2 Variable collection and preprocessing

A total of 35 clinical variables were collected, covering
demographic characteristics, disease status, comorbidities, treatment-
related factors, and baseline laboratory results. All predictors were
pre-specified and dichotomized to binary indicators (0/1) before
modeling; no multilevel factors remained (20). Missing values were
imputed using k-nearest neighbors (kNN) with k = 5; imputation
models were fit on the training data (or within cross-validation folds)
and then applied to held-out data only to avoid information leakage
(21). Because kNN imputation can yield fractional values for originally
binary predictors, those fields were post-processed using a 0.5
threshold to restore 0/1 coding (22). Robustness to the imputation
hyperparameter was examined in an alternative specification by
varying k (3 and 7). Since this specification differs from the primary
pipeline (settings and implementation), absolute performance values
are reported in Supplementary Table S8 and are not intended for
direct comparison with the primary test-set results; qualitative
conclusions were unchanged.

2.3 Statistical analysis (baseline
comparisons)

Baseline characteristics were summarized as # (%) for categorical

variables. For comparisons between the pneumonia and
no-pneumonia groups (Table 1), group differences were assessed
using two-sided tests (a = 0.05): Pearson’s chi-square test with Yates’
continuity correction, or Fisher’s exact test when any expected cell
count was < 5. Missing values were excluded from hypothesis testing.
All baseline variables were dichotomous for presentation; binary 0/1
coding was used for model development (Section 2.2).

For comparisons between the training and test sets (Table 2),

standardized mean differences (SMDs) were reported as effect sizes
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that are less sensitive to sample size (imbalance flagged at
[SMD]| > 0.20; |[SMD| < 0.10 generally negligible) (23-25). Train-test
comparability was summarized with SMDs only, without p values. A
pre-specified sensitivity analysis excluding variables with [SMD| > 0.20
yielded essentially unchanged results (Supplementary Tables S9, S10).

Analyses were performed in R (version 4.4.2) using the TableOne
package (CreateTableOne) and base R functions. Methods for AUC
(DeLong), bootstrap 95% ClIs for threshold-based metrics, calibration,
and decision-curve analysis are detailed in Section 2.7.

2.4 Data split and internal validation

We performed a stratified 70/30 split based on the outcome
(pneumonia vs. no pneumonia) to create a training set (n = 145) and
an internal hold-out test set (n = 60) from the same single-center
cohort, ensuring balanced class distributions across sets. All
preprocessing steps—including KNN imputation, feature selection
(LASSO followed by RF-RFE), class-imbalance handling (SMOTE
within cross-validation), and hyperparameter tuning—were
conducted strictly on the training data. These procedures were
confined to cross-validation folds to prevent information leakage. The
hold-out test set was left untouched until final evaluation. Because the
internal hold-out test set was modest (n = 60; events = 23), we treated
performance from repeated 10-fold cross-validation in the training set
as the primary estimate, while test-set metrics served as
complementary internal validation and are reported with 95% Cls
(AUC via DeLong; other metrics via class-stratified bootstrap,
B = 2,000).

Baseline comparability between the training and test sets was
summarized using standardized mean differences (SMDs) and is
presented in Table 2. We did not report hypothesis-test p values for the
train-test comparison because such tests are highly sample-size
dependent and less informative for balance assessment in a small
internal test set. Importantly, the internal hold-out test set was never
resampled and was kept completely isolated from all preprocessing,

imputation, SMOTE, and feature-selection procedures (see Figure 1).

2.5 Feature selection

To identify a parsimonious and stable set of predictors, we used a
two-step procedure. First, least absolute shrinkage and selection
operator (LASSO) logistic regression was applied to the full set of 35
candidate variables with 10-fold cross-validation; to favor sparsity and
reduce variance, we selected the A.1se solution (26). In our data,
LASSO (M.1se) retained four variables—high-grade malignancy,
drinking, eGFR, and smoking. Second, we performed events-per-
variable (EPV)—constrained random-forest-based recursive feature
elimination (RF-RFE) on the LASSO-retained variables, enforcing
EPV > 5 and a maximum of 10 predictors, which was appropriate for
the 79 pneumonia events (27). We prespecified a stopping rule to
select the smallest subset on the performance plateau, defined as
AAUC < 0.01 from the maximal cross-validated AUC. When adjacent
subsets both satisfied the plateau criterion, a pre-specified tie-breaker
favored the subset with the higher mean CV AUC and greater
selection stability; this yielded the final four-predictor model. The
incremental AUC-by-subset curve is shown in (Figure 2C), and
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TABLE 1 Baseline characteristics of patients with non-Hodgkin lymphoma (NHL) with and without pneumonia within 90 days after chemotherapy
initiation.

Variable Overall (n = 205, %) No pneumonia (n = 126, %) Pneumonia (n = 79, %)

Gender 0.005
Female 89 (43.4) 65 (51.6) 24 (30.4)

Male 116 (56.6) 61 (48.4) 55 (69.6)

Age 0.189
> 65 years 104 (50.7) 69 (54.8) 35 (44.3)

< 65 years 101 (49.3) 57 (45.2) 44 (55.7)

Ann arbor stage 0.006
I-T 67 (33.5) 50 (41.3) 17 (21.5)

-1V 133 (66.5) 71 (58.7) 62 (78.5)

NCCN-IPI 0219
0-3 132 (70.2) 85 (73.9) 47 (64.4)

4-5 56 (29.8) 30 (26.1) 26 (35.6)

Post-chemotherapy marrow

suppression 0.702
No 154 (75.1) 93 (73.8) 61 (77.2)
Yes 51 (24.9) 33(26.2) 18 (22.8)
Hepatitis B status 0.246
No 167 (81.5) 99 (78.6) 68 (86.1)
Yes 38 (18.5) 27 (21.4) 11 (13.9)
Smoking <0.001
No 139 (67.8) 105 (83.3) 34 (43.0)
Yes 66 (32.2) 21(16.7) 45 (57.0)
Drinking <0.001
No 137 (66.8) 104 (82.5) 33 (41.8)
Yes 68(33.2) 22 (17.5) 46 (58.2)

