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Introduction: Brain stroke is still one of the leading causes of death and long-
term disability in the world. Early and correct diagnosis is therefore important 
for patient outcome. Although Convolution Neural Network (CNN), classical 
machine learning models, have achieved great progress in medical image 
classification, they have to face the performance saturation problem when 
dealing with high-dimensional and complex data such as medical images. To 
tackle these limitations, we propose QBrainNet, a quantum enhanced model, 
which is to enhance brain stroke prediction from medical imaging datasets.
Methods: The model consists of Quantum Neural Networks (QNNs) applied as 
learning complex patterns in terms of medical images and Variational Quantum 
Circuits (VQCs) that will be used to optimize the classification. The feature 
extraction featured in the QNNs utilises quantum properties of superposition 
and entanglement to extract non-linear high-dimensional patterns in images 
related to stroke that may not be captured using classical limits. The VQCs, in 
turn, are applied to optimize the model performance, further allocating the 
boundaries of the decision and enhancing the model performance in terms of 
accuracy by optimizing the quantum gates and operators used during the work. 
QBrainNet utilizes the combination of such quantum properties as entanglement 
and superposition to represent more complicated non-linear patterns in stroke-
specific images in a better manner than a classical application does.
Results: This paper proposes a hybrid classical-quantum scheme: preprocessing 
classically, and learning quantum-enhanced. Quantum gates and operators are 
used when performing the quantum phase to optimize decision boundaries, 
achieving vastly enhanced prediction accuracy and efficiency performance. 
Experimental results indicate that QBrainNet has a better accuracy (96%) and 
AUC-PR (0.97) than the classical models like CNN, SVM, and Random Forest, 
proving the superior performance of QBrainNet in stroke detection.
Discussion: The inference time is shorter, so the model can be used as a real-time 
clinical application. This article points to the possibilities quantum computing can 
have in revolutionizing medical diagnostics, especially stroke prediction.
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1 Introduction

Stroke constitutes one of the significant causes of death and 
permanent disability in the world, with about 15 million individuals 
having a stroke per year according to the WHO (1). Early diagnosis and 
prompt treatment are essential in enhancing survival and minimizing 
long-term disability. Nevertheless, clinical condition diagnosis, where 
time is of the essence, will still be a challenge to correctly predict because 
of the complexity and subtlety of patterns in medical imaging data, 
particularly in the early stages (2, 3). Interpretation of CT and MRI scans 
used widely to detect stroke is subject to human error, inconsistency, and 
variability between practitioners, and it may lead to delay in diagnosis and 
impact treatment outcomes (4).

Recently, the methods based on machine learning (ML), particularly 
Convolutional Neural Networks (CNNs), have been actively applied to 
the medical image analysis, and stroke detection has been successful 
with the CT or MRI scans. The CNNs have been shown to work 
exceptionally well when processing medical imagery and extracting 
features that classify the image as stroke-related quickly, consistently, 
and accurately, compared to the more conventional methods (5, 6). 
Although these CNNs and other classical models are effective, they are 
limited by high-dimensional and complex medical data. These models 
fail to identify delicate structures and interactions within the data, 
particularly when the datasets are small and/or low-contrast, as 
frequently happens in medical imaging of stroke patients (7, 8).

The new area of Quantum Machine Learning (QML) offers an 
optimistic answer to these difficulties. Quantum systems work with 
information in radically new ways compared to classical systems, 
allowing them to work with extensive multi-dimensional data more 
efficiently through superposition and entanglement. Indeed, the 
quantum properties allow quantum computers to solve some problems 
efficiently in computation, where classical computers do not; the 
quantum potential advantage has indeed been observed in applications 
such as medical image analysis (9, 10). Quantum Neural Networks 
(QNNs) and Variational Quantum Circuits (VQCs) can specifically 
be used to provide an advantage in the classical world in specific tasks 
by finding complex patterns and relationships in data and using these 
patterns and traits in a non-linear fashion (11, 12).

This paper presents QBrainNet, a classical-quantum model that 
aims to enhance medical imaging stroke prediction. The classical 
element of the QBrainNet engages in feature extractions, augmenting 
images, and noise elimination, whereas the quantum element 
continuously applies QNNs and VQC networks to the learning task. 
QBrainNet, with its quantum-enhanced learning combining classical 
machine learning, is much faster and has a higher accuracy at 
identifying subtle factors in stroke-related medical images (13, 14). 
The quantum aspect of the model applies simulated quantum 
operations through Python code to optimally determine decision 
boundaries in the feature space. It is, therefore, more accurate in the 
classification than the conventional methods.

One main issue with medical image classification tasks is the small 
datasets. In our scenario, we only have 3,800 images, which can easily 
result in overfitting. However, the problem can be overcome the way 

QBrainNet does it by using cross-validation and regularization 
techniques (15, 16). The quantum elements of QBrainNet are designed 
through Python-based quantum simulation, in which quantum gates 
and circuits are simulated on a classical computing device. Thus, the 
model is accessible and reproducible without quantum information 
technology hardware (17, 18).

The main strengths of the QBrainNet model in comparison with 
classical approaches are linked to the possibility of dealing better with high-
dimensional data. CNNs and other traditional techniques are bulky 
programs that handle big chunks of data, particularly in the case of medical 
image tests. Compared to this, QBrainNet takes advantage of quantum 
parallelism, where quantum gates and superposition significantly decrease 
the degree of computation and speed of processing (19). Such a decrease in 
computational demands and the increase in the prediction speed result in 
QBrainNet being a potential candidate in clinical practice, where the speed 
of diagnosis may be a matter of life and death.

In recent developments, quantum computing has demonstrated 
great potential to improve machine learning models, particularly for 
high-dimensional data analysis. In this work, we simulate the quantum 
parts of QBrainNet using PennyLane on classical computing resources. 
This way, we  can exploit quantum effects like superposition and 
entanglement for feature extraction and optimization without access 
to real quantum hardware. Our simulation allows us to simulate 
quantum circuits and perform parameter optimization in a way 
compatible with classical machine learning.

The present study adds to the list of research that deals with the 
application of quantum computing in healthcare. In particular, 
we show promise of quantum-enhanced models such as QBrainNet in 
the field of stroke prediction, namely that quantum technology can 
be used to enhance the performance of medical diagnostics not only 
in accuracy, but in efficiency as well, especially in a domain where 
errors can have severe consequences like stroke care (19).

2 Related work

Applying machine learning (ML) to medical imaging has entirely 
transformed the face of healthcare diagnostics in a way no one had 
previously imagined. More specifically, CNNs have found a wide 
application in deep learning to solve specific tasks in medical imaging. 
The application of CNNs to the interpretation of medical images has been 
demonstrated to be capable of detecting and classifying ailments such as 
cancer, pneumonia, and brain stroke, as well as segmenting organs and 
other body parts critical to the human body (20). Of particular interest in 
brain stroke detection is that CNNs and other forms of deep learning have 
been applied to CT image processing, MRIs, and fMRI to provide brain 
stroke risk assessments, but with high levels of automation. Such models 
are much superior in the detection of stroke lesions and the classification 
of ischemic strokes. By extracting hierarchical representations of image 
information, these models can discover useful trends that the human 
expert may not be able to declare easily. The approach here is a novel 
application of the idea behind hybrid quantum-classical neural networks 
(21) to predicting strokes through quantum-enhanced preprocessing.
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These models, although effective, are restricted. Brain images can 
be complex, leading to difficulties for classical CNNs to apply to them and 
subtle features in the early stages of strokes. These models require 
substantial labeled data, computer power, and a preprocessing mechanism 
(22), and thus are not readily applicable to high-dimensional data. 
Additionally, it is computationally costly to train deep learning models 
wherein the high-resolution medical images are to be used; they require 
both heavy computing hardware and time. Original CNNs inherently lack 
the flexibility to extract subtly non-linear structures in the data, and such 
patterns are typical with medical images, as the data are noisy, 
heterogeneous, and may be inaccurately annotated (23). Also, this fulfills 
the need for more complex models that could better predict the nature of 
medical imaging with a complex structure (24).

