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Interpretable machine learning 
model to predict 90-day 
radiographically confirmed 
pneumonia after chemotherapy 
initiation in non-Hodgkin 
lymphoma: development and 
internal validation of a 
single-center cohort
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Background: Radiographically confirmed pneumonia within 90 days of 
chemotherapy initiation is a frequent and clinically important complication 
in patients with non-Hodgkin lymphoma, yet interpretable tools for early 
individualized risk estimation are limited.
Objective: To develop and internally validate an interpretable machine-learning 
model that predicts the 90-day risk of radiographically confirmed pneumonia 
after chemotherapy initiation in non-Hodgkin lymphoma.
Methods: We retrospectively analyzed 205 chemotherapy-treated NHL 
patients. A two-step feature selection (LASSO followed by random-forest–
based recursive feature elimination) identified four predictors: high-grade 
malignancy, drinking (alcohol use), estimated glomerular filtration rate (eGFR), 
and smoking. Five algorithms were trained and compared under a stratified 
70/30 split (training n = 145; internal hold-out test set n = 60) with leakage-safe 
preprocessing (within-fold kNN imputation, SMOTE, and scaling). The gradient 
boosting machine (GBM) performed best and was interpreted using SHAP. A 
web-based prototype was implemented for research use only.
Results: On the internal hold-out test set (n = 60), the GBM achieved an AUC 
of 0.855 (95% CI 0.746–0.964), an F1 score of 0.679, and a Brier score of 0.155. 
SHAP identified reduced eGFR, smoking, drinking, and high-grade malignancy 
as influential contributors; case-level waterfall and force plots enhanced 
transparency. These estimates reflect internal validation only and were obtained 
without systematic microbiological confirmation or standardized radiologic 
rescoring. Accordingly, performance may be optimistic, and real-world use is 
not advised pending temporal and multicenter external validation (with potential 
recalibration) and prospective evaluation.
Conclusion: The interpretable GBM model demonstrated promising 
discrimination and calibration on an internal hold-out test set; however, clinical 
deployment requires temporal and multicenter external validation (as well as 
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prospective assessment with potential recalibration). The accompanying web 
calculator is a research-only prototype and is not intended for clinical decision-
making until such validation is completed.

KEYWORDS

non-Hodgkin lymphoma, pneumonia, machine learning, risk prediction, Shapley 
additive explanations

1 Introduction

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of 
lymphoid malignancies for which global incidence continues to rise, 
reaching an estimated 545,000 new cases and 260,000 deaths in 2020 
(1, 2). The widespread use of immunochemotherapy regimens, such 
as R-CHOP, along with the introduction of targeted therapies, has 
significantly improved survival. However, infectious complications—
particularly pneumonia—remain among the most common and 
clinically significant adverse events during chemotherapy. In elderly 
NHL patients treated with R-CHOP, pulmonary complications have 
been reported in up to 40 percent of cases, with approximately 10 
percent experiencing severe infections (3). A previous study involving 
229 newly diagnosed NHL patients reported that 91 (39.7%) 
developed bacterial pneumonia, including 76 with isolated respiratory 
tract infection and 15 with concurrent bacteremia (4). Despite its 
frequency, pneumonia is often underrecognized in the early stages due 
to insidious and nonspecific symptoms, which can delay diagnosis and 
treatment, thereby adversely affecting clinical outcomes (5, 6). 
Although pneumonia is clinically burdensome—especially during the 
first 90 days after chemotherapy initiation, when patients are most 
vulnerable, validated tools for early risk prediction in this critical 
period remain limited. Few studies have developed individualized 
prediction models tailored to this early and high-risk phase 
of treatment.

Pneumonia in patients with NHL most commonly occurs within 
the first 90 days after chemotherapy initiation. This period is typically 
marked by bone marrow suppression, disruption of mucosal barriers, 
and compromised immune function (6–8). Early identification of 
high-risk individuals during this timeframe is essential to guide timely 
preventive interventions, such as empiric antimicrobial therapy, 
antifungal prophylaxis, or chemotherapy dose adjustments. However, 
existing risk stratification tools, including the MASCC score, were not 
specifically designed to predict pneumonia in patients with NHL, 
highlighting a critical gap in early risk assessment (9).

Several predictive tools exist in oncology for infection-related 
adverse outcomes, but they target different questions than organ-
specific pneumonia risk. Febrile neutropenia (FN) risk stratification 
models—such as the Multinational Association for Supportive Care 
in Cancer (MASCC) Risk Index, Talcott classification, and the Clinical 
Index of Stable Febrile Neutropenia (CISNE)—were designed to 
identify low- versus high-risk FN episodes and guide outpatient 
management, not to estimate a patient’s individualized probability of 
developing pneumonia in the early chemotherapy period (10–13). In 
parallel, risk scores for invasive fungal disease (e.g., invasive mold 
disease) have been proposed primarily for hematologic malignancies 
or transplant settings, but these focus on a fungal subset rather than 
the broader spectrum of bacterial, viral, and fungal pneumonia 
encountered during NHL chemotherapy (14, 15). Consequently, 

current tools leave a gap for early, organ-specific prediction of 
pneumonia risk in NHL.

Pneumonia warrants prioritization for several clinically relevant 
reasons. First, the lung is a common infection site in patients with 
hematologic malignancies receiving chemotherapy; pneumonia 
contributes disproportionately to ICU admissions and mortality 
compared with many other infection sites (16, 17). Second, early 
detection is actionable: timely imaging, empiric antimicrobial therapy, 
selective antifungal prophylaxis, vaccination strategies, and—when 
appropriate—chemotherapy dose adjustments can be targeted to those 
at highest risk (18). Third, pneumonia’s insidious early presentation in 
immunocompromised hosts underscores the need for individualized, 
pre-emptive risk estimation to avoid delays in diagnosis and treatment.

To address this need, we developed and validated a machine-
learning-based model to predict radiographically confirmed 
pneumonia occurring within 90 days after chemotherapy initiation in 
patients with NHL. Key predictors were identified using random 
forest–based recursive feature elimination (RF-RFE), and five machine 
learning algorithms were constructed and compared. Among these, 
the gradient boosting machine (GBM) model demonstrated superior 
predictive performance. To enhance interpretability and clinical 
applicability, SHAP (Shapley Additive Explanations) was applied to 
explain model predictions at the individual level, and the final model 
was implemented as an interactive web-based tool (19). This study 
provides a practical and individualized solution for early risk 
assessment of pneumonia in patients with NHL undergoing  
chemotherapy.

2 Methods

2.1 Study design and data source

2.1.1 Study setting and cohort
This retrospective study was conducted at Dongyang Hospital 

Affiliated with Wenzhou Medical University included consecutive 
patients with pathologically confirmed non-Hodgkin lymphoma 
(NHL) who initiated systemic chemotherapy between October 2018 
and October 2024. Eligibility required receipt of at least one 
chemotherapy cycle and follow-up for at least 90 days after initiation 
or until the earlier occurrence of pneumonia or death. We excluded 
patients with radiographically confirmed pneumonia prior to the 
initiation of chemotherapy and those with incomplete baseline or 
follow-up data.