Family history of malignant

tumor 0.512
No 168 (82.0) 101 (80.2) 67 (84.8)
Yes 37(18.0) 25(19.8) 12 (15.2)
BMI 0.788
> 20 kg/m? 165 (82.1) 103 (83.1) 62 (80.5)
<20 kg/m? 36 (17.9) 21 (16.9) 15 (19.5)
Hypertension 1.000
No 138 (69.0) 84 (68.9) 54 (69.2)
Yes 62 (31.0) 38 (31.1) 24 (30.8)
Diabetes 0.624
No 171 (85.5) 106 (86.9) 65 (83.3)
Yes 29 (14.5) 16 (13.1) 13 (16.7)
High-grade malignancy <0.001
No 83 (40.5) 68 (54.0) 15 (19.0)
Yes 122 (59.5) 58 (46.0) 64 (81.0)
Treatment regimen 0.290
Non-R-CHOP 119 (58.0) 69 (54.8) 50 (63.3)
R-CHOP 86 (42.0) 57 (45.2) 29 (36.7)
(Continued)
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TABLE 1 (Continued)
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Variable Overall (n = 205, %) No pneumonia (n = 126, %) Pneumonia (n = 79, %)

WBC 0.557

>3.5x 109/L 168 (82.4) 105 (84.0) 63 (79.7)

<3.5x109/L 36 (17.6) 20 (16.0) 16 (20.3)

Hb 0.403

>100 g/L 168 (82.0) 106 (84.1) 62 (78.5)

<100 g/L 37 (18.0) 20 (15.9) 17 (21.5)

ANC 0.911

> 1.5 x 109/L 181 (88.3) 112 (88.9) 69 (87.3)

< 1.5x 109/L 24 (11.7) 14 (11.1) 10 (12.7)

ALC 0.157

>0.7 x 109/L 155 (75.6) 100 (79.4) 55 (69.6)

< 0.7 x 109/L 50 (24.4) 26 (20.6) 24 (30.4)

RDW 0.779

<0.145 154 (75.1) 96 (76.2) 58 (73.4)

>0.145 51 (24.9) 30 (23.8) 21 (26.6)

PLT 0.968

> 100 x 109/L 178 (86.8) 110 (87.3) 68 (86.1)

<100 x 109/L 27 (13.2) 16 (12.7) 11 (13.9)

MPV 0.645

<10.0fL 78 (38.0) 50 (39.7) 28 (35.4)

>10.0 fL 127 (62.0) 76 (60.3) 51 (64.6)

PCT 0.167

<0.28 174 (84.9) 103 (81.7) 71 (89.9)

>0.28 31(15.1) 23(18.3) 8(10.1)

eGFR <0.001

> 80 mL/min/1.73 m* 152 (74.1) 114 (90.5) 38 (48.1)

< 80 mL/min/1.73 m? 53 (25.9) 12 (9.5) 41 (51.9)

Ca 0.889

> 2.1 mmol/L 140 (68.3) 87 (69.0) 53 (67.1)

<2.1 mmol/L 65 (31.7) 39 (31.0) 26 (32.9)

Fe 0.578

> 9 pmol/L 123 (60.0) 78 (61.9) 45 (57.0)

<9 pmol/L 82 (40.0) 48 (38.1) 34 (43.0)

ALB 1.000

>30g/L 177 (86.3) 109 (86.5) 68 (86.1)

<30g/L 28 (13.7) 17 (13.5) 11(13.9)

A/G ratio 0.650

>1 183 (89.3) 111 (88.1) 72 (91.1)

<1 22 (10.7) 15 (11.9) 7(8.9)

ALT 1.000

<40 U/L 176 (85.9) 108 (85.7) 68 (86.1)

>40 U/L 29 (14.1) 18 (14.3) 11(13.9)

AST 0.577

<40U/L 181 (88.3) 113 (89.7) 68 (86.1)

(Continued)
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TABLE 1 (Continued)

10.3389/fmed.2025.1674896

Variable Overall (n = 205, %) No pneumonia (n = 126, %) Pneumonia (n = 79, %)

>40 U/L 24 (11.7) 13 (10.3) 11 (13.9)

LDH 0329
<222U/L 104 (51.7) 67 (54.9) 37 (46.8)

>222 U/L 97 (48.3) 55 (45.1) 42 (53.2)

«-HBDH 0.545
<182U/L 112 (56.6) 71 (58.7) 41(53.2)

>182 U/L 86 (43.4) 50 (41.3) 36 (46.8)

TG 1.000
< 1.7 mmol/L 157 (77.0) 96 (76.8) 61(77.2)

> 1.7 mmol/L 47 (23.0) 29 (23.2) 18 (22.8)

HDL 0.799
> 1.0 mmol/L 81(39.7) 51 (40.8) 30 (38.0)

<1.0 mmol/L 123 (60.3) 74 (59.2) 49 (62.0)

LDL 0.349
< 3.4 mmol/L 182 (89.2) 109 (87.2) 73 (92.4)

> 3.4 mmol/L 22(10.8) 16 (12.8) 6(7.6)

CRP 0320
<10 mg/L 115 (58.1) 73 (61.3) 42 (53.2)

>10 mg/L 83 (41.9) 46 (38.7) 37 (46.8)

Values are 1 (%). p values were calculated using Pearson’s chi-square test with Yates” continuity correction (or Fisher’s exact test when any expected cell count was < 5); two-sided a = 0.05.

Missing values were excluded from hypothesis testing. Variables are dichotomized for presentation. Per-variable missingness is summarized in Supplementary Table S1.

stepwise subsets are tabulated in (Supplementary Table S2). To assess
robustness, we conducted nested cross-validation (outer 5-fold, 20
repeats): within each outer training fold, LASSO (4.1se) and
EPV-constrained RFE were refit, and performance was evaluated on
the corresponding outer test fold; selection frequencies across repeats
were summarized (Supplementary Figure 1 A; Supplementary Table S3).
In addition, we performed 200 bootstrap resamples of the LASSO step
(M.1se) to probabilities
(Supplementary Table S4). Potential multicollinearity among final

estimate  per-variable  selection
predictors was screened using Pearson correlations (after dummy
expansion) and variance inflation factors (VIF/GVIF); we flagged
[r] > 0.70 or VIF > 5 (GVIF_adj > 2) as concerning. The correlation
heatmap appears in (Figure 2D), with numeric diagnostics in

(Supplementary Table S5).

