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Background: Machine learning (ML) models are increasingly utilized to
predict mortality in patients with sepsis-associated acute kidney injury (SA-
AKI), frequently surpassing traditional scoring systems. Despite their efficacy,
inconsistencies in model quality remain a concern. This review aims to
evaluate existing ML-based SA-AKI mortality prediction models, with a focus on
development quality, methodological rigor, and predictive performance.
Objective: To systematically assess ML-based mortality risk prediction models
for SA-AKI patients.

Methods: A comprehensive literature search on ML-based SA-AKI mortality
prediction models was conducted across PubMed, Cochrane, Embase, and
Web of Science from the inception of these databases until July 2025. Two
researchers independently screened the literature, extracted data, and assessed
model quality employing the Prediction Model Risk of Bias Assessment Tool for
Artificial Intelligence.

Results: Nine studies were included, all of which entailed model development
and validation phases; five were solely internally validated while four underwent
external validation as well. The studies utilized 18 different algorithms, with
Random Forest and Extreme Gradient Boosting being the most prevalent. The
majority of the studies employed K-nearest neighbor or Multiple Imputation
by Chained Equations for handling missing values and utilized Recursive
Feature Elimination, Least Absolute Shrinkage and Selection Operator, and
Boruta's algorithm for feature selection. Seven studies assessed model
calibration performance. The Area Under the Curve (AUC) for the training
sets generally ranged from 0.75 to 0.99, which decreased to 0.70 to 0.87
during internal validation. Extreme Gradient Boosting consistently showed
robust performance in external validation. The final predictors encompassed
six principal categories: demographic information, vital signs, laboratory tests,
disease severity, comorbidities, and interventions.

Conclusions: ML models demonstrate promising performance and applicability
in predicting mortality risk in SA-AKI patients, with consistent core predictors.
Nevertheless, most studies exhibit a potential risk of bias. Future efforts should
aim to enhance the standardization of data processing, feature selection, and
validation processes. Additionally, there is a need to focus on the construction
of prospective models based on early variables, and to ensure the interpretability
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and clinical integration of the models to facilitate their practical application in
healthcare workflows.
Systematic review registration: identifier: CRD42025634551.
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1 Introduction

Sepsis is characterized as an acute organ dysfunction syndrome
precipitated by a dysregulated host immune response to infection,
which exhibits substantially high morbidity and mortality rates (1).
It is estimated that approximately 48.9 million individuals globally
are afflicted by sepsis annually, resulting in about 11 million deaths.
This accounts for nearly 20% of all global mortality figures (2).
One of the most prevalent complications of sepsis, Acute Kidney
Injury (AKI), markedly elevates the risk of mortality, extends
hospital stays, and increases the necessity for renal replacement
therapy in affected patients (3). Sepsis-associated Acute Kidney
Injury (SA-AKI), a distinct phenotype of AKI, is often characterized
by renal impairment that precedes clinical manifestations owing to
its insidious onset and rapid progression. Systematic assessments
indicate that the morbidity and mortality rates of SA-AKI range
between 14% and 87%, and 11% and 77%, respectively (4).
Furthermore, delays in mortality risk identification can critically
impact the timing of interventions and prognoses; thus, the
early identification of patients at high risk of mortality in SA-
AKI and the development of personalized risk assessment tools
represent crucial components of contemporary clinical critical
care management.

Current clinical tools for assessing sepsis severity, such as the
SOFA, APACHEII, and SAPS II scores, are commonly employed to
evaluate organ function and overall mortality risk. However, these
tools demonstrate poor generalization, possess limited predictive
capabilities for the specific subgroup of SA-AKI, and exhibit low
sensitivity and specificity. Additionally, they are typically one-
time, static assessments that fail to dynamically reflect disease
progression (5-7).

With advancements in artificial intelligence, Machine Learning
(ML) algorithms have become increasingly prevalent in the
medical field, particularly in the early identification of diseases (8-
10), prognosis prediction (11-13), and clinical decision-making
(14, 15). ML algorithms are capable of processing large-scale,
multi-dimensional, non-linear, and highly interactive data sets.
They can autonomously conduct feature selection and model
optimization, thereby enabling real-time and dynamic predictions
that can be seamlessly integrated into clinical information systems
(16). Several scholars have employed ML models to predict
mortality risk among SA-AKI patients in ICUs, with most
reported predictive performance indicators surpassing those of
traditional scoring systems. However, the reliability of these
models remains questionable due to significant variances in data
sources, variable processing, modeling algorithms, and model
validation methods.
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Consequently, this study aims to systematically review existing
SA-AKI mortality prediction models that utilize ML algorithms,
evaluate their development quality, predictive performance, clinical
applicability, and risk of bias, and provide evidence-based
recommendations to support the standardized application of Al
models in ICU risk prediction.