2.1.2 Primary outcome
The primary outcome was radiographically confirmed pneumonia 

occurring within 90 days of chemotherapy initiation. Case 
ascertainment required (i) a new or progressive pulmonary infiltrate 
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on chest radiography or computed tomography and (ii) ≥ 1 clinical 
criterion: new or worsened cough or sputum; fever; auscultatory 
findings consistent with consolidation (e.g., crackles/wet rales, 
bronchial breath sounds, or egophony); or an abnormal peripheral 
leukocyte count > 10 × 109/L or < 4 × 109/L (with or without left shift). 
Episodes without a new infiltrate (e.g., tracheobronchitis/URTI, 
COPD/asthma exacerbation) and non-infectious mimics (drug- or 
radiation-induced pneumonitis, cardiogenic pulmonary edema, 
diffuse alveolar hemorrhage, pulmonary embolism/infarction, tumor 
progression/lymphangitic carcinomatosis) were excluded. Both 
community-onset and hospital-onset episodes meeting this definition 
were eligible. Because the 2019 ATS/IDSA community-acquired 
pneumonia guideline excludes immunocompromised hosts, 
we adopted its radiographic–clinical framework for case ascertainment 
only and did not apply CAP-specific care pathways.

2.1.3 Data availability for phenotyping
Microbiological data (e.g., culture/PCR panels) were not 

systematically collected, and imaging studies were not centrally 
reviewed or scored using a standardized severity metric; case 
ascertainment relied on clinical radiology reports according to the 
operational definition.

2.2 Variable collection and preprocessing

A total of 35 clinical variables were collected, covering 
demographic characteristics, disease status, comorbidities, treatment-
related factors, and baseline laboratory results. All predictors were 
pre-specified and dichotomized to binary indicators (0/1) before 
modeling; no multilevel factors remained (20). Missing values were 
imputed using k-nearest neighbors (kNN) with k = 5; imputation 
models were fit on the training data (or within cross-validation folds) 
and then applied to held-out data only to avoid information leakage 
(21). Because kNN imputation can yield fractional values for originally 
binary predictors, those fields were post-processed using a 0.5 
threshold to restore 0/1 coding (22). Robustness to the imputation 
hyperparameter was examined in an alternative specification by 
varying k (3 and 7). Since this specification differs from the primary 
pipeline (settings and implementation), absolute performance values 
are reported in Supplementary Table S8 and are not intended for 
direct comparison with the primary test-set results; qualitative 
conclusions were unchanged.

2.3 Statistical analysis (baseline 
comparisons)

Baseline characteristics were summarized as n (%) for categorical 
variables. For comparisons between the pneumonia and 
no-pneumonia groups (Table  1), group differences were assessed 
using two-sided tests (α = 0.05): Pearson’s chi-square test with Yates’ 
continuity correction, or Fisher’s exact test when any expected cell 
count was < 5. Missing values were excluded from hypothesis testing. 
All baseline variables were dichotomous for presentation; binary 0/1 
coding was used for model development (Section 2.2).

For comparisons between the training and test sets (Table 2), 
standardized mean differences (SMDs) were reported as effect sizes 

that are less sensitive to sample size (imbalance flagged at 
|SMD| > 0.20; |SMD| < 0.10 generally negligible) (23–25). Train–test 
comparability was summarized with SMDs only, without p values. A 
pre-specified sensitivity analysis excluding variables with |SMD| > 0.20 
yielded essentially unchanged results (Supplementary Tables S9, S10).

Analyses were performed in R (version 4.4.2) using the TableOne 
package (CreateTableOne) and base R functions. Methods for AUC 
(DeLong), bootstrap 95% CIs for threshold-based metrics, calibration, 
and decision-curve analysis are detailed in Section 2.7.

2.4 Data split and internal validation

We performed a stratified 70/30 split based on the outcome 
(pneumonia vs. no pneumonia) to create a training set (n = 145) and 
an internal hold-out test set (n = 60) from the same single-center 
cohort, ensuring balanced class distributions across sets. All 
preprocessing steps—including kNN imputation, feature selection 
(LASSO followed by RF-RFE), class-imbalance handling (SMOTE 
within cross-validation), and hyperparameter tuning—were 
conducted strictly on the training data. These procedures were 
confined to cross-validation folds to prevent information leakage. The 
hold-out test set was left untouched until final evaluation. Because the 
internal hold-out test set was modest (n = 60; events = 23), we treated 
performance from repeated 10-fold cross-validation in the training set 
as the primary estimate, while test-set metrics served as 
complementary internal validation and are reported with 95% CIs 
(AUC via DeLong; other metrics via class-stratified bootstrap, 
B = 2,000).

Baseline comparability between the training and test sets was 
summarized using standardized mean differences (SMDs) and is 
presented in Table 2. We did not report hypothesis-test p values for the 
train-test comparison because such tests are highly sample-size 
dependent and less informative for balance assessment in a small 
internal test set. Importantly, the internal hold-out test set was never 
resampled and was kept completely isolated from all preprocessing, 
imputation, SMOTE, and feature-selection procedures (see Figure 1).

2.5 Feature selection

To identify a parsimonious and stable set of predictors, we used a 
two-step procedure. First, least absolute shrinkage and selection 
operator (LASSO) logistic regression was applied to the full set of 35 
candidate variables with 10-fold cross-validation; to favor sparsity and 
reduce variance, we  selected the λ.1se solution (26). In our data, 
LASSO (λ.1se) retained four variables—high-grade malignancy, 
drinking, eGFR, and smoking. Second, we performed events-per-
variable (EPV)—constrained random-forest–based recursive feature 
elimination (RF-RFE) on the LASSO-retained variables, enforcing 
EPV ≥ 5 and a maximum of 10 predictors, which was appropriate for 
the 79 pneumonia events (27). We prespecified a stopping rule to 
select the smallest subset on the performance plateau, defined as 
∆AUC ≤ 0.01 from the maximal cross-validated AUC. When adjacent 
subsets both satisfied the plateau criterion, a pre-specified tie-breaker 
favored the subset with the higher mean CV AUC and greater 
selection stability; this yielded the final four-predictor model. The 
incremental AUC-by-subset curve is shown in (Figure  2C), and 
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TABLE 1  Baseline characteristics of patients with non-Hodgkin lymphoma (NHL) with and without pneumonia within 90 days after chemotherapy 
initiation.

Variable Overall (n = 205, %) No pneumonia (n = 126, %) Pneumonia (n = 79, %) P

Gender 0.005

Female 89 (43.4) 65 (51.6) 24 (30.4)

Male 116 (56.6) 61 (48.4) 55 (69.6)

Age 0.189

> 65 years 104 (50.7) 69 (54.8) 35 (44.3)

≤ 65 years 101 (49.3) 57 (45.2) 44 (55.7)

Ann arbor stage 0.006

I-II 67 (33.5) 50 (41.3) 17 (21.5)

III-IV 133 (66.5) 71 (58.7) 62 (78.5)

NCCN-IPI 0.219

0–3 132 (70.2) 85 (73.9) 47 (64.4)

4–5 56 (29.8) 30 (26.1) 26 (35.6)

Post-chemotherapy marrow 

suppression 0.702

No 154 (75.1) 93 (73.8) 61 (77.2)

Yes 51 (24.9) 33 (26.2) 18 (22.8)

Hepatitis B status 0.246

No 167 (81.5) 99 (78.6) 68 (86.1)

Yes 38 (18.5) 27 (21.4) 11 (13.9)

Smoking < 0.001

No 139 (67.8) 105 (83.3) 34 (43.0)

Yes 66 (32.2) 21 (16.7) 45 (57.0)

Drinking < 0.001

No 137 (66.8) 104 (82.5) 33 (41.8)

Yes 68 (33.2) 22 (17.5) 46 (58.2)