To overcome these shortcomings, Quantum Machine Learning 
(QML) has proposed itself as an excellent solution. It is theorized that 
QML methods will be able to utilize the quantum superposition and 
quantum entanglement properties of quantum computers to both 
process complex information more effectively and prevent the scale 
explosion that occurs when using classical models. These quantum 
benefits may bring computational advantage, especially where data is 
needed in very high dimensions, such as in medical image processing 
(25). Quantum systems offer the prospect of investigating multiple 
solutions in parallel and exhibit greater capabilities of pattern 
recognition, which are of particular interest with complicated medical 
data. This will enable quantum methods, even when implemented on 
classical platforms using Python code, to perform better when 
compared with classical models in specific tasks requiring subtle 
non-linear relationships, e.g., when used to predict stroke (26, 27).

Healthcare and medical diagnosis are some examples in which QML 
has already been proven effective. For instance, Quantum Support Vector 
Machines (QSVM) were used to solve tasks in image classification. The 
results revealed that QSVMs are more effective in terms of computational 
efficiency than SVMs and are highly accurate in prediction (28). 
Moreover, QNNs, or the quantum analog of normal neural networks, 
have already been used in such tasks as image classification and drug 
discovery. Quantum-enhanced models, on the other hand, can access the 
power of quantum entanglement to learn intricate structures in data that 
are favorable over conventional models in the task of image classification 
(29). As some examples, the Quantum version of standard neural 
networks, namely Quantum Neural Networks (QNNs), have been 
implemented in problems like image classification and drug recognition. 
In the light of this understanding, QE models can leverage quantum 
entanglement to learn complex patterns in the data in a more efficient way 
than classical models, which is a key advantage in various tasks, such as 
image classification. Such methods are currently being utilized in this 
work as simulated quantum operations that, even though they do not run 
on actual quantum devices, act as a step in the right direction as applied 
to quantum-enhanced optimization.

Other quantum algorithms are likely to prove useful in healthcare, 
including Quantum Random Forests (QRF) and Quantum k-Nearest 
Neighbors (QK-NN), which have been found in many cases to require 
less time to train and achieve higher accuracy than their classical 
counterparts on high-dimensional data (30, 31). Quantum algorithms, 
including Quantum Random Forests (QRF) and Quantum k-Nearest 
Neighbors (QK-NN), have also been investigated in healthcare and on 
high-dimensional data. Quantum algorithms are more efficient in 
their training speed, and their results are found to be better when 
compared to classical algorithms. Such algorithms are emulated via 
quantum operations on a classical computer in Python and 

demonstrate the possibilities of the quantum-enhanced models 
without involving the actual physical quantum device (27).

Although applying QML to medical imaging is gaining more 
attention, it has not yet been explored in brain stroke prediction. Although 
past works have used quantum models in image segmentation, disease 
categorization, and other medical imaging applications, there has yet to 
be a quantum learning model to predict stroke occurrence using medical 
imagery, which is the novelty of this paper. A quickly expanding volume 
of literature on QML shows that one of its uses can be better optimization, 
image classification, and pattern recognition. Still, using QML in stroke 
prediction in medical imaging has yet to be  explored (32). Though 
numerous cases of research on QML exist, there is a significant lacuna in 
its application in the prediction of brain stroke, which is the novelty of this 
work. Though quantum-enhanced models have already demonstrated 
their potential in optimization, image classification, and pattern-
recognition problems, their use in medical imaging, in general, and stroke 
prediction, in particular, has not been studied extensively. This work 
bridges this gap through simulated quantum operations (through Python 
code) on classical computing resources (33).

The novelty of this research is that QBrainNet is the first application 
of QML in stroke prediction. The architecture can close a substantial 
research gap in stroke detection research as it has integrated quantum-
enhanced preprocessing, feature extraction, and classification into a single 
framework. Classical simulations of quantum operations allow for 
avoiding quantum hardware, but increase the stroke prediction accuracy 
and reduce computing costs (34). The proposed work is the initial 
implementation of QML regarding stroke expectations. Quantum-based 
benefits to preprocessing, feature extraction, and classification strongly 
occur within the same framework, as all other quantum manipulations 
are performed through Python codes running on a classical 
CPU. Employing simulated quantum operations over quantum hardware 
indicates a big leap toward actualizing quantum-powered healthcare tools. 
It influences how quantum computing can be used to develop solutions 
to mitigate modern medicine’s challenge to the detriment of the overall 
healthcare industry: stroke diagnosis (35).

3 Methodology

This section describes the general strategy used to get to and test 
QBrainNet, a quantum augmented neural network that will predict the 
risk of stroke from brain imaging data. It contains four main parts of 
methodology that are dataset preparation, preprocessing and feature 
extraction, quantum machine learning model development and model 
training and evaluation. We describe each stage in detail to provide a 
detailed account of how the quantum techniques are integrated into the 
medical image analysis pipeline for increasing the accuracy of 
stroke prediction.

The system requirements for running the quantum operation 
simulations are as follows: The simulations have been run on a system that 
has Intel i7 processor and 16 GB RAM the Ubuntu 20.04 operating 
system. The quantum operations were simulated with PennyLane, version 
0.18.0, a Python-based library which can build on classical computing 
resources to simulate quantum operations. The simulate codes were 
written in Python 3.8 and some additional libraries such as Numpy 1.21.0 
for numerical computing, Scipy 1.7.0 for scientific computing, matplotlib 
3.4.3 for visualization. The entire setup was done in a conda environment 
to handle everything in the appropriate way in terms of dependencies and 
reproducibility. This environment allowed efficient implementation of 
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quantum simulations on classical computing resources without the need 
for any actual quantum hardware.

3.1 Dataset

The medical images included in this study were diagnosed as usual 
or as stroke from a dataset. The photos are taken from publicly available 
datasets usually used in the stroke detection area, such as CT scans and 
MRI images. This dataset contains high-resolution MRI brain scans of 
different stroke severity, early ischemia, and late-stage hemorrhage. The 
pictures are marked to help define which ones are routine and which have 

an indication of a stroke. These images are then fed through simulated 
quantum operations to improve feature extraction, classification, and 
overall predictive accuracy with Python-based quantum simulators on 
classical computing resources. Lastly, each image has a label, indicating 
whether the brain imaging is standard or if there is a stroke.

Figure 1 demonstrates the unprocessed and processed CT scan brain 
scans. Raw images are initially scanned, whereas the processed ones have 
undergone a procedure of removing noise and normalization to facilitate 
analysis. Figure 2 shows grayscale, equalized, and edge-detected images 
of the preprocessed brain images. Gray levels eliminate color, equalization 
increases contrast, and edge detection emphasizes boundaries of key 
structures. The CT scan cross-sections shown in Figure 3 are used to 

FIGURE 1

Dataset overview: raw and processed brain CT scan images.

FIGURE 2

Preprocessed brain images: grayscale, equalized, and edge-detected versions.

FIGURE 3

CT scan cross-sections showing brain structure and potential abnormalities.
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obtain details about brain structure and the parts prone to abnormalities 
such as strokes and tumors. Figure 4 shows different CT scan cross-
sections with varying types of stroke, and how ischemic and hemorrhagic 
strokes can be represented in the brain in a cross-section.

3.2 Data preprocessing

The raw medical images are preprocessed before training and 
evaluation to reduce inconsistency and robustness across the medical image 
set. Rotation, flip, and noise addition augment the dataset and make it more 
diverse. To resemble real data and increase the model robustness to 
imperfect data, these procedures simulate real-world variation, e.g., to some 
extent, by the slight changes in rotation or orientation of scan images, and 
provide noise. This can better generalize the model, especially with a small 
data set, as it minimizes the chances of overfitting.

The primary preprocessing steps include:

	 1	 Image Resizing: Uniformity is guaranteed in the input data, as 
all the images in medical images may have different resolutions. 
They are all resized to a fixed resolution. This is an essential 
step so that the data maintained between multiple images is 
compatible with deep learning models image resizing is 
computed using Equation 1.

	 ( )= , ,resized originalI Resize I W h 	 (1)

Where:
	•	 resizedI  - resized image.
	•	 originalI  - original image.
	•	 W & h are the target width and height, respectively.

	 2	 Normalization: To adjust to the different pixel intensity values 
represented by various medical imaging modalities, the images are 
scaled to the 0–1 range. This will allow the model to be adjusted 
only to the scale of the raw data and not be distorted by the ranges 
of pixel intensities normalization is computed using Equation 2.

