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Artificial intelligence (Al) is increasingly integrated into drug development and
regulatory decision-making; however, the regulatory landscape governing these
technologies remains fragmented. While agencies such as the US Food and
Drug Administration (FDA) and European Medicines Agency (EMA) have begun
issuing guidance on Al applications in human therapeutics, these frameworks
differ substantially in scope, terminology, and application. This lack of alignment
complicates regulatory interpretation, creates barriers to regulatory coordination,
and impedes equitable access to Al-enabled therapies. In this article, we introduce
the Al-enabled Ecosystem for Therapeutics (AI2ET) framework, a conceptual and
policy-oriented model designed to support the federation of regulatory knowledge
and promote regulatory alignment. The AI2ET shifts regulatory focus from individual
Al-generated products to the broader Al-enabled systems, platforms, and processes
that underpin drug development. This approach addresses current regulatory gaps
in Al oversight by articulating clear definitions of the components that constitute
the ecosystem, establishing risk-based decision-making pathways, and finally
offering regulatory guidance to navigate the ecosystem. The article offers six key
policy recommendations that include strengthening international cooperation,
establishing shared regulatory definitions, and investing in regulatory capacity
building. By laying down a conceptual foundation for regulatory science-based
oversight of Al in therapeutic development, the AI2ET framework offers a path
forward for inclusive, effective, and equitable oversight of Al in regulating human
therapeutics.

KEYWORDS

artificial intelligence, drug regulations, regulatory harmonization, drug development,
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Introduction

The integration of artificial intelligence (AI) in drug development is transforming the
pharmaceutical industry. However, the current regulatory frameworks have yet to keep pace
with the adoption of AI throughout the drug development cycle. While traditional drug
development, which involves extensive preclinical studies, multi-phase clinical trials, and
regulatory review, is known for its lengthy and resource-intensive process, Al is challenging
this conventional paradigm by accelerating discovery, streamlining drug development, and
reducing costs through predictive modeling, automation, and real-time data analysis (1).
Although definitions of Al can vary, it is commonly understood as the development of
computer systems capable of performing tasks that typically require human intelligence, such
as learning, reasoning, problem-solving, and decision-making (2). Predictive Al has long
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played a role in drug development. More recently, generative Al has
emerged as a transformative force, particularly in healthcare and
medicine, by generating new content and insights from large
datasets (3).

Regulatory frameworks are emerging in response to
these changes (4). For example, regulatory guidance has been
issued in the United States (US) and European Union (EU)
outlining a risk-based framework for evaluating AI models used
in drug and biologic development, focusing on transparency, data
quality, and human oversight. These efforts reflect a growing
recognition of the need to balance innovation with patient safety
(5, 6). Yet, the existing regulatory framework remains inadequate
in addressing the broad, adaptive nature of AI systems in
drug development.

As Al becomes increasingly embedded across the therapeutic
lifecycle, from generative models designing novel drug
candidates to adaptive systems optimizing manufacturing processes,
there is a growing need for structured, forward-looking
regulatory frameworks.

This article proposes the concept of the AI-Enabled Ecosystem for
Therapeutics (AI2ET) as a potential solution to regulatory
fragmentation. Regulatory agencies must evolve beyond the current
fragmented approach rooted in a conventional paradigm that treats
Al as discrete tools by adopting an integrated framework that

recognizes the ecosystem created using Al in drug development.

The core challenge: regulatory
framework fragmentation

Current state of regulation

The current Al regulatory landscape is inconsistent, creating
regulatory fragmentation. For example, while the US Food and Drug
Administration (FDA) has been developing guidelines for Al-enabled
medical devices since at least 2019, such as guidelines on good
machine learning practices, algorithmic transparency, and
predetermined change control. And yet, the agency issued its first
major guidance specific to Al in drug and biologics development in
January 2025 (6). Traditional drug development follows well-
established regulatory pathways developed over decades of precedent.
However, Al integration in therapeutics presents unforeseen
challenges to the established pathways.

