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Chronic kidney disease-mineral and bone disorder (CKD-MBD) is recognized
as a systemic syndrome that manifests with a range of complications including
mineral dysregulation, skeletal abnormalities, and vascular calcification (VC).
Recent research has increasingly pointed toward immune dysregulation as
a pivotal factor in the development and progression of this disorder. The
current review endeavors to consolidate the latest findings regarding how
chronic inflammation, dysfunction of immune cells, and disturbances in the
gut-kidney axis contribute to the progression of CKD-MBD. Central to the
mechanisms at play are pro-inflammatory cytokines, such as tumor necrosis
factor-a (TNF-a) and interleukin (IL)-6, which are found to facilitate bone
resorption through the activation of the receptor activator of NF-kappaB ligand
(RANKL)/receptor activator of nuclear factor-kappa B (RANK)/osteoprotegerin
(OPQG) signaling pathway. Furthermore, macrophage-induced VC is linked to the
activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome.
Additionally, an imbalance between osteoblasts and osteoclasts, driven by
uremic toxins, exacerbates the skeletal manifestations of the disorder. Despite
the availability of current therapeutic options, including phosphate binders
and vitamin D analogs, these treatments fall short in adequately addressing
the immune-mediated aspects of CKD-MBD, indicating an urgent need for
innovative strategies that effectively target inflammatory pathways, inhibit
sclerostin, or modulate fibroblast growth factor (FGF)-23 levels. Emerging
preclinical studies have shown that sodium-glucose cotransporter 2 (SGLT2)
inhibitors and anti-sclerostin antibodies hold significant promise in lessening
VC and enhancing bone health. However, translating these findings into
clinical application encounters hurdles related to the diversity of patient
populations and the dependence on surrogate endpoints for efficacy. This
review emphasizes the critical need for incorporating immune-centric strategies
into the management of CKD-MBD. It advocates for the development
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of biomarker-driven, personalized therapies and highlights the importance of
conducting longitudinal studies to bridge the existing gaps in knowledge and
improve patient outcomes.

KEYWORDS

chronic kidney disease-mineral and bone disorder, immune dysregulation, vascular
calcification, osteoimmunology, fibroblast growth factor 23

1 Introduction

Chronic kidney disease (CKD) represents a progressive
disorder marked by ongoing kidney damage or a diminished
glomerular filtration rate that persists for more than 3 months (1). It
is frequently indicated by the presence of albuminuria or structural
abnormalities in the kidneys. CKD poses a significant global health
concern, impacting more than 10% of the global population, with
its prevalence continuing to rise due to aging demographics and
increasing risk factors such as diabetes and hypertension (2). In
the Asian region, approximately 434.3 million adults are affected
by CKD, with China and India together representing 69.1% of
the region’s total cases, indicating notable regional disparities
(3). The global impact of this disease disproportionately burdens
lower socioeconomic groups, who face higher prevalence rates,
limited access to medical care, and poorer health outcomes, thus
highlighting CKD as a critical equity issue (4). The increasing
prevalence of this epidemic, coupled with its links to cardiovascular
morbidity and mortality, stresses the urgent requirement for
further exploration of its underlying mechanisms, such as chronic
kidney disease-mineral and bone disorder (CKD-MBD), to guide
prevention and management approaches.

According to the Kidney Disease Improving Global Outcomes
(KDIGO) CKD-MBD
characterized by abnormalities in bone histology and ectopic

guidelines, is a systemic syndrome

calcification. This condition fundamentally arises from an
imbalance in mineral metabolism parameters, including calcium,
phosphorus, parathyroid hormone (PTH), vitamin D, and
fibroblast growth factor-23 (FGF-23). Such imbalances impede the
bone remodeling process and promote vascular calcification (VC),