Family history of malignant 

tumor 0.512

No 168 (82.0) 101 (80.2) 67 (84.8)

Yes 37 (18.0) 25 (19.8) 12 (15.2)

BMI 0.788

≥ 20 kg/m2 165 (82.1) 103 (83.1) 62 (80.5)

< 20 kg/m2 36 (17.9) 21 (16.9) 15 (19.5)

Hypertension 1.000

No 138 (69.0) 84 (68.9) 54 (69.2)

Yes 62 (31.0) 38 (31.1) 24 (30.8)

Diabetes 0.624

No 171 (85.5) 106 (86.9) 65 (83.3)

Yes 29 (14.5) 16 (13.1) 13 (16.7)

High-grade malignancy < 0.001

No 83 (40.5) 68 (54.0) 15 (19.0)

Yes 122 (59.5) 58 (46.0) 64 (81.0)

Treatment regimen 0.290

Non-R-CHOP 119 (58.0) 69 (54.8) 50 (63.3)

R-CHOP 86 (42.0) 57 (45.2) 29 (36.7)

(Continued)
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TABLE 1  (Continued)

Variable Overall (n = 205, %) No pneumonia (n = 126, %) Pneumonia (n = 79, %) P

WBC 0.557

≥ 3.5 × 109/L 168 (82.4) 105 (84.0) 63 (79.7)

< 3.5 × 109/L 36 (17.6) 20 (16.0) 16 (20.3)

Hb 0.403

> 100 g/L 168 (82.0) 106 (84.1) 62 (78.5)

≤ 100 g/L 37 (18.0) 20 (15.9) 17 (21.5)

ANC 0.911

≥ 1.5 × 109/L 181 (88.3) 112 (88.9) 69 (87.3)

< 1.5 × 109/L 24 (11.7) 14 (11.1) 10 (12.7)

ALC 0.157

≥ 0.7 × 109/L 155 (75.6) 100 (79.4) 55 (69.6)

< 0.7 × 109/L 50 (24.4) 26 (20.6) 24 (30.4)

RDW 0.779

≤ 0.145 154 (75.1) 96 (76.2) 58 (73.4)

> 0.145 51 (24.9) 30 (23.8) 21 (26.6)

PLT 0.968

≥ 100 × 109/L 178 (86.8) 110 (87.3) 68 (86.1)

< 100 × 109/L 27 (13.2) 16 (12.7) 11 (13.9)

MPV 0.645

≤ 10.0 fL 78 (38.0) 50 (39.7) 28 (35.4)

> 10.0 fL 127 (62.0) 76 (60.3) 51 (64.6)

PCT 0.167

≤ 0.28 174 (84.9) 103 (81.7) 71 (89.9)

> 0.28 31 (15.1) 23 (18.3) 8 (10.1)

eGFR < 0.001

≥ 80 mL/min/1.73 m2 152 (74.1) 114 (90.5) 38 (48.1)

< 80 mL/min/1.73 m2 53 (25.9) 12 (9.5) 41 (51.9)

Ca 0.889

≥ 2.1 mmol/L 140 (68.3) 87 (69.0) 53 (67.1)

< 2.1 mmol/L 65 (31.7) 39 (31.0) 26 (32.9)

Fe 0.578

≥ 9 μmol/L 123 (60.0) 78 (61.9) 45 (57.0)

< 9 μmol/L 82 (40.0) 48 (38.1) 34 (43.0)

ALB 1.000

> 30 g/L 177 (86.3) 109 (86.5) 68 (86.1)

≤ 30 g/L 28 (13.7) 17 (13.5) 11 (13.9)

A/G ratio 0.650

≥ 1 183 (89.3) 111 (88.1) 72 (91.1)

<1 22 (10.7) 15 (11.9) 7 (8.9)

ALT 1.000

≤ 40 U/L 176 (85.9) 108 (85.7) 68 (86.1)

> 40 U/L 29 (14.1) 18 (14.3) 11 (13.9)

AST 0.577

≤ 40 U/L 181 (88.3) 113 (89.7) 68 (86.1)

(Continued)
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stepwise subsets are tabulated in (Supplementary Table S2). To assess 
robustness, we conducted nested cross-validation (outer 5-fold, 20 
repeats): within each outer training fold, LASSO (λ.1se) and 
EPV-constrained RFE were refit, and performance was evaluated on 
the corresponding outer test fold; selection frequencies across repeats 
were summarized (Supplementary Figure 1A; Supplementary Table S3). 
In addition, we performed 200 bootstrap resamples of the LASSO step 
(λ.1se) to estimate per-variable selection probabilities 
(Supplementary Table S4). Potential multicollinearity among final 
predictors was screened using Pearson correlations (after dummy 
expansion) and variance inflation factors (VIF/GVIF); we flagged 
|r| > 0.70 or VIF > 5 (GVIF_adj > 2) as concerning. The correlation 
heatmap appears in (Figure  2D), with numeric diagnostics in 
(Supplementary Table S5).

2.6 Hyperparameter tuning and model 
selection

Hyperparameter tuning was performed exclusively on the training 
set to avoid information leakage. For the support vector machine 
(SVM), GBM, and k-nearest neighbors (KNN), we employed Bayesian 
optimization (rBayesianOptimization, upper confidence bound 
acquisition with κ = 2.0). Each candidate hyperparameter 
configuration was evaluated using 5-fold cross-validation, with 
SMOTE applied strictly within folds. The binary outcome was coded 
as pneumonia = “Yes” and no pneumonia = “No”; model selection 
optimized the mean cross-validated AUC (caret twoClassSummary, 
positive = “Yes”). For SVM and KNN only, predictors were z-score 
centered and scaled during both the 5-fold tuning stage and the 

subsequent repeated 10-fold cross-validation stage used for 
performance estimation and final refitting; scaling parameters were 
estimated on the in-fold training (analysis) partition and applied to 
the paired validation (assessment) partition, with no carryover across 
folds. After model selection, the centering/scaling transform was refit 
on the full training set and applied once to the internal hold-out test 
set before final evaluation. Other models (logistic regression, GBM, 
LightGBM) did not use feature scaling. Logistic regression did not 
require hyperparameter tuning.

For the light gradient boosting machine (LightGBM), a two-stage 
procedure was adopted. First, Bayesian search with 4-fold cross-
validation and early stopping was performed across predefined ranges 
for learning rate, num_leaves, min_data_in_leaf, feature_fraction, 
bagging_fraction, λ1, and λ2. Second, the optimal parameter set 
underwent confirmatory 5-fold cross-validation to determine the best 
iteration number, after which the final model was refitted on the full 
training set for nrounds = best_iter. The internal hold-out test set was 
never used for resampling, tuning, or threshold determination. 
Detailed search bounds and final selected hyperparameter values for 
all models are provided in Supplementary Table S6.

