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Introduction: Brain stroke is still one of the leading causes of death and long-
term disability in the world. Early and correct diagnosis is therefore important
for patient outcome. Although Convolution Neural Network (CNN), classical
machine learning models, have achieved great progress in medical image
classification, they have to face the performance saturation problem when
dealing with high-dimensional and complex data such as medical images. To
tackle these limitations, we propose QBrainNet, a quantum enhanced model,
which is to enhance brain stroke prediction from medical imaging datasets.
Methods: The model consists of Quantum Neural Networks (QNNs) applied as
learning complex patterns in terms of medical images and Variational Quantum
Circuits (VQCs) that will be used to optimize the classification. The feature
extraction featured in the QNNs utilises quantum properties of superposition
and entanglement to extract non-linear high-dimensional patterns in images
related to stroke that may not be captured using classical limits. The VQCs, in
turn, are applied to optimize the model performance, further allocating the
boundaries of the decision and enhancing the model performance in terms of
accuracy by optimizing the quantum gates and operators used during the work.
QBrainNet utilizes the combination of such quantum properties as entanglement
and superposition to represent more complicated non-linear patterns in stroke-
specific images in a better manner than a classical application does.

Results: This paper proposes a hybrid classical-quantum scheme: preprocessing
classically, and learning quantum-enhanced. Quantum gates and operators are
used when performing the quantum phase to optimize decision boundaries,
achieving vastly enhanced prediction accuracy and efficiency performance.
Experimental results indicate that QBrainNet has a better accuracy (96%) and
AUC-PR (0.97) than the classical models like CNN, SVM, and Random Forest,
proving the superior performance of QBrainNet in stroke detection.

Discussion: The inference time is shorter, so the model can be used as a real-time
clinical application. This article points to the possibilities quantum computing can
have in revolutionizing medical diagnostics, especially stroke prediction.
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1 Introduction

Stroke constitutes one of the significant causes of death and
permanent disability in the world, with about 15 million individuals
having a stroke per year according to the WHO (1). Early diagnosis and
prompt treatment are essential in enhancing survival and minimizing
long-term disability. Nevertheless, clinical condition diagnosis, where
time is of the essence, will still be a challenge to correctly predict because
of the complexity and subtlety of patterns in medical imaging data,
particularly in the early stages (2, 3). Interpretation of CT and MRI scans
used widely to detect stroke is subject to human error, inconsistency, and
variability between practitioners, and it may lead to delay in diagnosis and
impact treatment outcomes (4).

Recently, the methods based on machine learning (ML), particularly
Convolutional Neural Networks (CNNs), have been actively applied to
the medical image analysis, and stroke detection has been successful
with the CT or MRI scans. The CNNs have been shown to work
exceptionally well when processing medical imagery and extracting
features that classify the image as stroke-related quickly, consistently,
and accurately, compared to the more conventional methods (5, 6).
Although these CNNs and other classical models are effective, they are
limited by high-dimensional and complex medical data. These models
fail to identify delicate structures and interactions within the data,
particularly when the datasets are small and/or low-contrast, as
frequently happens in medical imaging of stroke patients (7, 8).

The new area of Quantum Machine Learning (QML) offers an
optimistic answer to these difficulties. Quantum systems work with
information in radically new ways compared to classical systems,
allowing them to work with extensive multi-dimensional data more
efficiently through superposition and entanglement. Indeed, the
quantum properties allow quantum computers to solve some problems
efficiently in computation, where classical computers do not; the
quantum potential advantage has indeed been observed in applications
such as medical image analysis (9, 10). Quantum Neural Networks
(QNNs) and Variational Quantum Circuits (VQCs) can specifically
be used to provide an advantage in the classical world in specific tasks
by finding complex patterns and relationships in data and using these
patterns and traits in a non-linear fashion (11, 12).

This paper presents QBrainNet, a classical-quantum model that
aims to enhance medical imaging stroke prediction. The classical
element of the QBrainNet engages in feature extractions, augmenting
images, and noise elimination, whereas the quantum element
continuously applies QNNs and VQC networks to the learning task.
QBrainNet, with its quantum-enhanced learning combining classical
machine learning, is much faster and has a higher accuracy at
identifying subtle factors in stroke-related medical images (13, 14).
The quantum aspect of the model applies simulated quantum
operations through Python code to optimally determine decision
boundaries in the feature space. It is, therefore, more accurate in the
classification than the conventional methods.

One main issue with medical image classification tasks is the small
datasets. In our scenario, we only have 3,800 images, which can easily
result in overfitting. However, the problem can be overcome the way
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QBrainNet does it by using cross-validation and regularization
techniques (15, 16). The quantum elements of QBrainNet are designed
through Python-based quantum simulation, in which quantum gates
and circuits are simulated on a classical computing device. Thus, the
model is accessible and reproducible without quantum information
technology hardware (17, 18).

The main strengths of the QBrainNet model in comparison with
classical approaches are linked to the possibility of dealing better with high-
dimensional data. CNNs and other traditional techniques are bulky
programs that handle big chunks of data, particularly in the case of medical
image tests. Compared to this, QBrainNet takes advantage of quantum
parallelism, where quantum gates and superposition significantly decrease
the degree of computation and speed of processing (19). Such a decrease in
computational demands and the increase in the prediction speed result in
QBrainNet being a potential candidate in clinical practice, where the speed
of diagnosis may be a matter of life and death.

In recent developments, quantum computing has demonstrated
great potential to improve machine learning models, particularly for
high-dimensional data analysis. In this work, we simulate the quantum
parts of QBrainNet using PennyLane on classical computing resources.
This way, we can exploit quantum effects like superposition and
entanglement for feature extraction and optimization without access
to real quantum hardware. Our simulation allows us to simulate
quantum circuits and perform parameter optimization in a way
compatible with classical machine learning.

The present study adds to the list of research that deals with the
application of quantum computing in healthcare. In particular,
we show promise of quantum-enhanced models such as QBrainNet in
the field of stroke prediction, namely that quantum technology can
be used to enhance the performance of medical diagnostics not only
in accuracy, but in efficiency as well, especially in a domain where
errors can have severe consequences like stroke care (19).

2 Related work

Applying machine learning (ML) to medical imaging has entirely
transformed the face of healthcare diagnostics in a way no one had
previously imagined. More specificall, CNNs have found a wide
application in deep learning to solve specific tasks in medical imaging.
The application of CNNs to the interpretation of medical images has been
demonstrated to be capable of detecting and classifying ailments such as
cancer, pneumonia, and brain stroke, as well as segmenting organs and
other body parts critical to the human body (20). Of particular interest in
brain stroke detection is that CNNs and other forms of deep learning have
been applied to CT image processing, MRIs, and fMRI to provide brain
stroke risk assessments, but with high levels of automation. Such models
are much superior in the detection of stroke lesions and the classification
of ischemic strokes. By extracting hierarchical representations of image
information, these models can discover useful trends that the human
expert may not be able to declare easily. The approach here is a novel
application of the idea behind hybrid quantum-classical neural networks
(21) to predicting strokes through quantum-enhanced preprocessing.
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These models, although effective, are restricted. Brain images can
be complex, leading to difficulties for classical CNNs to apply to them and
subtle features in the early stages of strokes. These models require
substantial labeled data, computer power, and a preprocessing mechanism
(22), and thus are not readily applicable to high-dimensional data.
Additionally, it is computationally costly to train deep learning models
wherein the high-resolution medical images are to be used; they require
both heavy computing hardware and time. Original CNNs inherently lack
the flexibility to extract subtly non-linear structures in the data, and such
patterns are typical with medical images, as the data are noisy,
heterogeneous, and may be inaccurately annotated (23). Also, this fulfills
the need for more complex models that could better predict the nature of
medical imaging with a complex structure (24).