Abbreviations: ABD, adynamic bone disease; AhR, aryl hydrocarbon
receptor; BMD, bone mineral density; BMPs, bone morphogenetic proteins;
BMSCs, bone marrow mesenchymal stem cells; CaSR, calcium-sensing
receptor; CVD, cardiovascular disease; CKD-MBD, chronic kidney disease-
mineral and bone disorder; CKD, chronic kidney disease; FGF-23, fibroblast
growth factor-23; IL, interleukin; IS, indoxyl sulfate; NK cells, natural killer
cells; NLRP3, NLR family pyrin domain containing 3; OPG, osteoprotegerin;
OS, oxidative stress; PTH, parathyroid hormone; RANK, receptor activator of
nuclear factor-kappa B; RANKL, receptor activator of nuclear factor-kappa
B ligand; ROS, reactive oxygen species; TNF-a, tumor necrosis factor-
a; SGLT2, sodium-glucose cotransporter 2; TGF-B, transforming growth
factor-beta; TLRs, toll-like receptors; TIO, tumor-induced osteomalacia;
TNF-a, tumor necrosis factor-alpha; TRAF6, TNF receptor associated factor
6; VC, vascular calcification; sHPT, secondary hyperparathyroidism; LPS,
lipopolysaccharides; VSMCs, vascular smooth muscle cells; MAPK, mitogen-
activated protein kinase; TMAO, trimethylamine-N-oxide; SULF1, sulfatase 1;
NF-kB, nuclear factor-kappa B; NETSs, neutrophil extracellular traps; KDIGO,
Kidney Disease Improving Global Outcomes; VDR, vitamin D receptor;
VDRAs, Vitamin D receptor activators.
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which significantly impacts patients with stage 5 CKD (5-7). This
condition is almost universally observed in patients with advanced
CKD, leading to increased risks of fractures, cardiovascular
incidents, and higher mortality rates (8). The importance of
CKD-MBD stems from its function as a crucial factor in poor
health outcomes, with VC-arising from phosphate retention and
inflammation-being a major contributor to cardiovascular death
among CKD patients (9). Additionally, beyond the susceptibility
to bone fractures, CKD-MBD indicates a wider systemic issue,
aggravated by new elements such as inflammation and alterations
in gut microbiota, which further challenge its treatment. Prompt
detection and focused treatment approaches are essential, as
CKD-MBD not only deteriorates quality of life but also highlights
the pressing need for novel therapeutic methods to alleviate its
significant clinical ramifications.

Chronic kidney disease-mineral and bone disorder exhibits
a complex interplay with the immune system, driven by chronic
inflammation and gut dysbiosis, which significantly influence
in CKD
patients. Recent evidence underscores that CKD triggers persistent

mineral metabolism and cardiovascular outcomes

immune activation through uremic toxins, oxidative stress
(OS), and microbial imbalances, fostering an inflammatory
environment that exacerbates bone resorption and VC, hallmark
features of CKD-MBD (5). Pro-inflammatory cytokines, such
as Interleukin (IL)-1 and tumor necrosis factor-o (TNF-a),
are pivotal in promoting these pathological processes, linking
immune dysregulation to skeletal and vascular complications
(10). Furthermore, gut dysbiosis compromises intestinal barrier
integrity, increasing bacterial product translocation, which
amplifies systemic inflaimmation and perpetuates CKD-MBD
progression (5). FGF-23, a critical regulator of mineral metabolism,
also interacts with immune cells, modulating inflammatory
responses and highlighting a bidirectional relationship between
CKD-MBD and immunity (11). This intricate connection suggests
that immune-mediated pathways, including inflammation and
osteoimmunological mechanisms, are central to CKD-MBD
pathogenesis, offering potential therapeutic targets to mitigate
its impact. These findings emphasize the need for integrated
approaches addressing both immune and mineral dysregulation to
improve outcomes in CKD.

This review examines advances in understanding the immune
mechanisms of CKD-MBD and explores emerging therapies to
mitigate its clinical burden. This review explores the advancements
in understanding the immune mechanisms underlying CKD-MBD
and investigates emerging therapies aimed at alleviating its clinical
burden. It synthesizes the latest evidence from PubMed/Medline,
Web of Science, and Cochrane Library databases up to January
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2025, focusing on the immune mechanisms, inflammation, and
therapeutic strategies related to CKD-MBD.

2 Pathophysiology of CKD-MBD

2.1 Mineral metabolism dysregulation

CKD disrupts systemic mineral homeostasis, primarily
through impaired phosphate excretion and reduced renal synthesis
of active vitamin D. Hyperphosphatemia, a hallmark of CKD-
MBD, triggers FGF-23 elevation to promote urinary phosphate
excretion, but progressive renal failure limits compensatory
mechanisms, exacerbating phosphate retention (12). CKD also
impacts the parathyroids internal circadian clock, contributing
to the hyperplasia of the parathyroid gland in these patients
(13). The calcium-sensing receptor (CaSR), found within the
parathyroid gland, acts as the primary regulator of PTH release
(14). Notably, recent findings indicate that the CaSR possesses
a phosphate-binding site; when phosphate binds to this site, it
modifies the receptor’s configuration, driving it into an inactive
state and consequently initiating PTH secretion (15). Small
fluctuations in plasma ionized calcium are promptly adjusted
through the movement of calcium on the surface of bones. In
contrast, plasma phosphate levels tend to vary more significantly
and respond more slowly to conditions of hyperphosphatemia
(16). activity
causes vitamin D deficiency, impairing intestinal calcium

Concurrently, reduced renal la-hydroxylase
absorption and contributing to hypocalcemia (17). Secondary
hyperparathyroidism (sHPT) develops as hypocalcemia and
vitamin D deficiency stimulate PTH secretion, further worsening
bone and vascular pathology (5). Emerging evidence also
highlights the role of uremic toxins such as indoxyl sulfate
(IS) in suppressing klotho expression, amplifying FGF-23
resistance and perpetuating mineral dysregulation (18). These
interconnected disturbances create a vicious cycle, driving

CKD-MBD progression (19).