	
=

255
original

normalized
I

I
	

(2)

Where:

	•	 normalizedI  - normalized image.
	•	 originalI  - original pixel intensity.

	 3	 Class Imbalance Check: Since the medical datasets usually 
become class imbalanced, balancing the number of 
samples in training and test sets within normal and stroke 
groups is very important. If an imbalance is discovered, 
methods that include over-sampling the minority 
observations or under-sampling the majority can be used 
to generate a balanced dataset. This eliminates the 
possibility of biasing the model toward one of the classes, 
which is used a lot more; hence, the model will perform 
well in both classes.

3.3 Dataset partitioning

The data is split into the training data and a testing data 
where 70–80 percent of the data is used in the training and 20–30 
percent for testing. The training data is then trained on the 
model, known as QBrainNet model and the testing data is used 
to estimate the model’s performance on unknown data. This 
division will ensure the model is tested on data that it has not 
encountered previously during the model’s training, and will 
be  an impartial representation of how well the model 
is performing.

Preprocessing of dataset, and splitting the preprocessed 
dataset into training and testing datasets is done. The model is 
trained on the training data and tested on the test data (36, 37). 
The training is usually done using 70–80% of the data; the 
remaining 20–30% is used for testing. There is a need to fold this 
type to make sure that the model performs well on the unseen 
data rather than being too optimistic regarding the performance.

3.3.1 Dataset distribution
The distribution of ‘normal’ and ‘stroke’ images over training and 

test sets can be viewed in Table 1.
Class distribution plays a role in training the model on a 

balanced set of examples, which is very important for accurate 
stroke prediction.

FIGURE 4

CT scan cross-sections of brain showing stroke variants.
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3.3.2 Dataset flow diagram
Here, in the following Figure 5, we show the flow of the dataset in 

the preprocessing, training and evaluation stages:

3.3.3 Class imbalance handling
To solve the problem of class imbalance of the dataset, we used 

some oversampling and undersampling methods during the data 
preprocessing phase:

	 1	 Oversampling: We applied Random Oversampling to replicate 
samples from the minority class (either “normal” or “stroke”) 
to train the model on a balanced dataset. This method copies 
minority class samples to make the sizes of the minority and 
majority classes equal, eliminating the model’s bias for the 
majority class.

	o	 Stage in Pipeline: Random Oversampling was used as one 
of the pipeline steps on the training set after splitting the 
dataset into training/validation sets. This helped ensure 
the model would learn from an even distribution of the 
two classes.

	 2	 Undersampling: Since it is a class imbalance problem, 
we  applied the Random Undersampling technique to the 
majority class. This method addresses the issue by randomly 
selecting samples from the majority class to obtain a balanced 
distribution between both classes. Decreasing the number of 
majority class samples ensures the model does not become 
biased toward majority class predictions.

	o	 Stage in Pipeline: Minority class was oversampled, and then 
Random Undersampling was implemented to achieve class 
balance without overfitting of the minority.

Class Imbalance Handling Pipeline:

	 1	 Divide the dataset into a training and validation dataset.
	 2	 Implement Random Oversampling to the minority class in the 

training dataset to balance the class distribution.
	 3	 Random Undersampling: the oversized majority class in the 

train data set is reduced to the size of the minority class.
	 4	 The balanced training set is now used to train the 

QBrainNet model.

TABLE 1  Distribution of normal and stroke images in the dataset.

Class Training set 
(images)

Test set 
(images)

Total 
images

% in training 
set

% in test 
set

Augmentation 
applied

Primary 
data source

Normal 1,500 500 2,000 51.70% 55.60% Rotation, Flip, Noise Hospital A & 

Public Dataset

Stroke 1,400 400 1,800 48.30% 44.40% Contrast Stretching, Zoom Hospital B & 

Research Cohort

Total 2,900 900 3,800 100% 100% – –

FIGURE 5

Proposed model’s dataset flow diagram.
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These techniques allow for equal representation of both classes 
(regular versus stroke) during model training, which is essential in 
healthcare applications where accurate classification of both 
conditions is crucial.

3.4 Preprocessing and feature extraction

Several classical preprocessing techniques are performed 
before the quantum machine learning algorithms are used to 
preprocess the medical images, such that the data is in a format 
that is as best as possible for extracting features and the model 
can be trained on. These techniques allow us to mitigate noise, 
clean, increase contrast, and standardize the stroke dataset to 
facilitate the networks’ detection of stroke features more 
easily (38).

3.4.1 Image resizing
Resizing images is a crucial preprocessing step because all the 

images need consistent dimensions supported by deep learning 
models, which usually need uniform input sizes. The resizing 
process involves mapping the original image size ×original originalW h  
to a new size ×new neww h . This can be mathematically represented 
as using Equation 3:

	
( )

 
= ⋅ = ⋅  

 
,resized original new new

original original

x yI x y I w h
w h 	

(3)

Where:
	•	 resizedI  - resized image.
	•	 originalI  - original image.
	•	 originalW  and originalh  are the original width & height of the image.
	•	 newW  and newh  are the target width & height for resizing?

The bilinear interpolation method is used for resizing to preserve 
image details (39).

3.4.2 Grayscale conversion
Grayscale conversion of the images is applied to simplify the 

data and decrease computational complexity while retaining 
stroke-related features. Grayscale images are beneficial as they 
decrease the number of channels (from 3  in RGB to 1), thus 
reducing the amount of computation and emphasizing the textural 
differences in the brain tissue.

The conversion from a color image ( ),rgbI x y  to grayscale 
( ),grayI x y  is done by averaging the weighted sum of the RGB 

channels, following the formula as shown in Equation 4:

	

( ) ( ) ( )
( )

R G
gray rgb rgb

B
rgb

I x y I x y I x y

I x y

, 0.2989 , 0.5870 ,

0.1140 ,

= ⋅ + ⋅

+ ⋅
	

(4)

Where:
( ) ( ) ( ), , , , ,R G B

rgb rgb rgbI x y I x y I x y  - Represent the Red, Green, and 
Blue (RGB) color channels, respectively.

( ),grayI x y  - resulting grayscale image.

3.4.3 Histogram equalization
To enhance the contrast of the images, histogram equalization is 

used to redistribute the intensity levels throughout the image. Spread 
out across the whole range, this process helps to bring out subtle 
details, including early signs of stroke. Histogram equalization can 
be mathematically formulated as shown in Equations 5 and 6:

	
( ) ( )

=
= ∑

0

i

j
CDF i p j

	
(5)

	 ( ) ( )( ) ( )= ⋅ −, , 1eq originalI x y CDF I x y L 	 (6)

Where:
( )CDF i  It is the cumulative distribution function of the 

pixel intensities.
( )p j  It is the probability density function of the pixel intensities.

L Is the number of possible intensity levels (typically 256 for 
8-bit images).

( ),egI x y  It is the histogram-equalized image.
It ensures that the pixel intensity distribution is more uniform 

than it is, thereby improving the contrast of the image and bringing 
out finer details, which are important for stroke detection (40).

3.4.4 Feature extraction
Next, necessary characteristics from the images are captured using 

feature extraction. Key features are extracted using classical methods, 
including those based on determining edges or analyzing textures, 
with the view that these can be used to differentiate stroke-affected 
areas from normal brain tissue.

	 1	 Edge Detection: This involves the detection of the boundaries of 
an object in an image. The Canny Edge Detection algorithm is 
employed to indicate regions of interest, such as in stroke lesions, 
by identifying sharp intensity transitions. Mathematically, edge 
detection is defined as shown in Equation 7:

	 ( ) ( )=gray grayEDGE I Canny I 	 (7)

Where Igray is the grayscale image, and the Canny operator finds 
the edges by computing the gradient of the image.

	 2	 Texture Analysis: It measures the structure present in the 
image by performing texture analysis. Gray Level 
Co-occurrence Matrix (GLCM) is computed using Equation 8:

	
( ) ( )=∑

,
, , , ,

x y
GLCM i j p x y i j

	
(8)

Where:

	•	 Lastly, GLCM(i, j) denotes the co-occurrence matrix where pixels 
have values i and j.

	•	 It is noted that p(x,y,i,j) defines the probability that pixel pair 
values are i and j at locations x and y.
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The texture features are promised as a crucial source of 
information about the texture of brain tissue, which might aid in 
discriminating between healthy and stroke-affected parts (41, 42).

