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Climate change poses growing threat to global health, and paradoxically, the health-
care sector—including nephrology—is a significant contributor to greenhouse gas
(GHG) emissions. Dialysis, in particular, is resource-intensive. Yet, dialysis remains
life-saving for over 4 million people globally, a number projected to rise sharply.
While peritoneal dialysis (PD) offers a home-based alternative to hemodialysis
with potentially lower environmental costs, it still generates considerable carbon
emissions and waste—especially from the production, packaging, and transport
of dialysate solutions. A typical continuous ambulatory PD patient generates
over 600 kg of waste per year, much of it non-biodegradable polyvinyl chloride.
PD’s carbon footprint ranges from 1.2 to 4.5 tons of CO,-equivalent annually,
primarily from packaging and transport. Incremental peritoneal dialysis (iPD)—an
approach that starts therapy at a reduced dose based on residual kidney function
(RKF)—offers a more sustainable model. Incremental PD reduces water usage,
plastic waste, and carbon emissions by as much as 30-45% compared to full-
dose PD. Clinically, iPD is associated with better quality of life, fewer infections,
less glucose exposure, and potential preservation of RKF. Economically, it offers
substantial cost savings, with estimates up to €8,700 saved annually per patient.
Despite its benefits, barriers to iPD adoption include provider unfamiliarity, patient
reluctance to intensify treatment, reimbursement limitations, and the need for
close RKF monitoring and clinical assessment. Addressing these challenges through
policy reform, education, and digital tools could enable broader implementation
of iPD, aligning kidney care with environmental stewardship.
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The environmental cost of dialysis

Climate change presents an escalating global health threat, and ironically, the health-care
sector itself is a major contributor to the environmental crisis. In 2013, over 10% of the
United States’ total greenhouse gas (GHG) emissions were attributed to health-care activities,
with similarly significant contributions in Australia (7% in 2014-2015) and the
United Kingdom (4% in 2015, despite targeted carbon-reduction initiatives) (1-3). If
considered as a standalone nation, the global health-care sector would rank as the fifth
largest emitter of GHGs being now responsible for approximately 4-6% of global
emissions (4).
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Among medical specialties, nephrology—particularly the
provision of dialysis—has a disproportionately high environmental
impact (5-7). Dialysis treatments are resource-intensive, involving
large volumes of water, significant energy consumption, and the
generation of considerable amounts of single-use plastic waste (3,
8-10). Hemodialysis (HD), the most widely used renal replacement
therapy, is estimated to produce between 24.5 and 65.1 kg carbon
dioxide equivalent (CO,-eq) emissions per treatment. On an annual
basis, this equates to 3.8 to over 10 metric tons of CO,-eq per patient
(11, 12).

Peritoneal dialysis (PD), while often performed at home and
potentially less resource-intensive on a per-treatment basis, also
contributes substantially to environmental deterioration —particularly
due to the production, packaging, and transport of large volumes of
pre-packaged sterile dialysate (Figure 1) (13-15).

However, dialysis is a life-saving therapy for over 4 million people
worldwide, with numbers expected to exceed 6 million by 2030 due to
aging populations, diabetes, and hypertension (16). While critical for
survival, when these numbers are considered in the light of the current
scarcity of resources and climate changes, the enormity of the
economic and environmental impact of kidney replacement therapy
becomes evident (3).

The concept of green nephrology has emerged in response to this
challenge, urging clinicians and policymakers to mitigate the
environmental impact of dialysis without compromising quality of
care (Table 1).

10.3389/fmed.2025.1676396

The environmental impact of
peritoneal dialysis

Water usage

Peritoneal dialysis generally requires substantially less
dialysate volume than HD, with daily usage ranging from as little
as 2 liters to as much as 20 liters per patient, depending on the
individual prescription and clinical need (17). However, analogous
to HD, the production of each liter of ultrapure dialysate
necessitates the use of multiple liters of source water, as
purification via reverse osmosis and deionization typically
consumes 2-3 liters of raw water for every liter of ultrapure water
generated (18).