2.2 Skeletal abnormalities

Chronic kidney disease-mineral and bone disorder induces
heterogeneous bone disorders, ranging from high-turnover osteitis
fibrosa to low-turnover adynamic bone disease (ABD). Early
CKD stages often exhibit ABD, characterized by suppressed
osteoblast activity due to uremic toxin-mediated inhibition of
Wnt/B-catenin signaling and elevated sclerostin levels (20). As
CKD progresses, sustained sHPT may override these inhibitory
signals, leading to excessive bone resorption and osteitis fibrosa
(21). Osteomalacia, marked by defective mineralization, is linked
to vitamin D deficiency and elevated FGF-23, which impair
phosphate availability for bone matrix formation (22). Notably,
FGF-23 directly suppresses osteocyte differentiation, exacerbating
bone fragility (22). These abnormalities collectively increase
fracture risk and correlate with poor clinical outcomes, including
cardiovascular mortality (23). In CKD-MBD, the primary clinical
features of osteomalacia are associated with defects in bone
mineralization. This is particularly evident in tumor-induced
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osteomalacia (TIO), which arises from hypophosphatemia
and FGF-23-related mechanisms, resulting in dysfunction
and limited activity (24, 25). High-turnover bone disease is
a prevalent form of renal osteodystrophy, characterized by
accelerated bone formation and resorption. Elevated PTH levels
are indicative of this condition and correlate with bone density
and fracture risk (26). ABD represents the most common
form of renal osteodystrophy; although asymptomatic, it is
closely linked to a poor prognosis, including an increased
fracture risk. Fractures can occur independently of VC or
premature death, and treatment with anti-resorptive agents
may not effectively mitigate this risk. Furthermore, a low bone
turnover state can be diagnosed using markers such as the
sclerostin/iPTH ratio, which correlates with impaired bone
mass and quality (27). The core characteristics of osteoporosis
involve the deterioration of bone quality and density, which
are directly related to mineral metabolism disorders, such as
elevated PTH levels and decreased bone material quality (21,
28,29).

2.3 Vascular calcification

a hallmark of CKD-MBD,
from the osteogenic transformation of vascular smooth muscle

Vascular calcification, arises
cells (VSMCs) driven by hyperphosphatemia, inflammation,
and uremic toxins. Elevated phosphate activates RUNX2 in
VSMCs, promoting calcium-phosphate deposition and arterial
stiffening (23). Pro-inflammatory cytokines (e.g., TNF-a) and
OS further enhance VC by upregulating bone morphogenetic
proteins (BMPs) and downregulating calcification inhibitors
like matrix Gla protein (17). Uremic toxins, such as IS,
exacerbate VSMC apoptosis and extracellular vesicle release,
accelerating microcalcification (5). Clinically, VC is strongly
associated with cardiovascular mortality, as calcified vessels impair
hemodynamics and increase cardiac afterload (30). Emerging
biomarkers, including miR-125b-2-3p and sulfatase 1 (SULFI),
show promise in predicting VC severity, highlighting opportunities
for early intervention (23).

Figure 1 delineates the dysregulated mineral metabolism axis
in CKD, wherein FGF-23 induces parathyroid hyperplasia and
downregulates calcium-sensing receptors (CaSR), abrogating
of PTH (15);
consequent PTH excess stimulates bone resorption but fails

calcium-mediated  suppression secretion
to promote phosphaturia due to renal impairment, while FGF-
23 exacerbates hyperphosphatemia through dual mechanisms
(11, 14): suppressing renal la-hydroxylase activity to reduce
calcitriol (1,25-dihydroxyvitamin D3) synthesis and directly
enhancing renal phosphate excretion, thereby establishing a
vicious cycle of calcitriol deficiency that further aggravates
secondary hyperparathyroidism through loss of vitamin D
receptor (VDR)-mediated transcriptional repression and impairs
intestinal calcium absorption, collectively driving hypercalcemia,
progressive VG,
remodeling characterized by increased resorption and suppressed
with
representing a targeted intervention to partially correct this

hyperphosphatemia, and uncoupled bone

formation, therapeutic  calcitriol ~ supplementation

axis.
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hypercalcemia and hypocalcemia, together with inflammation and other contributing factors, drive vascular calcification and disrupt normal bone
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3 CKD-associated immune
dysregulation