2 Materials and methods

2.1 Literature inclusion and exclusion
criteria

2.1.1 Inclusion criteria

[Sfludy participants aged >18 years. [Pitients diagnosed
with sepsis. [Study designs encompassing cohort studies,
case-control studies, and cross-sectional studies. ["Models that
predict mortality, employ ML to develop predictive models,
and detail the processes of model construction, validation,

and assessment.

2.1.2 Exclusion criteria
[Btudies
comprehensive risk modeling. [—ase series, case reports,

solely focusing on risk factors without

randomized controlled trials, and descriptive surveys.
Guidelines, expert opinions, reviews, and animal studies.
Studies not published in English. [“Stlidies where the original text

was inaccessible or the information was incomplete.

2.2 Literature search strategy

A systematic search was conducted across four databases:
PubMed, Embase, Web of Science, and Cochrane Library.
The search utilized a combination of terms including “Acute

Kidney Injury/Acute Renal Injury/Acute Kidney Failure,
“Sepsis/Bloodstream  Infection,” “Machine Learning/Artificial
Intelligence/decision  tree/random  forest/support  vector

machine/k-nearest ~ neighbors/k-means/naive  bayes/Logistic

Regression/Linear ~ Regression/XGboost,”  and ~ “Prediction
model/risk assessment.” Both subject headings and free-text
keywords were employed. The search encompassed records
from the inception of each database through March 2025.
The search strategy is based on PubMed as an example
(Figure 1). The detailed search strategy is provided in the

Supplementary material.
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#1:Search: ("Acute Kidney Injury"[Mesh]) OR (((((((((((Acute Kidney Injuries[Title/Abstract]) OR (Kidney
Injur*, Acute[Title/Abstract])) OR (Acute Renal Injur*[Title/Abstract])) OR (Renal Injur*,
Acute[Title/Abstract])) OR (Kidney Failure, Acute[Title/Abstract])) OR (Acute Kidney
Failure*[Title/Abstract])) OR (Renal Failure*, Acute[Title/Abstract])) OR (Renal Insufficienc*,
Acute[Title/Abstract])) OR (Acute Renal Insufficienc*[Title/Abstract])) OR (Acute Kidney
Insufficienc*[Title/Abstract])) OR (Acute Renal Insufficienc*[Title/Abstract]))

#2:Search: (((((((sepsis[MeSH Terms]) OR (Bloodstream Infection*[Title/Abstract])) OR (Infection,
Bloodstream[Title/Abstract])) OR (Septicemia*[Title/Abstract])) OR (Blood Poisoning*[Title/Abstract])) OR
(Poisoning*, Blood[Title/Abstract])) OR (Severe Sepsis[Title/Abstract])) OR (Sepsis, Severe[Title/ Abstract])
#3:Search: ((((((((C(((((((((((((machine learning[MeSH Terms]) OR (Unsupervised Machine Learning[MeSH
Terms])) OR (Supervised Machine Learning[MeSH Terms])) OR (Artificial Intelligence[MeSH Terms])) OR
(Deep Learning[MeSH Terms]))) OR (machine learning[ Title/Abstract])) OR (machine learning
algorithm*[Title/Abstract])) OR (artificial intelligence[ Title/Abstract])) OR (Supervised machine

learning[ Title/Abstract])) OR (Unsupervised machine learning[Title/Abstract])) OR (Semi-supervised
Learning[Title/Abstract])) OR (deep learning[Title/Abstract])) OR (decision tree[Title/Abstract])) OR (random
forest[Title/Abstract])) OR (support vector machine[Title/Abstract])) OR (k-nearest neighbors[Title/Abstract]))
OR (k-means[Title/Abstract])) OR (navie bayes[Title/Abstract])) OR (Logistic Regression[Title/Abstract])) OR
(Linear Regression[Title/Abstract])) OR (XG boost[Title/Abstract])

#4:Search: (((((redict* model*[Title/Abstract]) OR (predict*[Title/Abstract])) OR (prognos*[Title/Abstract]))
OR (risk assessment*[Title/Abstract])) OR (diagnos* model*[Title/Abstract])) OR (diagnos*[Title/Abstract])

#5:#1 AND #2 AND #3 AND #4

FIGURE 1
PubMed search strategy.