In addition, PD dialysate is supplied in pre-packaged sterile
containers, usually composed of plastic. The water footprint associated
with plastic production adds further to the environmental impact
(Figure 1). Although the exact water requirement varies based on the
type and manufacturing method of the plastic, it is estimated that the
production of 1 kilogram of plastic consumes approximately 180 liters
of water (19). An empty 2-liter PD dialysate bag weighs approximately
155 grams, implying that the manufacturing process for each bag may
require an estimated 28 liters of water, based on standard water usage
for plastic production. Consequently, the cumulative water burden of
PD includes not only the dialysate volume itself but also the indirect
water consumption embedded in packaging materials (Table 2).
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Peritoneal dialysis (PD) has a considerable environmental footprint. The treatment relies on natural resources such as fossil fuels, water, and wood for
the manufacture of necessary supplies and the energy required to operate equipment. The industrial production process emits greenhouse gases that
trap solar heat, contributing to the warming of the Earth’s surface and lower atmosphere. Waste generated from PD is typically categorized as
hazardous, general, or recyclable. Hazardous waste, due to its potential for infection transmission, is incinerated or chemically sterilized prior to landfill
disposal—procedures that are both environmentally harmful and financially burdensome. General waste, often sent directly to landfill, poses long-term
environmental risks by leaching toxins into soil and groundwater. Meanwhile, the feasibility of recycling medical waste varies significantly across
countries, depending on infrastructure, regulatory policies, and associated costs.
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TABLE 1 Barriers to the development of incremental peritoneal dialysis programs, along with potential solutions and necessary clinical practice
implementations.

Barriers Solutions Clinical practice implementations

Patient reluctance to escalate the dialysis dose Timely anticipation of treatment strategy Implementation of numerous pre-treatment visits

Closer monitoring of weight, Kt/V, diuresis volume and residual
Close clinical surveillance

Risk of fluid overload and inadequate clearance kidney function

Implementation of tele-health medicine Exploitation of digital PD platforms to enhance distance monitoring

Proposal of educational opportunities Allow health-care staff to spend periods in highly experienced center

Limited provider familiarity with the dialytic

approach Enhancement of clinical tools Elaboration of guiding PD protocols

Unfavourable reimbursement policy Payment modalities riform Concrete incentives for units with high percentage of patients on iPD

PD, peritoneal dialysis; iPD, incremental peritoneal dialysis.

TABLE 2 Characteristics of incremental, low-clearance, palliative, and decremental peritoneal dialysis strategies.

Strategy

Incremental Peritoneal Dialysis

Purpose

To provide adequate clearance
while leveraging residual kidney
function; gradually intensify as

RKF declines.

Prescription

Reduced initial dose (fewer exchanges, lower
volumes, or fewer treatment days per week),

with stepwise escalation as RKF diminishes.

Target population

Incident peritoneal dialysis patients with
preserved residual kidney function, suitable

for a gradual start of dialysis.

Low Clearance Peritoneal Dialysis

To deliver partial solute clearance
at minimal cost; not designed for

dose escalation.

Fixed reduced dose, often with fewer exchanges

without progressive intensification.

Patients in low income countries
where resource limitations constrain

therapy.

Palliative Peritoneal Dialysis

To prioritize comfort, symptom
control, and quality of life over

clearance adequacy.

Less aggressive regimens tailored to minimize
treatment burden (e.g., fewer daily exchanges

or smaller volumes).

Frail, elderly, or highly comorbid patients.

Decremental Peritoneal Dialysis

To gradually reduce treatment

intensity as part of end-of-life care,

Stepwise reduction in exchanges and volumes,
aiming to minimize invasiveness rather than

maintain clearance.

Patients in terminal phases of illness, or
approaching end of life. Transitioning to

conservative or comfort-focused care.

aligning with patient comfort.

Waste generation

Health-care systems generate substantial quantities of waste,
which can be broadly classified into three main disposal streams:
hazardous (infectious) waste, general waste, and recyclable waste (20).
Hazardous waste, due to its potential to transmit infection, must
be incinerated or chemically sterilized before landfill disposal—
processes that are both environmentally damaging and financially
costly. General waste, which typically goes directly to landfill, can pose
long-term environmental risks. For instance, toxins such as phthalates,
commonly found in medical-grade plastics, may leach into soil and
groundwater, creating persistent ecological and human health hazards
(21). Additionally, organic components of landfill waste emit
methane—a greenhouse gas with approximately 20 times the global
warming potential of CO, (22). Although recycling offers an effective
way to reduce the consumption of raw materials and energy compared
to producing products from virgin resources, the feasibility of
recycling medical waste varies widely between countries due to
differences in infrastructure, policy, and cost.