Moreover, the FDA currently applies differing regulatory
frameworks to artificial intelligence depending on the application
context. For Al-enabled medical devices, the AT itself is subject
to direct evaluation (7). This includes assessments of algorithm
data
management, particularly for adaptive models, which may

transparency, performance, integrity, and lifecycle
require ongoing oversight under a predetermined change control
plan (8). By contrast, in the context of Al-generated therapeutics,
oversight is centered on the safety, efficacy, and clinical validation
of the final drug product, with AI treated as a component of the
development process rather than a regulated entity (9). Al tools
used in drug development face fragmented oversight from
discovery through manufacturing under various existing
frameworks, including Good Clinical Practice (GCP) and Good

Manufacturing Practice (¢cGMP). As a result, the differential
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regulation of AI for medical devices and drugs in the current
regulatory landscape creates fragmentation.

Al-related regulatory fragmentation also refers to the increasing
inconsistency in how artificial intelligence is regulated globally. Over
70 countries have introduced national AI policies, but these
frameworks often differ in scope, terminology, and application to drug
regulations (10). Fragmentation is also evident within countries,
where medical devices, biotherapeutics, and digital health fall under
separate regulatory pathways, leading to disjointed oversight of
Al-enabled systems (4, 8, 9). Additionally, while some agencies like
the FDA and European Medicines Agency (EMA) have advanced draft
guidance, many regions, especially low- and middle-income countries,
lack Al-related drug and device regulation (11).

In July 2025, the US issued the White House AI Action Plan,
outlining over 90 federal actions aimed at boosting Al innovation,
building national infrastructure, and establishing US leadership in
global Al standards (12). For the biopharma industry, this may mark
a significant shift. The plan promotes regulatory sandboxes and risk-
based frameworks, with the FDA highlighted as a central player. This
could ease regulatory barriers and accelerate the adoption of Al across
drug development, clinical trials, and manufacturing. As the US takes
the lead in setting global AI standards, biopharma companies may
benefit from more flexible and harmonized regulatory pathways. As
part of this effort, there’s an opportunity to establish broad, shared
terminology like AI2ET, which could help unify how Al-enabled
ecosystems are understood and regulated across the industry.
However, the question remains if the rest of the world is harmonized
with the US AI Action Plan.

Why the need to address regulatory
fragmentation

In the context of regulating Al for drug development, regulatory
fragmentation creates several issues that pose barriers to achieving a
coherent regulatory framework.

First, because of regulatory fragmentation, there is no consistent
definition of Al Although the FDA defines AI broadly as “a machine-
based system that can, for a given set of human-defined objectives,
make predictions, recommendations, or decisions influencing real or
virtual environments.,” this definition spans all AT applications. This
high-level definition has resulted in different levels of oversight based
on existing frameworks instead of the technology’s characteristics or
risk profile (13).

A second issue is the limitations of the Context of Use (CoU)
framework. The FDA has recently introduced the CoU framework (6).
The CoU concept was initially used for biomarkers (14) and is a
foundational regulatory concept used by the FDA to define the specific
circumstances under which a drug development tool or Al application
is intended to be used. It outlines the tool’s purpose, scope, target
population, and decision-making role, and serves as the basis for
determining the appropriate level of regulatory oversight. By clearly
articulating how and where a tool will be applied, the CoU helps
ensure that validation efforts are aligned with real-world use and that
regulatory evaluations remain risk-based and fit-for-purpose.
However, how CoU is to be applied in regulatory decision making for
Al-enabled drug development is unclear. Unanticipated products and
systems are bound to be presented for review to the regulators. Since
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the regulators are known to regulate through precedent or what is
already established, the novel Al-enabled approach could create a
conundrum for the regulators where Al-generated therapeutics
present novel mechanisms or outcomes that cannot be fully
understood or explained (15). In drug applications that rely on
unprecedented AI methodologies, regulators may choose to deny
approval due to the absence of established frameworks or clear
rationale. Alternatively, they may proceed under regulatory
uncertainty, which can introduce delays and increase the burden of
evidence, ultimately slowing access to therapies.

A third concern is that there is fragmentation in how Al-related
drug regulations are being developed across the field of human
therapeutics. For instance, recent FDA draft guidance (6) on the use
of Al in regulatory decision-making for drugs and biologics excludes
early-stage discovery and operational Al applications unless they
directly impact patient safety. This guidance, while a step forward,
highlights existing gaps in oversight and highlights the need for more
comprehensive regulatory approaches across the Al-enabled
ecosystem for human therapeutics.