2.6 Hyperparameter tuning and model
selection

Hyperparameter tuning was performed exclusively on the training
set to avoid information leakage. For the support vector machine
(SVM), GBM, and k-nearest neighbors (KNN), we employed Bayesian
optimization (rBayesianOptimization, upper confidence bound
Each hyperparameter
configuration was evaluated using 5-fold cross-validation, with

acquisition with « =2.0). candidate
SMOTE applied strictly within folds. The binary outcome was coded
as pneumonia = “Yes” and no pneumonia = “No”’; model selection
optimized the mean cross-validated AUC (caret twoClassSummary,
positive = “Yes”). For SVM and KNN only, predictors were z-score
centered and scaled during both the 5-fold tuning stage and the
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subsequent repeated 10-fold cross-validation stage used for
performance estimation and final refitting; scaling parameters were
estimated on the in-fold training (analysis) partition and applied to
the paired validation (assessment) partition, with no carryover across
folds. After model selection, the centering/scaling transform was refit
on the full training set and applied once to the internal hold-out test
set before final evaluation. Other models (logistic regression, GBM,
LightGBM) did not use feature scaling. Logistic regression did not
require hyperparameter tuning.

For the light gradient boosting machine (LightGBM), a two-stage
procedure was adopted. First, Bayesian search with 4-fold cross-
validation and early stopping was performed across predefined ranges
for learning rate, num_leaves, min_data_in_leaf, feature_fraction,
bagging_fraction, A1, and A2. Second, the optimal parameter set
underwent confirmatory 5-fold cross-validation to determine the best
iteration number, after which the final model was refitted on the full
training set for nrounds = best_iter. The internal hold-out test set was
never used for resampling, tuning, or threshold determination.
Detailed search bounds and final selected hyperparameter values for
all models are provided in Supplementary Table S6.

2.7 Model development and comparison

To mitigate class imbalance during model development,
we applied SMOTE within each resampling fold of cross-validation
using caret:trainControl (sampling = “smote”). The same within-fold
procedure was used during hyperparameter tuning. No resampling
was ever applied to the internal hold-out test set. By design, this
prevents information leakage and yields unbiased validation estimates
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TABLE 2 Baseline characteristics of the training set and the internal hold-out test set (derived by stratified random split from the same single-center
cohort).

Variable Internal hold-out test set (n = 60, %) Training set (n = 145, %)

Gender 0.045
Female 27 (45.00) 62 (42.76)

Male 33 (55.00) 83 (57.24)

Age 0.026
> 65 years 31(51.67) 73 (50.34)

< 65 years 29 (48.33) 72 (49.66)

Ann arbor stage 0.176
I-1I 17 (28.33) 53 (36.55)

1I-1vV 43 (71.67) 92 (63.45)

NCCN-IPI 0.125
0-3 40 (66.67) 105 (72.41)

4-5 20 (33.33) 40 (27.59)

Post-chemotherapy marrow suppression 0.058
No 44 (73.33) 110 (75.86)

Yes 16 (26.67) 35 (24.14)

Hepatitis B status 0.069
No 50 (83.33) 117 (80.69)

Yes 10 (16.67) 28 (19.31)

Smoking 0.067
No 42 (70.00) 97 (66.90)

Yes 18 (30.00) 48 (33.10)

Drinking 0.104
No 38 (63.33) 99 (68.28)

Yes 22 (36.67) 46 (31.72)

Family history of malignant tumor 0.071
No 48 (80.00) 120 (82.76)

Yes 12 (20.00) 25(17.24)

BMI 0.149
> 20 kg/m? 47 (78.33) 122 (84.14)

<20 kg/m? 13 (21.67) 23 (15.86)

Hypertension 0.079
No 40 (66.67) 102 (70.34)

Yes 20 (33.33) 43 (29.66)

Diabetes 0.100
No 50 (83.33) 126 (86.90)

Yes 10 (16.67) 19 (13.10)

High-grade malignancy 0.160
No 21 (35.00) 62 (42.76)

Yes 39 (65.00) 83 (57.24)

Treatment regimen 0.040
Non-R-CHOP 34 (56.67) 85 (58.62)

R-CHOP 26 (43.33) 60 (41.38)

WBC 0.208

(Continued)
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TABLE 2 (Continued)

10.3389/fmed.2025.1674896

Variable Internal hold-out test set (n = 60, %) Training set (n = 145, %)

>3.5x109/L 46 (76.67) 123 (84.83)

<3.5x 109/L 14 (23.33) 22 (15.17)

Hb 0.071

>100 g/L 48 (80.00) 120 (82.76)

<100 g/L 12 (20.00) 25 (17.24)

ANC 0.209

>1.5x 109/L 50 (83.33) 131 (90.34)

<1.5x109/L 10 (16.67) 14 (9.66)

ALC 0.181

> 0.7 x 109/L 42 (70.00) 113 (77.93)

<0.7x 109/L 18 (30.00) 32(22.07)

RDW 0.004

<0.145 45 (75.00) 109 (75.17)

>0.145 15 (25.00) 36 (24.83)

PLT 0.207

> 100 x 109/L 49 (81.67) 129 (88.97)

<100 x 109/L 11(18.33) 16 (11.03)

MPV 0.008

<10.0fL 23 (38.33) 55 (37.93)

>10.0 fL 37 (61.67) 90 (62.07)

PCT 0.072

<0.28 52 (86.67) 122 (84.14)

>0.28 8 (13.33) 23 (15.86)

eGFR 0.028

> 80 mL/min/1.73 m* 45 (75.00) 107 (73.79)

< 80 mL/min/1.73 m? 15 (25.00) 38 (26.21)

Ca 0.052

> 2.1 mmol/L 42 (70.00) 98 (67.59)

< 2.1 mmol/L 18 (30.00) 47 (32.41)

Fe <0.001

> 9 pmol/L 36 (60.00) 87 (60.00)

<9 pmol/L 24 (40.00) 58 (40.00)

ALB 0.186

>30g/L 49 (81.67) 128 (88.28)

<30g/L 11 (18.33) 17 (11.72)

A/G ratio 0.034

>1 54 (90.00) 129 (88.97)

<1 6 (10.00) 16 (11.03)

ALT 0.100

<40 U/L 50 (83.33) 126 (86.90)

>40 U/L 10 (16.67) 19 (13.10)

AST 0.140

<40 U/L 51 (85.00) 130 (89.66)

>40 U/L 9 (15.00) 15 (10.34)

(Continued)
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TABLE 2 (Continued)

Variable Internal hold-out test set (n = 60, %) Training set (n = 145, %)

LDH 0.013
<222U/L 31 (51.67) 74 (51.03)