Figure 6 illustrates the effects of the preprocessing steps on the 
original medical image. The left image is the raw medical scan, the 
center image is the conversion to a greyscale and the last one is 
the histogram equalization (42). Figure  6 depicts a sample of 
medical images after the grayscale conversion and 
histogram equalization.

The computational preprocessing step uses quantum-enhanced 
feature extraction procedures, which are also simulated using Python 
scripts in PennyLane and other quantum simulators. The methods 
enable the detection of fragile patterns in medical images that 
conventional methods such as CNNs may not easily learn. By mapping 
quantum processes onto classical computers, we can use quantum 
phenomena such as superposition and entanglement to use the more 
efficient extraction of features in complex and high-dimensional 
medical images.

3.5 Quantum machine learning model

This part introduces the derivation of this work’s QBrainNet 
model, which is a quantum-enhanced neural network for estimating 
the probability of missing a stroke case from brain images. The model 
combines classical machine learning methods with simulated 
quantum models for a more accurate stroke prediction. Rather than 
using physical quantum hardware, the quantum constituents are 
simulated through the PennyLane simulator implemented in Python 
and run on ordinary computing resources. These simulations allow us 
to incorporate quantum-inspired properties like superposition and 
entanglement, which are challenging to simulate in purely classical 
neural networks. In our hybrid framework, we  train variational 

quantum circuits (VQCs) with PennyLane to simulate them, and solve 
for the quantum parameters by gradient descent to improve 
prediction accuracy.

The QBrainNet architecture comprises several layers, each taking 
advantage of quantum-enhanced processing to enhance the processing 
and analysis of the medical images. In particular, the quantum layers 
attractively model the quantum operations to transform the image 
data into feature vectors with information on more complex patterns 
than classical techniques. These feature vectors are then fed to a 
conventional neural network for the final stroke prediction. This can 
mimic the advantages of a quantum computer on regular computers, 
enabling more of us to take advantage of the quantum advantages and 
do it more efficiently.

The model (QBrainNet) involves quantum enhanced ways to 
improve the accuracy of stroke forecast. This is a hybrid model, 
which combines the classical neural network architecture and 
simulates the quantum operations to process and analyze medical 
images more effectively. Rather than operating on real quantum 
hardware, however, quantum phenomena, such as superposition 
and entanglement, are simulated in Python libraries in the actual 
hardware. This will enable the model to reflect better, more 
intricate relationships in the data, which is a benefit over 
conventional machine learning.

The model training for the QBrainNet has been performed for 50 
epochs, using gradient-based optimization to update the quantum 
parameters (RZ gate angles) in the variational quantum circuits, which 
are implemented in PennyLane. The Adam optimizer with a learning 
rate of 0.001 was used as the optimizer for training. The model showed 
a progressive improvement in accuracy for the first 30–40 epochs, and 
then the loss function stabilized, which means that the quantum parts 
converged to the local minimum. The arrival time of the quantum 
components was tracked closely, and the convergence was relatively 
poor after epoch 40.

FIGURE 6

Preprocessed images: original, grayscale, equalized, and edge detection.
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The two main components of the QBrainNet model are created to 
handle the two various sections of the image data processing pipeline.

Quantum Circuit Architecture:
The quantum circuit of QBrainNet model is a combination of 3 

variational layers, each of which comprises a series of quantum gates 
performed to process the input data and achieve the maximum 
decision boundaries. The type of gates employed in each layer is 
as follows:

	•	 Hadamard (H) gate on qubit 1.
	•	 CNOT gate between qubit 1 and qubit 2.
	•	 Z-Rotation (RZ) gate on qubit 3.

This circuit is simulated in PennyLane using classical computer 
resources. Each variational layer automatically maps the input data 
and develops the decision boundaries for better classification accuracy.

The total trainable parameters of the quantum circuit are 12, which 
corresponds to the angles of the RZ gates in each variational layer. These 
parameters are then optimized by gradient-based methods during 
training to minimize the loss and improve classification performance.

The measurement scheme measures the quantum state on a Pauli 
Z basis at the end of each variational layer. The classical bits generated 
from this measurement are combined to create the classification 
output. The outcome depends on a majority vote among all the qubits 
in the system.

The quantum circuit shown above is used to train the QBrainNet 
model. The pseudocode for the training process is shown below. 
#Initialize quantum circuit with 4 qubits. initialize_quantum_
circuit(num_qubits = 4). #Define variational layers (3 layers). for layer in 
range(3): #Apply Hadamard gate on qubit 0. apply_Hadamard_
gate(qubit = 0). #Apply Controlled-NOT gate between qubits 0 and 1. 
apply_CNOT_gate(control_qubit = 0, target_qubit = 1). #Apply 
Z-Rotation gate on qubit 2. apply_RZ_gate(qubit = 2). #Initialize classical 
optimizer (e.g., Adam optimizer). optimizer = AdamOptimizer(learning_
rate = 0.001). #Training loop for 50 epochs. for epoch in range(50): #Apply 
quantum circuit (forward pass). quantum_output = apply_quantum_
circuit(inputs). #Measure quantum state in Pauli Z basis. classical_
output = measure(quantum_output, basis = ‘Z’). #Compute the loss 
function. loss = compute_loss(classical_output, ground_truth). #Calculate 
the gradient of the loss. gradient = compute_gradient(loss). #Update 
quantum parameters using the optimizer. optimizer.update_
parameters(gradient). #Final output: make the classification decision. 
final_output = classify_output(classical_output).

3.5.1 Classical feature extraction
Earlier, we mentioned about the extraction of relevant features 

from the preprocessed medical images using classical methods such 
as edge detection and texture analysis. The next stage is supplied with 
a compact representation of brain images for subsequent processing 
by these features (43).

This part shows the derivation of a quantum-enhanced neural 
network, or QBrainNet that can estimate the probability of missing a 
stroke case given a brain image. The model is a combination of classical 
machine learning techniques and quantum simulation operations that 
will improve stroke prediction accuracy. In lieu of making use of 
practical quantum hardware, quantum emulations are made with 
quantum simulators PennyLane utilizing Python on conventional, 

classical computing facilities. These quantum simulations allow us to 
use the properties of quantum-like superposition and entanglement 
that are difficult to use with classical neural networks.

The architecture of the QBrainNet consists of several layers, where 
each layer utilizes the quantum processing capability to boost the 
processing and analysis of the medical images. In particular, the 
quantum layers model the quantum operations attractively to transform 
the image data into feature vectors with information on more complex 
patterns than classical techniques. These feature vectors are then fed in 
a conventional neural network for final stroke prediction. The volume 
and diversity of medical images are also relatively low, and thus can 
create overfitting and decrease the generalization of the models in 
stroke detection. To resolve this, we used several image augmentation 
methods - rotation, flipping, and adding noise to the data - before 
sending them forward in the preprocessing stage to improve and 
stabilize the generalization ability of QBrainNet. Rotations were applied 
to mimic various positions of the medical scans to ensure that the 
model can identify the patterns associated with stroke, independent of 
the direction at which the images are taken. This is especially significant 
as brain scans used in medical practice may differ in orientation. 
Manipulation of the model by flipping it horizontally and vertically to 
introduce the model to other perspectives, which is more likely to 
generalize its operative features in different variable conditions. Lastly, 
we introduced noise into the pictures to simulate the inevitable flaws 
associated with real-world medical imaging, including scanner artifacts 
or low resolution. The model learns to generalize on the essential 
features of the data rather than memorizing noise-free, idealized images 
by adding noise to the data. The combination of the above augmentation 
strategies increases the whole dataset’s variety, enabling QBrainNet to 
pick up on more of the possible patterns and achieve a lower probability 
of overfitting, especially with such a relatively small amount of data. 
That makes a model more competent to work with unseen data and 
supply precise estimation in clinical practice.

It entails studying image patterns, such as boundaries, textures, 
and shapes. Edge detection with the Canny operator and GLCM is 
applied to extract the features such as these. The features extracted 
from these data can be represented mathematically as follows:

	 1	 Edge Detection: Using the Canny Edge Detection algorithm, 
the boundary information Eedges for a given image Igrayscale is 
obtained using Equation 9:

	 ( )=edges grayscaleE Canny I 	 (9)

Where:
grayscaleI  It is a grayscale image.
edgesE  Represents the edges detected in the image.