Finally, there is a fragmentation in the terminology, guidelines,
and application of Al-related drug regulations. Currently, most
Al-related regulatory frameworks are being shaped by the US, EU and
other high-income countries, often in isolation and with varying
definitions and approaches. This lack of alignment creates barriers to
future collaboration and consistent oversight across regions.
Establishing a unified regulatory language and shared principles
through international cooperation will be essential to promote
transparency, enable equitable participation, and global availability of
Al-enabled human therapeutics.

Regulatory uncertainty

Regulatory fragmentation generates regulatory uncertainty for
sponsors developing Al-enabled therapeutics. The use of Al in the
drug development process challenges the traditional regulatory
paradigm. The regulatory uncertainty applies to both the industry and
regulators. There is a lack of guidance to evaluate Al-generated
therapeutics that may rely on computational instead of experimental
validation data or leverage algorithmic decision-making processes
without transparency. Regulatory agencies will encounter
unprecedented scenarios that do not fit neatly within the parameters
of established review processes. The following examples illustrate the
regulatory uncertainty in practice, prompting a need to adapt existing
frameworks to accommodate the rapidly evolving Al-enabled drug

development landscape.

The case of Elsa going alone

In June 2025, the FDA launched Elsa, a generative Al assistant
designed to support internal regulatory processes across its centers (16).
This initiative represents a significant milestone in the agency’s broader
strategy to integrate Al into the drug regulatory framework. Elsa is
designed to assist with administrative and analytical tasks such as
summarizing adverse event reports, reviewing clinical protocols,
generating database code, and identifying inspection targets, all within a
secure, cloud-based infrastructure. While the tool is not yet involved in
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regulatory decision-making, its deployment signals a growing institutional
commitment to leveraging Al for greater efficiency and responsiveness in
regulatory science. However, early implementation has revealed key
challenges, including concerns around accuracy, consistency, and the
potential for Al-generated content to “hallucinate” or misrepresent
information. Elsa’s rollout is indicative of both the promise and complexity
of integrating Al into regulatory ecosystems: it can streamline routine
processes and reduce review timelines, but its role in substantive
regulatory judgment remains constrained by the need for transparency,
accountability, and trustworthiness. As such, Elsa exemplifies the cautious,
yet deliberate steps regulators can take toward developing Al-enabled
regulatory infrastructure. While pharmaceutical firms are closely
monitoring Elsas deployment, as its use may shape future review
standards and expectations, as of this writing, there is no direct
collaboration or shared development between Elsa and external sponsor
entities or other global regulatory bodies.

Al-guided human therapeutics
development: an example of a regulatory
challenge

Consider a hypothetical, yet increasingly plausible scenario: an
Investigational New Drug (IND) application is submitted to the FDA
for a synthetic protein therapeutic that is fully designed using
advanced AI models, drawing on innovations that were awarded the
2024 Nobel Prize in Medicine (17). These investigational human
therapeutics may have no natural counterpart, and the target was
validated using silico methods, bypassing animal toxicology studies in
favor of Al-guided digital twin simulations. As the scientific
capabilities to create entirely new classes of molecules advance, the
regulatory frameworks tasked with evaluating them are being
stretched beyond their original intent. In such cases, the mechanisms
of action may be novel, the safety data modeled rather than observed,
and the decision-making pathways of the AI systems used in discovery
may not be explainable in human terms, all of which complicate
regulatory evaluation.

This emerging landscape points to a deeper challenge: the need for
regulatory approaches that evaluate not only the final therapeutic product,
but also the entire Al-enabled ecosystem that generates, including data
pipelines, model validation, algorithmic transparency, and iterative
learning loops. To ensure safety, innovation, and equity, future regulatory
frameworks must evolve to address the full lifecycle and ecosystem of
Al-generated therapeutics, doing so in a coordinated and globally aligned
manner. For that, a new framework needs to be defined.

Toward an integrated regulatory
approach

A framework for Al-Enabled Therapeutics
(AI2ET) model

Against a background of regulatory fragmentation and
uncertainty, there is a need to reconceptualize how we approach Al
oversight for human therapeutics. Regulatory science must keep pace
with the integrated nature of AI applications in drug development. It
requires that regulation move beyond the conventional paradigm of
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treating Al as discrete tools by recognizing an interconnected AI  track and interpret evolving global regulatory guidelines. Digital twin
ecosystem that covers the entire therapeutic development process. systems, virtual models linked to real-time data, are also emerging to
To address the regulatory fragmentation, we propose the  simulate and optimize manufacturing processes and therapeutic