2.3 Literature screening and data extraction

After completing the literature search, we imported the
results into EndNote 21 for management. Two researchers
conducted the literature screening by reviewing the titles,
abstracts, and additional relevant information of the documents,
strictly adhering to the predefined inclusion and exclusion
criteria to identify eligible studies. In cases where the two
researchers disagreed on the final selection of a study, they
consulted a third researcher to reach a consensus. Once
a study was confirmed for inclusion, the full article was
downloaded and thoroughly read. Data collection followed the
Cochrane guidelines and adhered to the Critical Appraisal
and Data Extraction Checklist for the Systematic Evaluation
of Predictive Models (CHARMS) (17). The extracted data
included: publication year, study type, country, data source,
patient characteristics, diagnostic criteria for AKI, study endpoints,
methods for addressing missing variables, predictor screening,
ML algorithms, validation types, calibration metrics, and other
relevant details.

2.4 Risk of bias and applicability assessment
The risk of bias in the quality of models for included studies was

independently assessed by two investigators using the PROBAST-
Al assessment tool (18). This tool is an advanced version of
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PROBAST, specifically designed to assess the risk of bias and clinical
applicability of predictive models in healthcare, including both
traditional regression and AI/ML models. Introduced to address
the swift advancements in Al technologies and the accompanying
methodological challenges, PROBAST-AI enhances compatibility
with AI/ML technologies. It supports the detailed assessment of
ML models, focuses on fairness by incorporating new criteria
for evaluating algorithmic bias and data representativeness, and
categorizes performance validation. In terms of risk of bias
assessment, PROBAST-AI evaluates 18 questions across four
domains: participant and data source, predictor, outcome, and
statistical analysis. Responses to each question are categorized as
“yes/maybe,” “no/could be,” or “unclear.” A domain is considered
to have a low risk of bias if all responses are “yes/maybe;”
it has a high risk of bias if any response is “no/could be.”
If a domain has an “unclear” response to any question while
the rest are “yes/maybe, the risk of bias for that domain
is considered unclear. When all domains are rated as having
low risk of bias, the overall assessment of the study is “low
risk of bias.” Conversely, if at least one domain is rated as
having a high risk of bias, the overall assessment is “high
risk of bias.” If no domain is rated as high risk but at
least one is unclear, the overall assessment is “unclear.” The
assessment of applicability, based on the first three domains,
follows a similar pattern to the risk of bias assessment, with each
domain being rated as “good applicability,” “poor applicability,” or
“uncertain applicability.”
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FIGURE 2
PRISMA study selection flow chart

3 Results

3.1 Literature screening process and results

After the initial search, 5,129 documents were retrieved.
Following the removal of duplicates using EndNote software, 4,078
documents remained. After further screening, 9 documents were
ultimately included in the study. The literature screening process is
depicted in Figure 2.

3.2 Basic characteristics of included
literature

Nine studies, published between 2022 and 2024, involved
investigators all based in China. One study (19) focused on elderly
patients aged 65 years or older, while eight studies (20-27) included
adult patients aged 18 years and older. All were retrospective
cohort studies. Data were sourced from public databases such
as MIMIC-IV, MIMIC-III, eICU, and hospital electronic medical
record systems. Five of the studies (19-21, 24, 25) examined in-
hospital mortality outcomes, three studies (22, 23, 26) investigated
mortality 28 days post-ICU admission, and one study (27) explored
1-year mortality outcomes. For additional details on the included
literature, refer to Table 1.
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3.3 Inclusion of literature in predictive
model construction

Among the nine included studies, details of the model
construction are presented in Table 2. The training set sample size
ranged from 1,999 to 12,923, the internal validation set sample
size from 500 to 3,231, and the external validation set sample size
from 100 to 3,471. All studies focused on developing and validating
predictive models. Of these, five studies (19, 20, 22-24) conducted
only internal validation, while the remaining four studies (21,
25-27) conducted external validation. The ML algorithms used
are displayed in Figure 3, encompassing 18 types, including:
Random Forest (RF), Extreme Gradient Boosting (XGBoost),
Logistic Regression (LR), Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Multilayer Perceptron (MLP), Naive
Bayes (NB), Adaptive Boosting (AdaBoost), Categorical Boosting
(CatBoost), Decision Tree (DT), Gradient Boosting Machine
(GBM), Neural Network (NN), Gradient Boosting Decision
Tree (GBDT), Light Gradient Boosting Machine (LightGBM),
Recursive Partitioning and Regression Trees (Rpart), Support
Vector Classifier (SVC), Least Absolute Shrinkage and Selection
Operator (LASSO), and Bootstrap Aggregating (Bagging). Among
these, RF and XGBoost were the most frequently used (n = 9),
followed by LR (n = 8), SVM (n = 5), and KNN (n = 4).
XGBoost exhibited the best predictive performance in five studies
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TABLE 1 Basic information on the included literature.