To overcome these shortcomings, Quantum Machine Learning
(QML) has proposed itself as an excellent solution. It is theorized that
QML methods will be able to utilize the quantum superposition and
quantum entanglement properties of quantum computers to both
process complex information more effectively and prevent the scale
explosion that occurs when using classical models. These quantum
benefits may bring computational advantage, especially where data is
needed in very high dimensions, such as in medical image processing
(25). Quantum systems offer the prospect of investigating multiple
solutions in parallel and exhibit greater capabilities of pattern
recognition, which are of particular interest with complicated medical
data. This will enable quantum methods, even when implemented on
classical platforms using Python code, to perform better when
compared with classical models in specific tasks requiring subtle
non-linear relationships, e.g., when used to predict stroke (26, 27).

Healthcare and medical diagnosis are some examples in which QML
has already been proven effective. For instance, Quantum Support Vector
Machines (QSVM) were used to solve tasks in image classification. The
results revealed that QSVMs are more effective in terms of computational
efficiency than SVMs and are highly accurate in prediction (28).
Moreover, QNNs, or the quantum analog of normal neural networks,
have already been used in such tasks as image classification and drug
discovery. Quantum-enhanced models, on the other hand, can access the
power of quantum entanglement to learn intricate structures in data that
are favorable over conventional models in the task of image classification
(29). As some examples, the Quantum version of standard neural
networks, namely Quantum Neural Networks (QNNs), have been
implemented in problems like image classification and drug recognition.
In the light of this understanding, QE models can leverage quantum
entanglement to learn complex patterns in the data in a more efficient way
than classical models, which is a key advantage in various tasks, such as
image classification. Such methods are currently being utilized in this
work as simulated quantum operations that, even though they do not run
on actual quantum devices, act as a step in the right direction as applied
to quantum-enhanced optimization.

Other quantum algorithms are likely to prove useful in healthcare,
including Quantum Random Forests (QRF) and Quantum k-Nearest
Neighbors (QK-NN), which have been found in many cases to require
less time to train and achieve higher accuracy than their classical
counterparts on high-dimensional data (30, 31). Quantum algorithms,
including Quantum Random Forests (QRF) and Quantum k-Nearest
Neighbors (QK-NN), have also been investigated in healthcare and on
high-dimensional data. Quantum algorithms are more efficient in
their training speed, and their results are found to be better when
compared to classical algorithms. Such algorithms are emulated via
quantum operations on a classical computer in Python and
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demonstrate the possibilities of the quantum-enhanced models
without involving the actual physical quantum device (27).

Although applying QML to medical imaging is gaining more
attention, it has not yet been explored in brain stroke prediction. Although
past works have used quantum models in image segmentation, disease
categorization, and other medical imaging applications, there has yet to
be a quantum learning model to predict stroke occurrence using medical
imagery, which is the novelty of this paper. A quickly expanding volume
of literature on QML shows that one of its uses can be better optimization,
image classification, and pattern recognition. Still, using QML in stroke
prediction in medical imaging has yet to be explored (32). Though
numerous cases of research on QML exist, there is a significant lacuna in
its application in the prediction of brain stroke, which is the novelty of this
work. Though quantum-enhanced models have already demonstrated
their potential in optimization, image classification, and pattern-
recognition problems, their use in medical imaging, in general, and stroke
prediction, in particular, has not been studied extensively. This work
bridges this gap through simulated quantum operations (through Python
code) on classical computing resources (33).

The novelty of this research is that QBrainNet is the first application
of QML in stroke prediction. The architecture can close a substantial
research gap in stroke detection research as it has integrated quantum-
enhanced preprocessing, feature extraction, and classification into a single
framework. Classical simulations of quantum operations allow for
avoiding quantum hardware, but increase the stroke prediction accuracy
and reduce computing costs (34). The proposed work is the initial
implementation of QML regarding stroke expectations. Quantum-based
benefits to preprocessing, feature extraction, and classification strongly
occur within the same framework, as all other quantum manipulations
are performed through Python codes running on a classical
CPU. Employing simulated quantum operations over quantum hardware
indicates a big leap toward actualizing quantum-powered healthcare tools.
It influences how quantum computing can be used to develop solutions
to mitigate modern medicine’s challenge to the detriment of the overall
healthcare industry: stroke diagnosis (35).

3 Methodology

This section describes the general strategy used to get to and test
QBrainNet, a quantum augmented neural network that will predict the
risk of stroke from brain imaging data. It contains four main parts of
methodology that are dataset preparation, preprocessing and feature
extraction, quantum machine learning model development and model
training and evaluation. We describe each stage in detail to provide a
detailed account of how the quantum techniques are integrated into the
medical image analysis pipeline for increasing the accuracy of
stroke prediction.

The system requirements for running the quantum operation
simulations are as follows: The simulations have been run on a system that
has Intel i7 processor and 16 GB RAM the Ubuntu 20.04 operating
system. The quantum operations were simulated with PennyLane, version
0.18.0, a Python-based library which can build on classical computing
resources to simulate quantum operations. The simulate codes were
written in Python 3.8 and some additional libraries such as Numpy 1.21.0
for numerical computing, Scipy 1.7.0 for scientific computing, matplotlib
3.4.3 for visualization. The entire setup was done in a conda environment
to handle everything in the appropriate way in terms of dependencies and
reproducibility. This environment allowed efficient implementation of
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quantum simulations on classical computing resources without the need
for any actual quantum hardware.

3.1 Dataset

The medical images included in this study were diagnosed as usual
or as stroke from a dataset. The photos are taken from publicly available
datasets usually used in the stroke detection area, such as CT scans and
MRI images. This dataset contains high-resolution MRI brain scans of
different stroke severity, early ischemia, and late-stage hemorrhage. The
pictures are marked to help define which ones are routine and which have

10.3389/fmed.2025.1677234

an indication of a stroke. These images are then fed through simulated
quantum operations to improve feature extraction, classification, and
overall predictive accuracy with Python-based quantum simulators on
classical computing resources. Lastly, each image has a label, indicating
whether the brain imaging is standard or if there is a stroke.

Figure 1 demonstrates the unprocessed and processed CT scan brain
scans. Raw images are initially scanned, whereas the processed ones have
undergone a procedure of removing noise and normalization to facilitate
analysis. Figure 2 shows grayscale, equalized, and edge-detected images
of the preprocessed brain images. Gray levels eliminate color, equalization
increases contrast, and edge detection emphasizes boundaries of key
structures. The CT scan cross-sections shown in Figure 3 are used to

FIGURE 1
Dataset overview: raw and processed brain CT scan images

Image 3

FIGURE 2

Image 2

Preprocessed brain images: grayscale, equalized, and edge-detected versions

Iimage 3

Image 1 Image 2

FIGURE 3
CT scan cross-sections showing brain structure and potential abnormalities

Image 3

Image 4 Image 5
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Image 1

FIGURE 4
CT scan cross-sections of brain showing stroke variants.

Image 3

Image 4 Image 5

/

obtain details about brain structure and the parts prone to abnormalities
such as strokes and tumors. Figure 4 shows different CT scan cross-
sections with varying types of stroke, and how ischemic and hemorrhagic
strokes can be represented in the brain in a cross-section.

3.2 Data preprocessing

The raw medical images are preprocessed before training and
evaluation to reduce inconsistency and robustness across the medical image
set. Rotation, flip, and noise addition augment the dataset and make it more
diverse. To resemble real data and increase the model robustness to
imperfect data, these procedures simulate real-world variation, e.g., to some
extent, by the slight changes in rotation or orientation of scan images, and
provide noise. This can better generalize the model, especially with a small
data set, as it minimizes the chances of overfitting.

The primary preprocessing steps include:

1 Image Resizing: Uniformity is guaranteed in the input data, as
all the images in medical images may have different resolutions.
They are all resized to a fixed resolution. This is an essential
step so that the data maintained between multiple images is
compatible with deep learning models image resizing is
computed using Equation 1.

Tresized = RESize(Iariginul>W>h) (6]

Where:
o Iesized - resized image.
* Ioriginal - original image.
o W & h are the target width and height, respectively.