Texture Features: The GLCM (Gray Level Co-occurrence Matrix) 
is an algorithm employed to describe the texture patterns present in 
the image, and is able to capture important statistics such as contrast, 
energy, and correlation. The GLCM for a grayscale image Igrayscale is 
computed using Equation 9.

Consequently, these classical features are then passed through to 
the quantum-enhanced stage, where they are processed and 
further optimized.
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To solve the generalizability problem and improve the overfitting 
level, we  used image augmentation methods, including rotating, 
flipping, and adding noise. Such techniques mimic the natural 
variation in medical images and therefore aid in better generalization 
of the model in cases where the data is small.

3.5.2 Quantum enhancement
After the extraction, we feed the extracted features to the Quantum 

Neural Network (QNN) to produce classification outputs. Dynamical 
correlations of the quantum model such as superposition and 
entanglement make it possible for it to model complex patterns of the 
data which cannot be easily observed with the classical model alone 
(44). In order to learn the decision boundaries and find higher-order 
relationships in the data, the quantum neural network is learned using 
Variational Quantum Circuits (VQCs) (45).

The model of QBrainNet integrates quantum-enhanced machine 
learning on the basis of quantum neural networks (QNNs) and 
variational quantum circuits (VQCs). PennyLane uses classical 
computing resources to simulate these quantum components. In this 
way, it is possible to do feature extraction and optimization with 
quantum phenomena such as superposition and entanglement without 
having access to actual quantum hardware. The quantum operations are 
simulated completely in the classical environment, meaning that the full 
power of quantum computing is utilized for an improved performance 
without losing a practical implementation on the existing 
computing resources.

As part of the classical layer of QBrainNet, we applied Adam with a 
learning rate of 0.001. Adam is effective in substantial learning tasks 
because of its adaptive learning rates and the momentum, making it 
converge and avoid over-fitting quicker.

Regarding the quantum portion, the Variational Quantum Circuits 
(VQCs) were trained with a gradient-based optimizer and the quantum 
gradient descent. A parameter optimization on the quantum circuit 
parameters would minimize the loss by updating parameters during 
each iteration through classical optimization algorithms such as Adam 
or L-BFGS. Such a hybrid optimization will allow efficient training and 
better ability in modeling complex patterns with medical images.

The basic idea of a Quantum Neural Network (QNN) is to use 
quantum circuits as the weights and transformations of the network, 
represented by the quantum gates (46). The input sample value is 
initialized and transformed according to the input data by utilizing 
quantum superposition, exploring various possible results simultaneously.

To optimize the weights of the quantum neural network, we use a 
Variational Quantum Circuit (VQC) that combines classical 
optimization (what is to be optimized) with quantum circuits (how 
optimization is to be performed). Here is the definition of VQC as 
shown in Equation 10.

	 ( ) ( )ψ θ θ ψ〉 = 〉0U∣ ∣ 	 (10)

Where:

	•	 ( )ψ θ  is the quantum state after applying the quantum gates ( )θU  
with parameters θ .

	•	 ψ0  is the initial quantum state.
	•	 ( )θU  is the unitary operator that applies quantum gates 

parameterized by θ .

The quantum circuit is also optimized in the classical-quantum hybrid 
approach by minimizing the loss function in terms of quantum gradient 
descent. The loss function can be expressed as shown in Equation 11:

	 ( ) ( )( )θ ψ θ=L loss 	 (11)

Where:

	•	 A loss evaluates the prediction error of a quantum model (e.g., 
mean square error, cross-entropy).

	•	 The loss function that the quantum circuit minimizes during 
optimization is L(θ).

Optimization of quantum circuit parameters is done with classical 
gradient descent and more complicated optimization algorithms 
(Adam or LBFGS). For training classical CNN model we used adaptive 
moment optimization algorithm (Adam). We have set its learning rate 
to equal 0.001 which resolves the loss function more quickly than 
randomized algorithms and prevents over-fitting. In the quantum 
part, we used an optimizer which is based on a gradient which we used 
to change the quantum gates in the variational quantum circuit (VQC) 
where in a similar manner we backpropagated through the quantum 
layers and optimized the decision boundaries.

3.5.3 Bridging the classical-quantum framework
The two parts work together to form a fusion classical quantum 

framework in which the quantum circuit combines the classical 
feature extraction model into a QBrainNet model. This approach’s 
advantage is its use of both classical and quantum computing.

	•	 Featuring high dimensional data with the classical methods
	•	 It fed these features into the quantum circuit to determine how 

to process them, optimize decision boundaries and find complex 
patterns that classical methods may miss.

The high-dimensional data is handled by the classical model, 
while the quantum model exploits the data in parallel in a potentially 
more computationally efficient and more accurate prediction manner.

The quantum translation model QBrainNet is constructed as a 
hybrid classical-quantum framework by making the quantum circuit 
a part of the classical feature extraction model. Then, we utilize a 
quantum gradient algorithm (47) to optimize the parameters of the 
quantum circuit by adjusting the parameters of the circuit after each 
prediction according to the error. This hybrid method combines the 
good of classical and quantum computing, with one better with fine-
scale methodology in high-dimension data and the other enhancing 
prediction accuracy in time series prediction problems (48).

In Figure 7, we see the hybrid classical-quantum framework in 
QBrainNet, built upon classical feature extraction and acting as an 
input to a quantum neural network for stroke prediction (Figure 7: 
Hybrid Classical-Quantum Framework shows the flow from classical 
feature extraction to quantum processing).

3.5.4 Algorithmic design of QBrainNet

	 1	 Initialize system:
	 a	 Load preprocessed brain CT scan dataset.
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	 b	 Split dataset into training and testing sets (e.g., 80% training, 
20% testing).

	 c	 Initialize classical CNN and quantum components (QNN 
with VQC).

	 2	 Preprocessing:
	 a	 Convert CT scan images to grayscale.
	 b	 Apply image equalization to enhance contrast.
	 c	 Perform edge detection using the Canny operator.
	 d	 Apply augmentation techniques (rotation, flipping, noise addition).
	 e	 Normalize image data.

	 3	 Feature Extraction (Classical Component):
	 a	 Extract features using classical methods:

	o	 Edge detection.
	o	 Texture analysis (GLCM).

	 b	 Store extracted features for quantum-enhanced processing.

	 4	 Quantum Enhancement (Quantum Component):
	 a	 Feed extracted features into quantum neural network (QNN) 

using Variational Quantum Circuits (VQC).
	 b	 Apply quantum operations (superposition, entanglement) to 

extract complex patterns.
	 c	 Use quantum gates and VQC to adjust decision boundaries and 

find higher-order relationships.

	 5	 Model Training:
	 a	 Train classical CNN model on extracted features using Adam 

optimizer (learning rate: 0.001).
	 b	 Optimize quantum circuit parameters using gradient descent 

and quantum gradient descent (with Adam or L-BFGS for 
fine-tuning).

	 c	 Minimize the loss function (cross-entropy or mean 
squared error).

	 6	 Evaluation:
	 a	 Test the model on the testing dataset.
	 b	 Calculate performance metrics:

	•	 Accuracy.
	•	 Precision.
	•	 F1 Score.
	•	 Recall.
	•	 AUC-PR.

	 o	 Post-processing:
	 a	 Generate predictions for unseen CT scan images.
	 b	 Display results and analyze model performance.

	 8	 Output:
	 a	 Report stroke prediction results with confidence scores.
	 b	 Compare QBrainNet’s performance with classical models 

(CNN, SVM, etc.)

3.5.5 Simulated quantum operations
The quantum component of QBrainNet was simulated on 

the classical hardware using the PennyLane library, the current 
quantum software platform where quantum circuit simulation 
is available on classical hardware. This was the selected approach 
because of the scarcity of quantum hardware and the 
requirement to provide fast experimentation on the quantum 
neural networks. Though quantum circuits have been simulated 
on the classical resources, PennyLane supports quantum gates 

FIGURE 7

Hybrid classical-quantum framework of QBrainNet.
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like Hadamard, CNOT and Z-Rotation gates to simulate, and it 
is an efficient way to explore the quantum-amplified potentials 
of the network.