3.1 Chronic inflammation and oxidative
stress

Chronic kidney disease is marked by a persistent state of low-

grade inflammation, a critical factor driving disease progression
and its associated complications, such as cardiovascular disease

Frontiers in Medicine

(CVD) (31). This chronic inflammatory state is largely fueled
by elevated levels of pro-inflammatory cytokines, notably IL-6
and TNF-a. IL-6, a central mediator of the acute-phase response,
is significantly increased in CKD and correlates strongly with
disease severity. It amplifies systemic inflammation by triggering
the production of acute-phase proteins and is implicated in
heightened cardiovascular risk, a leading cause of mortality in
CKD patients (32). Similarly, TNF-a exacerbates renal injury by
promoting apoptosis of renal tubular cells and stimulating the
release of additional inflammatory mediators, thus perpetuating
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a pro-inflammatory environment (33). These cytokines not only
reflect the inflammatory burden but also actively contribute to
tissue damage and fibrosis, key hallmarks of CKD progression.

Oxidative stress, another defining feature of CKD, significantly
amplifies this inflammatory milieu and impairs immune function.
The accumulation of reactive oxygen species (ROS) in CKD
results from an imbalance between oxidant production and
antioxidant defenses, damaging cellular components such as
lipids, proteins, and DNA. This oxidative burden activates
inflammatory pathways, including the nuclear factor-kappa B
(NF-kB) system, which further upregulate cytokine production,
creating a vicious cycle of inflammation and oxidative damage
(34). Moreover, OS disrupts immune homeostasis, leading
to a dysregulated immune response characterized by both
hyperactivation and immunosuppression. For instance, ROS-
mediated damage impairs the function of immune cells, reducing
their ability to effectively combat infections while simultaneously
promoting chronic inflammation (5). This dual impact underscores
the complex interplay between OS and inflammation, accelerating
renal damage and contributing to the high morbidity observed
in CKD. Understanding these mechanisms is pivotal for devising
strategies to mitigate inflammation and its deleterious effects in
this population.

3.2 Immune cell dysfunction and the
gut-kidney axis in CKD

Immune cell dysfunction is a key driver of CKD progression
(Figure 2), involving abnormalities in adaptive and innate immune
cells, including T cells, B cells, and monocytes/macrophages. T
cell populations in CKD exhibit a shift toward pro-inflammatory
phenotypes, with reduced regulatory T cell function, which
fails to suppress excessive immune responses, thereby sustaining
inflammation and tissue injury (5). B cell dysregulation further
compounds this immune imbalance, characterized by altered
antibody production and increased autoantibody formation,
which may exacerbate renal damage through immune complex
deposition (35). Monocytes and macrophages, critical components
of the innate immune system, show heightened activation and
polarization toward pro-inflammatory M1 phenotypes in CKD.
This shift promotes the production of fibrogenic cytokines, such
as transforming growth factor-beta (TGF-), driving renal fibrosis
and tubular injury (36). These cellular abnormalities collectively
contribute to a maladaptive immune environment that accelerates
CKD progression.

Dysbiosis of the gut microbiota leads to the disruption of
tryptophan metabolism (resulting in the production of toxins
such as IS and the entry of lipopolysaccharides (LPS) into the
bloodstream (37). This process activates the AhR/TLR4 complex,
which in turn triggers the activation of the NF-kB pathway,
resulting in the release of pro-inflammatory factors and the
generation of ROS, along with mitochondrial damage (38, 39).
Subsequently, the NLRP3 inflammasome is assembled, leading
to the activation of caspase-1 (40). This cascade results in the
release of IL-1p and IL-18, pyroptosis, VC, and disturbances in
bone metabolism, ultimately contributing to the progression of
CKD-MBD (41).
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4 Immune mechanisms in CKD-MBD

Chronic kidney disease-mineral and bone disorder is a systemic
condition marked by disruptions in mineral metabolism, bone
pathology, and VC, intricately linked to immune dysregulation.
The interplay between immune responses and CKD-MBD
pathogenesis has gained significant attention, particularly in how
inflammation drives bone resorption and VC. This section delves
into the immune mechanisms underpinning CKD-MBD, focusing
on inflammatory pathways promoting bone resorption, immune-
mediated VC, and the effects of uremic toxins on bone and
immune cells, synthesizing recent findings to elucidate their roles
in disease progression.