Al-Enabled Ecosystem for Therapeutics, or AI2ET framework. This  responses (20). The use of AI and informatics methods to assess how

framework provides a structured process to guide Al oversight across ~ drugs move through regulatory and translational pathways is an

four interconnected components: systems, processes, platforms, and  example of systems taxonomy (21).

products. Each plays a distinct and interconnected role in enhancing

the speed, efficiency, and quality of drug development and regulatory ~ Processes

oversight. This framework captures the full range of AI-driven tools, Processes refer to the structured series of steps wherein Al is

workflows, and outcomes in biotherapeutics. This paper introduces  deployed to perform specific tasks in drug development, clinical

the AI2ET framework and proposes a risk-based regulatory approach ~ operations, and quality management. These include routine and

in the absence of drug regulations. Figure 1 lays out the components ~ complex workflows that benefit from automation, prediction, and

of the framework to show how the Al-enabled biotherapeutic  continuous improvement enabled by Al

ecosystem AI2ET relates to the various stages of creating human Prominent examples include AI-driven automation of regulatory

medicines from discovery to lifecycle management. submissions, which streamlines the generation and electronic
submission of documents while reducing human error. In clinical
trials, real-time AI monitoring processes flag protocol deviations and

Defini ng the com ponents of the emerging safety concerns, enabling earlier intervention (22). Al also
Al-Enabled Ecosyste m for Thera peutics supports intelligent risk management by analyzing operational and
(AI2ET) historical data to identify high-risk trial sites or patient populations.

In pharmacovigilance, Al enhances post-market surveillance by
Systems rapidly identifying adverse events and facilitating timely reporting
In the context of AI2ET, systems are software or hardware  (23). Similarly, in quality assurance, AI processes analyze
infrastructures that incorporate AI algorithms to execute tasks  manufacturing and clinical data to predict quality deviations and
typically requiring human cognition, such as pattern recognition,  improve audit preparedness (24).
decision-making, and adaptive learning. These systems are embedded
across clinical, regulatory, and manufacturing operations to support ~ Platforms
continuous and intelligent workflows. Platforms are integrated environments that provide the tools,
For example, Al systems are increasingly used in regulatory infrastructure, and services necessary to build, deploy, and manage Al
document review and submission, automating the preparation and  applications at scale. These platforms often support multiple systems
validation of Investigational New Drug (IND) and New Drug  and processes across different stages of the therapeutic lifecycle.
Application (NDA) filings (18). In pharmacovigilance, Al systems In clinical development, platforms can centralize trial and
enable real-time adverse event detection by processing large volumes ~ regulatory data, enabling unified oversight and compliance tracking
of data from electronic health records, spontaneous reporting systems, ~ (25). Al-enabled pharmacovigilance platforms monitor real-world
and social media (19). During the COVID-19 pandemic, such systems  data streams, including electronic health records, literature databases,
proved essential for managing unprecedented volumes of safety data.  and social media, to automate signal detection (26). Modeling
Additional applications include risk assessment systems that predict ~ platforms, such as those supporting physiologically based
compliance and safety issues, and regulatory intelligence systems that ~ pharmacokinetic (PBPK) simulations, utilize AI to predict drug

REGULATED SPACE @
Development G Al-Enabled
P Management -tnable
Ecosystem for Systems

Therapeutics Process

Regulatory Operations (AI2ET)
Platforms

Manufacturing Products

Pharmacovigilance

REGULATED SPACE?

FIGURE 1
How is Al-Enabled Ecosystem for Therapeutics related to the various stages of creating human medicines—discovery to lifecycle management (and
vice versa).
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behavior in varied populations (27). Al-powered document
management platforms assist with the automated creation and
tracking of regulatory and quality documentation (28). Remote audits
can be facilitated by AI or in an augmented reality setting, enabling
regulators to access real-time data with minimal need for physical
inspections (29). Manufacturing platforms incorporating digital twins
facilitate dynamic modeling and control of biologics production,
improving process robustness and scalability (30).

Products

Products are tangible outputs developed, optimized, or
manufactured using AI. These include novel drug candidates,
vaccines, biologics, and personalized therapies where Al has played a
critical role in their design, evaluation, or production.