2.7 Model development and comparison

To mitigate class imbalance during model development, 
we applied SMOTE within each resampling fold of cross-validation 
using caret:trainControl (sampling = “smote”). The same within-fold 
procedure was used during hyperparameter tuning. No resampling 
was ever applied to the internal hold-out test set. By design, this 
prevents information leakage and yields unbiased validation estimates 

TABLE 1  (Continued)

Variable Overall (n = 205, %) No pneumonia (n = 126, %) Pneumonia (n = 79, %) P

> 40 U/L 24 (11.7) 13 (10.3) 11 (13.9)

LDH 0.329

≤ 222 U/L 104 (51.7) 67 (54.9) 37 (46.8)

> 222 U/L 97 (48.3) 55 (45.1) 42 (53.2)

α-HBDH 0.545

≤ 182 U/L 112 (56.6) 71 (58.7) 41 (53.2)

> 182 U/L 86 (43.4) 50 (41.3) 36 (46.8)

TG 1.000

≤ 1.7 mmol/L 157 (77.0) 96 (76.8) 61 (77.2)

> 1.7 mmol/L 47 (23.0) 29 (23.2) 18 (22.8)

HDL 0.799

≥ 1.0 mmol/L 81 (39.7) 51 (40.8) 30 (38.0)

<1.0 mmol/L 123 (60.3) 74 (59.2) 49 (62.0)

LDL 0.349

< 3.4 mmol/L 182 (89.2) 109 (87.2) 73 (92.4)

≥ 3.4 mmol/L 22 (10.8) 16 (12.8) 6 (7.6)

CRP 0.320

≤ 10 mg/L 115 (58.1) 73 (61.3) 42 (53.2)

> 10 mg/L 83 (41.9) 46 (38.7) 37 (46.8)

Values are n (%). p values were calculated using Pearson’s chi-square test with Yates’ continuity correction (or Fisher’s exact test when any expected cell count was < 5); two-sided α = 0.05. 
Missing values were excluded from hypothesis testing. Variables are dichotomized for presentation. Per-variable missingness is summarized in Supplementary Table S1.
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TABLE 2  Baseline characteristics of the training set and the internal hold-out test set (derived by stratified random split from the same single-center 
cohort).

Variable Internal hold-out test set (n = 60, %) Training set (n = 145, %) SMD

Gender 0.045

Female 27 (45.00) 62 (42.76)

Male 33 (55.00) 83 (57.24)

Age 0.026

> 65 years 31 (51.67) 73 (50.34)

≤ 65 years 29 (48.33) 72 (49.66)

Ann arbor stage 0.176

I-II 17 (28.33) 53 (36.55)

III-IV 43 (71.67) 92 (63.45)

NCCN-IPI 0.125

0–3 40 (66.67) 105 (72.41)

4–5 20 (33.33) 40 (27.59)

Post-chemotherapy marrow suppression 0.058

No 44 (73.33) 110 (75.86)

Yes 16 (26.67) 35 (24.14)

Hepatitis B status 0.069

No 50 (83.33) 117 (80.69)

Yes 10 (16.67) 28 (19.31)

Smoking 0.067

No 42 (70.00) 97 (66.90)

Yes 18 (30.00) 48 (33.10)

Drinking 0.104

No 38 (63.33) 99 (68.28)

Yes 22 (36.67) 46 (31.72)

Family history of malignant tumor 0.071

No 48 (80.00) 120 (82.76)

Yes 12 (20.00) 25 (17.24)

BMI 0.149

≥ 20 kg/m2 47 (78.33) 122 (84.14)

< 20 kg/m2 13 (21.67) 23 (15.86)

Hypertension 0.079

No 40 (66.67) 102 (70.34)

Yes 20 (33.33) 43 (29.66)

Diabetes 0.100

No 50 (83.33) 126 (86.90)

Yes 10 (16.67) 19 (13.10)

High-grade malignancy 0.160

No 21 (35.00) 62 (42.76)

Yes 39 (65.00) 83 (57.24)

Treatment regimen 0.040

Non-R-CHOP 34 (56.67) 85 (58.62)

R-CHOP 26 (43.33) 60 (41.38)

WBC 0.208

(Continued)
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TABLE 2  (Continued)

Variable Internal hold-out test set (n = 60, %) Training set (n = 145, %) SMD

≥ 3.5 × 109/L 46 (76.67) 123 (84.83)

< 3.5 × 109/L 14 (23.33) 22 (15.17)

Hb 0.071

> 100 g/L 48 (80.00) 120 (82.76)

≤ 100 g/L 12 (20.00) 25 (17.24)

ANC 0.209

≥ 1.5 × 109/L 50 (83.33) 131 (90.34)

< 1.5 × 109/L 10 (16.67) 14 (9.66)

ALC 0.181

≥ 0.7 × 109/L 42 (70.00) 113 (77.93)

< 0.7 × 109/L 18 (30.00) 32 (22.07)

RDW 0.004

≤ 0.145 45 (75.00) 109 (75.17)

> 0.145 15 (25.00) 36 (24.83)

PLT 0.207

≥ 100 × 109/L 49 (81.67) 129 (88.97)

< 100 × 109/L 11 (18.33) 16 (11.03)

MPV 0.008

≤ 10.0 fL 23 (38.33) 55 (37.93)

> 10.0 fL 37 (61.67) 90 (62.07)

PCT 0.072

≤ 0.28 52 (86.67) 122 (84.14)

> 0.28 8 (13.33) 23 (15.86)

eGFR 0.028

≥ 80 mL/min/1.73 m2 45 (75.00) 107 (73.79)

< 80 mL/min/1.73 m2 15 (25.00) 38 (26.21)

Ca 0.052

≥ 2.1 mmol/L 42 (70.00) 98 (67.59)

< 2.1 mmol/L 18 (30.00) 47 (32.41)

Fe < 0.001

≥ 9 μmol/L 36 (60.00) 87 (60.00)

< 9 μmol/L 24 (40.00) 58 (40.00)

ALB 0.186

> 30 g/L 49 (81.67) 128 (88.28)

≤ 30 g/L 11 (18.33) 17 (11.72)

A/G ratio 0.034

≥ 1 54 (90.00) 129 (88.97)

<1 6 (10.00) 16 (11.03)

ALT 0.100

≤ 40 U/L 50 (83.33) 126 (86.90)

> 40 U/L 10 (16.67) 19 (13.10)

AST 0.140

≤ 40 U/L 51 (85.00) 130 (89.66)

> 40 U/L 9 (15.00) 15 (10.34)

(Continued)
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TABLE 2  (Continued)

Variable Internal hold-out test set (n = 60, %) Training set (n = 145, %) SMD

LDH 0.013

≤ 222 U/L 31 (51.67) 74 (51.03)

> 222 U/L 29 (48.33) 71 (48.97)

α-HBDH 0.160

≤ 182 U/L 30 (50.00) 84 (57.93)

> 182 U/L 30 (50.00) 61 (42.07)

TG 0.043

≤ 1.7 mmol/L 47 (78.33) 111 (76.55)

> 1.7 mmol/L 13 (21.67) 34 (23.45)

HDL 0.014

≥ 1.0 mmol/L 24 (40.00) 57 (39.31)

< 1.0 mmol/L 36 (60.00) 88 (60.69)

LDL 0.116

< 3.4 mmol/L 52 (86.67) 131 (90.34)

≥ 3.4 mmol/L 8 (13.33) 14 (9.66)

CRP 0.392

≤ 10 mg/L 27 (45.00) 93 (64.14)

> 10 mg/L 33 (55.00) 52 (35.86)

Values are n (%). Standardized mean differences (SMDs) are reported as effect sizes; imbalance was flagged at |SMD| > 0.20 (|SMD| < 0.10 generally negligible). No P values are reported, 
consistent with recommendations to reduce sample-size dependence.