4.1 Inflammatory pathways promoting
bone resorption

4.1.1 The RANKL/RANK/OPG axis and
inflammatory pathways

The receptor ligand
(RANKL)/receptor factor-Kb
(RANK)/osteoprotegerin (OPG) axis is a cornerstone of bone

activator of nuclear factor-kB

activator of  nuclear
remodeling, and its dysregulation in CKD-MBD significantly
contributes to bone resorption. RANKL, expressed by osteoblasts
and activated T cells, binds to RANK on osteoclast precursors,
stimulating their differentiation into mature osteoclasts and
enhancing bone resorption (42). In CKD, systemic inflammation
elevates pro-inflammatory cytokines such as IL-6 and TNF-a,
which upregulate RANKL expression while suppressing OPG, a
decoy receptor that curbs RANKL activity, thereby tipping the
balance toward osteoclastogenesis (43). PTH, frequently elevated
in CKD, further amplifies this process by boosting RANKL
production, exacerbating bone loss. Recent studies in young
rats with experimental CKD demonstrate that serum PTH levels
correlate with increased RANKL and decreased OPG, alongside
altered bone geometry and strength, underscoring the axiss role
in CKD-MBD. Additionally, inflammatory mediators in the bone
microenvironment amplify local RANKL/RANK signaling, linking
systemic and localized immune responses to bone pathology (44).

4.1.2 Roles of sclerostin and FGF-23

Sclerostin and FGF-23, osteocyte-derived regulators, play
pivotal roles in CKD-MBD’s bone abnormalities, modulated by
inflammatory cues. Sclerostin, an inhibitor of Wnt/B-catenin
signaling, suppresses bone formation and is elevated in CKD,
contributing to ABD characterized by low turnover (45). In
peritoneal dialysis patients, high sclerostin levels correlate with
reduced bone formation rates, a finding supported by bone biopsy
data. Conversely, sclerostin may exert a protective effect against
VC, as its deficiency in mice exacerbates arterial calcification
via enhanced Wnt signaling (46). FGF-23, elevated early in
CKD to manage phosphate overload, interacts with inflammatory
pathways to influence bone mineralization (44). Its overexpression
disrupts osteoblast differentiation and matrix mineralization,
potentially through mitogen-activated protein kinase (MAPK)
signaling inhibition, as seen in uremic rat models treated with
C-type natriuretic peptide (47). The interplay between FGF-23 and
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FIGURE 2
Pathophysiological mechanisms of CKD-MBD and associated immune dysregulation.

inflammation, including IL-6 upregulation, further complicates  central roles PMID:39867890. The uremic microenvironment
bone homeostasis in CKD-MBD (44, 48). disrupts macrophage function, promoting the release of
inflammatory factors, which in turn affects mineral metabolism
such as calcium and phosphorus disorders and VC (5, 49).

4.2 Immune-mediated VC Macrophages participate in the process of VC through miRNA
regulation such as the miR-125b-5p/TRAF6 (TNF receptor
4.2.1 Roles of macrophages associated factor 6)/NF-«kB axis, which is particularly significant

In CKD-MBD, VC is an immune-driven process in which  in patients with CKD (50). Hyperphosphatemia in CKD
macrophage-mediated chronic inflammation and cytokines play  activates macrophages, particularly the pro-inflammatory M1
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phenotype, to release cytokines like IL-1p, IL-6, and TNF-q,
which promote osteogenic differentiation of VSMCs (51, 52).
The inflammatory environment is further aggravated by factors
specific to CKD. Increased phosphate levels encourage the
polarization of M1 macrophages through miRNA and RNA
regulatory mechanisms, while senescent macrophages heighten
local inflammation and the transdifferentiation of VSMCs via
interferon signaling (50, 53). Senescent macrophages exacerbate
local inflammation and the transdifferentiation of VSMCs
by interfering with interferon signaling that propagates the
senescent phenotype. The decline in Klotho expression leads
to phosphate retention and exacerbated calcification, and the
levels of sKlotho are negatively correlated with the risk of VC
(9, 54). The degree of VC is significantly negatively correlated
with bone density, reflecting systemic mineral metabolism
disorders such as hyperphosphatemia, elevated FGF-23, and
abnormal vitamin D levels (55, 56). This phenomenon stems
from the abnormal transfer of calcium and phosphorus from
the bones to the blood vessels, resulting in pathological bone
formation (57). The NLRP3 inflammasome, a key inflammatory
platform in macrophages, is activated by uremic toxins such
as IS, leading to IL-1f maturation and enhanced calcification
(58). Macrophages also contribute directly by releasing matrix
vesicles that nucleate calcium phosphate deposits in vessel walls.
Recent evidence highlights that sodium-glucose cotransporter
2 (SGLT2) inhibitors, such as canagliflozin, attenuates VC in
CKD rats by suppressing NLRP3-mediated cytokine release,
suggesting a therapeutic avenue (59). These findings position
macrophages as critical mediators linking inflammation to vascular
pathology in CKD-MBD.