3.5.5.1 Implications for scalability and feasibility
It is not so easy to simulate a quantum circuit on classical 

hardware. Scalability of simulations stands out by far, where the 
amount of computational resources needed to execute the simulation 
circuit rises exponentially with the qubit count in the circuit. An 
example is that with a quantum system with 50 or more qubits, it is 
just too costly to simulate on classical hardware because of memory 
and processing resources. With improvement of quantum hardware, 
quantum networks will exit classical simulation and transition to the 
quantum processors.

From a practical point of view, using classical hardware implies that the 
model can be tested and optimized now, before being able to have access to 
powerful enough quantum computers. Current quantum computing 
technology is in its early stages, and there are only a few quantum computers 
available through cloud services, and they are generally constrained in the 
number of qubits they can process. As quantum processors become 
available, the quantum parts of QBrainNet will be compiled to actual 
quantum hardware allowing the system to fully exploit quantum parallelism 
and superposition for more efficient processing.

In spite of these, the hybrid classical-quantum method used by 
QBrainNet can be seen as a very promising path ahead. It allows one 
to extract features with the help of quantum computing and 
simultaneously exploit the comparatively computationally efficient, 
everywhere-available classical optimization methods.

3.5.5.2 Mathematical formulation

	 ( )ψ 〉 = 〉⊗ 〉⊗ 〉⊗ 〉0 0 0 0 0∣ ∣ ∣ ∣ ∣ 	 (12)

	
( )〉 = 〉+ 〉

10 ||0 ||1
2

H∣
	

(13)

	
( )〉 = 〉+ 〉

11 ||0 ||1
2

H∣
	

(14)

	 ( )ψ 〉 = ⊗ ⊗ ⊗ 〉1 0H I I I∣ ∣ 	 (15)

	

〉 = 〉 〉 = 〉
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The different mathematical formulation are shown from Equations 12 
and 24. In the quantum-enhanced model developed for brain stroke 
prediction, the quantum circuit is initialized with 4 qubits each in the 
ground state |0 > which is normally used as an initialization for quantum 
computations. These qubits are the basic units that store the data and the 
quantum operations are implemented one after another, to manipulate the 
states of the qubits and extract the intricate patterns that might be difficult 
to use classical methods. The first gate performed on the qubits is the 
Hadamard gate H which is applied to qubit 0 to put it in a superposition 
between the states |0 > and |1>. This superposition enables the quantum 
system to investigate various states at the same time, which significantly 
increases the processing and representation of the complex data by the 
model. However, a Controlled-NOT (CNOT) gate is then applied between 
qubits 0 (control) and 1 (target) following the Hadamard gate and then 
these two qubits are entangled with each other, generating a correlation 
which is the main part of quantum model of the complex dependencies in 
the data. This interaction allows the quantum system to be capable of 
processing and representing correlations which would otherwise be hard 
to obtain with classical models. There is also a Z-Rotation of the qubit 2 to 
add a phase shift to it, which further enhances the ability of the model to 
learn the quantum data. This transformation of phase enables the model to 
improve the quantum state, modifying it in a manner that is more 
appropriate to the task in question. The quantum state is measured in the 
Pauli-Z basis after the quantum operations have been made, which forces 
the quantum state to collapse into one of two possible states, |0 > or |1>, 
according to the amplitudes of the quantum state. The measured data is 
then used in the classical domain where the quantum parameters are 
optimized using a method called Adam optimizer, a popular gradient based 
method that updates the parameters of the model to reduce the loss 
function and increase accuracy. Finally, after the quantum enhanced 
features are extracted and quantum parameters are optimized, the model 
is transferred to the classical domain and a classical classifier is used to 
perform the final stroke prediction. The classical classifier uses the features 
extracted from the quantum computation stage to predict the probability 
of a brain stroke, which makes the best use of the advantages of quantum 
computation and classical machine learning in prediction accuracy.

3.5.5.3 Training cost comparison

Aspect Quantum (Simulated) Classical (e.g., 
CNN)

Training Time Exponentially increases with 

qubits and depth

Polynomial growth 

with dataset size

Computational 

Resources

Requires large memory and 

computational power for 

quantum circuit simulation

Scales based on model 

size and dataset

Scalability Limited by classical simulation; 

impractical for large qubit systems

Scalable with 

optimized hardware 

(e.g., GPUs)
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3.5.5.4 Inference cost comparison

Aspect Quantum (Simulated) Classical

Inference Time Potential speedup with quantum 

circuits, but limited by classical 

simulation overhead

Fast, optimized for real-

time prediction

Computational 

Resources

Quantum simulation requires 

significant memory; real 

quantum inference will be faster

Less computationally 

expensive on modern 

hardware (GPUs/CPUs)

Scalability Likely to improve with real 

quantum hardware

Highly scalable and 

efficient for large models

3.5.6 Model training and model evaluation
This model is trained on the medical image data set, and simulated 

quantum operations are applied to render each image during feature 
extraction. The preprocessing introduced by quantum adds some 
features that can be  hard to detect by classical models, as CNNs, 
helping the model identify subtle, non-linear patterns. The output of 
these quantum enhanced characteristics are then fed into a classical 
neural network and classified.

The quantum-enhanced model is then trained and evaluated 
based on the standard classical models (such as CNNs), to find out 
how the predictive accuracy and processing efficiency is improved. 
Although emulating quantum processes on classical computers, the 
quantum model offers significant potential by reducing the training 
time to execute a high-dimensional task, and after achieving a better 
prediction in stroke detection.

4 Results

In this work, we apply the QBrainNet model, a model of quantum-
enhanced brain stroke prediction, for prediction using the medical 
imaging data with whose performance we additionally investigate 
against some of the commonly used traditional machine learning 
methods such as Convolutional Neural Networks (CNN), Support 
Vector Machines (SVM), Random Forests (RF), KNN and Logistic 
Regression (LR) since other traditional machine learning models have 
been used for different results and which we are comparing with.

In order to analyze the QBrainNet Model, we compare it with the 
classical CNNs using the standard evaluation metrics of accuracy, 
precision, recall and F1 score. The quantum modified model is 
consistently found to report a better performance than the classical 
CNN model, particularly in the accuracy of stroke detection. Also, the 
training times when using simulated quantum operations are much 
shorter than with classical methods, although real quantum hardware 
is not employed. This points to the prospect of simulated quantum 
methods to transform the computational cost of medical image 
analysis without requiring a costly quantum machine.

4.1 Model comparison and fairness in 
evaluation

As far as comparing the CNN and QBrainNet models, we would 
like to explain why there is a difference in the number of parameters 

between the two architectures. The CNN model in this study has 
about 2.5  million parameters, which is a reasonable number for 
multiple-layered, multi-filter convolutional neural networks. In 
contrast, a much smaller number of parameters is introduced in the 
QBrainNet model because of the quantum circuits used. Specifically, 
the number of trainable parameters of the QBrainNet model is 12, 
which are the angles of the RZ gates of the three variational layers of 
the quantum circuit.

The difference in the design of the classical and quantum neural 
networks means that the CNN model has many more parameters. 
Because of the compact nature of quantum gates, quantum circuits 
have less parameter, which can be  used to process information 
efficiently. Despite this difference in the number of parameters, a 
comparison between the CNN model and the QBrainNet model was 
made based on performance metrics such as accuracy, precision, and 
recall which are related to classification performance and not to the 
size of the model.

Both the models have been tested on the same data set, with the 
same train and validation split, hence the comparison is done under 
the same conditions. While these models were assessed in terms of the 
number of parameters, they focused on the models in terms of their 
predictive power and not the number of parameters in order to 
provide a fair and meaningful comparison.

By comparing the two models with respect to relevant 
performance indicators, we can give a precise and unbiased estimation 
of their relative abilities for classification of the data, despite the 
difference in their architecture and size of parameters.

4.2 Model performance comparison

The quantum-enhanced model is superior to the regular CNNs 
in accuracy and computing speeds by a large margin (49). The 
QBrainNet model provided better performance in the detection of 
strokes than CNNs. Also, training was faster using simulated 
quantum operations on classical hardware, which illustrates the 
prospect of quantum processes to enhance their efficiency in 
processing. Although the model is not applied to real quantum 
hardware, as in the quantum-enhanced model, the same benefits 
to pattern recognition and the requirement of less expensive 
hardware materialize.