2 Normalization: To adjust to the different pixel intensity values
represented by various medical imaging modalities, the images are
scaled to the 0-1 range. This will allow the model to be adjusted
only to the scale of the raw data and not be distorted by the ranges
of pixel intensities normalization is computed using Equation 2.

Ioriginul

255 @

Inormalized =

Frontiers in Medicine

Where:

 Lyormalized - Normalized image.
* Ioriginal - original pixel intensity.

3 Class Imbalance Check: Since the medical datasets usually
become class imbalanced, balancing the number of
samples in training and test sets within normal and stroke
groups is very important. If an imbalance is discovered,
methods that include over-sampling the minority
observations or under-sampling the majority can be used
to generate a balanced dataset. This eliminates the
possibility of biasing the model toward one of the classes,
which is used a lot more; hence, the model will perform
well in both classes.

3.3 Dataset partitioning

The data is split into the training data and a testing data
where 70-80 percent of the data is used in the training and 20-30
percent for testing. The training data is then trained on the
model, known as QBrainNet model and the testing data is used
to estimate the model’s performance on unknown data. This
division will ensure the model is tested on data that it has not
encountered previously during the model’s training, and will
be an impartial representation of how well the model
is performing.

Preprocessing of dataset, and splitting the preprocessed
dataset into training and testing datasets is done. The model is
trained on the training data and tested on the test data (36, 37).
The training is usually done using 70-80% of the data; the
remaining 20-30% is used for testing. There is a need to fold this
type to make sure that the model performs well on the unseen
data rather than being too optimistic regarding the performance.

3.3.1 Dataset distribution

The distribution of ‘normal’ and ‘stroke’ images over training and
test sets can be viewed in Table 1.

Class distribution plays a role in training the model on a
balanced set of examples, which is very important for accurate
stroke prediction.
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TABLE 1 Distribution of normal and stroke images in the dataset.

Class Training set Test set Total % in test

% in training

Augmentation Primary

(images) (images) images set set applied data source
Normal 1,500 500 2,000 51.70% 55.60% Rotation, Flip, Noise Hospital A &
Public Dataset
Stroke 1,400 400 1,800 48.30% 44.40% Contrast Stretching, Zoom Hospital B &
Research Cohort
Total 2,900 900 3,800 100% 100% - -
CT/MRI Images Raw DataSet
() SI=PS
CT/MRI $VY
images J =SS
Raw Dataset
4
Model Training Model Evaluation
(Training Dataset) (Testing Dataset)
FIGURE 5
Proposed model's dataset flow diagram.

3.3.2 Dataset flow diagram

Here, in the following Figure 5, we show the flow of the dataset in

2 Undersampling: Since it is a class imbalance problem,

we applied the Random Undersampling technique to the
the preprocessing, training and evaluation stages: majority class. This method addresses the issue by randomly
selecting samples from the majority class to obtain a balanced

3.3.3 Class imbalance handling

To solve the problem of class imbalance of the dataset, we used

distribution between both classes. Decreasing the number of
majority class samples ensures the model does not become
some oversampling and undersampling methods during the data biased toward majority class predictions.
preprocessing phase: o Stage in Pipeline: Minority class was oversampled, and then

Random Undersampling was implemented to achieve class
1 Oversampling: We applied Random Oversampling to replicate balance without overfitting of the minority.
samples from the minority class (either “normal” or “stroke”)
to train the model on a balanced dataset. This method copies Class Imbalance Handling Pipeline:

minority class samples to make the sizes of the minority and

majority classes equal, eliminating the model’s bias for the 1 Divide the dataset into a training and validation dataset.

majority class. 2 Implement Random Oversampling to the minority class in the
o Stage in Pipeline: Random Oversampling was used as one training dataset to balance the class distribution.

of the pipeline steps on the training set after splitting the 3 Random Undersampling: the oversized majority class in the

dataset into training/validation sets. This helped ensure train data set is reduced to the size of the minority class.

the model would learn from an even distribution of the 4 The balanced training set is now used to train the

two classes.
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QBrainNet model.
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These techniques allow for equal representation of both classes
(regular versus stroke) during model training, which is essential in
healthcare applications where accurate classification of both
conditions is crucial.

3.4 Preprocessing and feature extraction

Several classical preprocessing techniques are performed
before the quantum machine learning algorithms are used to
preprocess the medical images, such that the data is in a format
that is as best as possible for extracting features and the model
can be trained on. These techniques allow us to mitigate noise,
clean, increase contrast, and standardize the stroke dataset to
features more

facilitate the networks’ detection of stroke

easily (38).

3.4.1 Image resizing

Resizing images is a crucial preprocessing step because all the
images need consistent dimensions supported by deep learning
models, which usually need uniform input sizes. The resizing
process involves mapping the original image size Woyiginai X Horiginal
to a new size Wyey, X Hyeyy. This can be mathematically represented
as using Equation 3:

X

Tiesized (x’)’) = Ioriginal[ “Whew = h Hyew (3)

Woriginal original

Where:
o ILiosized - resized image.
* Ioriginal - original image.
* Woriginal and horigingr are the original width & height of the image.
o Wy and by, are the target width & height for resizing?

The bilinear interpolation method is used for resizing to preserve
image details (39).

3.4.2 Grayscale conversion

Grayscale conversion of the images is applied to simplify the
data and decrease computational complexity while retaining
stroke-related features. Grayscale images are beneficial as they
decrease the number of channels (from 3 in RGB to 1), thus
reducing the amount of computation and emphasizing the textural
differences in the brain tissue.

The conversion from a color image I,gb(x,y) to grayscale
Toray (x,y) is done by averaging the weighted sum of the RGB
channels, following the formula as shown in Equation 4:

Lgray (%) =0.2989- Iifgb (x,y)+0.5870- Igb (x)
+0.1140- Iy (%,) (4)

Where:

Ifgh (x,y),Ifgb (x,y),Ifgb (x,y) - Represent the Red, Green, and
Blue (RGB) color channels, respectively.

Toray (x,y) - resulting grayscale image.
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3.4.3 Histogram equalization

To enhance the contrast of the images, histogram equalization is
used to redistribute the intensity levels throughout the image. Spread
out across the whole range, this process helps to bring out subtle
details, including early signs of stroke. Histogram equalization can
be mathematically formulated as shown in Equations 5 and 6:

CDF(i)= ip(j) (5)
Log (%,7) = CDF (Ioriginal (%.3))-(L-1) (6)

Where:

CDF (1) It is the cumulative distribution function of the
pixel intensities.

p( j ) It is the probability density function of the pixel intensities.

L Is the number of possible intensity levels (typically 256 for
8-bit images).

Teg (x,y) It is the histogram-equalized image.

It ensures that the pixel intensity distribution is more uniform
than it is, thereby improving the contrast of the image and bringing
out finer details, which are important for stroke detection (40).

3.4.4 Feature extraction

Next, necessary characteristics from the images are captured using
feature extraction. Key features are extracted using classical methods,
including those based on determining edges or analyzing textures,
with the view that these can be used to differentiate stroke-affected
areas from normal brain tissue.

1 Edge Detection: This involves the detection of the boundaries of
an object in an image. The Canny Edge Detection algorithm is
employed to indicate regions of interest, such as in stroke lesions,
by identifying sharp intensity transitions. Mathematically, edge
detection is defined as shown in Equation 7:

EDGE(Igmy) = Canny(Igmy) 7)

Where I, is the grayscale image, and the Canny operator finds
the edges by computing the gradient of the image.

2 Texture Analysis: It measures the structure present in the

image by performing texture analysis. Gray Level

Co-occurrence Matrix (GLCM) is computed using Equation 8:
GLCM (irj) =Y p(x.p,is)) ®8)
Xy

Where:

o Lastly, GLCM(}, j) denotes the co-occurrence matrix where pixels
have values i and j.

« It is noted that p(x,y;i,j) defines the probability that pixel pair
values are i and j at locations x and y.
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FIGURE 6
Preprocessed images: original, grayscale, equalized, and edge detection.