10.3389/fmed.2025.1680180

Author Year Country Disease Data source AKI Predicted

background diagnostic outcomes
Criteria

Jie Tang (19) 2024 China ICU sepsis patients over 65 | Retrospective MIMIC-IV database 2012 KDIGO Hospitalized
years old cohort study mortality rate

Xunliang Li 2023 China Adult septic patients with Retrospective MIMIC-IV database 2012 KDIGO Hospitalized

(20) AKI within 48 h of ICU cohort study mortality rate
admission

Hongshan 2023 China Patients over 18 years old Retrospective MIMIC-1V database, Xiangya 2012 KDIGO Hospitalized

Zhou (21) with sepsis admitted to cohort study Hospital of Central South mortality rate
ICUs University, Xiangya Third

Hospital of Central South
University, China

XiaoQin Luo 2022 China Patients over 18 years of Retrospective MIMIC-1V database, eICU 2012 KDIGO 28-day

(22) age with sepsis admitted to cohort study database mortality rate
ICUs

Jijun Yang (23) 2023 China Patients over 18 years of Retrospective MIMIC-1IV database 2012 KDIGO 28-day
age with sepsis admitted to cohort study mortality rate
ICUs

Tianyun Gao 2024 China Patients over 18 years of Retrospective MIMIC-IV database 2012 KDIGO Hospitalized

(24) age with sepsis admitted to cohort study mortality rate
ICUs

Lei Dong (25) 2024 China Patients aged 18-89 years Retrospective MIMIC-IV database, 2012 KDIGO Hospitalized
with sepsis admitted to cohort study MIMIC-III database, Beijing mortality rate
ICUs Friendship Hospital ICU

Zhiyan Fan 2023 China Patients aged 18 years or Retrospective MIMIC-1V database, 2012 KDIGO 28-day

(26) older with sepsis admitted cohort study Hangzhou First People’s mortality rate
to ICUs Hospital

Le Li(27) 2024 China Patients over 18 years of Retrospective MIMIC-1V database, 2012 KDIGO 1-year
age with sepsis admitted to cohort study MIMIC-III database mortality rate
ICUs

(20, 22, 23, 25, 26), CatBoost in three studies (19, 21, 27), and
RF in one study (24). Six studies (19, 23-27) reported deleting
missing variable values; three studies (19, 21, 25) used KNN for
missing value imputation, four studies (20, 24, 26, 27) used Multiple
Imputation by Chained Equations (MICE), one study (22) used
XGBoost, and one study (23) used RF. Three studies (19, 21,
26) employed Recursive Feature Elimination (RFE) for predictor
selection, two studies (20, 26) used LASSO, one study (22) used
XGBoost, one study (23) used the Boruta algorithm, two studies
(25, 26) used RE, one study (26) used LR, and one study (27)
used SHAP values for factor selection. Among the nine included
studies, except for two studies (21, 26) that did not mention
calibration metrics, the remaining seven studies (19, 20, 22-25, 27)
all utilized calibration curves as calibration metrics. Additionally,
two studies (25, 27) employed the Brier score and Kappa coefficient
for performance assessment.

3.4 Performance of the literature model
and prediction factor results

The nine studies encompassed in this investigation consistently
reported the Area Under the Curve (AUC) scores for models
utilizing the predictive factors outlined in Table 3. Distinct
differences in model performance emerged between the training
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sets and the internal validation sets. For instance, in the study
conducted by Tang (19), the RF training set achieved an AUC of
0.99, whereas the AUC for the internal validation set decreased to
0.80, suggesting an overfitting problem. Conversely, the XGBoost
model analyzed by Dong exhibited robust performance, with
AUC scores of 0.94 in the training set, 0.86 in the internal
validation set, and 0.89 in the external validation set, indicating
a strong generalization capability. Zhou et al’s (21) CatBoost
model displayed consistent stability across the training set (0.83),
internal validation set (0.75), and external validation set (0.75).
Regarding external validation, four studies (22, 25-27) provided
results, with notable performances from Dong et al.’s (25) XGBoost
at 0.89, Fan et al’s (26) XGBoost at 0.79, and Li et al.’s (27)
CatBoost at 0.78, whereas the external validation AUCs for
other models predominantly fell below 0.8. The predictive factors
incorporated in the final analysis were categorized into six groups:
demographic information, vital signs, laboratory test indicators,
disease severity, comorbidities, and treatment interventions. These
factors included AKI stage, arterial oxygen partial pressure, lactate,
urine output, norepinephrine (dose/injection rate), blood urea
nitrogen (BUN), invasive mechanical ventilation, base excess,
anion gap, age, weight, prevalence of cerebrovascular disease,
diabetes, rheumatic disease, paraplegia, liver disease, cancer,
heart rate, respiratory rate, body temperature, creatinine, serum
chloride, hemoglobin, platelets, white blood cells, international
normalized ratio (INR), serum sodium, prothrombin time,
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TABLE 2 Construction of a risk prediction model for SA-AKI based on ML algorithms.