Thus, to evaluate and compare the performance of QBrainNet 
with standard machine learning models, the Precision-Recall 
Curve (Figure 8) was made for QBrainNet, CNN, SVM, RF, KNN, 
and LR (50). The precision-recall indicates how deeply each model 
tracks and differentiates actual cases (precision) and false negatives 
(recall) (51).

4.3 Baseline model configurations

All classical baseline models (CNN, SVM, Random Forest, 
KNN, and Logistic Regression) were trained and tuned on the 
same dataset in order to compare them to QBrainNet. The CNN 
was composed of three convolution layers with ReLU activation, 
max pool and two fully connected layers and was trained for 50 
epochs with the Adam optimizer (learning rate = 0.001, batch 
size = 32) by applying data augmentation to improve generalization. 
The SVM with scalable RBF kernel C = 1, g = 0.01, and number of 
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iterations = 50 was used. The Random Forest was built with 100 
trees and with no maximum depth with training of 50 iterations 
for the bootstrap aggregation. KNN was implemented with 5 
neighbors and Euclidean distance, while Logistic Regression was 
implemented with L2 regularization by using Liblinear solver with 
50 iterations. Scientific rigor is maintained by providing the 
settings for experimental conditions under which the performance 
comparison between QBrainNet and classical models is undertaken 
under optimized and consistent conditions.

To make sure that the comparison is fair and strong, we  have 
considered state-of-the-art deep learning models, such as ResNet and 
EfficientNet, and classical machine learning models (CNN, SVM, RF, 
KNN, LR). These sophisticated architectures are more comprehensive 
benchmarks, and it is possible to thoroughly assess the performance 
of QBrainNet.

First, the Precision-Recall Curve clearly shows that QBrainNet 
performs significantly better than all other models. QBrainNet achieved 
a high precision of 0.96 and recall of 0.94, representing the high 
performance of its strong capability to identify the positive case of stroke 
with the balance false positive. In contrast to those two, we found that 
CNN was 0.85 in precision and 0.90 in recall, SVM 0.83 precision and 
0.90 recall, RF 0.85 precision and 0.88 recall, KNN 0.80 precision and 
0.85 recall, and LR 0.78 precision and 0.82 recall.

QBrainNet’s higher AUC-PR than all the other models in stroke 
detection is further verified by showing that it approaches the AUC-PR 
area under the Precision-Recall Curve (AUC-PR).

The Calibration Curve plot (Figure  9) was used to analyze the 
reliability of each model’s predicted probabilities, which is plotted based 
on QBrainNet, CNN, SVM, RF, KNN, and LR. This is used by the 
Calibration Curve to show what proportion of actual outcomes were 
correctly predicted. The better the curve of the model’s probabilities 
approximates the ideal line (45-degree line), the better the model-
predicted probabilities are distributed concerning the actual probabilities.

The Calibration Curve shows that QBrainNet always produces well-
calibrated probabilities, and its curve was closest to the ideal line. The 
above shows that the QBrainNet predicted probabilities are closer to the 
real outcomes and thus can be  trusted for decision-making in 
stroke prediction.

On the contrary, the ideal calibration line deviates more from 
CNN, SVM, RF, KNN, and LR models. Although their probabilistic 
predictions still have some value in stroke prediction, these 
models’ predicted probabilities are not very reliable and are prone 
to overestimating or underestimating stroke probabilities in 
some situations.

Finally, Learning Curves (Figure 10) were plotted to evaluate the 
performance of QBrainNet and traditional machine learning models 
CNN, SVM, RF, KNN, and LR in terms of training dataset size. The 
learning curve depicts the model’s performance, i.e., metrics like 
accuracy vs. size of the training dataset (training and validating curve).

In Figure 10, the variation in sample sizes arises because, during 
training, an extra synthetic sample was added to equalize the data. The 
different sample sizes characterize the diversity of the augmentation 
stages conducted to enhance the robustness of the model and 
its generalization.

Analysis of results indicates that QBrainNet outperforms HAE in 
terms of consistency in improving performance, meaning it is more 
capable of generalizing with larger datasets. QBrainNet is still in the 
learning curve, and the learning curve rises gradually with more data, 
which appears to favor more data. When it sees different classes of 
samples, it can perform much better.

In contrast to the traditional model (CNN, SVM, RF, KNN, and 
LR), the performance of all models improves with more data, although 
one can see they are less pronounced as the dataset size enlarges to 
some extent. This also indicates that these models aren’t going to make 
as much use of large datasets as QBrainNet, and they can potentially 
get stuck at this level of performance.

FIGURE 8

Precision-recall curve.
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4.4 Justification of quantum model 
performance

The features extracted using the enhancement provided by the 
quantum computing process can be  the reason that enhances the 
performance of the QBrainNet model. The model can emulate 

complex and non-linear patterns inherent in the medical images 
through simulating quantum operations on classical hardware, since 
classical CNNs cannot detect this. Quantum models, because of their 
propensity to explore many solutions simultaneously, courtesy of 
superposition and entanglement, are better suited to deal with high-
dimensional data such as medical imagery, where conventional 

FIGURE 9

Hybrid calibration curve.

FIGURE 10

Learning curve.

https://doi.org/10.3389/fmed.2025.1677234
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Priyadharshini et al.� 10.3389/fmed.2025.1677234

Frontiers in Medicine 16 frontiersin.org

methods tend to flounder. This increased spotting of patterns 
translates to better estimates of a stroke.

The acceleration in inference speed that the report gives is 
attributed to the quantum feature extraction process in the 
QBrainNet. QBrainNet enables them to process extensive data 
more productively than conventional techniques on classical 
hardware, which is only simulated. Quantum hardware is not 
utilized, but the simulated quantum operations allow sampling the 
feature space much faster, resulting in inference times as much as 
30 percent faster than classical CNN models, particularly when 
applied to high-dimensional medical imaging data.

The selected excellent traditional ML methods will 
be  compared with QBrainNet (AlexNet, CNN, SVM, Random 
Forest, KNN & Logistic Regression). The results indicate that 
QBrainNet has high accuracy, precision, recall, F1 score, 
AUC-ROC and good calibration, outperforming all other models. 
The comparison of these evaluation metrics is detailed as follows: 
The performance comparisons using Box Plots (Figure 11) indicate 
that QBrainNet performs the best against all other models in most 
key metrics. In particular, QBrainNet achieved 96% accuracy, 
which beat CNN (87%), SVM (85%), RF (87%), KNN (83%) and 
LR (80%). Moreover, It had a precision of 0.96 versus CNN (0.85), 
SVM (0.83), RF (0.85), KNN (0.80) and LR (0.78) on correctly 
identifying positive stroke cases. While QBrainNet scored only 
0.94 in terms of recall [better than CNN, a score of 0.90, as well as 
SVM (also 0.90), RF (0.88), KNN (0.85), and LR (0.82)], recall is 
significant for the early detection of this disease. These results 
indicate that QBrainNet can identify true positives exceptionally 
well. QBrainNet finally achieved an F1 score of 0.95, whereas the 
precision and recall outcome is well balanced by exceeding the 

performance of CNN (0.87), SVM (0.86), RF (0.86), KNN (0.82), 
and LR (0.80).

4.5 Computational efficiency

Finally, regarding training and inference time, QuartzBrainNet 
was compared to CNN, SVM, RF, KNN, and LR (Figure 12). It is 
shown that QBrainNet is slightly slower to train than traditional 
models and purely faster in inference time compared to CNN and 
other models, where inference time is competitive to real-time 
prediction tasks.

Because QBrainNet’s underlying algorithms are more complex 
than many of the others we tested, it needed a little extra time to train 
but achieves similar or better prediction accuracy than the other 
models demonstrated in the previous sections.

4.6 Model generalization

The QBrainNet model’s performance in terms of 
generalization ability was assessed via the method of train-test 
split by using 20–30 percent of the data reserved after training 
the model on the rest of the data. The results reveal that the 
model is highly accurate and does not show a significant drop in 
accuracy when exposed to new data. The quantum-enhanced 
block of the feature extraction process helps the model generalize 
by locating strong patterns that have not been overfit to the 
training data. This shows that the model could be applied in the 
real world for stroke identification.