The texture features are promised as a crucial source of
information about the texture of brain tissue, which might aid in
discriminating between healthy and stroke-affected parts (41, 42).

Figure 6 illustrates the effects of the preprocessing steps on the
original medical image. The left image is the raw medical scan, the
center image is the conversion to a greyscale and the last one is
the histogram equalization (42). Figure 6 depicts a sample of
medical images after the grayscale conversion and
histogram equalization.

The computational preprocessing step uses quantum-enhanced
feature extraction procedures, which are also simulated using Python
scripts in PennyLane and other quantum simulators. The methods
enable the detection of fragile patterns in medical images that
conventional methods such as CNNs may not easily learn. By mapping
quantum processes onto classical computers, we can use quantum
phenomena such as superposition and entanglement to use the more
efficient extraction of features in complex and high-dimensional
medical images.

3.5 Quantum machine learning model

This part introduces the derivation of this work’s QBrainNet
model, which is a quantum-enhanced neural network for estimating
the probability of missing a stroke case from brain images. The model
combines classical machine learning methods with simulated
quantum models for a more accurate stroke prediction. Rather than
using physical quantum hardware, the quantum constituents are
simulated through the PennyLane simulator implemented in Python
and run on ordinary computing resources. These simulations allow us
to incorporate quantum-inspired properties like superposition and
entanglement, which are challenging to simulate in purely classical
neural networks. In our hybrid framework, we train variational
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quantum circuits (VQCs) with PennyLane to simulate them, and solve
for the quantum parameters by gradient descent to improve
prediction accuracy.

The QBrainNet architecture comprises several layers, each taking
advantage of quantum-enhanced processing to enhance the processing
and analysis of the medical images. In particular, the quantum layers
attractively model the quantum operations to transform the image
data into feature vectors with information on more complex patterns
than classical techniques. These feature vectors are then fed to a
conventional neural network for the final stroke prediction. This can
mimic the advantages of a quantum computer on regular computers,
enabling more of us to take advantage of the quantum advantages and
do it more efficiently.

The model (QBrainNet) involves quantum enhanced ways to
improve the accuracy of stroke forecast. This is a hybrid model,
which combines the classical neural network architecture and
simulates the quantum operations to process and analyze medical
images more effectively. Rather than operating on real quantum
hardware, however, quantum phenomena, such as superposition
and entanglement, are simulated in Python libraries in the actual
hardware. This will enable the model to reflect better, more
intricate relationships in the data, which is a benefit over
conventional machine learning.

The model training for the QBrainNet has been performed for 50
epochs, using gradient-based optimization to update the quantum
parameters (RZ gate angles) in the variational quantum circuits, which
are implemented in PennyLane. The Adam optimizer with a learning
rate of 0.001 was used as the optimizer for training. The model showed
a progressive improvement in accuracy for the first 30-40 epochs, and
then the loss function stabilized, which means that the quantum parts
converged to the local minimum. The arrival time of the quantum
components was tracked closely, and the convergence was relatively
poor after epoch 40.
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The two main components of the QBrainNet model are created to
handle the two various sections of the image data processing pipeline.

Quantum Circuit Architecture:

The quantum circuit of QBrainNet model is a combination of 3
variational layers, each of which comprises a series of quantum gates
performed to process the input data and achieve the maximum
decision boundaries. The type of gates employed in each layer is
as follows:

» Hadamard (H) gate on qubit 1.
o CNOT gate between qubit 1 and qubit 2.
 Z-Rotation (RZ) gate on qubit 3.

This circuit is simulated in PennyLane using classical computer
resources. Each variational layer automatically maps the input data
and develops the decision boundaries for better classification accuracy.

The total trainable parameters of the quantum circuit are 12, which
corresponds to the angles of the RZ gates in each variational layer. These
parameters are then optimized by gradient-based methods during
training to minimize the loss and improve classification performance.

The measurement scheme measures the quantum state on a Pauli
Z basis at the end of each variational layer. The classical bits generated
from this measurement are combined to create the classification
output. The outcome depends on a majority vote among all the qubits
in the system.

The quantum circuit shown above is used to train the QBrainNet
model. The pseudocode for the training process is shown below.
#Initialize quantum circuit with 4 qubits. initialize_quantum_
circuit(num_qubits = 4). #Define variational layers (3 layers). for layer in
range(3): #Apply Hadamard gate on qubit 0. apply_Hadamard_
gate(qubit = 0). #Apply Controlled-NOT gate between qubits 0 and 1.
apply_CNOT_gate(control_qubit = 0, #Apply
Z-Rotation gate on qubit 2. apply_RZ_gate(qubit = 2). #Initialize classical

target_qubit = 1).

optimizer (e.g., Adam optimizer). optimizer = AdamOptimizer(learning _
rate = 0.001). #Training loop for 50 epochs. for epoch in range(50): #Apply
quantum circuit (forward pass). quantum_output = apply_quantum_
circuit(inputs). #Measure quantum state in Pauli Z basis. classical_
output = measure(quantum_output, basis = 7). #Compute the loss
function. loss = compute_loss(classical_output, ground_truth). #Calculate
the gradient of the loss. gradient = compute_gradient(loss). #Update
quantum  parameters using the optimizer. optimizer.update_
parameters(gradient). #Final output: make the classification decision.

final_output = classify_output(classical_output).

3.5.1 Classical feature extraction

Earlier, we mentioned about the extraction of relevant features
from the preprocessed medical images using classical methods such
as edge detection and texture analysis. The next stage is supplied with
a compact representation of brain images for subsequent processing
by these features (43).

This part shows the derivation of a quantum-enhanced neural
network, or QBrainNet that can estimate the probability of missing a
stroke case given a brain image. The model is a combination of classical
machine learning techniques and quantum simulation operations that
will improve stroke prediction accuracy. In lieu of making use of
practical quantum hardware, quantum emulations are made with
quantum simulators PennyLane utilizing Python on conventional,
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classical computing facilities. These quantum simulations allow us to
use the properties of quantum-like superposition and entanglement
that are difficult to use with classical neural networks.

The architecture of the QBrainNet consists of several layers, where
each layer utilizes the quantum processing capability to boost the
processing and analysis of the medical images. In particular, the
quantum layers model the quantum operations attractively to transform
the image data into feature vectors with information on more complex
patterns than classical techniques. These feature vectors are then fed in
a conventional neural network for final stroke prediction. The volume
and diversity of medical images are also relatively low, and thus can
create overfitting and decrease the generalization of the models in
stroke detection. To resolve this, we used several image augmentation
methods - rotation, flipping, and adding noise to the data - before
sending them forward in the preprocessing stage to improve and
stabilize the generalization ability of QBrainNet. Rotations were applied
to mimic various positions of the medical scans to ensure that the
model can identify the patterns associated with stroke, independent of
the direction at which the images are taken. This is especially significant
as brain scans used in medical practice may differ in orientation.
Manipulation of the model by flipping it horizontally and vertically to
introduce the model to other perspectives, which is more likely to
generalize its operative features in different variable conditions. Lastly,
we introduced noise into the pictures to simulate the inevitable flaws
associated with real-world medical imaging, including scanner artifacts
or low resolution. The model learns to generalize on the essential
features of the data rather than memorizing noise-free, idealized images
by adding noise to the data. The combination of the above augmentation
strategies increases the whole dataset’s variety, enabling QBrainNet to
pick up on more of the possible patterns and achieve a lower probability
of overfitting, especially with such a relatively small amount of data.
That makes a model more competent to work with unseen data and
supply precise estimation in clinical practice.

It entails studying image patterns, such as boundaries, textures,
and shapes. Edge detection with the Canny operator and GLCM is
applied to extract the features such as these. The features extracted
from these data can be represented mathematically as follows:

1 Edge Detection: Using the Canny Edge Detection algorithm,
the boundary information E.q, for a given image Iyycae 18
obtained using Equation 9:

Eedges = Ca””}’(lgmyscale ) )

Where:
Torapscale Itis a grayscale image.
Eedges Represents the edges detected in the image.