Al-designed drug molecules, for instance, leverage generative
models to create and refine therapeutic candidates in silico before
experimental validation (31). During the development of mRNA-
based COVID-19 vaccines, Al tools were utilized to optimize mRNA
sequence stability and immunogenicity (32). In synthetic biology, Al
supports the engineering of microorganisms to produce therapeutic
proteins or bio-based materials. Notably, Al-enabled protein design
has been recognized with the Nobel Prize, exemplified by the
prediction of protein folding and interaction networks for therapeutic
applications (17). In advanced therapies, such as autologous cell
therapies or gene therapies, Al is increasingly used to support real-
time decision-making during manufacturing, enabling personalized
control of highly variable and sensitive processes (33).

In the AI2ET framework, the boundaries between systems,
processes, platforms, and products are conceptually distinct but
often overlap in practice, especially in integrated Al-enabled
environments. For example, a single machine-learning model may
function simultaneously as a platform, operate within a cloud-based
infrastructure (system), drive adaptive trial workflows (process),
and influence clinical endpoints that shape the therapeutic product.

10.3389/fmed.2025.1679611

These overlaps can lead to both synergies and regulatory challenges.
While these overlaps are not just technical, they have regulatory
implications. For example, the systems frequently house or execute
multiple processes, making it challenging to separate infrastructure
from function. Platforms that integrate various tools and workflows
may embed both systems and processes, actively shaping how tasks
are carried out. These tools can also directly influence or even
become part of the final therapeutic product, especially in cases like
Al-optimized manufacturing or software as a medical device.
Validation, change control, and oversight may differ depending on
how a tool is categorized. As a result, changes to one component,
such as a process within a system, can have downstream effects on
the product itself. As Al ecosystems become more integrated,
regulators and developers must carefully define these components,
not just for clarity, but to align with risk-based frameworks and
ensure regulatory application across the full lifecycle.

While distinctions between systems, processes, platforms, and
products can quickly blur, the AI2ET framework reframes regulation
by treating Al not as a standalone tool but as an ecosystem embedded
across the drug development lifecycle. Traditional approaches, such as
the FDA’s product-centered paradigm, emphasize the final therapeutic
while generally overlooking upstream risks introduced by biased
datasets, opaque algorithms, or automated processes. By mapping
risks across all layers, AI2ET reduces blind spots that conventional
frameworks often miss.

Risk-based regulatory decision framework

AI2ET consists of a risk-based decision framework tailored to
guide regulatory decision-making. As shown in Figure 2, this model
facilitates context-aware regulatory decision-making aligned with the
complexity and potential impact of Al-enabled systems, processes,
platforms, and products.

Is it Al-enabled therapeutic ecosystem?

Apply existing Regulations on
human therapeutics

No

I Yes

[
Are there regulatory guidelines or
regulaltions?

Yes No

|

I Is there a precedent for something similar? I

No l IYes

Are these guidelines or
regulations referencing
systems, processes,
platforms, or products?

Classify based on risk level
and context of use

I

Likely will be regulated: it’s
probable that regulation will
be applied to the Al-enabled
biotherapeutics ecosystem.

Classify based on risk level
and context of use

I

« System: Evaluate adequacy of system-level
guidelines in addressing Al-specific risks.

« Process: Evaluate process-level guidelines for Al
integration in biotherapeutics.

« Platforms: Consider platform-specific guidelines
for data and algorithmic transparency

« Products: Assess product-specific guidelines for
efficacy, safety, and quality

« High > consider targeted regulation

+ Medium > consider lighter regulatory measures
with periodic assessments

« Low - consider minimal regulation, focusing
on monitoring and guidance.

* Unacceptable - restrict/prohibit until further
research and safety protocols are established

ples of | ging p

« Adaptation of principles and guidelines from the Software
as a Medical Device (SaMD) regulatory framework

« Adaptation of Existing Frameworks to include Al-specific
factors in biotherapeutics

= Application of risk-based regulation based on level of risk

FIGURE 2

To regulate or not to regulate Al-Enabled Ecosystem for Therapeutics (AI2ET).
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The framework begins by assessing whether existing guidelines
apply and, if not, whether regulatory precedents such as FDAs
regulatory guidelines for AI/ML SaMD can be adapted. An example
is the FDA's principles of good machine learning practice (GMLP)
applicable to the development of AI/ML-enabled medical devices.
One principle is the application of good software engineering and
security practices in the development of Al tools. Another principle is
the monitoring of deployed models over time to maintain safety and
performance. When no precedent exists, Al applications should
be classified based on their context of use and potential risk to patient
safety or product quality. Risk levels, categorized as high, medium,
low, or unacceptable, then inform the appropriate degree of regulatory
oversight, ranging from guidance to full premarket review. Figure 2
illustrates the regulatory decision-making process. By grounding
regulatory decision-making in the context of use and oversight with
potential risk, this framework offers a flexible yet rigorous approach
to determining how to regulate, or not, the evolving landscape of
Al-Enabled Ecosystem for Therapeutics.