Authors  Sample size Types of Predictive ML algorithms Optimal Removal Interpolatidractor Validation = Model Calibration
D/I/E Modeling Studies algorithm of missing methods filtering methods checking metrics
variables methods methods
Jie Tang 5,934/2,942/- Development and validation LR, SVM, GBM, CatBoost >5% KNN RFE Internal Random Calibration
(19) of AdaBoost, XGBoost, validation sampling curve
CatBoost, NB, NN, MLP,
KNN, RF
Xunliang Li 6,503/1,626/- Development and validation LR, SVM, KNN, DT, RE, XGBoost NA MICE LASSO Internal Random Calibration
(20) of XGBoost validation sampling curves
Hongshan 12,923/3,231/132 Developed and validated KNN, AdaBoost, MLP, CatBoost NA KNN RFE Internal Random NA
Zhou (21) SVM, LR, NB, GBDT, RE, validation + sampling
LightGBM, XGBoost, external
CatBoost validation
Authors Sample size D/I/E Types of Predictive Modeling ML algorithms Optimal algorithm Removal of Interpolation | Factor filtering Validation Model Calibration
Studies missing methods methods methods checking metrics
variables methods
Xiaoqin 6,066/2,427/- Developed and validated XGBoost, RF, SVM XGBoost NA XGBoost XGBoost Internal Random Calibration
Luo (22) validation sampling curves
Jijun Yang 6,411/2,747/- Development and validation LR, RE, GBM, XGBoost XGBoost >20%. RF Boruta Internal 5-fold cross- Calibration
(23) of validation validation curve
Tianyun 9,756/2,440/- Developed and validated KNN, XGBoost, NB, DT, RF >25%. MICE RF Internal 10-fold cross- Calibration
Gao (24) SVM, RE LR verification validation curve
Lei Dong 4,001/1,747/1,829 Developed and validated LR, Lasso, Rpart, RE, XGBoost >30% KNN LR, Lasso, RF Internal Bootstrap Calibration
(25) XGBoost, NN validation + sampling curves, Brier
external scores, and
validation kappa
coeflicients
Zhiyan Fan 1,999/500/100 Developed and validated RE SVC, LR, XGBoost, XGBoost >30% MICE RFE Internal Random NA
(26) MLP validation + sampling
external
validation
Le Li (27) 10,200/2,550/1,658 Developed and validated LightGBM, XGBoost, CatBoost >30% MICE SHAP value Internal Random Calibration
CatBoost, RE, LR, validation 4 sampling curves, Brier
Bagging external scores
validation
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Distribution of ML algorithms.

SOFA score, SAPS II score, red blood cell distribution width,
inspired oxygen fraction, Glasgow Coma Scale (GCS) score,
gender, race, hours post-admission, systolic blood pressure,
diastolic blood pressure, oxygen saturation, serum total bilirubin,
albumin, arterial blood carbon dioxide partial pressure, serum
potassium, serum bicarbonate, partial thromboplastin time,
mechanical ventilation, use of vasopressors, renal replacement
therapy, loop diuretics, eosinophils, monocytes, lymphocyte-to-
monocyte ratio, cardiovascular disease, neutrophils, neutrophil-
to-lymphocyte ratio, dementia, mean arterial pressure, ROX-heart
rate, hemoglobin concentration, ICU length of stay, hypertension,
chronic kidney disease, aspartate aminotransferase, shadow value,
acute myocardial infarction, congestive heart failure, atrial
fibrillation, atrial and atrioventricular pacing, left bundle branch
block, ST segment, ventricular tachycardia, BMI, oxygenation
index, arterial blood pH.