Considering the two main PD providers: Vantive (formerly Baxter
Kidney Care) primarily uses polyvinyl chloride (PVC) softened with
plasticizers, such as Di(2-ethylhexyl) phthalate (DEHP) for dialysate
and drain bags, as well as for most tubing and connectors. Caps and
protective shells are typically made of polypropylene.

Fresenius, in contrast, markets a proprietary PVC-free multilayer
material called Biofine®, based on polyolefins (polypropylene [PP]
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and polyethylene [PE] blends), for both dialysate and drain bags.
Tubing is also Biofine-based, while caps and shells are commonly
polypropylene. This shift is intended to reduce the environmental
impact of incineration and avoid exposure to DEHP.

In addition to the bag and tubing materials, PD systems also
include plastic overwraps used to protect dialysate and drain bags
during storage and transport. These overwraps are typically made of
PP, PE, or multilayer polyolefin laminates that can withstand
sterilization while maintaining sterility. Although non-hazardous and
theoretically recyclable, they usually enter the general waste stream,
contributing significantly to single-use plastic waste. In contrast, the
caps and connector shells are most often manufactured from
polypropylene or similar medical-grade plastics but are individually
packaged in paper overwraps, which reduces (though does not
eliminate) the associated plastic burden. Taken together, these
components—bags, tubing, overwraps, caps, and shells—account for
the bulk of the material footprint of PD treatment, with limited
recycling pathways available in most healthcare systems.

Data specifically quantifying waste generated from PD are limited
but growing (Figure 1). A UK-based study reported that patients on
continuous ambulatory peritoneal dialysis (CAPD) performing four
exchanges per day generated approximately 1.69 kg of solid waste
daily (20). This translates into an annual total of 617 kg of waste per
patient, with more than half—about 343 kg—PVC plastic. Further
insights come from a Canadian single-center study, which quantified
the amount of recyclable, non-biohazardous plastic waste produced
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by home dialysis therapies (15). In CAPD, patients performing four
daily exchanges generated an average of 58.76 grams of polypropylene
and 222.88 grams of PVC plastic waste per day. This equates to an
annual waste footprint of approximately 21.4 kg of recyclable PP and
81.4 kg of recyclable PVC plastic per patient.

These discrepancies may reflect several factors, including variation
in methodologies for measuring and classifying waste streams,
differences in local disposal practices, and, importantly, the use of
different PD systems and consumables. For instance, some providers
continue to rely on PVC bags and tubing softened with DEHP, while
others have transitioned to PVC-free. Such brand-related material
differences likely contribute to the wide range of PVC waste estimates
reported in the literature.

In automated peritoneal dialysis (APD), the waste burden was
even higher. Patients undergoing four nightly exchanges with a
daytime fill produced an average of 81.53 grams of recyclable PP and
297.94 grams of PVC per day, resulting in annual totals of 29.76 kg
and 108.75 kg, respectively. These values varied slightly depending on
the specific cycler machine used. Collectively, these findings highlight
the substantial and underappreciated environmental burden of
PD-related plastic waste. In fact, plastics used in medical therapies are
derived from fossil hydrocarbons, and their life cycle—regardless of
whether they are disposed of via landfill, incineration, or recycling—
ultimately results in CO, emissions. These emissions contribute to
global warming at multiple stages, from production to decomposition.

Carbon footprint

Carbon footprint studies assess the total amount of CO,
emissions—both direct and indirect—associated with a specific
activity or accumulated across the life cycle of a product. When
evaluating the environmental impact of PD, relevant factors include
energy consumption, water use, dialysate fluid manufacturing,
transportation of supplies, and waste disposal (Figure 1). These
activity data are typically converted into a standardized metric of
tones of CO, equivalents (tCO,-eq) using established emission factors.
To provide context, a passenger car traveling 15,000 km per year with
an average fuel consumption of 6 liters of gasoline per 100 km
produces approximately 2.1 metric tons of CO, annually.

A single-center study in China evaluated patients undergoing
CAPD with a daily dialysate dose of 8 liters (14). The analysis revealed
that approximately 80% of PD’s carbon footprint was attributable to
packaging materials, including plastic dialysate bags, outer packaging,
and cardboard boxes. Electricity consumption and waste disposal
accounted only for 5, 6 and 8% of the emissions, respectively. The total
annual carbon footprint of PD was estimated at 1.4 tCO,-eq per
patient. However, this study did not account for emissions associated
with pharmaceutical use or the transportation of PD fluids from the
manufacturer to the point of care, and it excluded patients on APD.