FIGURE 1

Flowchart of patient selection and machine-learning workflow for predicting radiographically confirmed pneumonia within 90 days after 
chemotherapy initiation in NHL patients.
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(28). Five machine-learning models were constructed based on the 
selected predictors: logistic regression, SVM, KNN, GBM, and 
LightGBM. Hyperparameters were optimized via Bayesian 
optimization evaluated with 5-fold cross-validation on the training set 
(for LightGBM: 4-fold during the search with early stopping plus 
confirmatory 5-fold to determine best_iter), as detailed in Section 2.6. 
Repeated 10-fold cross-validation (10 × 5) on the training set was then 
used for performance estimation and to generate out-of-fold 
predictions; the internal hold-out test set was used once for final 

evaluation. Model performance was evaluated on the internal hold-out 
test set using multiple metrics, including the AUC, F1 score, Brier 
score, accuracy, sensitivity, specificity, and predictive values. Decision 
thresholds were pre-specified on the training set by maximizing 
Youden’s J and then fixed for both training and test evaluations. 
We report AUC with DeLong 95% confidence intervals (CIs); at the 
fixed threshold we report accuracy, sensitivity, specificity, PPV, NPV, 
and F1 score with class-stratified bootstrap  95% CIs (B = 2,000), 
together with confusion-matrix counts (TP, TN, FP, FN). Calibration 

FIGURE 2

Two-stage feature selection for predicting radiographically confirmed pneumonia within 90 days after chemotherapy initiation in NHL patients. 
(A) LASSO coefficient profiles across Log Lambda; vertical dashed lines mark Lambda min (orange) and Lambda 1se (blue). Numbers along the top axis 
indicate the count of non-zero coefficients at each Lambda. (B) LASSO 10-fold cross-validation curve showing mean binomial deviance (red) with SE 
bars versus Log Lambda; the parsimonious Lambda 1se was adopted for variable retention. (C) Cross-validated AUC by subset size during EPV-
constrained RF-RFE after LASSO selection; the optimal subset comprised four predictors. (D) Correlation among the final selected predictors (eGFR, 
smoking, drinking, high-grade malignancy). numeric collinearity diagnostics (VIF/GVIF) are provided in Supplementary Table S5. Feature selection and 
tuning were performed strictly within training cross-validation folds; the internal hold-out test set was not used for selection.
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was assessed using calibration curves and the Brier score with 
bootstrap 95% CIs, and clinical utility was evaluated using decision-
curve analysis (DCA) on predicted probabilities. All preprocessing 
resampling (SMOTE), hyperparameter tuning, and threshold selection 
were confined to training-set cross-validation; the test set was used 
only once for final evaluation.

2.8 Model interpretation

To enhance the interpretability of the final GBM model, a post hoc 
analysis was conducted using SHAP, a game-theoretic approach that 
quantifies the contribution of individual predictors to the model 
outputs. Global feature importance was visualized using a SHAP 
summary bar plot and a beeswarm plot, which illustrate the relative 
magnitude and direction of each variable’s impact on the predicted 
risk of pneumonia. For individual-level interpretation, a SHAP 
waterfall plot and a force plot were generated to demonstrate how 
specific predictor values influenced the deviation from the model’s 
baseline prediction, thereby providing transparent, case-specific 
insights into the model’s decision-making process (29, 30).

2.9 Web deployment

The final GBM model was implemented as an interactive R Shiny 
web application for research use. This platform accepts patient-specific 
clinical data and computes risk estimates with explanations for 
research evaluation. The tool is a prototype for internal validation and 
has not undergone prospective clinical implementation or impact 
evaluation; it is not intended to guide patient care or clinical decision-
making and has not been integrated into routine clinical workflows 
(31, 32).

3 Results

3.1 Baseline characteristics

A total of 205 patients diagnosed with NHL were included in the 
final analysis, among whom 79 (38.5%) developed pneumonia within 
90 days after chemotherapy initiation. Baseline characteristics were 
compared between the pneumonia group (n = 79) and the 
no-pneumonia group (n = 126) (Table 1). Patients with pneumonia 
were more often male (69.6% vs. 48.4%, p = 0.005) and more 
frequently had advanced Ann Arbor stage III–IV disease (78.5% vs. 
58.7%, p = 0.006). Significant differences were also observed in 
smoking (57.0% vs. 16.7%, p < 0.001), drinking (58.2% vs. 17.5%, 
p < 0.001), high-grade malignancy (81.0% vs. 46.0%, p < 0.001), and 
reduced renal function (eGFR < 80 mL/min/1.73 m2, 51.9% vs. 9.5%, 
p < 0.001). In contrast, there were no statistically significant differences 
between groups for age (p = 0.189), NCCN-IPI (p = 0.219), post-
chemotherapy marrow suppression (p = 0.702), hepatitis B status 
(p = 0.246), BMI (p = 0.788), hypertension (p = 1.000), diabetes 
(p = 0.624), treatment regimen (p = 0.290), or the majority of baseline 
hematologic/biochemical indices (all p > 0.05), including WBC, Hb, 
ANC, ALC, RDW, PLT, MPV, PCT, calcium, iron, albumin, A/G ratio, 
ALT, AST, LDH, α-HBDH, triglycerides, HDL-C, LDL-C, and CRP.

For model development, we then performed a stratified 70/30 
split by the outcome to create a training set (n = 145) and an internal 
hold-out test set (n = 60) from the same single-center cohort. 
Between-set comparability was summarized using standardized 
mean differences (SMDs) (Table 2). Most characteristics were well 
balanced (|SMD| < 0.20). Four laboratory variables—WBC, ANC, 
PLT, and CRP—showed modest imbalance (|SMD| ≈ 0.21, 0.21, 0.21, 
and 0.39, respectively). A prespecified sensitivity analysis excluding 
these variables is described in Section 3.4 and 
Supplementary Tables S9, S10.

3.2 Feature selection results

Using the pre-specified two-step procedure, LASSO (λ.1se) 
retained four variables—high-grade malignancy, drinking, eGFR, and 
smoking (Figures 2A,B). Applying events-per-variable–constrained 
RF-RFE to this set, the cross-validated AUC increased with the 
number of features and reached a performance plateau at 3–4 
predictors (Figure 2C). In our data, the mean cross-validation (CV) 
AUCs were 0.803 for k = 3 and 0.804 for k = 4 (∆AUC = 0.001, within 
the pre-specified plateau tolerance ∆AUC ≤ 0.01; 
Supplementary Table S2). Per our tie-breaker for adjacent subsets on 
the plateau—which selected the subset with the higher mean CV AUC 
and greater selection stability—we retained the four-predictor model 
(high-grade malignancy, drinking, eGFR, smoking) for subsequent 
development and interpretation. Stability was high in nested cross-
validation (outer 5-fold, 20 repeats), with consistently elevated 
selection frequencies for these four predictors (Supplementary Table S3; 
Supplementary Figure S1A). Bootstrap resampling of the LASSO step 
(B = 200) produced concordant stability results 
(Supplementary Table S4). Collinearity diagnostics (VIF/GVIF and 
Pearson correlations) indicated no evidence of concerning 
multicollinearity among the final predictors (Figure  2D; 
Supplementary Table S5).

3.3 Model performance comparison

Model performance was reported at a pre-specified threshold 
fixed from the training set by Youden’s J. All threshold-based metrics 
were presented with class-stratified bootstrap 95% CIs; AUC 95% CIs 
were DeLong-based. Five machine-learning models—logistic 
regression, SVM, KNN, GBM, and LightGBM—were all trained using 
the same four selected predictors, avoiding model-specific reselection 
and potential selection-induced bias. The performance of each model 
was subsequently evaluated on both the training set and an internal 
hold-out test set (n = 60).