3.5 Literature bias risk and applicability
assessment results

The assessment results of predictive model studies using
PROBAST-AI indicated that nine studies exhibited a high overall
bias risk in terms of bias risk assessment. Although these studies
were retrospective and utilized data from publicly available large
databases with adequate sample sizes and multi-center data, their
risk in the areas of participants and data sources remained low.
This was due to the clearly defined inclusion and exclusion criteria
in the study design, ensuring low bias risk in these areas. In
the predictive factor domain, the nine studies had clearly defined
predictive factors and utilized various factor screening methods
for preprocessing. The predictive factors were based on outcome
data and were suitable for use in the intended application of the
model. However, some studies (19, 22, 25) included treatment
intervention factors such as invasive mechanical ventilation, renal
replacement therapy, and vasoactive drug use. Including these
factors in the prediction might introduce treatment-related bias,
resulting in a high risk of bias in this domain. In the outcome
indicator domain, outcomes were clearly defined and determined
through hospital records within a clear time window, exhibiting
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no objective bias. All patients had clear outcome records with no
loss to follow-up, leading to a low risk in the outcome indicator
domain. In the statistical analysis domain, two studies (19, 20) were
assessed to have a high risk of bias due to the use of only single-
fold cross-validation during internal validation and the absence of
cross-validation. Five studies (19, 20, 22-24) were considered to
have a high bias risk due to the lack of external validation. Two
studies (21, 26) conducted external data validation but were still
deemed to have a high bias risk owing to the small sample size
of the external validation data. Conversely, two studies (25, 27)
used another large-sample database for external validation, which
resulted in a low risk of bias. Additionally, two studies (21, 26)
were rated as having a high risk of bias due to the absence of
calibration metrics. Regarding overall applicability, the nine studies
included populations consistent with the model’s target population,
utilized common predictive factors that matched the intended use,
and predicted endpoint measures that were core indicators of S-
AKI patient outcomes. Consequently, all were rated as having good
applicability. The comprehensive results of the overall bias risk and
applicability assessment for the included literature are detailed in
Table 4.

4 Discussion

4.1 Performance of mortality risk prediction
models for SA-AKI patients based on ML
algorithms

In the nine studies included in this research, the performance
of various ML models in prediction tasks showed that the
AUC on the training set mostly ranged from 0.75 to 0.99,
with RE, XGBoost, and CatBoost performing particularly well.
Although the AUC on the internal validation set slightly decreased,
it still generally remained above 0.70, indicating good model
performance. Among these models, XGBoost, CatBoost, and
GBM demonstrated strong stability. Only four studies reported
results from external validation, which indicated that XGBoost
and CatBoost were the most optimal models. Out of the nine
studies reviewed, eight were deemed to have a high risk of bias,
primarily due to issues within the domains of predictor variables
and statistical analysis. [Prkdictor domain: the studies in question
incorporated treatment intervention variables, including invasive
mechanical ventilation, vasopressor use, and renal replacement
therapy. These interventions are correlated with patients’ baseline
characteristics, which in turn can influence outcomes. If the
models fail to sufficiently adjust for these confounding factors, the
relationship between treatment interventions and outcomes may
be misrepresented, thereby inducing prediction bias. Furthermore,
treatment interventions might vary over the course of follow-up—
for instance, through discontinuation or alteration of medications.
Traditional predictive models often presume that predictor
variables remain static from baseline. Neglecting the dynamic
nature of treatment changes could lead to underestimations or
overestimations of their impact on outcomes. Although most
studies referenced the employment of factor selection methods
such as LASSO, Boruta, and RFE, they failed to confirm whether
feature selection and preprocessing were limited to the training
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TABLE 3 Performance of the ML-based predictive model for SA-AKI risk and final included predictors.

Authors Training Internal External Predictors ultimately included
set AUC validation  validation
set AUC set AUC
Jie Tang (19) AdaBoost:0.92 | AdaBoost:0.75 - 10 items: AKI staging, arterial oxygen partial pressure, lactate levels, urine output,
GBM:0.86 GBM.:0.80 norepinephrine dosage, BUN levels, invasive mechanical ventilation, base excess, and anion
KNN:0.82 KNN:0.79 gap
LR:0.79 LR:0.77
MLP:0.81 MLP:0.79
NB:0.80 NB:0.79
NN:0.81 NN:0.79
RF:0.99 RF:0.80
SVM:0.79 SVM:0.76

XGBoost:0.84 XGBoost:0.79
CatBoost:0.84 CatBoost:0.80

Xunliang Li - LR:0.73 - 24 items: age, weight, prevalence of cerebrovascular disease, diabetes, rheumatic disease,
(20) SVM:0.68 paraplegia, liver disease, cancer, heart rate, respiratory rate, body temperature, creatinine,
KNN:0.60 serum chloride, hemoglobin, platelets, anion gap, white blood cell count, INR, serum
DT:0.59 sodium concentration, BUN, prothrombin time, urine output, SOFA score, SAPS II score
RF:0.78
XGBoost:0.79
Hongshan Zhou | CatBoost:0.83 CatBoost:0.75 CatBoost:0.75 15 items: urine output, maximum BUN, norepinephrine infusion rate, maximum anion
(21) GBDT:0.82 gap, maximum creatinine, maximum red blood cell distribution width, minimum INR,
GBM:0.82 maximum heart rate, maximum body temperature, maximum respiratory rate, minimum
AdaBoost:0.82 inspired oxygen fraction, minimum creatinine, minimum GCS score, and diagnoses of
RF:0.82 diabetes and stroke
XGBoost:0.81
KNN:0.80
MLP:0.79
LR:0.79
NB:0.76
SVM:0.76
Xiaogin Luo - XGBoot:0.80 XGBoost:0.75 34 items: age, gender, ethnicity, hours post-admission, systolic blood pressure, diastolic
(22) RF:0.80 RF:0.75 blood pressure, heart rate, respiratory rate, body temperature, oxygen saturation, GCS
SVM:0.77 SVM:0.72 score, urine output, baseline serum creatinine, hemoglobin, white blood cell count, platelet