In contrast, a more comprehensive Australian analysis
incorporated these additional variables and included both CAPD and
APD modalities (13). The annual per-patient carbon emissions related
to consumables were estimated at 1.245 tCO,-eq for CAPD and 1.992
tCO,-eq for APD. When transportation factors were included, the
total emissions for APD ranged from 2.35 to 4.503 tCO,-eq,
depending on the patient’s geographic location, whereas CAPD
ranged from 1.455 to 2.716 tCO,-eq. The greater environmental
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burden associated with APD was attributed to both the increased
production and disposal of its consumables, as well as the higher
transport-related emissions due to the greater weight and volume of
fluids and supplies.

The role of incremental dialysis

Incremental dialysis is a personalized approach to initiating
dialysis in patients end-stage kidney disease patients with RKF (23).
In those patients full-dose dialysis is not strictly necessary to achieve
clearance targets (24). Thus, unlike the standard thrice-weekly HD
regimen, four CAPD daily exchanges or every night APD treatment,
incremental dialysis starts with a less frequent or lower dose of
dialysis. Incremental dialysis offers a compelling pathway to
sustainability. This concept applies to both HD and PD, but
incremental peritoneal dialysis (iPD) is especially promising due to its
adaptability, feasibility in home settings, and reduced reliance on high-
tech infrastructure (25).

The strategy of incremental peritoneal
dialysis

Since the best waste is the waste that is never produced, a planetary
health approach to kidney care should prioritize prevention and the
maximization of transplantation or non-dialysis conservative
management. However, when dialysis becomes necessary, optimal
should
iPD. Importantly, iPD does not imply the premature initiation of

stewardship of resources include consideration of
dialysis; rather, it reflects the principle that, once the clinical need for
dialysis arises, treatment can begin with a reduced prescription, as a
full-dose regimen is often unnecessary at the outset.

Pragmatically, the concept of iPD involves initiating peritoneal
dialysis at a lower-than-standard dose, leveraging RKF in conjunction
with peritoneal clearance to achieve adequate solute removal (23, 24).
As RKF gradually declines or clinical indications evolve, the dialysis
prescription is correspondingly intensified by adjusting the number
and/or volume of daily exchanges, as well as dwell times.

While the operational definitions of iPD vary across the
literature, the strategy is best understood as a dynamic and
individualized treatment approach rather than a fixed prescription
(23). The essential principle is that the dialysis dose alone is
insufficient to meet clearance targets; rather, total adequacy
depends critically on the combined contribution of both
peritoneal and residual renal function (24).

Practical examples of iPD regimens include (26-31): (1)
continuous ambulatory peritoneal dialysis (CAPD) with fewer than
four daily exchanges, dialysate volumes of less than 2 L, or treatment
delivered fewer than seven days per week; and (2) automated
peritoneal dialysis (APD) performed less than 7 days weekly, with
total daily volumes under 10 L and/or without a long dwell (2).
Importantly, these prescriptions must be goal-directed and tailored to
individual patient needs. Although traditional adequacy metrics such
as a weekly Kt/V of 1.7 or creatinine clearance of 50 L/week are often
referenced, the true objective of iPD is to preserve clinical well-being,
focusing on control of uremic symptoms, fluid status, nutritional
health, and quality of life (32, 33).

frontiersin.org


https://doi.org/10.3389/fmed.2025.1676396
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Nardelli et al.

By initiating therapy with a reduced dose of dialysis tailored to a
patient’s RKF, iPD may delay the need for full-dose treatment, thereby
mitigating the cumulative resource and emissions burden of dialysis
(25) (Figure 2).

The adoption of iPD shows marked regional variability, with the
most robust data available from Italy, where national registry and
congress report document a steady increase in iPD use among
incident patients (34). Unpublished data presented at a recent Italian
national PD congress—encompassing all public PD centers in Italy—
revealed a steady rise in iPD use among incident patients, increasing
from 11.9% in 2005 to 40.2% in 2024 (35).