On the training set, GBM achieved the highest AUC (0.853, 95% 
CI 0.789–0.916), followed by SVM (0.844, 95% CI 0.778–0.910), 
LightGBM (0.843, 95% CI 0.777–0.909), logistic regression (0.841, 
95% CI 0.775–0.908), and KNN (0.806, 95% CI 0.739–0.874) 
(Figure 3A). On the internal hold-out test set, GBM achieved the 
highest AUC (0.855, 95% CI 0.746–0.964), followed by logistic 
regression (0.844, 95% CI 0.732–0.957), LightGBM and SVM (both 
0.841, 95% CI 0.729–0.953), and KNN (0.588, 95% CI 0.451–0.724) 
(Figure 3B). These results indicate that GBM provided the best overall 
discrimination in both training cross-validation and internal testing.
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Full threshold-based metrics with 95% CIs and the corresponding 
confusion-matrix counts (TP/TN/FP/FN) for all models are provided in 
Table 3. For completeness, training-set metrics with 95% CIs are provided 
in Supplementary Table S7. As illustrated in the radar plots 
(Figures 3C–D), GBM outperformed the other algorithms in terms of 
overall discrimination (AUC) and achieved balanced sensitivity and 
predictive values. LightGBM yielded slightly higher accuracy (0.750 vs. 
0.717) and specificity (0.730 vs. 0.676), but GBM maintained the most 
robust overall performance across metrics. Calibration curves 
demonstrated good agreement between predicted and observed risks for 
GBM, with Brier scores of 0.151 (training) and 0.155 (internal test) 
(Figures 3E–F; Table 3). Decision-curve analysis showed comparable net 
benefit for GBM, logistic regression, SVM, and LightGBM across most 
clinically relevant thresholds, with no uniform winner; KNN 
underperformed (Figures  3G–H). These patterns support decision-
analytic utility under internal validation. The confusion matrices further 
illustrate the classification performance of the GBM model in both the 
training set (Figure 3I) and the internal hold-out test set (Figure 3J). In 
the training set, correct predictions predominated, with relatively 

balanced error rates across positive and negative classes. In the test set, 
although overall discrimination was maintained, a higher proportion of 
false positives was observed, reflecting a modest decrease in specificity.

Collectively, these findings support GBM as the most robust model 
for individualized pneumonia-risk prediction under internal validation. 
All estimates reflect internal validation only; in the absence of routine 
microbiological confirmation, standardized radiologic scoring, and any 
real-world/prospective validation, performance may be optimistic and 
not ready for clinical deployment.

3.4 Sensitivity analysis of imputation

To assess robustness to imputation, we examined an alternative 
specification that varied the k parameter in kNN imputation (k = 3, 5, 
and 7). Because this specification differed from the primary pipeline, 
absolute performance values were presented in Supplementary Table S8 
and should not be interpreted as head-to-head comparisons with the 
primary test-set results. Results were qualitatively unchanged. Second, 

FIGURE 3

Comparative performance of five machine-learning models for predicting radiographically confirmed pneumonia within 90 days after chemotherapy 
initiation in NHL patients. (A,B) ROC curves for the training set (A) and the internal hold-out test set (B); AUCs with DeLong 95% CIs are reported in the 
legends. (C,D) Radar plots summarizing threshold-based metrics (AUC, accuracy, sensitivity, specificity, PPV, F1) for the training set (C) and the internal 
hold-out test set (D) at the pre-specified threshold (Youden’s J, determined from the training set and fixed for testing); corresponding 95% CIs are 
provided in Table 3. (E,F) Calibration curves with corresponding Brier scores (bootstrap 95% CIs) for the training set (E) and the internal hold-out test 
set (F). (G,H) Decision-curve analysis in the training set (G) and the internal hold-out test set (H), showing net benefit across threshold probabilities; “all” 
and “none” strategies are included for reference. (I,J) Confusion matrices of the GBM model for the training set (I) and the internal hold-out test set (J; 
n = 60) at the pre-specified threshold. ROC CIs are DeLong-based; threshold-based metrics and Brier CIs use class-stratified bootstrap. All 
preprocessing, feature selection, SMOTE, and tuning were confined to training cross-validation; the internal test set was not used for resampling or 
threshold selection.
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to address modest baseline imbalances, we  repeated the primary 
pipeline without changes (i.e., same preprocessing, cross-validation/
tuning protocol, and model class) but excluded variables with 
|SMD| > 0.20 between the training and test sets (WBC, ANC, PLT, 
CRP). Performance was essentially unchanged relative to the primary 
analysis (Supplementary Tables S9, S10), indicating that these 
variables did not materially influence model performance.

3.5 SHAP-based model interpretation

To improve the interpretability of the GBM model, SHAP was applied 
to quantify the contribution of each predictor to the model’s output. The 
SHAP summary bar plot (Figure 4A) ranked the four selected features by 
their mean absolute SHAP values, with eGFR showing the strongest 
overall influence, followed by smoking, drinking, and high-grade 
malignancy. The SHAP beeswarm plot (Figure  4B) visualized the 
distribution and direction of each feature’s contribution. Generally, higher 
SHAP values for high-grade malignancy and lower eGFR were associated 
with increased predicted risk of pneumonia, while the effects of smoking 
and drinking varied across individuals.

For case-level interpretation, waterfall and force plots 
(Figures 4C,D) were generated for a representative high-risk patient. 
In this example, concurrent smoking, drinking, and reduced renal 
function substantially elevated the model’s predicted risk despite the 
absence of high-grade malignancy, as reflected by a high model output 
(f(x) = 0.988 vs. E[f(x)] = 0.519). To complement this, an illustrative 
low-risk case was presented in Supplementary Figures S1B,C, where 
the absence of high-grade malignancy, preserved renal function 
(eGFR = 0), and lack of smoking and drinking collectively reduced the 
predicted probability well below the baseline expectation (f(x) = 0.186 
vs. E[f(x)] = 0.519).

These individualized explanations improve transparency, 
highlight clinically actionable factors, and provide practical insights 

for prevention. For example, smoking cessation and alcohol avoidance 
represent modifiable targets, while vigilant monitoring of renal 
function and high-grade disease may guide early intervention. 
Together, these case-level insights support patient-centered decision-
making and strengthen the clinical applicability of the model. Such 
individualized visualizations enhance model transparency and 
reinforce personalized clinical decision-making.

3.6 Web-based prediction tool deployment

To improve clinical applicability, the final GBM model was 
implemented as an interactive web-based tool using the R Shiny 
framework. This online platform allows healthcare providers to input 
patient-specific clinical parameters and obtain real-time estimates of the 
probability of pneumonia occurring within 90 days of chemotherapy 
initiation. The web-based tool interface contains four input fields, namely 
high-grade malignancy, drinking, eGFR, and smoking (Figure 5). After 
data entry, the system promptly computes and displays the predicted 
probability of pneumonia, providing a quantitative reference to support 
clinical evaluation. The tool is accessible through standard web browsers 
on both desktop and mobile devices, without the need for additional 
software installation. Its real-time output and integration of SHAP-based 
interpretive visualizations enhance transparency and support 
individualized risk assessment in routine hematology practice. The tool is 
available at: https://ltfu-zzn.shinyapps.io/Pneumonia/

4 Discussion

4.1 Principal findings

In this study, we  developed a machine learning-based model to 
predict early pneumonia in patients with NHL undergoing chemotherapy. 