M2 macrophages play a complex dual role in renal fibrosis and
CKD-MBD (60). On one hand, they exhibit anti-inflammatory
and tissue repair functions, such as clearing apoptotic debris and
secreting IL-10 (61, 62). On the other hand, especially during the
late stages of disease or under specific microenvironmental signals
(e.g., high phosphate, uremic toxins), their excessive activation
or phenotypic instability (imbalance in phenotypic plasticity) can
transform them into pathogenic factors (63). At this stage, M2
macrophages directly promote the activation of myofibroblasts
and extracellular matrix deposition by secreting factors like
TGE-B, thereby exacerbating renal fibrosis. Some of these cells
may even participate directly in the fibrosis process through
macrophage-myofibroblast transition (MMT) (63). Furthermore,
M2 macrophages promote the osteogenic transformation of
VSMCs and VC by secreting inflammatory factors (e.g.,
TNF-a) and pro-calcifying mediators, which aggravates the
instability of atherosclerotic plaques, significantly increasing
the risk of cardiovascular complications. The heterogeneity
of M2 subtypes (e.g., M2a, M2c) further complicates their
functions (61, 64). Therefore, a deeper understanding of the
mechanisms regulating M2 polarization direction, stabilizing
their reparative phenotype, and overcoming their plasticity is
crucial for developing strategies that target M2 macrophages
to delay renal fibrosis and mitigate cardiovascular risks
associated with CKD-MBD.

4.2.2 Osteogenic transformation of VSMCs

Vascular smooth muscle cells undergo an osteogenic

transformation in CKD-MBD, driven by immune signals and
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uremic conditions, culminating in VC. Inflammatory cytokines
and uremic toxins, including trimethylamine-N-oxide (TMAO),
activate the NLRP3 inflammasome and NF-kB pathways in
VSMCs, upregulating osteogenic markers like Runx2 and BMP2
(65). This phenotypic switch is marked by increased expression
of alkaline phosphatase and osteocalcin, mirroring bone-forming
cells (66). MicroRNA-34a, upregulated by inflammatory stimuli
in CKD, further promotes VSMC senescence and calcification
by modulating sirtuin 1 and Notchl signaling. Phosphate excess,
a hallmark of CKD, triggers this transformation via MAPK and
NF-kB activation, as demonstrated in rat models where zinc
supplementation inhibited calcification by enhancing TNFAIP3-
mediated NF-kB suppression (67). These pathways highlight the
immune-mediated mechanisms driving VSMC osteogenesis in
CKD-MBD (59).

Beyond the intrinsic transformation of VSMCs, the vascular
microenvironment in CKD-MBD is profoundly shaped by the
involvement of diverse immune cells, which synergistically
exacerbate calcification and inflammatory responses.

4.2.3 Roles of other immune cells

In CKD-MBD, mast cells drive renal inflammation and fibrosis
processes directly by releasing proteases (such as tryptase and
chymase) and inflammatory mediators (such as histamine and
heparin) (68). Their activated state may serve as a potential
biomarker for assessing CKD progression (69). Neutrophil function
is significantly disrupted (with impaired chemotaxis, phagocytosis,
and reactive oxygen species generation), which not only leads
to decreased anti-infection capabilities and a persistent micro-
inflammatory state but also may accelerate atherosclerosis by
releasing NETs, thereby indirectly promoting cardiovascular
complications (70-72). Natural killer (NK) cells are characterized
by a reduced number and weakened cytotoxicity in kidney
failure, which undermines immune surveillance and exacerbates
systemic inflammation and immune imbalance (73, 74). Mast cells
are important contributors to the instability of atherosclerotic
plaques, potentially mediated by the release of inflammatory factors
such as histamine or tryptase (75, 76). In stone formers, the
number of mast cells was found to be significantly correlated
with cortical calcification, suggesting that mast cell infiltration
may locally drive the calcification process (77). The accumulation
of uremic toxins and OS can activate innate immune pathways,
such as TLR signaling, promoting inflammatory responses. TLR
signaling may promote calcification by activating the osteogenic
differentiation pathway of VSMCs, with dendritic cells (DCs)
being key responsive cells in the TLR pathway (75, 78). Exosomes
released by bone marrow mesenchymal stem cells (BMSCs)
carry miRNAs that can inhibit VSMC calcification (79). DCs
may participate in microenvironmental regulation through the
uptake or secretion of exosomes (80). VC is negatively correlated
with bone density reduction, a relationship possibly driven by
shared inflammatory pathways such as RANKL/OPG imbalance
(81, 82). If DCs activate Th17 cells (which secrete IL-17),
they may simultaneously exacerbate bone loss and VC (57).
Neutrophils release inflammatory factors such as IL-6 and TNF-
o, while mast cell degranulation products and dysfunction of
NK cells collectively promote a systemic microinflammatory state.
This chronic inflammation may influence CKD-MBD through
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various pathways, such as accelerating VC and interfering with
bone metabolism.