>222 U/L 29 (48.33) 71 (48.97)

«-HBDH 0.160
<182U/L 30 (50.00) 84 (57.93)

>182 U/L 30 (50.00) 61 (42.07)

TG 0.043
< 1.7 mmol/L 47 (78.33) 111 (76.55)

> 1.7 mmol/L 13 (21.67) 34 (23.45)

HDL 0.014
> 1.0 mmol/L 24 (40.00) 57 (39.31)

< 1.0 mmol/L 36 (60.00) 88 (60.69)

LDL 0.116
< 3.4 mmol/L 52 (86.67) 131 (90.34)

> 3.4 mmol/L 8(13.33) 14 (9.66)

CRP 0392
<10 mg/L 27 (45.00) 93 (64.14)

>10 mg/L 33 (55.00) 52 (35.86)

Values are 1 (%). Standardized mean differences (SMDs) are reported as effect sizes; imbalance was flagged at [SMD]| > 0.20 (]SMD]| < 0.10 generally negligible). No P values are reported,
consistent with recommendations to reduce sample-size dependence.

Consecutive patients with pathologically confirmed NHL who initiated chemotherapy
(Oct 2018-Oct 2024, Dongyang Hospital Affiliated with Wenzhou Medical University)

Exclusion Criteria:

Inclusion Criteria:
clusion Criteria Exclude (1) Pre-existing radiographically confirmed pneumonia prior to the initiation of chemotherapy.

(1) Received >1 cycle of systemic chemotherapy. Include >

(2) Incomplete baseline or follow-up data.

2) Follow-up >90 days after initiati til ia or death.
(2) Follow-up 230 days after initiation or until pneumonia o dea (3) Non-infectious mimics (e.g., drug-/radiation-induced pneumonitis, cardiogenic edema,

(3) Primary outcome: radiographically confirmed pneumonia within 90 diffuse alveolar hemorrhage, pulmonary embolism/infarction, tumor progression and/or
days of chemotherapy initiation. lymphangitic carcinomatosis).

| A total of 205 patients were included in the study |

Training set (n = 145) | | Internal hold-out test set (n = 60; 70/30 stratified split)

i

| Preprocessing (KNN imputation; SMOTE within CV folds) I

Accuracy, Sensitivity, Specificity, F1

| Feature selection using LASSO regression and RF-RFE | score, AUC, PPV, NPV, Brier score
‘ ROC curve analysis
ML algorithms: Logistic regression, SVM, el validan | — |
KNN, GBM, and LightGBM > Model validation Calibration curves

(o]

v v

| Web deployment (R Shiny, research use only) |

SHAP-based interpretation

FIGURE 1
Flowchart of patient selection and machine-learning workflow for predicting radiographically confirmed pneumonia within 90 days after
chemotherapy initiation in NHL patients.
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FIGURE 2

Two-stage feature selection for predicting radiographically confirmed pneumonia within 90 days after chemotherapy initiation in NHL patients.

(A) LASSO coefficient profiles across Log Lambda; vertical dashed lines mark Lambda min (orange) and Lambda 1se (blue). Numbers along the top axis
indicate the count of non-zero coefficients at each Lambda. (B) LASSO 10-fold cross-validation curve showing mean binomial deviance (red) with SE
bars versus Log Lambda; the parsimonious Lambda 1se was adopted for variable retention. (C) Cross-validated AUC by subset size during EPV-
constrained RF-RFE after LASSO selection; the optimal subset comprised four predictors. (D) Correlation among the final selected predictors (eGFR,
smoking, drinking, high-grade malignancy). numeric collinearity diagnostics (VIF/GVIF) are provided in Supplementary Table S5. Feature selection and
tuning were performed strictly within training cross-validation folds; the internal hold-out test set was not used for selection.

4.0

(28). Five machine-learning models were constructed based on the
selected predictors: logistic regression, SVM, KNN, GBM, and
LightGBM. Hyperparameters were optimized via Bayesian
optimization evaluated with 5-fold cross-validation on the training set
(for LightGBM: 4-fold during the search with early stopping plus
confirmatory 5-fold to determine best_iter), as detailed in Section 2.6.
Repeated 10-fold cross-validation (10 x 5) on the training set was then
used for performance estimation and to generate out-of-fold
predictions; the internal hold-out test set was used once for final
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evaluation. Model performance was evaluated on the internal hold-out
test set using multiple metrics, including the AUC, F1 score, Brier
score, accuracy, sensitivity, specificity, and predictive values. Decision
thresholds were pre-specified on the training set by maximizing
Youden’s ] and then fixed for both training and test evaluations.
We report AUC with DeLong 95% confidence intervals (CIs); at the
fixed threshold we report accuracy, sensitivity, specificity, PPV, NPV,
and F1 score with class-stratified bootstrap 95% CIs (B = 2,000),
together with confusion-matrix counts (TP, TN, FP, FN). Calibration

10 frontiersin.org


https://doi.org/10.3389/fmed.2025.1674896
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Zhang et al.

was assessed using calibration curves and the Brier score with
bootstrap 95% ClIs, and clinical utility was evaluated using decision-
curve analysis (DCA) on predicted probabilities. All preprocessing
resampling (SMOTE), hyperparameter tuning, and threshold selection
were confined to training-set cross-validation; the test set was used
only once for final evaluation.

2.8 Model interpretation

To enhance the interpretability of the final GBM model, a post hoc
analysis was conducted using SHAP, a game-theoretic approach that
quantifies the contribution of individual predictors to the model
outputs. Global feature importance was visualized using a SHAP
summary bar plot and a beeswarm plot, which illustrate the relative
magnitude and direction of each variable’s impact on the predicted
risk of pneumonia. For individual-level interpretation, a SHAP
waterfall plot and a force plot were generated to demonstrate how
specific predictor values influenced the deviation from the model’s
baseline prediction, thereby providing transparent, case-specific
insights into the model’s decision-making process (29, 30).

2.9 Web deployment

The final GBM model was implemented as an interactive R Shiny
web application for research use. This platform accepts patient-specific
clinical data and computes risk estimates with explanations for
research evaluation. The tool is a prototype for internal validation and
has not undergone prospective clinical implementation or impact
evaluation; it is not intended to guide patient care or clinical decision-
making and has not been integrated into routine clinical workflows
(31, 32).