TABLE 3  Performance of machine-learning models on the internal hold-out test set using pre-specified training-set thresholds.

Model Threshold Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
(95% 
CI)

AUC 
(95% 
CI)

TP TN FP FN

Logistic 0.386
0.717 (0.600–

0.817)

0.783 (0.609–

0.957)
0.676 (0.514–

0.811)

0.600 

(0.484–

0.731)

0.833 

(0.714–

0.957)

0.679 

(0.545–

0.792)

0.844 

(0.732–

0.957) 18 25 12 5

SVM 0.398 0.717 (0.600–

0.817)

0.783 (0.609–

0.957)

0.676 (0.514–

0.811)

0.600 

(0.484–

0.731)

0.833 

(0.714–

0.957)

0.679 

(0.545–

0.792)

0.841 

(0.729–

0.953) 18 25 12 5

GBM 0.418 0.717 (0.600–

0.817)

0.783 (0.609–

0.957)

0.676 (0.514–

0.811)

0.600 

(0.484–

0.731)

0.833 

(0.714–

0.957)

0.679 

(0.545–

0.792)

0.855 

(0.746–

0.964) 18 25 12 5

KNN 0.167
0.567 (0.467–

0.667)

0.957 (0.870–

1.000)
0.324 (0.189–

0.486)

0.468 

(0.413–

0.537)

0.923 

(0.750–

1.000)

0.629 

(0.563–

0.697)

0.588 

(0.451–

0.724) 22 12 25 1

LightGBM 0.386 0.750 (0.633–

0.850)

0.783 (0.609–

0.957)

0.730 (0.568–

0.865)

0.643 

(0.516–

0.783)

0.844 

(0.735–

0.962)

0.706 

(0.571–

0.824)

0.841 

(0.729–

0.953) 18 27 10 5

Thresholds were pre-specified on the training set by maximizing Youden’s J (positive class = “yes”) and fixed for evaluation on the internal hold-out test set. AUC 95% confidence intervals 
(CIs) were estimated using the DeLong method; other 95% CIs for threshold-based metrics were obtained by class-stratified bootstrap (B = 2,000). Counts are TP/TN/FP/FN at the fixed 
threshold.
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The model was constructed using four clinically relevant predictors: high-
grade malignancy, drinking status, eGFR, and smoking status. Among the 
five algorithms evaluated, the GBM model achieved the highest predictive 
performance. On the internal hold-out test set, it yielded an AUC of 0.855, 
an F1 score of 0.679, and a Brier score of 0.155, demonstrating favorable 
discrimination, calibration, and overall predictive accuracy. Among the 
evaluated algorithms, GBM achieved a favorable sensitivity–specificity 
balance and maintained consistent performance across the training set 

and the internal hold-out test set. The use of SHAP values further 
facilitated the interpretation of model predictions at both the global and 
individual levels. Impaired renal function, and behavioral factors such as 
smoking and drinking were identified as key contributors to pneumonia 
risk. These findings support the utility of interpretable machine learning 
techniques in predicting early pneumonia risk in NHL patients, offering 
a potential tool for personalized risk stratification and preventive care in 
hematologic oncology. Because our evaluation used an internal hold-out 

FIGURE 4

SHAP-based interpretation of the GBM model for predicting radiographically confirmed pneumonia within 90 days after chemotherapy initiation in 
NHL patients. (A) Global feature importance ranked by mean absolute SHAP value. (B) SHAP beeswarm plot showing the distribution, direction, and 
magnitude of feature contributions across the internal hold-out test set (points colored by feature value). (C) SHAP waterfall plot for a representative 
high-risk case (Smoking = 1, Drinking = 1, eGFR = 1, High-grade malignancy = 0), illustrating how individual feature contributions shift the predicted 
probability from the baseline E[f(x)] = 0.519 to f(x) = 0.988. (D) SHAP force plot for the same case, summarizing how these contributions combine to 
yield the final prediction. Predictor encoding: Smoking (1 = Yes, 0 = No), Drinking (1 = Yes, 0 = No), High-grade malignancy (1 = Yes, 0 = No), eGFR 
(1 = < 80 mL/min/1.73 m2, 0 = ≥ 80 mL/min/1.73 m2).

https://doi.org/10.3389/fmed.2025.1674896
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al.� 10.3389/fmed.2025.1674896

Frontiers in Medicine 15 frontiersin.org

split from the same single-center cohort, true external generalizability 
remains untested. We therefore plan to conduct temporal validation in a 
later patient cohort and pursue multicenter external validation to assess 
transportability; if dataset shift is observed, model recalibration and 
threshold re-specification will be performed.

4.2 Clinical and scientific implications

A previous study reported that 39.7% of newly diagnosed NHL 
patients developed bacterial pulmonary infections (4). After 
chemotherapy, the risk of such infections in NHL patients increases 
significantly. Other studies have shown that most severe infections 
occur within six months of initiating rituximab-based chemotherapy 
(33), emphasizing the need for early and continuous monitoring. Such 
infections frequently lead to treatment delays or discontinuation and 
were associated with substantially poorer progression-free survival. 
Accurate assessment of infection risk in the early treatment phase 
therefore enables timely implementation of preventive measures, 
including prophylactic antibiotics, enhanced monitoring, and tailored 
chemotherapy regimens.

Beyond positioning our work relative to MASCC, prior interpretable 
ML studies in related populations help contextualize our contribution. 
In lung cancer, Sun et al. predicted post-chemotherapy lung infection 
using 36 clinical/laboratory predictors selected by Boruta/LASSO; a 
regularized logistic-regression model with SHAP achieved an AUC ≈ of 
0.89 and reported calibration and decision-curve analyses. Their 
endpoint required clinical signs plus a CT-identified infectious focus, 
but was not restricted to radiographically confirmed pneumonia within 
a prespecified 90-day window (34). In newly diagnosed multiple 
myeloma, Peng et al. trained models on 38 variables and found XGBoost 
performed best (AUC ≈ 0.88  in validation), again with SHAP 
explanations; the outcome was a composite infection definition 
(microbiologically or clinically defined infection, or FUO) rather than 
pneumonia specifically (35). Both studies emphasized discrimination 

and interpretability using internal resampling for validation. By contrast, 
our study focuses on a narrow, clinically actionable endpoint—
radiographically confirmed pneumonia within 90 days of chemotherapy 
initiation in NHL—and demonstrates competitive performance through 
a parsimonious, interpretable gradient boosting machine model 
explained by SHAP, incorporating four predictors (high-grade 
malignancy, eGFR, smoking, and drinking).

This focus is supported by real-world data indicating that nearly 
half of respiratory complications in NHL occur during this early 
treatment window, with approximately 75% being infectious in origin 
(6). The median onset of interstitial pneumonia at 74 days after 
treatment initiation further illustrates the vulnerability of this phase 
(36), even though interstitial pneumonia itself is non-infectious. In 
line with previous studies, smoking was reaffirmed as a risk factor for 
pneumonia, while high-grade malignancy also emerged as a predictor, 
plausibly reflecting immune dysfunction in aggressive subtypes such 
as DLBCL (37). Retrospective analyses of DLBCL have shown high 
rates of infectious episodes (38) and substantially reduced five-year 
survival in patients who developed pneumonia during chemotherapy 
(41% vs. 82%) (39). Similarly, reduced eGFR was associated with 
pneumonia risk, underscoring the contribution of renal dysfunction 
during immunochemotherapy (40). Alcohol use was another 
significant predictor, consistent with meta-analytic evidence linking 
alcohol consumption to impaired pulmonary immune defenses (41).