This integrated approach combines elements from existing
regulatory guidelines to address Al-enabled drug development. In the
absence of specific Al guidelines for therapeutic development, AI2ET
bridges between established device Al frameworks and emerging
therapeutic Al applications. It addresses the existing regulatory gap
where similar AI technologies receive different oversight levels
depending on whether they are used in drug development or medical
AT applications, even if they face the same technical challenges and
risk profiles.

How AI2ET Al aligns with some existing
ICH guidelines

Regulation under the ICH multidisciplinary guideline M7 on
Assessment and Control of DNA Reactive (Mutagenic) Impurities in
Pharmaceuticals reflects this recognition (34). Because mutagenic
impurities pose direct patient risk, Quantitative Structure—Activity
Relationship (QSAR) (35) predictions cannot stand alone. Instead,
ICH M7 requires two complementary models, typically one statistical
and the other expert rule-based, applied within a defined applicability
domain and interpreted with expert judgment. This layered approach
ensures transparency, validation, and scientific credibility.

In practice, ICH M7 already mirrors the AI2ET (Artificial
Intelligence-Enabled  Ecosystem for Human Therapeutics)
perspective, treating QSAR not as an isolated tool but as part of a
regulatory ecosystem where systems, processes, and platforms
converge to safeguard the integrity of the final product.

As an application of AI2ET, QSAR moves from being a black-box
model upstream to a regulated ecosystem element with risk-based
oversight. This makes the framework actionable where regulators can
have a scoring method, oversight pathway, and integration into
existing regulations or ICH guidelines.

How AI2ET aligns with current regulatory
frameworks: US and EU perspectives

As Al is increasingly embedded across the drug development
lifecycle, and with evolving regulations, the FDA and the European
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Union (EU) are adopting risk-based regulatory approaches to govern
its use (16, 36). The AI2ET framework, which comprises Al-enabled
systems, processes, platforms, and products, aligns naturally with this
regulatory shift, as each component introduces different levels of
complexity and risk.

In the United States, the FDA applies a tiered, use-case-driven
approach. For Al tools used in drug development (e.g., clinical trial
design, manufacturing, pharmacovigilance), oversight is generally
indirect, relying on existing frameworks such as Good Clinical
Practice (GCP), Good Manufacturing Practice (cGMP), and the Drug
Development Tool (DDT) Qualification Program (8). When AI
outputs directly affect patient care or regulatory decision-making,
such as Software as a Medical Device (SaMD) or real-time dosing
tools, they are subject to more stringent, direct regulation, requiring
defined validation protocols and continuous performance monitoring
(7). The FDA’s draft guidance on “Using Artificial Intelligence and
Machine Learning in Drug and Biological Product Development”
emphasizes context of use (CoU) and risk stratification to determine
the appropriate regulatory expectations for Al tools based on their
potential impact (6).

In the EU, the regulatory environment is shaped by the EU
Artificial Intelligence Act (AI Act), which introduces a comprehensive
risk-based classification for Al systems (5). Under the AI Act, Al
systems deployed in applications in drug development and
therapeutics may be classified as high-risk AI systems, particularly
when used for clinical decision-making, safety monitoring, or
manufacturing control. These Al systems would then be subject to the
requirements of high-risk systems, including transparency, data
governance, human oversight, and the implementation of a risk
management system. Additionally, existing EMA guidelines, such as
those related to the use of modeling and simulation in drug
development and quality assurance, provide a foundation for
evaluating Al-enabled components of AI2ET.