count, serum total bilirubin, human serum albumin, serum creatinine, BUN, arterial blood
pH, arterial blood oxygen partial pressure, arterial blood carbon dioxide partial pressure,
serum sodium, serum potassium, serum chloride, serum bicarbonate, lactate, INR, partial
thromboplastin time, mechanical ventilation, use of vasopressors, renal replacement
therapy, loop diuretics.

Jijun Yang (23) - LR:0.85 - 50 items: minimum shadow value, diabetes without complications, average shadow value,
RF:0.85 diabetes with complications, acute myocardial infarction, congestive heart failure, gender,
GBM:0.87 ventilation status, acute kidney injury stage, paraplegia, maximum shadow value,
XGBoost:0.87 eosinophils, respiratory rate, monocytes, albumin, calcium, hemoglobin,

lymphocyte-to-monocyte ratio, cancer, cardiovascular disease, neutrophils,
neutrophil-to-lymphocyte ratio, white blood cells, liver-related diseases, liver-related
diseases, systolic blood pressure, dementia, mean arterial pressure, potassium, heart rate,
ROX-Heart rate, diastolic blood pressure, arterial blood carbon dioxide partial pressure,
body mass index, oxygenation index, blood oxygen saturation, blood glucose, arterial blood
oxygen partial pressure, sodium, bicarbonate, creatinine, acid-base balance, age, chloride,
body temperature, lactate, anion gap, solid tumors, BUN, urine output

Tianyun Gao - KNN:0.69 - 11 items: GCS score, AKI grading, SAPS II score, respiratory rate, creatinine level, sodium
(24) XGBoost:0.80 level, BMI, absolute lymphocyte count, urine output, age, and temperature.
NB:0.76
DT:0.64
SVM:0.72
RF:0.80
LR:0.76
Lei Dong (25) LR:0.84 LR:0.82 LR:0.75 42 items: unspecified primary hypertension, type 2 diabetes without mention of
Lass0:0.83 Lass0:0.81 Lass0:0.73 complications, unspecified congestive heart failure, acute hemorrhagic anemia, acute
Rpart:0.75 Rpart:0.73 Rpart:0.60 respiratory failure with hypoxemia, acute respiratory failure, atrial fibrillation, atrial and
RF:0.88 RF:0.80 RF:0.64 atrioventricular pacing, left bundle branch block, ST segment, ventricular tachycardia,
XGBoost:0.94 XGBoost:0.86 XGBoost:0.89 invasive ventilation, age, maximum blood gas lactate level, maximum blood gas oxygen
NN:0.87 NN:0.82 NN:0.74 partial pressure, minimum blood gas carbon dioxide partial pressure, maximum blood gas

carbon dioxide partial pressure, minimum blood gas base excess, maximum blood gas base
excess, minimum blood gas calcium level, maximum blood gas calcium level, minimum
GCS score, maximum heart rate, minimum systolic blood pressure, minimum respiratory
rate, maximum respiratory rate, maximum body temperature, minimum blood oxygen
saturation, minimum blood glucose, urine output, minimum platelet count, maximum
anion gap, maximum BUN, maximum blood calcium, maximum blood chloride,
maximum blood creatinine, minimum prothrombin time, maximum prothrombin time,
minimum partial thromboplastin time, maximum partial thromboplastin time.

(Continued)
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Authors Training Internal External Predictors ultimately included
set AUC validation  validation
set AUC set AUC
Zhiyan Fan RF:0.79 - RF:0.67 40 items: SOFA score, AKI stage III, minimum blood glucose level, minimum white blood
(26) SVC:0.76 SVC:0.69 cell count, mean oxygen saturation, maximum creatinine level, maximum sodium level,
LR:0.74 LR:0.67 urine output, maximum white blood cell count, minimum lactate level, body weight, mean
XGBoost:0.83 XGBoost:0.79 heart rate, minimum mean arterial pressure, maximum blood glucose level, minimum
MLP:0.79 MLP:0.73 platelet count, minimum hematocrit, mean arterial pressure, age at admission, minimum
potassium level, minimum creatinine level, maximum body temperature, maximum mean
arterial pressure, minimum heart rate, minimum respiratory rate, minimum bicarbonate
level, maximum hematocrit, maximum INR, maximum platelet count, average respiratory
rate, maximum anion gap, minimum BUN level, maximum hemoglobin level, maximum
bicarbonate level, minimum body temperature, minimum blood oxygen saturation,
maximum BUN level, average body temperature, maximum lactate level, average blood
glucose level, maximum heart rate.
Le Li (27) - CatBoost: 0.81 CatBoost: 0.78 10 items: age, ICU length of stay, GCS score, hypertension, chronic kidney disease,
LightGBM:0.80 LightGBM:0.77 creatinine, BUN, aspartate aminotransferase, hemoglobin, and urine output.
XGBoost:0.79 XGBoost:0.75
RF:0.79 RF:0.76
LR:0.79 LR:0.77
Bagging:0.74 Bagging:0.68