Texture Features: The GLCM (Gray Level Co-occurrence Matrix)
is an algorithm employed to describe the texture patterns present in
the image, and is able to capture important statistics such as contrast,
energy, and correlation. The GLCM for a grayscale image Lyyscare 18
computed using Equation 9.

Consequently, these classical features are then passed through to
the quantum-enhanced stage, where they are processed and
further optimized.
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To solve the generalizability problem and improve the overfitting
level, we used image augmentation methods, including rotating,
flipping, and adding noise. Such techniques mimic the natural
variation in medical images and therefore aid in better generalization
of the model in cases where the data is small.

3.5.2 Quantum enhancement

After the extraction, we feed the extracted features to the Quantum
Neural Network (QNN) to produce classification outputs. Dynamical
correlations of the quantum model such as superposition and
entanglement make it possible for it to model complex patterns of the
data which cannot be easily observed with the classical model alone
(44). In order to learn the decision boundaries and find higher-order
relationships in the data, the quantum neural network is learned using
Variational Quantum Circuits (VQCs) (45).

The model of QBrainNet integrates quantum-enhanced machine
learning on the basis of quantum neural networks (QNNs) and
variational quantum circuits (VQCs). PennyLane uses classical
computing resources to simulate these quantum components. In this
way, it is possible to do feature extraction and optimization with
quantum phenomena such as superposition and entanglement without
having access to actual quantum hardware. The quantum operations are
simulated completely in the classical environment, meaning that the full
power of quantum computing is utilized for an improved performance
without losing a practical implementation on the existing
computing resources.

As part of the classical layer of QBrainNet, we applied Adam with a
learning rate of 0.001. Adam is effective in substantial learning tasks
because of its adaptive learning rates and the momentum, making it
converge and avoid over-fitting quicker.

Regarding the quantum portion, the Variational Quantum Circuits
(VQCs) were trained with a gradient-based optimizer and the quantum
gradient descent. A parameter optimization on the quantum circuit
parameters would minimize the loss by updating parameters during
each iteration through classical optimization algorithms such as Adam
or L-BFGS. Such a hybrid optimization will allow efficient training and
better ability in modeling complex patterns with medical images.

The basic idea of a Quantum Neural Network (QNN) is to use
quantum circuits as the weights and transformations of the network,
represented by the quantum gates (46). The input sample value is
initialized and transformed according to the input data by utilizing
quantum superposition, exploring various possible results simultaneously.

To optimize the weights of the quantum neural network, we use a
Variational Quantum Circuit (VQC) that combines classical
optimization (what is to be optimized) with quantum circuits (how
optimization is to be performed). Here is the definition of VQC as
shown in Equation 10.

ly (0)=U(0)lyo) (10)

Where:

17 (9) is the quantum state after applying the quantum gates U(H)

with parameters 6.

Wy is the initial quantum state.
. U(H) is the unitary operator that applies quantum gates
parameterized by 6.

Frontiers in Medicine

10

10.3389/fmed.2025.1677234

The quantum circuit is also optimized in the classical-quantum hybrid
approach by minimizing the loss function in terms of quantum gradient
descent. The loss function can be expressed as shown in Equation 11:

L(@)zloss( |1//(9)) (11)

Where:

o A loss evaluates the prediction error of a quantum model (e.g.,
mean square error, cross-entropy).

« The loss function that the quantum circuit minimizes during
optimization is L(6).

Optimization of quantum circuit parameters is done with classical
gradient descent and more complicated optimization algorithms
(Adam or LBFGS). For training classical CNN model we used adaptive
moment optimization algorithm (Adam). We have set its learning rate
to equal 0.001 which resolves the loss function more quickly than
randomized algorithms and prevents over-fitting. In the quantum
part, we used an optimizer which is based on a gradient which we used
to change the quantum gates in the variational quantum circuit (VQC)
where in a similar manner we backpropagated through the quantum
layers and optimized the decision boundaries.

3.5.3 Bridging the classical-quantum framework
The two parts work together to form a fusion classical quantum
framework in which the quantum circuit combines the classical
feature extraction model into a QBrainNet model. This approach’s
advantage is its use of both classical and quantum computing.

o Featuring high dimensional data with the classical methods

o It fed these features into the quantum circuit to determine how
to process them, optimize decision boundaries and find complex
patterns that classical methods may miss.

The high-dimensional data is handled by the classical model,
while the quantum model exploits the data in parallel in a potentially
more computationally efficient and more accurate prediction manner.

The quantum translation model QBrainNet is constructed as a
hybrid classical-quantum framework by making the quantum circuit
a part of the classical feature extraction model. Then, we utilize a
quantum gradient algorithm (47) to optimize the parameters of the
quantum circuit by adjusting the parameters of the circuit after each
prediction according to the error. This hybrid method combines the
good of classical and quantum computing, with one better with fine-
scale methodology in high-dimension data and the other enhancing
prediction accuracy in time series prediction problems (48).

In Figure 7, we see the hybrid classical-quantum framework in
QBrainNet, built upon classical feature extraction and acting as an
input to a quantum neural network for stroke prediction (Figure 7:
Hybrid Classical-Quantum Framework shows the flow from classical
feature extraction to quantum processing).

3.5.4 Algorithmic design of QBrainNet

1 Initialize system:
a Load preprocessed brain CT scan dataset.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1677234
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Priyadharshini et al.

10.3389/fmed.2025.1677234

~ 71)\‘ output - ;4’
O \:\\ \»\
.\"/‘f&—*—;\ 0 >
O~ DX ~ — @/
AN ) 5%
( \ 7/ L
S %% AW
input . utput 1 "’
] Feature sl 4
Extraction = = e
Network
ol
+
d 5”
3
Output
(Stroke Prediction)
FIGURE 7
Hybrid classical-quantum framework of QBrainNet.

b Split dataset into training and testing sets (e.g., 80% training, ¢ Minimize the loss function (cross-entropy or mean

20% testing). squared error).
¢ Initialize classical CNN and quantum components (QNN

with VQC). 6 Evaluation:

a Test the model on the testing dataset.
2 Preprocessing: b Calculate performance metrics:
a Convert CT scan images to grayscale.
b Apply image equalization to enhance contrast. o Accuracy.
¢ Perform edge detection using the Canny operator. o Precision.
d Apply augmentation techniques (rotation, flipping, noise addition). « F1 Score.
e Normalize image data. o Recall.
« AUC-PR.

3 Feature Extraction (Classical Component):
a Extract features using classical methods:
o Edge detection.
o Texture analysis (GLCM).
b Store extracted features for quantum-enhanced processing.

4 Quantum Enhancement (Quantum Component):

a Feed extracted features into quantum neural network (QNN)

using Variational Quantum Circuits (VQC).

Apply quantum operations (superposition, entanglement) to

extract complex patterns.

¢ Use quantum gates and VQC to adjust decision boundaries and
find higher-order relationships.

5 Model Training:

a Train classical CNN model on extracted features using Adam
optimizer (learning rate: 0.001).

Optimize quantum circuit parameters using gradient descent
and quantum gradient descent (with Adam or L-BFGS for
fine-tuning).
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o Post-processing:
a Generate predictions for unseen CT scan images.
b Display results and analyze model performance.

8 Output:

a Report stroke prediction results with confidence scores.

b Compare QBrainNet’s performance with classical models
(CNN, SVM, etc.)

3.5.5 Simulated quantum operations

The quantum component of QBrainNet was simulated on
the classical hardware using the PennyLane library, the current
quantum software platform where quantum circuit simulation
is available on classical hardware. This was the selected approach
because of the scarcity of quantum hardware and the
requirement to provide fast experimentation on the quantum
neural networks. Though quantum circuits have been simulated
on the classical resources, PennyLane supports quantum gates
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like Hadamard, CNOT and Z-Rotation gates to simulate, and it
is an efficient way to explore the quantum-amplified potentials
of the network.