Above all, mast cells are central drivers that release mediators
such as IL-6 and CXCL10 in response to estrogen deficiency,
which impairs bone repair and promotes vascular inflammation
(83, 84). DCs function as regulators, modulating bone immunity
and the vascular microenvironment through antigen presentation
and cytokine secretion (85). NK cells act more as effector cells,
amplifying the pathological processes in bone and vasculature
during inflammation (86, 87). The interactions among these
three cell types within the bone-vascular axis (e.g., mast cell
activation of DCs and DCs supporting NK cells) form an immune
network; however, the direct integration mechanisms documented
in the literature are limited. These mechanisms hold significant
importance in diseases such as osteoporosis, atherosclerosis, and
post-traumatic bone repair, and targeting these cells (e.g., inhibiting
mast cells) may ameliorate the dysregulation of the bone-vascular
axis (88, 89).

4.3 Impact of uremic toxins on bone and
immune cells

Uremic toxins accumulating in CKD profoundly affect
bone remodeling and immune function, exacerbating CKD-
MBD. IS, a protein-bound toxin, impairs osteoblastogenesis by
inhibiting Runx2 via the aryl hydrocarbon receptor (AhR) pathway
while promoting osteoclastogenesis through NFATc1 upregulation,
disrupting bone homeostasis (90). IS also induces OS and
inflammation in immune cells, amplifying systemic inflammation
that aggravates bone and vascular damage (91). Similarly, p-cresyl
sulfate and advanced glycation end products (AGEs) enhance
osteoclast activity and inhibit osteoblast function, contributing to
bone demineralization (92). In macrophages, IS triggers toxicity
by increasing OS and lipid metabolism abnormalities, linking
gut microbiota-derived toxins to atherosclerosis and bone loss
(58). Strategies reducing uremic toxin levels, such as dialysis
optimization or AhR antagonists like resveratrol, may mitigate
these effects, offering potential therapeutic benefits.

5 Discussion

The intricate interplay between immune dysregulation and
CKD-MBD significantly amplifies clinical risks, notably fracture
susceptibility, cardiovascular complications, and mortality. In
CKD, chronic inflammation-evidenced by elevated TNF-a-
exacerbates bone resorption and compromises bone quality,
increasing fracture risk beyond what traditional mineral
metabolism markers predict (93). This inflammatory milieu
also promotes VC, a key contributor to cardiovascular morbidity,
as TNF-a enhances both bone turnover and arterial stiffness (94).

Conventional therapies for CKD-MBD-phosphate binders,
vitamin D analogs, and calcimimetics-often fail to address
(95). For

effectively inhibits bone resorption by suppressing RANKL;

immune-driven pathology example, denosumab

however, it poses a significant risk of hypocalcemia in patients
with CKD-MBD, particularly in those who are dialysis-dependent
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or have advanced CKD (6, 96-98). This risk arises from the
compounded effects of bone resorption inhibition and the inherent
calcium-phosphate metabolism disorders associated with CKD, as
well as secondary hyperparathyroidism.

Persistent VC despite phosphate control highlights the need for
novel strategies targeting inflammation and osteoimmunological
pathways (99, 100). Therapeutic strategies targeting immune
mechanisms in CKD-MBD are gaining traction, with anti-
inflammatory and mineral-regulating approaches showing
promise. Cytokine inhibitors and antioxidants, such as those
explored in preclinical models, reduce inflammation-driven
bone turnover and VC, offering a complementary approach to
conventional therapies (100). Cytokine inhibitors such as anti-
RANKL and IL-1f targeting pro-inflammatory pathways may
improve inflammation and cardiovascular outcomes in CKD (34,
101). Novel strategies involving antioxidants (Nrf2 activators,
NOX inhibitors) show greater potential but must balance clinical
risks (102-104). The bone protective effects of denosumab are well
established; however, its application in advanced CKD requires
monitoring of calcium and phosphorus metabolism disorders,
including the risk of hypocalcemia (105, 106). Future research
should focus on precision anti-inflammatory/antioxidant therapies
targeting CKD-MBD, such as combined strategies targeting RANK
or the Nrf2 pathway, while strictly evaluating their long-term
impacts on mineral metabolism.