3 Results
3.1 Baseline characteristics

A total of 205 patients diagnosed with NHL were included in the
final analysis, among whom 79 (38.5%) developed pneumonia within
90 days after chemotherapy initiation. Baseline characteristics were
compared between the pneumonia group (n=79) and the
no-pneumonia group (n = 126) (Table 1). Patients with pneumonia
were more often male (69.6% vs. 48.4%, p=0.005) and more
frequently had advanced Ann Arbor stage III-IV disease (78.5% vs.
58.7%, p =0.006). Significant differences were also observed in
smoking (57.0% vs. 16.7%, p < 0.001), drinking (58.2% vs. 17.5%,
P <0.001), high-grade malignancy (81.0% vs. 46.0%, p < 0.001), and
reduced renal function (eGFR < 80 mL/min/1.73 m? 51.9% vs. 9.5%,
P <0.001). In contrast, there were no statistically significant differences
between groups for age (p =0.189), NCCN-IPI (p =0.219), post-
chemotherapy marrow suppression (p = 0.702), hepatitis B status
(p=0.246), BMI (p =0.788), hypertension (p =1.000), diabetes
(p = 0.624), treatment regimen (p = 0.290), or the majority of baseline
hematologic/biochemical indices (all p > 0.05), including WBC, Hb,
ANC, ALC, RDW, PLT, MPV, PCT, calcium, iron, albumin, A/G ratio,
ALT, AST, LDH, a-HBDH, triglycerides, HDL-C, LDL-C, and CRP.
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For model development, we then performed a stratified 70/30
split by the outcome to create a training set (n = 145) and an internal
hold-out test set (n=60) from the same single-center cohort.
Between-set comparability was summarized using standardized
mean differences (SMDs) (Table 2). Most characteristics were well
balanced (]SMD] < 0.20). Four laboratory variables—WBC, ANC,
PLT, and CRP—showed modest imbalance ([SMD| ~ 0.21, 0.21, 0.21,
and 0.39, respectively). A prespecified sensitivity analysis excluding
these described 3.4
Supplementary Tables S9, S10.

variables s in  Section and

3.2 Feature selection results

Using the pre-specified two-step procedure, LASSO (4.1se)
retained four variables—high-grade malignancy, drinking, eGFR, and
smoking (Figures 2A,B). Applying events-per-variable-constrained
RE-REE to this set, the cross-validated AUC increased with the
number of features and reached a performance plateau at 3-4
predictors (Figure 2C). In our data, the mean cross-validation (CV)
AUCs were 0.803 for k = 3 and 0.804 for k = 4 (AAUC = 0.001, within
the AAUC £0.01;
Supplementary Table S2). Per our tie-breaker for adjacent subsets on
the plateau—which selected the subset with the higher mean CV AUC
and greater selection stability—we retained the four-predictor model

pre-specified plateau tolerance

(high-grade malignancy, drinking, eGFR, smoking) for subsequent
development and interpretation. Stability was high in nested cross-
validation (outer 5-fold, 20 repeats), with consistently elevated
selection frequencies for these four predictors (Supplementary Table S3;
Supplementary Figure S1A). Bootstrap resampling of the LASSO step
(B =200) produced concordant stability results
(Supplementary Table S4). Collinearity diagnostics (VIF/GVIF and
Pearson correlations) indicated no evidence of concerning
multicollinearity among the 2D;

final predictors (Figure

Supplementary Table S5).

3.3 Model performance comparison

Model performance was reported at a pre-specified threshold
fixed from the training set by Youden’s J. All threshold-based metrics
were presented with class-stratified bootstrap 95% CIs; AUC 95% Cls
were DeLong-based. Five machine-learning models—logistic
regression, SVM, KNN, GBM, and LightGBM—were all trained using
the same four selected predictors, avoiding model-specific reselection
and potential selection-induced bias. The performance of each model
was subsequently evaluated on both the training set and an internal
hold-out test set (1 = 60).

On the training set, GBM achieved the highest AUC (0.853, 95%
CI 0.789-0.916), followed by SVM (0.844, 95% CI 0.778-0.910),
LightGBM (0.843, 95% CI 0.777-0.909), logistic regression (0.841,
95% CI 0.775-0.908), and KNN (0.806, 95% CI 0.739-0.874)
(Figure 3A). On the internal hold-out test set, GBM achieved the
highest AUC (0.855, 95% CI 0.746-0.964), followed by logistic
regression (0.844, 95% CI 0.732-0.957), LightGBM and SVM (both
0.841, 95% CI 0.729-0.953), and KNN (0.588, 95% CI 0.451-0.724)
(Figure 3B). These results indicate that GBM provided the best overall
discrimination in both training cross-validation and internal testing.
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threshold selection.

Comparative performance of five machine-learning models for predicting radiographically confirmed pneumonia within 90 days after chemotherapy
initiation in NHL patients. (A,B) ROC curves for the training set (A) and the internal hold-out test set (B); AUCs with DeLong 95% Cls are reported in the
legends. (C,D) Radar plots summarizing threshold-based metrics (AUC, accuracy, sensitivity, specificity, PPV, F1) for the training set (C) and the internal
hold-out test set (D) at the pre-specified threshold (Youden'’s J, determined from the training set and fixed for testing); corresponding 95% Cls are
provided in Table 3. (E,F) Calibration curves with corresponding Brier scores (bootstrap 95% Cls) for the training set (E) and the internal hold-out test
set (F). (G,H) Decision-curve analysis in the training set (G) and the internal hold-out test set (H), showing net benefit across threshold probabilities; “all”
and "none” strategies are included for reference. (1,J) Confusion matrices of the GBM model for the training set (I) and the internal hold-out test set (J;
n = 60) at the pre-specified threshold. ROC Cls are DelLong-based; threshold-based metrics and Brier Cls use class-stratified bootstrap. All
preprocessing, feature selection, SMOTE, and tuning were confined to training cross-validation; the internal test set was not used for resampling or
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Full threshold-based metrics with 95% Cls and the corresponding
confusion-matrix counts (TP/TN/FP/FN) for all models are provided in
Table 3. For completeness, training-set metrics with 95% Cls are provided
in Supplementary Table S7. As illustrated in the radar plots
(Figures 3C-D), GBM outperformed the other algorithms in terms of
overall discrimination (AUC) and achieved balanced sensitivity and
predictive values. LightGBM yielded slightly higher accuracy (0.750 vs.
0.717) and specificity (0.730 vs. 0.676), but GBM maintained the most
robust overall performance across metrics. Calibration curves
demonstrated good agreement between predicted and observed risks for
GBM, with Brier scores of 0.151 (training) and 0.155 (internal test)
(Figures 3E-F; Table 3). Decision-curve analysis showed comparable net
benefit for GBM, logistic regression, SVM, and LightGBM across most
clinically relevant thresholds, with no uniform winner; KNN
underperformed (Figures 3G-H). These patterns support decision-
analytic utility under internal validation. The confusion matrices further
illustrate the classification performance of the GBM model in both the
training set (Figure 3I) and the internal hold-out test set (Figure 3]). In
the training set, correct predictions predominated, with relatively

Frontiers in Medicine

balanced error rates across positive and negative classes. In the test set,
although overall discrimination was maintained, a higher proportion of
false positives was observed, reflecting a modest decrease in specificity.