3.5.5.1 Implications for scalability and feasibility

It is not so easy to simulate a quantum circuit on classical
hardware. Scalability of simulations stands out by far, where the
amount of computational resources needed to execute the simulation
circuit rises exponentially with the qubit count in the circuit. An
example is that with a quantum system with 50 or more qubits, it is
just too costly to simulate on classical hardware because of memory
and processing resources. With improvement of quantum hardware,
quantum networks will exit classical simulation and transition to the
quantum processors.

From a practical point of view, using classical hardware implies that the
model can be tested and optimized now; before being able to have access to
powerful enough quantum computers. Current quantum computing
technology is in its early stages, and there are only a few quantum computers
available through cloud services, and they are generally constrained in the
number of qubits they can process. As quantum processors become
available, the quantum parts of QBrainNet will be compiled to actual
quantum hardware allowing the system to fully exploit quantum parallelism
and superposition for more efficient processing.

In spite of these, the hybrid classical-quantum method used by
QBrainNet can be seen as a very promising path ahead. It allows one
to extract features with the help of quantum computing and
simultaneously exploit the comparatively computationally efficient,
everywhere-available classical optimization methods.

3.5.5.2 Mathematical formulation

ly (0))y=l0)®10)®10)®10) (12)
1
HI10)y=—=(][0)+1 13
) ﬁ(ll »+11)) (13)
1
HI1)=—=(|[oy+|]r 14
=5 lo)+l1) (14)
ly(1)=H®I®I®II0) (15)
CNOTI00)=100), CNOTI01)=l01) 6
CNOTI10)=I11), CNOTI11)=10) (16)
ly2) =CNOT (|y)) (17)
RZ(0)0=]o, Rz(O)[t=¢"t (18)
ly3)=RZ(0)®I®Ily,) (19)
z10y=l0y, ZzZl1y=-I1) (20)
. - 2
o )= [0) with probab111ty|0| 1,//|2 1)
I1)  with probability |l| y/l
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The different mathematical formulation are shown from Equations 12
and 24. In the quantum-enhanced model developed for brain stroke
prediction, the quantum circuit is initialized with 4 qubits each in the
ground state |0 > which is normally used as an initialization for quantum
computations. These qubits are the basic units that store the data and the
quantum operations are implemented one after another, to manipulate the
states of the qubits and extract the intricate patterns that might be difficult
to use classical methods. The first gate performed on the qubits is the
Hadamard gate H which is applied to qubit 0 to put it in a superposition
between the states |0 > and |1>. This superposition enables the quantum
system to investigate various states at the same time, which significantly
increases the processing and representation of the complex data by the
model. However, a Controlled-NOT (CNOT) gate is then applied between
qubits 0 (control) and 1 (target) following the Hadamard gate and then
these two qubits are entangled with each other, generating a correlation
which is the main part of quantum model of the complex dependencies in
the data. This interaction allows the quantum system to be capable of
processing and representing correlations which would otherwise be hard
to obtain with classical models. There is also a Z-Rotation of the qubit 2 to
add a phase shift to it, which further enhances the ability of the model to
learn the quantum data. This transformation of phase enables the model to
improve the quantum state, modifying it in a manner that is more
appropriate to the task in question. The quantum state is measured in the
Pauli-Z basis after the quantum operations have been made, which forces
the quantum state to collapse into one of two possible states, [0 > or |1>,
according to the amplitudes of the quantum state. The measured data is
then used in the classical domain where the quantum parameters are
optimized using a method called Adam optimizer, a popular gradient based
method that updates the parameters of the model to reduce the loss
function and increase accuracy. Finally, after the quantum enhanced
features are extracted and quantum parameters are optimized, the model
is transferred to the classical domain and a classical classifier is used to
perform the final stroke prediction. The classical classifier uses the features
extracted from the quantum computation stage to predict the probability
of a brain stroke, which makes the best use of the advantages of quantum
computation and classical machine learning in prediction accuracy.

3.5.5.3 Training cost comparison

Aspect Quantum (Simulated)  Classical (e.g.,
(\1\)]
Training Time Exponentially increases with Polynomial growth

qubits and depth with dataset size
Computational Requires large memory and Scales based on model
Resources computational power for size and dataset
quantum circuit simulation
Scalability Limited by classical simulation; Scalable with

impractical for large qubit systems | optimized hardware

(e.g., GPUs)
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3.5.5.4 Inference cost comparison

Inference Time Potential speedup with quantum | Fast, optimized for real-

circuits, but limited by classical time prediction

simulation overhead

Computational Quantum simulation requires Less computationally

Resources significant memory; real expensive on modern
quantum inference will be faster | hardware (GPUs/CPUs)
Scalability Likely to improve with real Highly scalable and

quantum hardware efficient for large models

3.5.6 Model training and model evaluation

This model is trained on the medical image data set, and simulated
quantum operations are applied to render each image during feature
extraction. The preprocessing introduced by quantum adds some
features that can be hard to detect by classical models, as CNNG,
helping the model identify subtle, non-linear patterns. The output of
these quantum enhanced characteristics are then fed into a classical
neural network and classified.

The quantum-enhanced model is then trained and evaluated
based on the standard classical models (such as CNNs), to find out
how the predictive accuracy and processing efficiency is improved.
Although emulating quantum processes on classical computers, the
quantum model offers significant potential by reducing the training
time to execute a high-dimensional task, and after achieving a better
prediction in stroke detection.

4 Results

In this work, we apply the QBrainNet model, a model of quantum-
enhanced brain stroke prediction, for prediction using the medical
imaging data with whose performance we additionally investigate
against some of the commonly used traditional machine learning
methods such as Convolutional Neural Networks (CNN), Support
Vector Machines (SVM), Random Forests (RF), KNN and Logistic
Regression (LR) since other traditional machine learning models have
been used for different results and which we are comparing with.

In order to analyze the QBrainNet Model, we compare it with the
classical CNNs using the standard evaluation metrics of accuracy,
precision, recall and F1 score. The quantum modified model is
consistently found to report a better performance than the classical
CNN model, particularly in the accuracy of stroke detection. Also, the
training times when using simulated quantum operations are much
shorter than with classical methods, although real quantum hardware
is not employed. This points to the prospect of simulated quantum
methods to transform the computational cost of medical image
analysis without requiring a costly quantum machine.

4.1 Model comparison and fairness in
evaluation

As far as comparing the CNN and QBrainNet models, we would
like to explain why there is a difference in the number of parameters
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between the two architectures. The CNN model in this study has
about 2.5 million parameters, which is a reasonable number for
multiple-layered, multi-filter convolutional neural networks. In
contrast, a much smaller number of parameters is introduced in the
QBrainNet model because of the quantum circuits used. Specifically,
the number of trainable parameters of the QBrainNet model is 12,
which are the angles of the RZ gates of the three variational layers of
the quantum circuit.

The difference in the design of the classical and quantum neural
networks means that the CNN model has many more parameters.
Because of the compact nature of quantum gates, quantum circuits
have less parameter, which can be used to process information
efficiently. Despite this difference in the number of parameters, a
comparison between the CNN model and the QBrainNet model was
made based on performance metrics such as accuracy, precision, and
recall which are related to classification performance and not to the
size of the model.

Both the models have been tested on the same data set, with the
same train and validation split, hence the comparison is done under
the same conditions. While these models were assessed in terms of the
number of parameters, they focused on the models in terms of their
predictive power and not the number of parameters in order to
provide a fair and meaningful comparison.

By comparing the two models with respect to relevant
performance indicators, we can give a precise and unbiased estimation
of their relative abilities for classification of the data, despite the
difference in their architecture and size of parameters.

4.2 Model performance comparison

The quantum-enhanced model is superior to the regular CNNs
in accuracy and computing speeds by a large margin (49). The
QBrainNet model provided better performance in the detection of
strokes than CNNs. Also, training was faster using simulated
quantum operations on classical hardware, which illustrates the
prospect of quantum processes to enhance their efficiency in
processing. Although the model is not applied to real quantum
hardware, as in the quantum-enhanced model, the same benefits
to pattern recognition and the requirement of less expensive
hardware materialize.