A study analyzing data from Australian and New Zealand dialysis
registries found that the use of IPD among incident PD patients
increased from 2.7% in 2007 to 11.1% in 2017, highlighting growing
clinical interest in iPD (36); while in Japan and South Korea, several
cohort studies confirm its routine application, particularly in patients
initiating therapy with <4 L/day (37-39). Evidence from China and
other East Asian countries largely stems from single-center feasibility
and outcomes studies (40), whereas in Europe and North America,
published data are more fragmented and limited to individual centers

10.3389/fmed.2025.1676396

or programmatic experiences (41-43). Importantly, the lack of
standardized definitions across studies—ranging from reduced daily
volumes to fewer weekly APD sessions—complicates comparisons
across regions. Taken together, these reports indicate that while iPD
is practiced internationally and increasingly recognized as both
clinically and environmentally advantageous, systematic national
prevalence data outside Italy and Australia/New Zealand remain
scarce, underscoring the need for harmonized reporting within
dialysis registries worldwide.

Low clearance, palliative and
decremental peritoneal dialysis

While several PD strategies also begin with a reduced dialysis dose,
they pursue fundamentally different objectives (Table 1). Incremental PD
(iPD) is a proactive, goal-directed approach designed to progressively
intensify dialysis as residual kidney function declines (23). In contrast,
in some developing countries, low-clearance PD is prescribed mainly for
economic or logistical reasons, providing partial solute clearance at
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Incremental peritoneal dialysis (iPD) offers several patient-centered benefits, including increased free time, which can lead to improved quality of life
and better treatment adherence. Reduced frequency of access to the peritoneal cavity may lower the risk of peritonitis. Additionally, decreased glucose
exposure can help mitigate systemic risks such as weight gain, hyperglycemia, and dyslipidemia, while locally slowing the progression of peritoneal
fibrosis—potentially extending technique survival. From an environmental perspective, iPD can reduce water consumption, plastic waste, and
greenhouse gas emissions. Finally, the associated cost savings represent another important advantage.
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minimal cost without stepwise intensification (44). Similarly, in frail
older patients with multiple comorbidities, palliative PD may
be employed, where the aim is not full clearance adequacy but rather the
prioritization of symptom relief, comfort, and quality of life through a
less aggressive regimen (45).

As populations age worldwide, the proportion of elderly and frail
patients requiring kidney replacement therapy is increasing. In these
individuals, treatment goals often extend beyond achieving biochemical
targets to emphasize functional preservation, symptom management,
independence, and overall quality of life. Palliative PD aligns well with
these priorities for several reasons. First, it allows a tailored initiation of
dialysis that leverages residual kidney function to meet clinical needs
without imposing the full procedural burden of standard regimens. For
frail or very elderly patients, this frequently translates into fewer daily
exchanges, reduced catheter manipulations, and lower treatment-related
fatigue, thereby supporting functional capacity and adherence. Second,
reduced glucose exposure and lower dialysis intensity may mitigate
metabolic complications and slow peritoneal membrane injury. Third,
the possibility of home-based delivery decreases caregiver strain, reduces
hospital-associated risks (including infection and deconditioning), and
aligns with the preference for conservative, home-centered care often
expressed by older patients. Another related concept is decremental PD,
a strategy in which dialysis is deliberately reduced in frequency or
intensity over time, typically in the setting of diminishing clinical benefit
or at the end of life, with the aim of minimizing treatment burden while
maintaining partial symptom control.

Ultimately, by lowering treatment burden, conserving resources, and
reducing environmental impact, incremental, low-clearance, palliative
and decremental PD align clinical care with the principles of
environmental stewardship (Table 1).

Environmental advantages of
incremental peritoneal dialysis

Reduced water usage

Incremental peritoneal dialysis significantly reduces dialysate
volume by initiating therapy with fewer daily exchanges. For example, a
patient prescribed two exchanges per day or five automated treatments
per week typically uses approximately 120-240 liters of dialysate per
month—substantially less than the 240-360 liters required by standard
CAPD or APD regimens. This represents an average reduction of up to
1,440 liters per patient per year.

Importantly, the environmental benefit extends beyond direct
dialysate use. The water required for manufacturing the plastic
components of PD systems is considerable. An Italian analysis of a
CAPD-based iPD program estimated annual water savings from bag
production alone at 25,056 liters, 18,144 liters, and 10,195 liters per
patient for starting regimens of one, two, or three exchanges per day,
respectively (30).