Collectively, these findings support GBM as the most robust model
for individualized pneumonia-risk prediction under internal validation.
All estimates reflect internal validation only; in the absence of routine
microbiological confirmation, standardized radiologic scoring, and any
real-world/prospective validation, performance may be optimistic and
not ready for clinical deployment.

3.4 Sensitivity analysis of imputation

To assess robustness to imputation, we examined an alternative
specification that varied the k parameter in KNN imputation (k = 3, 5,
and 7). Because this specification differed from the primary pipeline,
absolute performance values were presented in Supplementary Table S8
and should not be interpreted as head-to-head comparisons with the
primary test-set results. Results were qualitatively unchanged. Second,
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TABLE 3 Performance of machine-learning models on the internal hold-out test set using pre-specified training-set thresholds.

Model Threshold = Accuracy Sensitivity = Specificity = PPV NPV
(95% Cl) (95% CI) (95% Cl) (95%  (95%
Cl) Cl)
0.600 0.833 0.679 0.844
0.717 (0.600- | 0.783 (0.609-
Logistic 0.386 0.676 (0.514- | (0.484- | (0.714- = (0.545- = (0.732-
0.817) 0.957)
0.811) 0731) | 0957) | 0.792) | 0.957) 18 25 12 5
0.600 0.833 0.679 0.841
SVM 0.398 0.717 (0.600- | 0.783 (0.609— 0.676 (0.514- | (0484- | (0.714- = (0.545- = (0.729-
0.817) 0.957) 0.811) 0731) | 0957) | 0.792) | 0.953) 18 25 12 5
0.600 0.833 0.679 0.855
GBM 0.418 0.717 (0.600- | 0.783 (0.609- 0.676 (0.514- | (0.484- | (0.714- | (0.545-  (0.746-
0.817) 0.957) 0.811) 0.731) | 0957) | 0.792) | 0.964) 18 25 12 5
0.468 0.923 0.629 0.588
0.567 (0.467- | 0.957 (0.870~
KNN 0.167 0.324(0.189- | (0413- | (0.750- = (0.563- = (0.451-
0.667) 1.000)
0.486) 0.537) 1.000) | 0.697) = 0724) | 22 12 25 1
0.643 0.844 0.706 0.841
LightGBM 0.386 0.750 (0.633- | 0.783 (0.609— 0.730 (0.568- | (0.516- | (0.735- | (0.571-  (0.729-
0.850) 0.957) 0.865) 0.783) | 0962) = 0.824) | 0953) 18 27 10 5

Thresholds were pre-specified on the training set by maximizing Youden’s J (positive class = “yes”) and fixed for evaluation on the internal hold-out test set. AUC 95% confidence intervals
(CIs) were estimated using the DeLong method; other 95% CIs for threshold-based metrics were obtained by class-stratified bootstrap (B = 2,000). Counts are TP/TN/FP/FN at the fixed

threshold.

to address modest baseline imbalances, we repeated the primary
pipeline without changes (i.e., same preprocessing, cross-validation/
tuning protocol, and model class) but excluded variables with
|SMD] > 0.20 between the training and test sets (WBC, ANC, PLT,
CRP). Performance was essentially unchanged relative to the primary
analysis (Supplementary Tables S9, S10), indicating that these
variables did not materially influence model performance.

3.5 SHAP-based model interpretation

To improve the interpretability of the GBM model, SHAP was applied
to quantify the contribution of each predictor to the models output. The
SHAP summary bar plot (Figure 4A) ranked the four selected features by
their mean absolute SHAP values, with eGFR showing the strongest
overall influence, followed by smoking, drinking, and high-grade
malignancy. The SHAP beeswarm plot (Figure 4B) visualized the
distribution and direction of each feature’s contribution. Generally, higher
SHAP values for high-grade malignancy and lower eGFR were associated
with increased predicted risk of pneumonia, while the effects of smoking
and drinking varied across individuals.

For case-level interpretation, waterfall and force plots
(Figures 4C,D) were generated for a representative high-risk patient.
In this example, concurrent smoking, drinking, and reduced renal
function substantially elevated the model’s predicted risk despite the
absence of high-grade malignancy, as reflected by a high model output
(f(x) = 0.988 vs. E[f(x)] = 0.519). To complement this, an illustrative
low-risk case was presented in Supplementary Figures S1B,C, where
the absence of high-grade malignancy, preserved renal function
(eGFR = 0), and lack of smoking and drinking collectively reduced the
predicted probability well below the baseline expectation (f(x) = 0.186
vs. E[f(x)] = 0.519).

These individualized explanations improve transparency,
highlight clinically actionable factors, and provide practical insights

Frontiers in Medicine

for prevention. For example, smoking cessation and alcohol avoidance
represent modifiable targets, while vigilant monitoring of renal
function and high-grade disease may guide early intervention.
Together, these case-level insights support patient-centered decision-
making and strengthen the clinical applicability of the model. Such
individualized visualizations enhance model transparency and
reinforce personalized clinical decision-making.