Thus, to evaluate and compare the performance of QBrainNet
with standard machine learning models, the Precision-Recall
Curve (Figure 8) was made for QBrainNet, CNN, SVM, RE, KNN,
and LR (50). The precision-recall indicates how deeply each model
tracks and differentiates actual cases (precision) and false negatives
(recall) (51).

4.3 Baseline model configurations

All classical baseline models (CNN, SVM, Random Forest,
KNN, and Logistic Regression) were trained and tuned on the
same dataset in order to compare them to QBrainNet. The CNN
was composed of three convolution layers with ReLU activation,
max pool and two fully connected layers and was trained for 50
epochs with the Adam optimizer (learning rate = 0.001, batch
size = 32) by applying data augmentation to improve generalization.
The SVM with scalable RBF kernel C = 1, g = 0.01, and number of
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iterations = 50 was used. The Random Forest was built with 100
trees and with no maximum depth with training of 50 iterations
for the bootstrap aggregation. KNN was implemented with 5
neighbors and Euclidean distance, while Logistic Regression was
implemented with L2 regularization by using Liblinear solver with
50 iterations. Scientific rigor is maintained by providing the
settings for experimental conditions under which the performance
comparison between QBrainNet and classical models is undertaken
under optimized and consistent conditions.

To make sure that the comparison is fair and strong, we have
considered state-of-the-art deep learning models, such as ResNet and
EfficientNet, and classical machine learning models (CNN, SVM, RE
KNN, LR). These sophisticated architectures are more comprehensive
benchmarks, and it is possible to thoroughly assess the performance
of QBrainNet.

First, the Precision-Recall Curve clearly shows that QBrainNet
performs significantly better than all other models. QBrainNet achieved
a high precision of 0.96 and recall of 0.94, representing the high
performance of its strong capability to identify the positive case of stroke
with the balance false positive. In contrast to those two, we found that
CNN was 0.85 in precision and 0.90 in recall, SVM 0.83 precision and
0.90 recall, RF 0.85 precision and 0.88 recall, KNN 0.80 precision and
0.85 recall, and LR 0.78 precision and 0.82 recall.

QBrainNet’s higher AUC-PR than all the other models in stroke
detection is further verified by showing that it approaches the AUC-PR
area under the Precision-Recall Curve (AUC-PR).

The Calibration Curve plot (Figure 9) was used to analyze the
reliability of each model’s predicted probabilities, which is plotted based
on QBrainNet, CNN, SVM, RE KNN, and LR. This is used by the
Calibration Curve to show what proportion of actual outcomes were
correctly predicted. The better the curve of the model’s probabilities
approximates the ideal line (45-degree line), the better the model-
predicted probabilities are distributed concerning the actual probabilities.
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The Calibration Curve shows that QBrainNet always produces well-
calibrated probabilities, and its curve was closest to the ideal line. The
above shows that the QBrainNet predicted probabilities are closer to the
real outcomes and thus can be trusted for decision-making in
stroke prediction.

On the contrary, the ideal calibration line deviates more from
CNN, SVM, RE, KNN, and LR models. Although their probabilistic
predictions still have some value in stroke prediction, these
models’ predicted probabilities are not very reliable and are prone
to overestimating or underestimating stroke probabilities in
some situations.

Finally, Learning Curves (Figure 10) were plotted to evaluate the
performance of QBrainNet and traditional machine learning models
CNN, SVM, RE KNN, and LR in terms of training dataset size. The
learning curve depicts the model’s performance, i.e., metrics like
accuracy vs. size of the training dataset (training and validating curve).

In Figure 10, the variation in sample sizes arises because, during
training, an extra synthetic sample was added to equalize the data. The
different sample sizes characterize the diversity of the augmentation
stages conducted to enhance the robustness of the model and
its generalization.

Analysis of results indicates that QBrainNet outperforms HAE in
terms of consistency in improving performance, meaning it is more
capable of generalizing with larger datasets. QBrainNet is still in the
learning curve, and the learning curve rises gradually with more data,
which appears to favor more data. When it sees different classes of
samples, it can perform much better.

In contrast to the traditional model (CNN, SVM, RE, KNN, and
LR), the performance of all models improves with more data, although
one can see they are less pronounced as the dataset size enlarges to
some extent. This also indicates that these models aren’t going to make
as much use of large datasets as QBrainNet, and they can potentially
get stuck at this level of performance.
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4.4 Justification of quantum model

performance

complex and non-linear patterns inherent in the medical images
through simulating quantum operations on classical hardware, since
classical CNNs cannot detect this. Quantum models, because of their

The features extracted using the enhancement provided by the  propensity to explore many solutions simultaneously, courtesy of

quantum computing process can be the reason that enhances the  superposition and entanglement, are better suited to deal with high-

performance of the QBrainNet model. The model can emulate  dimensional data such as medical imagery, where conventional
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methods tend to flounder. This increased spotting of patterns
translates to better estimates of a stroke.

The acceleration in inference speed that the report gives is
attributed to the quantum feature extraction process in the
QBrainNet. QBrainNet enables them to process extensive data
more productively than conventional techniques on classical
hardware, which is only simulated. Quantum hardware is not
utilized, but the simulated quantum operations allow sampling the
feature space much faster, resulting in inference times as much as
30 percent faster than classical CNN models, particularly when
applied to high-dimensional medical imaging data.

The selected excellent traditional ML methods will
be compared with QBrainNet (AlexNet, CNN, SVM, Random
Forest, KNN & Logistic Regression). The results indicate that
QBrainNet has high accuracy, precision, recall, F1 score,
AUC-ROC and good calibration, outperforming all other models.
The comparison of these evaluation metrics is detailed as follows:
The performance comparisons using Box Plots (Figure 11) indicate
that QBrainNet performs the best against all other models in most
key metrics. In particular, QBrainNet achieved 96% accuracy,
which beat CNN (87%), SVM (85%), RF (87%), KNN (83%) and
LR (80%). Moreover, It had a precision of 0.96 versus CNN (0.85),
SVM (0.83), RF (0.85), KNN (0.80) and LR (0.78) on correctly
identifying positive stroke cases. While QBrainNet scored only
0.94 in terms of recall [better than CNN, a score of 0.90, as well as
SVM (also 0.90), RF (0.88), KNN (0.85), and LR (0.82)], recall is
significant for the early detection of this disease. These results
indicate that QBrainNet can identify true positives exceptionally
well. QBrainNet finally achieved an F1 score of 0.95, whereas the
precision and recall outcome is well balanced by exceeding the

10.3389/fmed.2025.1677234

performance of CNN (0.87), SVM (0.86), RF (0.86), KNN (0.82),
and LR (0.80).

4.5 Computational efficiency

Finally, regarding training and inference time, QuartzBrainNet
was compared to CNN, SVM, RE, KNN, and LR (Figure 12). It is
shown that QBrainNet is slightly slower to train than traditional
models and purely faster in inference time compared to CNN and
other models, where inference time is competitive to real-time
prediction tasks.

Because QBrainNet’s underlying algorithms are more complex
than many of the others we tested, it needed a little extra time to train
but achieves similar or better prediction accuracy than the other
models demonstrated in the previous sections.

4.6 Model generalization

The QBrainNet model’s in terms of

generalization ability was assessed via the method of train-test

performance

split by using 20-30 percent of the data reserved after training
the model on the rest of the data. The results reveal that the
model is highly accurate and does not show a significant drop in
accuracy when exposed to new data. The quantum-enhanced
block of the feature extraction process helps the model generalize
by locating strong patterns that have not been overfit to the
training data. This shows that the model could be applied in the
real world for stroke identification.