Leveraging the medical devices precedent

Established risk-based principles in medical device regulation
provide established precedent on regulatory decision-making within
the AI2ET conceptual framework. For example, if a context of use is
determined to be low risk from the decision tree (Figure 2), the level
of regulatory control may simply be documentation and adherence to
general QMS requirements. A medium risk determination would
require additional regulatory controls such as performance standards
in addition to adhering to general QMS requirements. A high-risk
determination would require additional validation through increased
amount and rigor of evidence. The 2021 guiding principles of Good
Machine Learning Practice (GMLP) for Medical Device Development
(37) recommend best practice to address the unique nature of
development of AI/ML-enabled medical devices. This framework can
be adapted from medical device Al regulation to applications of Al in
drug development. The level of risk would determine specific practices
from foundational good software engineering practices and data
management for all risk types to AI-human interactions in contexts
where Al outputs have a significant impact on regulatory decisions.

Together, these frameworks support the application of
graduated regulatory oversight based on the role and risk profile
of Al tools within the AI2ET ecosystem. For example, an internal
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AT system used for predictive risk modeling may require only
documentation under QMS (38), while a platform used for real-
time clinical decision support would need extensive validation
and potentially premarket approval (28). This alignment between
AI2ET and regulatory risk-based models facilitates innovation
while ensuring safety, efficacy, and accountability across
Al-enabled therapeutics.

Policy recommendations: advancin
risk-based regulation for Al-Enable
Ecosystems for Therapeutics (AI2ET)

Clarifying the definition of Al for health
regulatory sciences

The FDA has multiple definitions for AI and broadly as “a
machine-based system that can, for a given set of human-defined
objectives, make predictions, recommendations, or decisions
influencing real or virtual environments” (9). While this reflects AT’s
interdisciplinary scope encompassing multiple fields such as computer
science, statistics, engineering, and decision sciences, such a wide
definition introduces ambiguity, scope creep, and difficulty
maintaining clear, focused regulatory objectives. We recommend
defining AI and machine learning (ML) specifically for health
regulatory contexts, with distinct categories for predictive Al and
generative Al, and aligning these with the CoU to prevent confusion
with competing definitions from other government agencies involved
in healthcare Al initiatives (39).

Modernizing the context of use (CoU)
framework

The traditional CoU framework and definition are often too static for
the dynamic, adaptive nature of A tools. A systems that generate novel
outputs or evolve over time pose challenges for a regulatory system that
relies heavily on precedent. Without a comparable legacy tool or
established regulatory path, the FDA must decide whether to reject an
Al-driven tool, accept it based on human interpretation of outputs, or
force-fit it into outdated structures. We recommend updating the CoU
model to be more modular and adaptable, using the AI2ET framework
to capture the complexity and fluidity of modern AT tools.

Broadening regulatory scope to include
discovery and regulatory operations

Current regulatory focus often excludes early-stage drug
discovery and operational efficiencies, such as regulatory
automation, unless they directly impact patient safety, product
quality, or clinical data integrity. However, these Al applications can
significantly influence downstream outcomes and regulatory
decisions. We recommend that the AI2ET framework explicitly
incorporates early discovery tools and AlI-driven operational
that
reproducibility, or regulatory compliance.

systems impact therapeutic development quality,
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Leveraging existing insights from medical
device Al regulatory developments

There is limited cross-referencing between therapeutic Al
regulation and existing Al regulatory framework and insights for
SaMD. For example, regulatory insights from the FDA Digital
Health Advisory Committee’s November 2024 meeting on
generative Al in medical devices offered important insights on
premarket evaluation, bias and hallucination risks, model
transparency, and post-market monitoring (40). As the regulations
for the Al-enabled human therapeutic ecosystem are being
developed, incorporating the lessons from the device regulations
will ensure consistency across domains and help avoid duplication
of effort or regulatory fragmentation.

Applying risk-based monitoring and
scientific judgment

The FDA’s draft guidelines establish a risk-based credibility
assessment framework, emphasizing the validation of context-
specific models. However, a core question remains: how will
Al-generated medicines or outputs be regulated without available
guidelines? In such cases, the FDA often relies on Generally
Accepted Scientific Knowledge (GASK) (41). Yet, given the “black
box” nature of many AI models, GASK alone may not be sufficient;
its optimal use will depend on expert human judgment to define
what qualifies as “scientific’ and what constitutes reliable
“knowledge.”