3.6 Web-based prediction tool deployment

To improve clinical applicability, the final GBM model was
implemented as an interactive web-based tool using the R Shiny
framework. This online platform allows healthcare providers to input
patient-specific clinical parameters and obtain real-time estimates of the
probability of pneumonia occurring within 90 days of chemotherapy
initiation. The web-based tool interface contains four input fields, namely
high-grade malignancy, drinking, eGFR, and smoking (Figure 5). After
data entry, the system promptly computes and displays the predicted
probability of pneumonia, providing a quantitative reference to support
clinical evaluation. The tool is accessible through standard web browsers
on both desktop and mobile devices, without the need for additional
software installation. Its real-time output and integration of SHAP-based
interpretive visualizations enhance transparency and support
individualized risk assessment in routine hematology practice. The tool is
available at: https://ltfu-zzn.shinyapps.io/Pneumonia/

4 Discussion
4.1 Principal findings

In this study, we developed a machine learning-based model to
predict early pneumonia in patients with NHL undergoing chemotherapy.
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SHAP-based interpretation of the GBM model for predicting radiographically confirmed pneumonia within 90 days after chemotherapy initiation in
NHL patients. (A) Global feature importance ranked by mean absolute SHAP value. (B) SHAP beeswarm plot showing the distribution, direction, and
magnitude of feature contributions across the internal hold-out test set (points colored by feature value). (C) SHAP waterfall plot for a representative
high-risk case (Smoking = 1, Drinking = 1, eGFR = 1, High-grade malignancy = 0), illustrating how individual feature contributions shift the predicted
probability from the baseline E[f(x)] = 0.519 to f(x) = 0.988. (D) SHAP force plot for the same case, summarizing how these contributions combine to
yield the final prediction. Predictor encoding: Smoking (1 = Yes, O = No), Drinking (1 = Yes, O = No), High-grade malignancy (1 = Yes, 0 = No), eGFR

The model was constructed using four clinically relevant predictors: high-
grade malignancy, drinking status, eGFR, and smoking status. Among the
five algorithms evaluated, the GBM model achieved the highest predictive
performance. On the internal hold-out test set, it yielded an AUC of 0.855,
an F1 score of 0.679, and a Brier score of 0.155, demonstrating favorable
discrimination, calibration, and overall predictive accuracy. Among the
evaluated algorithms, GBM achieved a favorable sensitivity—specificity
balance and maintained consistent performance across the training set
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and the internal hold-out test set. The use of SHAP values further
facilitated the interpretation of model predictions at both the global and
individual levels. Impaired renal function, and behavioral factors such as
smoking and drinking were identified as key contributors to pneumonia
risk. These findings support the utility of interpretable machine learning
techniques in predicting early pneumonia risk in NHL patients, offering
a potential tool for personalized risk stratification and preventive care in
hematologic oncology. Because our evaluation used an internal hold-out
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Predicted pneumonia risk: 48.14 %
Smoking history:
No v
Drinking history:
Yes v
High-grade malignancy:
Yes v
eGFR (< 80 or 2 80 mL/(min-1.73m?)):
<80 v
Predict
FIGURE 5
Prototype web-based calculator for individualized pneumonia risk prediction in NHL patients after chemotherapy initiation. The R Shiny interface
allows entry of four predictors (smoking, drinking, high-grade malignancy, eGFR) to generate an individualized 90-day pneumonia risk score with
interpretive visualization.

split from the same single-center cohort, true external generalizability
remains untested. We therefore plan to conduct temporal validation in a
later patient cohort and pursue multicenter external validation to assess
transportability; if dataset shift is observed, model recalibration and
threshold re-specification will be performed.

4.2 Clinical and scientific implications

A previous study reported that 39.7% of newly diagnosed NHL
patients developed bacterial pulmonary infections (4). After
chemotherapy, the risk of such infections in NHL patients increases
significantly. Other studies have shown that most severe infections
occur within six months of initiating rituximab-based chemotherapy
(33), emphasizing the need for early and continuous monitoring. Such
infections frequently lead to treatment delays or discontinuation and
were associated with substantially poorer progression-free survival.
Accurate assessment of infection risk in the early treatment phase
therefore enables timely implementation of preventive measures,
including prophylactic antibiotics, enhanced monitoring, and tailored
chemotherapy regimens.

Beyond positioning our work relative to MASCC, prior interpretable
ML studies in related populations help contextualize our contribution.
In lung cancer, Sun et al. predicted post-chemotherapy lung infection
using 36 clinical/laboratory predictors selected by Boruta/LASSO; a
regularized logistic-regression model with SHAP achieved an AUC = of
0.89 and reported calibration and decision-curve analyses. Their
endpoint required clinical signs plus a CT-identified infectious focus,
but was not restricted to radiographically confirmed pneumonia within
a prespecified 90-day window (34). In newly diagnosed multiple
myeloma, Peng et al. trained models on 38 variables and found XGBoost
performed best (AUC=0.88 in validation), again with SHAP
explanations; the outcome was a composite infection definition
(microbiologically or clinically defined infection, or FUO) rather than
pneumonia specifically (35). Both studies emphasized discrimination

Frontiers in Medicine

15

and interpretability using internal resampling for validation. By contrast,
our study focuses on a narrow, clinically actionable endpoint—
radiographically confirmed pneumonia within 90 days of chemotherapy
initiation in NHL—and demonstrates competitive performance through
a parsimonious, interpretable gradient boosting machine model
explained by SHAP, incorporating four predictors (high-grade
malignancy, eGFR, smoking, and drinking).

This focus is supported by real-world data indicating that nearly
half of respiratory complications in NHL occur during this early
treatment window, with approximately 75% being infectious in origin
(6). The median onset of interstitial pneumonia at 74 days after
treatment initiation further illustrates the vulnerability of this phase
(36), even though interstitial pneumonia itself is non-infectious. In
line with previous studies, smoking was reaffirmed as a risk factor for
pneumonia, while high-grade malignancy also emerged as a predictor,
plausibly reflecting immune dysfunction in aggressive subtypes such
as DLBCL (37). Retrospective analyses of DLBCL have shown high
rates of infectious episodes (38) and substantially reduced five-year
survival in patients who developed pneumonia during chemotherapy
(41% vs. 82%) (39). Similarly, reduced eGFR was associated with
pneumonia risk, underscoring the contribution of renal dysfunction
during immunochemotherapy (40). Alcohol use was another
significant predictor, consistent with meta-analytic evidence linking
alcohol consumption to impaired pulmonary immune defenses (41).

Taken together, this study represents a novel application of
interpretable ML for pneumonia risk management in NHL. By
leveraging GBM with SHAP explanations and decision-curve analysis,
we provide not only a high-performing predictive model but also a
transparent, clinician-friendly tool. While SHAP offers individualized,
transparent rationale for risk estimates, it reflects associations rather
than causation; therefore, explanations should be used to inform
preventive vigilance and shared decision-making, with thresholds and
calibration subject to confirmation in external/temporal validation.
Unlike conventional scoring systems, our model captures non-linear
relationships and interactions among malignancy severity, disease
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stage, renal function, and behavioral factors, thereby offering a
practical and data-driven approach to pneumonia surveillance in
hematologic malignancies.