Lower plastic waste generation
By reducing the number of exchanges, iPD substantially lowers the

consumption of PVC dialysate bags and associated materials such as
plastic tubing, connectors, cardboard packaging, and outer wrap.
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Early-stage iPD prescriptions have been shown to cut plastic waste by
more than 50%, potentially saving hundreds of kilograms of waste per
patient annually (30). In quantitative terms, switching from full-dose
CAPD to an incremental approach was estimated to reduce plastic waste
by 139.2 kg, 100.8 kg, and 56.6 kg per patient per year for regimens of
one, two, or three daily exchanges, respectively (30). Although formal
data are not yet available, the reduction in plastic production and
disposal is likely even greater for patients undergoing incremental
APD (15).

Decreased carbon emissions

Life-cycle assessment models indicate that iPD can significantly
reduce carbon emissions associated with dialysis. Key contributors
include reduced frequency of supply deliveries, lower industrial
production of consumables, and a decreased volume of waste requiring
incineration—a process that is both energy-intensive and
environmentally harmful.

The extent of carbon savings will depend on the specifics of the iPD
regimen but given that packaging materials account for approximately
80% of PD’s carbon footprint (14), iPD could feasibly reduce dialysis-
related emissions by 30-45%. Supporting this estimate, one study
demonstrated that omitting a single icodextrin exchange reduced the

carbon footprint of APD and CAPD by 15 and 26%, respectively (13).

Clinical and economic advantages of
incremental peritoneal dialysis

Quality of life

Patients on incremental peritoneal dialysis may experience an
improved quality of life, reduced loss of productivity, and a lower
psychological burden due to fewer daily procedures. Starting PD with a
reduced number of exchanges per day has been shown to increase
patients’ free time. In a recent study by Nicdao et al., the total procedural
time saved with one, two, or three CAPD exchanges per day was
approximately 135, 90, and 45 min, respectively (46). Similarly, Nardelli
etal. (30) estimated a gain of 18.1, 13.1, and 7.4 additional free days per
patient-year when PD was initiated with one, two, or three daily
exchanges, respectively, instead of the standard four-exchange regimen.
Ultimately, the ability to initiate PD using an incremental approach may
enhance treatment acceptability and, consequently, contribute to higher
PD prevalence.

Infectious risk

Incremental peritoneal dialysis theoretically carries a lower risk of
peritonitis due to reduced catheter manipulation. A randomized study
by Yan et al. (47) comparing incremental CAPD (three daily exchanges)
and full-dose CAPD (four exchanges) in 139 incident patients showed a
higher, though not statistically significant, peritonitis rate in the full-dose
group (26% vs. 13%, p = 0.06). Similarly, studies by Sandrini and Lee (29)
found no significant differences in peritonitis-free survival between
incremental and standard PD. Conversely, two Asian studies reported a
lower incidence of peritonitis with incremental regimens (39, 48). In an
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observational study, Nardelli et al. (49) reported a significantly higher
risk of peritonitis in patients starting with three (HR 2.20, p = 0.014) or
four exchanges (HR 2.98, p < 0.01), compared to those initiating with
two. Most infections occurred within the first 12 months, highlighting
this period as the most vulnerable due to inexperience with PD
technique. Starting with fewer exchanges may mitigate this early risk.

Peritoneal membrane preservation and
metabolic effects

High glucose exposure in PD solutions may account for up to 35%
of daily caloric intake, contributing to weight gain, hyperglycemia,
dyslipidemia, and metabolic syndrome (50-57). Chronic glucose
exposure also damages the peritoneal membrane, promoting
angiogenesis, fibrosis, and mesothelial cell loss (58-63). Incremental PD
may minimize glucose load, thus reducing systemic side effects and
preserving membrane integrity (64-68).

In Nardelli et al’s study, the estimated annual glucose exposure
reduction was 20.4 kg, 14.8 kg, and 8.3 kg per patient for those starting
with 1, 2, or 3 exchanges, respectively, compared to standard PD (30).
While these findings suggest a potential advantage in prolonging
technique survival, comparative studies have yet to demonstrate a
definitive superiority of IPD over full-dose PD.