Use decision tools in the absence of
guidelines

To support decision-making where formal regulations are lacking,
we propose using a decision tree (see Figure 2). This decision support
tool outlines a logical framework for applying CoU and risk-based
principles to novel Al-enabled products and tools in biotherapeutics.
The decision tree can be a practical guide for evaluating Al tools not
covered by existing regulatory precedents. Here, an expert can serve
as the human-in-the-loop in regulatory decision-making by actively
guiding the system by applying domain knowledge to support accurate
and accountable outcomes.

Implementation of these recommendations could proceed in
phases, such as piloting use cases under existing guidelines,
harmonizing AI/ML terminology relevant to human therapeutics by
seeking consensus at the ICH level, or establishing an advisory board
modeled on those used for medical devices and generative AI (40).
Alternatively, a more ambitious approach would be to create a new,
agile regulatory authority dedicated to overseeing the Al-enabled
ecosystem for human therapeutics (42).

Limitations of AI2ET

It is recognized that the AI2ET framework, as a novel construct,
will often operate outside the traditional applicability domain (AD)
established for computational models. Regulatory precedents, such
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as those governing Quantitative Structure-Activity Relationship
(QSAR) models, already mandate the submission of a clearly
defined AD. Predictions made outside of this domain are considered
to carry higher uncertainty and typically require additional
biological or non-clinical studies for validation. We therefore
acknowledge this precedent: out-of-domain predictions should not
be dismissed but rather escalated for enhanced oversight, validation,
and confirmatory evidence. This principle offers a practical and
well-established pathway that can be extended to AI2ET, ensuring
proportionate regulation when models are applied beyond their
validated boundaries. More research needs to be conducted on
this topic.

AI2ET framework also faces several limitations in offering a
promising model for federating and harmonizing Al-related drug
regulatory knowledge. First, integration into the existing global
regulatory environment remains challenging due to wide disparities
in digital infrastructure, data governance norms, and regulatory
maturity across countries. Many low- and middle-income regions
may lack the resources, technical expertise, or institutional capacity
to effectively adopt and apply AI2ET-derived insights, potentially
reinforcing existing inequities. Additionally, real-time data
ingestion and multilingual processing require sustained
computational resources and maintenance, which may limit
scalability. There is also a risk that over-reliance on automated
systems could lead to regulatory inconsistencies, particularly in
areas where qualitative judgment, cultural context, or legal nuance
is essential. Finally, without formal recognition or endorsement by
major regulatory bodies, the framework may struggle to gain
traction or influence decision-making on a scale. For AI2ET to
reach its full potential, strategic partnerships, transparency, and
continuous validation will be essential to ensure its reliability,

adaptability, and global relevance.

Conclusion

As artificial intelligence becomes increasingly central to drug
development, regulatory frameworks must evolve to keep pace. The
Al-Enabled Ecosystem for Therapeutics (AI2ET) provides a
structured, drug lifecycle-wide approach to managing AT’s role in
discovery, clinical development, manufacturing, regulatory enabling
functions, and post-market oversight.

However, current regulatory guidance often falls short, limited by
definitions of AI and CoU’s, narrow scope, and lack of integration
with digital health and device regulations. To close these gaps, a risk-
based, context-aware model grounded in AI2ET is needed. This
includes redefining Al for regulatory purposes, updating CoUs for
adaptive tools, and broadening the scope of oversight across domain
regulatory efforts. The proposed decision tree is a practical tool to
guide regulatory decisions, especially when formal precedents
are absent.

The AI2ET framework is not intended as an abstract construct but
as a policy tool anchored in existing regulatory practice. For example,
ICH M7’s structured use of QSAR models already embodies the
AI2ET principle by regulating the broader ecosystem—the systems,
processes, platforms, and products, rather than only the final outcome.
AIZET builds on such precedents by offering a risk-based decision tree
that regulators and industry can operationalize today. Far from

Frontiers in Medicine

10.3389/fmed.2025.1679611

remaining theoretical, it provides a pathway for a harmonized,
adaptive regulatory oversight that integrates upstream Al tools into
the existing review structure.

Under AI2ET, Al is defined not as a standalone tool, but as an
embedded, evolving capability that influences safety, efficacy, quality,
and compliance across the therapeutic ecosystem. This approach
ensures oversight focuses on function and impact, rather than the
technology itself, supporting innovation while safeguarding public
health in an Al-driven era. In this emerging paradigm, Al is no longer
viewed as a discrete tool, but as an embedded, evolving capability
interwoven into platforms, systems, and decision-making processes
that span the entire drug lifecycle.
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