FIGURE 11

Performance comparisons.
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4.7 Feature importance

Figure  13 presents the Feature Importance Visualization 
comparing the stroke detection models QBrainNet, CNN, SVM, 
RF, KNN, and LR regarding which feature is most and least 
important to the models. It is concluded that QBrainNet 
attaches the maximum importance to Feature 1, which implies 
that it utilizes a key feature in a way that allows it to make a 
decision effectively. Similarly to Feature 1, it can be seen from 
Random Forest (RF) that it also prioritizes Feature 1 essentially. 
However, CNN, SVM, KNN, and LR spread the importance of 
features more evenly, possibly indicating less of the most 
essential features.

QBrainNet seems to be  the best model-making feature 
prioritization, based on which the most important features have been 
selected, which makes a more efficient and accurate decision-
making process.

4.8 Confusion matrix

Thus, by using the YlGnBucolour scheme, the Confusion Matrices 
(Figure 14) for models such as QBrainNet, CNN, SVM, RF, KNN and 
LR, are generated, to better show the models’ performance. These 
matrices indicate the model stroke and non-stroke cases that can 
be heartily classified with percentage and explicitly classified with 
percentage of stroke and non-stroke cases.

Examining the matrices reveals that QBrainNet performs far 
ahead of the other models, with a larger number of true positives, 
which demonstrates its ability to identify stroke cases accurately. 
Moreover, QBrainNet ensures a low number of false positives and false 
negatives, which is an indicator of its accuracy in 
preventing misclassifications.

However, CNN, SVM, RF, KNN, and LR also perform very well, 
giving more or less the same misclassification rates (false positives or 
false negatives), especially in stroke detection (52–54). This reiterates 
QBrainNet’s better performance in precisely classifying stroke cases, 
rendering it a more trusted model for clinical use.

4.9 Discriminatory power

Comparison of QBrainNet, CNN, SVM, RF, KNN, and LR is 
performed in ROC Curves (Figure 15). The Area under the Curve 
(AUC) measures each model’s discriminatory power. The AUC value 
performance will be better in classifying positive (stroke) and negative 
(non-stroke) cases.

The AUC clearly shows that QBrainNet has the highest AUC of 
0.97 on its ability to classify stroke accurately. Compared to other 
models, its curve is closer to the ideal upper-left corner, indicating its 
high discriminatory power.

In contrast, CNN reached an AUC of 0.92, SVM followed with 
0.91, and RF recorded an AUC of 0.93. At the same time, KNN and 
LR achieved AUC values of 0.88 and 0.85, respectively, indicating they 
were relatively less capable of separating stroke from 
non-stroke patients.

Considering overall performance, the ROC Curves also show that 
QBrainNet performs better than the traditional models and gains the 
top performance in stroke detection.

4.10 Hyperparameter optimization

Figure 16 shows the Learning Rate vs. Performance graph, which also 
shows how other models, such as CNN, SVM, RF, KNN, and LR, perform 
with different learning rates and how QBrainNet’s performance varies 

FIGURE 12

Computational efficiency.
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FIGURE 13

Feature importance visualization.

FIGURE 14

Confusion matrix.
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over that. Hyperparameter tuning is shown to have a great effect on each 
model’s performance, particularly the learning rate.

4.11 Histogram for feature distributions

The Histogram for Feature Distributions (Figure  17) shows the 
distribution of feature values for QBrainNet, CNN, SVM, RF, KNN, and 
LR. The difference in QBrainNet is that it concentrates on feature value at 
the higher end, indicating it is more dependent on features. Other models, 

for example, CNN, SVM, and RF, have overlapping distributions, and 
KNN and LR have less clear peaks. This visualization shows the different 
ranges of features for each model to be used for prediction.

Results indicate that the performance of QBrainNet was more 
consistently improved when the learning rate was tuned. That means 
QBrainNet is more adapted to the hyperparameters and more efficient 
than the rest of the models. On the other hand, some other models, 
such as CNN, SVM, RF, KNN, and LR, showed less pronounced 
improvement, which indicates that they require more changes in 
learning rate or are less flexible in hyperparameter optimization.

FIGURE 15

ROC curves.

FIGURE 16

Learning rate vs. performance.
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5 Conclusion

In this work the use is proposed for the quantum neural networks in 
stroke prediction by employing medical imaging data, where the 
QBrainNet is a state-of-the-art quantum enhanced neural network. This 
is due to the fact that it integrates into the classical machine learning 
models algorithms of quantum computing such as Quantum Neural 
Networks (QNN) and Variational Quantum Circuits (VQC) which makes 
calculations more efficient and more reasonably anticipates predictions. 
How does QBrainNet solve this problem? QBrainNet uses quantum 
computing to process high dimension medical image data more efficiently 
and particularly, when the dimension of our data is under such small 
conditions as are illustrated in the conventional models (there are few 
distinct images in the background).

We first conduct a comprehensive evaluation where it is demonstrated 
that QBrainNet outperforms classical machine learning models (e.g., 
CNN, SVM, RF, KNN, and LR) in several critical metrics, i.e., accuracy, 
precision, recall, F1-score, AUC-ROC, and computational speed. We find 
that QBrainNet has a strong ability to identify strokes and little 
misclassifications precisely and performs better in different configurations 
of hyperparameters. For instance, our model obtains better AUC-ROC 
scores and shows merits with varying learning rates, adequately suggesting 
its flexibility and generalization capability on an extensive range of 
medical imaging data.

Furthermore, the Feature Importance Visualization highlights 
which features are the most important by prioritizing those for stroke 
detection. Thus, the model is better interpreted, and it provides some 
insight into the decision-making process. The Confusion Matrix 
depicts the application of a low false positive and false negative rate, 
among other things, supporting early stroke detection.

Although its training time is slightly higher than that of traditional 
models, QBrainNet is comparable in real-time prediction time, 
considering its similar inference time. QBrainNet is a promising tool 
for clinical applications that allows for real-time decision-making.

5.1 Future work

QBrainNet is a promising tool for predicting stroke; however, 
QBrainNet has some potential room for further development and 
enhancements. Second, the model can be corroborated in addition to the 
addition of more diverse and big medical imaging datasets, which could 
contain data from other imaging modalities (e.g., CT, MRI, ultrasound). 
The robustness of QBrainNet in real-world clinical scenarios and that the 
model behaves uniformly across various populations would need a large 
and diverse dataset for us to penetrate deeper.

It can also be optimized in the quantum components of QBrainNet 
both from the design point and from the quantum algorithmic 
perspective. With new and more efficient quantum algorithms 
emerging for these more than-ever powerful quantum computing 
technologies, new problems will arise. Further integrations of these 
advancements with the QBrainNet can lead to additional performance 
improvements, especially in speed and accuracy. Some of the tasks for 
exploring further are exploring the usage of more advanced quantum 
machine learning technologies such as quantum support vector 
machines or quantum k nearest neighbors that may help to improve 
data classification and pattern recognition.

Other than optimizing quantum components, QBrainNet could 
also be simplified to quantum-enhanced generative models. These 
models may generate medical images, mainly when insufficient data 
exists synthetically. We hypothesized that augmenting the dataset with 
high-quality synthetic quantum-enhanced images would allow us to 
train the model on a robust and more comprehensive dataset that 
would aid the model in generalization when processing unseen data.

Another important direction for future work is to explore the real-
time deployment of QBrainNet in clinical settings. For this to 
be possible, the model would need to be integrated with the existing 
healthcare systems and its usage made practical for medical 
practitioners. Moreover, real-time performance evaluations and 
continuous learning mechanisms can be  added to the model to 

FIGURE 17

Feature distributions.
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enhance it with additional data as they become available. Integrating 
QBrainNet with electronic health records (EHR) and other clinical 
data sources can be  a powerful tool for early stroke diagnosis to 
forecast timelines that can guide healthcare providers’ decisions.

Finally, investigating the explainability of QBrainNet for clinical 
decision-making is an integral part of future work. Although the 
model works very well, we  need to understand how quantum-
enhanced parts of the model can affect the predictions to gain the trust 
of healthcare providers. Since the decision-making in high-stakes 
applications, i.e., medical diagnostics, must be more transparent and 
interpretable, techniques such as model interpretability and 
explanation generation should be explored.

To summarize, QBrainNet is a very promising tool for using 
quantum enhancement to predict stroke, and further research and 
development in these areas are expected and necessary to advance its 
applicability in clinical use and ensure its success in the real world 
of healthcare.
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