Taken together, this study represents a novel application of 
interpretable ML for pneumonia risk management in NHL. By 
leveraging GBM with SHAP explanations and decision-curve analysis, 
we provide not only a high-performing predictive model but also a 
transparent, clinician-friendly tool. While SHAP offers individualized, 
transparent rationale for risk estimates, it reflects associations rather 
than causation; therefore, explanations should be  used to inform 
preventive vigilance and shared decision-making, with thresholds and 
calibration subject to confirmation in external/temporal validation. 
Unlike conventional scoring systems, our model captures non-linear 
relationships and interactions among malignancy severity, disease 

FIGURE 5

Prototype web-based calculator for individualized pneumonia risk prediction in NHL patients after chemotherapy initiation. The R Shiny interface 
allows entry of four predictors (smoking, drinking, high-grade malignancy, eGFR) to generate an individualized 90-day pneumonia risk score with 
interpretive visualization.
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stage, renal function, and behavioral factors, thereby offering a 
practical and data-driven approach to pneumonia surveillance in 
hematologic malignancies.

4.3 Comparison with existing risk models

Several clinical scoring tools have been used to assess infection 
risk in cancer patients, with the MASCC score being one of the most 
commonly used. However, it was originally developed for febrile 
neutropenia and may not be well suited to predicting pneumonia, 
especially in lymphoma patients. The score is based on general clinical 
parameters, such as the burden of illness and outpatient status, but 
lacks consideration of tumor biology or treatment-specific factors (42, 
43). Our model, in contrast, was developed specifically for NHL 
patients receiving chemotherapy, with a focus on predicting 
pneumonia during the early, high-risk phase of treatment. By 
including variables such as eGFR and high-grade malignancy, it 
achieved strong performance (AUC = 0.855 on the internal hold-out 
test set) and may offer advantages over conventional additive scores. 
Unlike conventional tools that rely on additive point systems and 
assume linear effects, our GBM model can account for complex 
interactions among clinical features. Importantly, the use of SHAP 
values allows the model to explain individual predictions—something 
traditional scores do not provide (44). Overall, our work offers a more 
focused and clinically adaptable approach to pneumonia risk 
assessment in hematologic oncology, complementing existing models 
while addressing some of their key limitations.

4.4 Limitations

This study has several limitations that should be acknowledged. 
First, this is a single-center study with internal hold-out validation 
only; performance estimates may therefore be  optimistic, and 
generalizability remains to be confirmed. Given the small internal test 
set (n = 60), the CIs are necessarily wide. Future work will include 
temporal validation within our center and external, multicenter 
validation, with attention to site-level distribution shifts and the 
potential need for recalibration and threshold re-specification; larger 
validation cohorts should also allow narrower CIs. Second, train-test 
comparability was assessed using SMDs; several laboratory variables 
(WBC, ANC, PLT, and CRP) showed modest imbalance 
(|SMD| ≈ 0.21–0.39). Although none of these variables entered the 
final four-predictor model (high-grade malignancy, drinking, eGFR, 
smoking), we  also conducted a prespecified sensitivity analysis in 
which all variables with |SMD| > 0.20 were excluded prior to 
preprocessing, and we  reran the same pipeline. Performance was 
essentially unchanged relative to the primary analysis 
(Supplementary Tables S9, S10), suggesting limited impact of this 
imbalance. Nevertheless, residual bias in internal metrics cannot 
be fully excluded. Third, phenotype ascertainment may be constrained 
by the lack of systematic microbiological confirmation and by the 
absence of centralized, standardized radiologic re-reads/scoring. 
Although case adjudication was performed by clinicians based on 
clinical, laboratory, and imaging findings, incorporating detailed 
information such as pathogen identification or standardized 
radiographic scoring could enhance diagnostic accuracy and model 

performance. Fourth, despite performing feature selection and 
hyperparameter tuning strictly within training cross-validation folds, 
some risk of overfitting remains. Given the initial 35 candidates and 79 
events, selection-induced instability is possible; EPV constraints, the 
plateau rule, nested-CV stability analyses, and LASSO bootstrapping 
mitigate—but do not eliminate—this risk. External (temporal/
multicenter) validation will be needed to assess feature robustness and 
the need for recalibration, and threshold re-specification. Finally, the 
web tool is a prototype for internal validation and has not undergone 
prospective clinical implementation or impact evaluation.

Taken together, these limitations—particularly the lack of 
systematic microbiological confirmation, the absence of standardized 
radiologic re-reads/scoring, and the absence of external (temporal/
multicenter) and prospective/real-world validation—substantially 
limit the immediate clinical translation of our findings. The model 
should be  regarded as research-only pending external validation, 
potential recalibration and threshold re-specification under dataset 
shift, and prospective impact evaluation.

4.5 Future perspectives

Future work will prioritize temporal and external validation 
across broader populations and care settings. Multicenter 
collaborations will be  essential to evaluate generalizability and 
transportability, mitigate overfitting, and monitor calibration drift 
with protocolized threshold recalibration in new cohorts. Integration 
with electronic health records—for research use only—will 
be explored to enable real-time risk scoring, subject to governance, 
privacy safeguards, and workflow co-design. As healthcare ML 
matures, future iterations may incorporate longitudinal clinical 
trajectories, pathogen-specific data, treatment exposures, and 
imaging-derived features to improve performance while 
maintaining interpretability.

5 Conclusion

We developed and internally validated a gradient-boosting model 
to estimate the 90-day risk of pneumonia after chemotherapy in NHL 
using routinely available predictors, with SHAP-based explanations 
and a research-prototype web tool. Performance on repeated cross-
validation and an internal hold-out test set was encouraging; however, 
the single-center, retrospective design and the modest test sample 
warrant cautious interpretation. The tool is not intended for clinical 
decision-making, and external (including temporal and multicenter) 
validation is required before clinical deployment. With appropriate 
validation and updates to calibration and threshold specification, this 
approach may enable earlier identification of higher-risk patients and 
support targeted preventive strategies. All code is openly available 
(GitHub: https://github.com/zzn-project/NHL-Pneumonia-ML) to 
facilitate transparency and reproducibility.
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Glossary

NHL - Non-Hodgkin Lymphoma

RF-RFE - Random Forest-based Recursive Feature Elimination

DLBCL - Diffuse Large B-cell Lymphoma

ML - Machine Learning

LR - Logistic Regression

SVM - Support Vector Machine

KNN - k-Nearest Neighbors

GBM - Gradient Boosting Machine

LightGBM - Light Gradient Boosting Machine

AUC - Area Under the Curve

DCA - Decision Curve Analysis

SHAP - Shapley Additive Explanations

NCCN-IPI - National Comprehensive Cancer Network-International 
Prognostic Index

WBC - White blood cell count

Hb - Hemoglobin

ANC - Absolute neutrophil count

ALC - Absolute lymphocyte count

RDW - Red cell distribution width

PLT - Platelet count

MPV - Mean platelet volume

PCT - Plateletcrit

eGFR - Estimated glomerular filtration rate

Ca - Calcium

Fe - Iron

ALB - Albumin

A/G ratio - Albumin/globulin ratio

ALT - Alanine aminotransferase

AST - Aspartate aminotransferase

LDH - Lactate dehydrogenase

α-HBDH - α-Hydroxybutyrate dehydrogenase

TG - Triglycerides

LDL - Low-density lipoprotein cholesterol

CRP - C-reactive protein
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