Preservation of residual kidney function

Incremental peritoneal dialysis is believed to preserve RKE by
avoiding overly aggressive dialysis during the early stages of therapy.
Preserved RKEF is associated with better volume control, enhanced
phosphate clearance, and improved survival due to better endogenous
erythropoietin and vitamin D production. Sandrini et al. (29) found
significantly higher RKF at 6 months in patients starting PD with 1-2
exchanges versus standard regimens (6.2 vs. 4.5 mL/min/1.73 m*). A
South Korean study also showed a reduced risk of anuria in the
incremental group (38). Garofalo et al’s (69) meta-analysis, which
included 75,292 patients (115 on iPD), reported slower RKF decline in
incremental versus full-dose dialysis (p = 0.007). However, these findings
should be interpreted cautiously. Nardelli et al. (49) found no significant
difference in RKF or urine output over 24 months between groups.
Similarly, the only available RCT comparing incremental and full-dose
PD showed no significant differences in GFR decline or anuria-free
survival after two years (47).

Economic considerations

Renal replacement therapy (RRT) is a major financial burden on
healthcare systems. In 2022, dialysis-related Medicare expenditures in
the U. S. exceeded $45.3 billion—over 6% of the total Medicare budget
(70). Incremental peritoneal dialysis reduces treatment costs by requiring
lower volumes of dialysis solutions and fewer exchanges. According to
an Australian study, the total mean monthly outpatient cost was $1,241
per patient on incremental PD and $1,581 for fulldose PD with a mean
difference of $339. The greatest contributor to the monthly cost difference
was PD consumables, which was $1,190 for full dose, compared to $810
for incremental PD (46). Evaluating the cost of consumables, Nardelli

Frontiers in Medicine

10.3389/fmed.2025.1676396

et al. (30) in Italy estimated even greater annual cost savings with
incremental CAPD compared to full-dose regimens. Specifically, the
savings were €8,700, €6,300, and €3,540 per patient-year when initiating
therapy with 1, 2, or 3 exchanges per day, respectively—reinforcing the
evidence of significant financial benefits associated with lower initial
prescription volumes (30).

Barriers and enablers to incremental
peritoneal dialysis

A key barrier to adopting iPD is the reluctance of patients and
caregivers to escalate the dialysis dose, as doing so involves an increased
number of daily exchanges and procedures. In addition, iPD necessitates
close clinical surveillance of RKF to detect subtle or unpredictable
declines. This requires regular timed urine collections, Kt/V urea
calculations, and potentially more frequent clinic visits, increasing the
workload for nephrologists and dialysis nursing teams. If RKF loss goes
undetected, patients may experience inadequate solute clearance, fluid
overload, and serious electrolyte imbalances. For this reason, shared
decision-making is essential. Patients should be informed from the outset
about the goals, advantages, and limitations of iPD. An informed patient
is more likely to engage constructively in dose adjustments and adhere to
dietary and fluid restrictions. Furthermore, the effectiveness of iPD in
clearing middle molecules such as pf2-microglobulin also warrants
consideration. Unlike small solutes like creatinine, which are primarily
cleared through frequent exchanges, the clearance of middle molecules is
more dependent on total peritoneal dwell time (71). For example, two
exchanges spread over 24 h provide nearly twice the $2-microglobulin
clearance compared to the same two exchanges delivered over a 12-h
period, emphasizing the possibility to tailor iPD prescriptions to solute-
specific clearance goals (72). Wider implementation of iPD is also
hindered by systemic challenges. These include reimbursement policies
that may not accommodate incremental treatment strategies, limited
provider familiarity with iPD protocols, and logistical difficulties in
managing personalized and non-standard dialysis regimens. Overcoming
these barriers will require targeted training programs to improve provider
knowledge and confidence, policy reforms that align payment models
with patient-centered care, and the adoption of digital tools and remote
monitoring systems to streamline care delivery and optimize patient
oversight (73-75). Despite its increased clinical complexity, iPD offers
potential long-term benefits, including reduced environmental impact,
cost saving, better preservation of RKF, lower risk of peritonitis, decreased
glucose exposure and improved quality of life (Figure 2). These advantages
may justify the added effort and resources required for its successful
integration into routine clinical practice (Table 2).

Conclusion

Incremental peritoneal dialysis is a powerful yet underutilized
tool in the pursuit of sustainable kidney care. By aligning with the
principles of green nephrology, iPD reduces resource consumption,
medical waste, and environmental emissions, while offering safe and
effective treatment to patients with residual kidney function.

As healthcare systems confront the twin challenges of climate
change and chronic disease burden, adopting ecologically conscious
approaches like iPD is not only advisable but necessary. Future dialysis
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paradigms must move beyond survival toward sustainability—and
iPD offers a pragmatic, evidence-based path forward.
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