Mineral metabolism with
phosphate binders, vitamin D analogs (e.g., paricalcitol), and
calcimimetics effectively lowering PTH and phosphorus levels,

regulation remains critical,

yet their impact on inflammation is less consistent (49, 107).
Emerging therapies, including anti-sclerostin antibodies and FGF-
23 inhibitors, target the osteoimmune axis directly, potentially
improving bone integrity while mitigating systemic inflammation
(108). For instance, romosozumab, an anti-sclerostin agent, has
demonstrated efficacy in hemodialysis patients by enhancing
bone mineral density (BMD), though its long-term effects on
cardiovascular outcomes remain uncharted (109). Vitamin D
receptor activators (VDRAs) directly influence the immune-
inflammatory aspects of CKD-MBD by regulating the NF-«B
pathway, T cell differentiation, and the expression of pro-
inflammatory factors (110-112). This regulation has the potential
to improve patients immune deficiencies and inflammatory
status. SGLT2 inhibitors have led to significant advancements
in the treatment of CKD; however, their clinical translation is
hindered by cognitive biases, subgroup heterogeneity, and risks
associated with bone metabolism. The safety and applicability of
anti-sclerostin antibodies in CKD necessitate further research for
validation. Future efforts should focus on promoting personalized
medication strategies and enhancing clinical safety monitoring
(113-115). SGLT2 inhibitors have been confirmed in clinical
studies to improve biochemical indicators related to CKD-MBD,
and their cardioprotective and nephroprotective effects are clear
(114, 116). However, the issue of insufficient evidence in non-
diabetic CKD populations needs to be addressed. Preclinical
studies on anti-bone sclerosis protein antibodies have shown
potential for regulating bone metabolism, but cardiovascular risks
have limited clinical translation, necessitating the urgent design of
new strategies for safety optimization targeted at the CKD-MBD
population (117-119). Existing trials have significant limitations
in sample size, follow-up duration, endpoint indicators, and
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population representativeness. Future research should focus on
large-scale, long-term studies targeting heterogeneous populations,
particularly emphasizing treatment optimization within the
framework of precision medicine. These advances highlight a
shift toward personalized interventions, yet their integration into
clinical practice awaits robust validation.

Despite these insights, significant limitations hinder the
translation of immune-focused CKD-MBD research. The reliance
on short-term surrogate endpoints, such as PTH or BMD
changes, limits understanding of long-term clinical benefits,
particularly regarding fracture prevention and cardiovascular
mortality (120). Variability in study designs and patient cohorts—
often excluding early-stage CKD or non-dialysis populations—
further obscures the generalizability of findings (121). Future
research should prioritize longitudinal trials to delineate the causal
roles of specific inflammatory pathways (e.g., TNF-a, IL-6) and
their therapeutic modulation across all CKD stages. Moreover,
developing biomarkers that integrate inflammation, bone turnover,
and vascular health could refine risk assessment and treatment
monitoring, addressing current gaps in precision medicine for
CKD-MBD.

6 Conclusion

This review highlights the pivotal role of immune dysregulation
in the pathogenesis of CKD-MBD, demonstrating how chronic
inflammation and aberrant immune responses contribute to bone
loss, VC, and increased cardiovascular risk in CKD patients. Key
findings indicate that pro-inflammatory cytokines, such as TNF-
a, drive bone resorption and vascular stiffening, establishing a
mechanistic link between immune activation and the skeletal and
extra-skeletal manifestations of CKD-MBD (5, 122). Furthermore,
immune-mediated pathways, including sclerostin inhibition of
Wnt signaling and FGF-23 dysregulation, have emerged as
critical regulators of mineral metabolism and potential therapeutic
targets beyond conventional phosphate management (123, 124).
These insights underscore that addressing immune mechanisms
is essential for improving CKD-MBD management, offering a
paradigm shift from solely mineral-focused strategies to integrated
immune-modulatory approaches.

Looking forward, future research should focus on identifying
immune-related biomarkers to enhance risk stratification and
personalize treatment in CKD-MBD. Recent studies suggest that
gut dysbiosis, a driver of inflammation and mineral imbalance,
warrants exploration as a novel therapeutic avenue, potentially
through microbiome-targeted interventions (5). Additionally,
advanced techniques like single-cell RNA sequencing could
elucidate patient-specific immune profiles, paving the way
for tailored therapies that address individual variability in
CKD-MBD progression (125).
by osteoimmunology and osteomicrobiology highlights both

The complexity introduced

the challenges and opportunities in this field, necessitating
longitudinal, collaborative studies to validate these approaches and
translate them into clinical practice.

In conclusion, integrating immune mechanisms into CKD-
MBD management holds transformative potential for reducing
morbidity and mortality in CKD patients. However, significant
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knowledge gaps remain, particularly regarding the translation of
immune-based interventions into effective treatments. We call
for further research to bridge these gaps, leveraging emerging
technologies and interdisciplinary efforts to improve outcomes in
this high-risk population.
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