Comparison of Performance Metrics Across Models

1.0 4
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0.94 0-95

Scores
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0.82
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FIGURE 11
Performance comparisons.
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4.7 Feature im porta nce However, CNN, SVM, RFE, KNN, and LR also perform very well,
giving more or less the same misclassification rates (false positives or
Figure 13 presents the Feature Importance Visualization  false negatives), especially in stroke detection (52-54). This reiterates
comparing the stroke detection models QBrainNet, CNN, SVM,  QBrainNet’s better performance in precisely classifying stroke cases,
RE, KNN, and LR regarding which feature is most and least  rendering it a more trusted model for clinical use.
important to the models. It is concluded that QBrainNet
attaches the maximum importance to Feature 1, which implies
that it utilizes a key feature in a way that allows it to make a 4.9 Discriminatory power
decision effectively. Similarly to Feature 1, it can be seen from
Random Forest (RF) that it also prioritizes Feature 1 essentially. Comparison of QBrainNet, CNN, SVM, RE, KNN, and LR is
However, CNN, SVM, KNN, and LR spread the importance of  performed in ROC Curves (Figure 15). The Area under the Curve
features more evenly, possibly indicating less of the most (AUC) measures each model’s discriminatory power. The AUC value
performance will be better in classifying positive (stroke) and negative

essential features.
QBrainNet seems to be the best model-making feature  (non-stroke) cases.
prioritization, based on which the most important features have been The AUC clearly shows that QBrainNet has the highest AUC of
selected, which makes a more efficient and accurate decision-  0.97 on its ability to classify stroke accurately. Compared to other
making process. models, its curve is closer to the ideal upper-left corner, indicating its
high discriminatory power.

In contrast, CNN reached an AUC of 0.92, SVM followed with
0.91, and RF recorded an AUC of 0.93. At the same time, KNN and

4.8 Confusion matrix
LR achieved AUC values of 0.88 and 0.85, respectively, indicating they
were relatively less capable of separating stroke from

Thus, by using the YIGnBucolour scheme, the Confusion Matrices
(Figure 14) for models such as QBrainNet, CNN, SVM, RE, KNNand  non-stroke patients.
Considering overall performance, the ROC Curves also show that

LR, are generated, to better show the models’ performance. These
matrices indicate the model stroke and non-stroke cases that can ~ QBrainNet performs better than the traditional models and gains the
be heartily classified with percentage and explicitly classified with
percentage of stroke and non-stroke cases.

Examining the matrices reveals that QBrainNet performs far
ahead of the other models, with a larger number of true positives, 4.10 Hyperparameter optimization
which demonstrates its ability to identify stroke cases accurately.

Moreover, QBrainNet ensures a low number of false positives and false
indicator of its accuracy in

top performance in stroke detection.

Figure 16 shows the Learning Rate vs. Performance graph, which also
shows how other models, such as CNN, SVM, RE KNN, and LR, perform

an
with different learning rates and how QBrainNets performance varies

negatives, which is
preventing misclassifications.
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over that. Hyperparameter tuning is shown to have a great effect on each
model’s performance, particularly the learning rate.

4.11 Histogram for feature distributions

The Histogram for Feature Distributions (Figure 17) shows the
distribution of feature values for QBrainNet, CNN, SVM, RE KNN, and
LR. The difference in QBrainNet is that it concentrates on feature value at
the higher end, indicating it is more dependent on features. Other models,

Frontiers in Medicine

for example, CNN, SVM, and RE, have overlapping distributions, and
KNN and LR have less clear peaks. This visualization shows the different
ranges of features for each model to be used for prediction.

Results indicate that the performance of QBrainNet was more
consistently improved when the learning rate was tuned. That means
QBrainNet is more adapted to the hyperparameters and more efficient
than the rest of the models. On the other hand, some other models,
such as CNN, SVM, RE KNN, and LR, showed less pronounced
improvement, which indicates that they require more changes in
learning rate or are less flexible in hyperparameter optimization.
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5 Conclusion

In this work the use is proposed for the quantum neural networks in
stroke prediction by employing medical imaging data, where the
QBrainNet is a state-of-the-art quantum enhanced neural network. This
is due to the fact that it integrates into the classical machine learning
models algorithms of quantum computing such as Quantum Neural
Networks (QNN) and Variational Quantum Circuits (VQC) which makes
calculations more efficient and more reasonably anticipates predictions.
How does QBrainNet solve this problem? QBrainNet uses quantum
computing to process high dimension medical image data more efficiently
and particularly, when the dimension of our data is under such small
conditions as are illustrated in the conventional models (there are few
distinct images in the background).

We first conduct a comprehensive evaluation where it is demonstrated
that QBrainNet outperforms classical machine learning models (e.g.,
CNN, SVM, RE KNN, and LR) in several critical metrics, i.e., accuracy,
precision, recall, F1-score, AUC-ROC, and computational speed. We find
that QBrainNet has a strong ability to identify strokes and little
misclassifications precisely and performs better in different configurations
of hyperparameters. For instance, our model obtains better AUC-ROC
scores and shows merits with varying learning rates, adequately suggesting
its flexibility and generalization capability on an extensive range of
medical imaging data.

Furthermore, the Feature Importance Visualization highlights
which features are the most important by prioritizing those for stroke
detection. Thus, the model is better interpreted, and it provides some
insight into the decision-making process. The Confusion Matrix
depicts the application of a low false positive and false negative rate,
among other things, supporting early stroke detection.

Although its training time is slightly higher than that of traditional
models, QBrainNet is comparable in real-time prediction time,
considering its similar inference time. QBrainNet is a promising tool
for clinical applications that allows for real-time decision-making.

Frontiers in Medicine

5.1 Future work

QBrainNet is a promising tool for predicting stroke; however,
QBrainNet has some potential room for further development and
enhancements. Second, the model can be corroborated in addition to the
addition of more diverse and big medical imaging datasets, which could
contain data from other imaging modalities (e.g., CT, MRI, ultrasound).
The robustness of QBrainNet in real-world clinical scenarios and that the
model behaves uniformly across various populations would need a large
and diverse dataset for us to penetrate deeper.

It can also be optimized in the quantum components of QBrainNet
both from the design point and from the quantum algorithmic
perspective. With new and more efficient quantum algorithms
emerging for these more than-ever powerful quantum computing
technologies, new problems will arise. Further integrations of these
advancements with the QBrainNet can lead to additional performance
improvements, especially in speed and accuracy. Some of the tasks for
exploring further are exploring the usage of more advanced quantum
machine learning technologies such as quantum support vector
machines or quantum k nearest neighbors that may help to improve
data classification and pattern recognition.

Other than optimizing quantum components, QBrainNet could
also be simplified to quantum-enhanced generative models. These
models may generate medical images, mainly when insufficient data
exists synthetically. We hypothesized that augmenting the dataset with
high-quality synthetic quantum-enhanced images would allow us to
train the model on a robust and more comprehensive dataset that
would aid the model in generalization when processing unseen data.

Another important direction for future work is to explore the real-
time deployment of QBrainNet in clinical settings. For this to
be possible, the model would need to be integrated with the existing
healthcare systems and its usage made practical for medical
practitioners. Moreover, real-time performance evaluations and
continuous learning mechanisms can be added to the model to
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enhance it with additional data as they become available. Integrating
QBrainNet with electronic health records (EHR) and other clinical
data sources can be a powerful tool for early stroke diagnosis to
forecast timelines that can guide healthcare providers” decisions.

Finally, investigating the explainability of QBrainNet for clinical
decision-making is an integral part of future work. Although the
model works very well, we need to understand how quantum-
enhanced parts of the model can affect the predictions to gain the trust
of healthcare providers. Since the decision-making in high-stakes
applications, i.e., medical diagnostics, must be more transparent and
interpretable, techniques such as model interpretability and
explanation generation should be explored.

To summarize, QBrainNet is a very promising tool for using
quantum enhancement to predict stroke, and further research and
development in these areas are expected and necessary to advance its
applicability in clinical use and ensure its success in the real world
of healthcare.
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