4.3 Comparison with existing risk models

Several clinical scoring tools have been used to assess infection
risk in cancer patients, with the MASCC score being one of the most
commonly used. However, it was originally developed for febrile
neutropenia and may not be well suited to predicting pneumonia,
especially in lymphoma patients. The score is based on general clinical
parameters, such as the burden of illness and outpatient status, but
lacks consideration of tumor biology or treatment-specific factors (42,
43). Our model, in contrast, was developed specifically for NHL
patients receiving chemotherapy, with a focus on predicting
pneumonia during the early, high-risk phase of treatment. By
including variables such as eGFR and high-grade malignancy, it
achieved strong performance (AUC = 0.855 on the internal hold-out
test set) and may offer advantages over conventional additive scores.
Unlike conventional tools that rely on additive point systems and
assume linear effects, our GBM model can account for complex
interactions among clinical features. Importantly, the use of SHAP
values allows the model to explain individual predictions—something
traditional scores do not provide (44). Overall, our work offers a more
focused and clinically adaptable approach to pneumonia risk
assessment in hematologic oncology, complementing existing models
while addressing some of their key limitations.

4.4 Limitations

This study has several limitations that should be acknowledged.
First, this is a single-center study with internal hold-out validation
only; performance estimates may therefore be optimistic, and
generalizability remains to be confirmed. Given the small internal test
set (n = 60), the CIs are necessarily wide. Future work will include
temporal validation within our center and external, multicenter
validation, with attention to site-level distribution shifts and the
potential need for recalibration and threshold re-specification; larger
validation cohorts should also allow narrower Cls. Second, train-test
comparability was assessed using SMDs; several laboratory variables
(WBC, ANC, PLT, and CRP) showed modest imbalance
(|SMD| = 0.21-0.39). Although none of these variables entered the
final four-predictor model (high-grade malignancy, drinking, eGFR,
smoking), we also conducted a prespecified sensitivity analysis in
which all variables with |[SMD|>0.20 were excluded prior to
preprocessing, and we reran the same pipeline. Performance was
essentially unchanged relative to the primary analysis
(Supplementary Tables S9, S10), suggesting limited impact of this
imbalance. Nevertheless, residual bias in internal metrics cannot
be fully excluded. Third, phenotype ascertainment may be constrained
by the lack of systematic microbiological confirmation and by the
absence of centralized, standardized radiologic re-reads/scoring.
Although case adjudication was performed by clinicians based on
clinical, laboratory, and imaging findings, incorporating detailed
information such as pathogen identification or standardized
radiographic scoring could enhance diagnostic accuracy and model
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performance. Fourth, despite performing feature selection and
hyperparameter tuning strictly within training cross-validation folds,
some risk of overfitting remains. Given the initial 35 candidates and 79
events, selection-induced instability is possible; EPV constraints, the
plateau rule, nested-CV stability analyses, and LASSO bootstrapping
mitigate—but do not eliminate—this risk. External (temporal/
multicenter) validation will be needed to assess feature robustness and
the need for recalibration, and threshold re-specification. Finally, the
web tool is a prototype for internal validation and has not undergone
prospective clinical implementation or impact evaluation.

Taken together, these limitations—particularly the lack of
systematic microbiological confirmation, the absence of standardized
radiologic re-reads/scoring, and the absence of external (temporal/
multicenter) and prospective/real-world validation—substantially
limit the immediate clinical translation of our findings. The model
should be regarded as research-only pending external validation,
potential recalibration and threshold re-specification under dataset
shift, and prospective impact evaluation.

4.5 Future perspectives

Future work will prioritize temporal and external validation
across broader populations and care settings. Multicenter
collaborations will be essential to evaluate generalizability and
transportability, mitigate overfitting, and monitor calibration drift
with protocolized threshold recalibration in new cohorts. Integration
with electronic health records—for research use only—will
be explored to enable real-time risk scoring, subject to governance,
privacy safeguards, and workflow co-design. As healthcare ML
matures, future iterations may incorporate longitudinal clinical
trajectories, pathogen-specific data, treatment exposures, and
imaging-derived features to while

improve performance

maintaining interpretability.

5 Conclusion

We developed and internally validated a gradient-boosting model
to estimate the 90-day risk of pneumonia after chemotherapy in NHL
using routinely available predictors, with SHAP-based explanations
and a research-prototype web tool. Performance on repeated cross-
validation and an internal hold-out test set was encouraging; however,
the single-center, retrospective design and the modest test sample
warrant cautious interpretation. The tool is not intended for clinical
decision-making, and external (including temporal and multicenter)
validation is required before clinical deployment. With appropriate
validation and updates to calibration and threshold specification, this
approach may enable earlier identification of higher-risk patients and
support targeted preventive strategies. All code is openly available
(GitHub: https://github.com/zzn-project/NHL-Pneumonia-ML) to
facilitate transparency and reproducibility.
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Glossary

NHL - Non-Hodgkin Lymphoma

RF-RFE - Random Forest-based Recursive Feature Elimination
DLBCL - Diffuse Large B-cell Lymphoma

ML - Machine Learning

LR - Logistic Regression

SVM - Support Vector Machine

KNN - k-Nearest Neighbors

GBM - Gradient Boosting Machine
LightGBM - Light Gradient Boosting Machine
AUC - Area Under the Curve

DCA - Decision Curve Analysis

SHAP - Shapley Additive Explanations

NCCN-IPI - National Comprehensive Cancer Network-International
Prognostic Index

WBC - White blood cell count
Hb - Hemoglobin

ANC - Absolute neutrophil count
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ALC - Absolute lymphocyte count

RDW - Red cell distribution width

PLT - Platelet count

MPY - Mean platelet volume

PCT - Plateletcrit

eGFR - Estimated glomerular filtration rate
Ca - Calcium

Fe - Iron

ALB - Albumin

A/G ratio - Albumin/globulin ratio

ALT - Alanine aminotransferase

AST - Aspartate aminotransferase

LDH - Lactate dehydrogenase

a-HBDH - a-Hydroxybutyrate dehydrogenase
TG - Triglycerides

LDL - Low-density lipoprotein cholesterol

CRP - C-reactive protein
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