TABLE 4 Bias risk and applicability assessment of an ML algorithm-based predictive model for SA-AKI risk.

Risk of bias Applicability
Participants Predictors Outcome Analysis Participants Predictors Outcome Risk
of
bias
Jie Tang - - + - - - - +
(19)
Xunliang Li - + + - - B - +
(20)
Hongshan - + + - - R R +
Zhou (21)
XiaoQin - - + - _ _ ~ +
Luo (22)
Jijun Yang - + + - - - - +
(23)
Tianyun - + + - - - - +
Gao (24)
Lei Dong - - + - - - - +
(25)
Zhiyan - + + - - - - +
Fan (26)
LeLi (27) - + + B B B + +

—, high risk of bias; +, low risk of bias.

datasets, thereby introducing the risk of data leakage and a
consequent high risk of bias. [Slatistical analysis field: the
discussed literature primarily reports performance metrics like
AUG, sensitivity, and specificity. However, several studies neglect
to provide calibration plots or Blair coefficients, which hampers the
assessment of the reliability of predicted probabilities. Additionally,
multiple studies do not specify the rate of missing data nor
clarify whether techniques such as imputation, exclusion, or
retention were employed. The inconsistency in handling missing
data, or the outright deletion thereof, can significantly increase
analytical bias. Furthermore, most studies merely implement
simple training/testing splits and fail to document whether all

Frontiersin Medicine

modeling steps were replicated during cross-validation, potentially
leading to an overestimation of model performance.

4.2 Analysis of risk factors for SA-AKI

This systematic review included nine ML-based models
for predicting mortality risk in patients with SA-AKI, which,
despite variations in algorithm types and feature selection
methods, consistently incorporated variables such as demographic
information, vital signs, laboratory tests, disease severity,
comorbidities, and interventions. Among these, frequently
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included high-frequency variables were age, urine output, serum
creatinine, BUN, respiratory rate, heart rate, lactate, and SOFA
score, highlighting their clinical significance and biological
relevance in the pathophysiology of SA-AKI. Notably, advanced
age was included as a predictive factor in eight of the nine studies,
ranking highest. Previous research has established age as a crucial
independent factor affecting the mortality risk in SA-AKI patients,
primarily due to diminished physiological reserve, compromised
immune function, and reduced organ compensatory capacity. A
multicenter retrospective cohort study on elderly SA-AKI patients
revealed that these patients were more prone to develop SA-AKI
and exhibited significantly higher mortality rates. This study
also indicated that age positively correlates with the severity of
SA-AKI, making it an essential covariate to control (28). Renal
function-related indicators such as serum creatinine, urine output,
and BUN have been consistently included across multiple studies,
reflecting directly on the severity of AKI and demonstrating stable
and independent predictive value. A retrospective analysis using
the MIMIC-IV database showed (29) that serum creatinine levels
at admission and a 24-h increase in creatinine are independent risk
factors for persistent SA-AKI leading to mortality. Additionally,
other studies have verified that a reduction in urine output on the
first day of admission is significantly associated with increased
mortality, nearly doubling the risk (30). A multicenter retrospective
analysis by Harazim et al. demonstrated that, after adjusting for
key confounding variables, elevated BUN levels at admission
were significantly associated with an increased risk of 28-day
mortality (31). A study utilizing MIMIC-III data, which included
over 12,700 sepsis patients, indicated that BUN levels >41.1
mg/dL were significantly associated with an increased 30-day
mortality risk (32). Additionally, some studies have modeled
dynamic forms of these variables, such as maximum values and
24-h averages, highlighting the importance of capturing trends in
changes throughout the disease course. This suggests that future
model development should focus more on time-sensitive feature
engineering methods (33). Regarding vital signs, respiratory
rate and heart rate have consistently been included in multiple
studies as non-invasive, easily accessible indicators that can
promptly reflect systemic stress, infection progression, and organ
hypoperfusion. A study employing causal inference analysis
discovered that a sustained high heart rate was significantly
associated with decreased hospital and 90-day survival rates
in patients with SA-AKI (34). Retrospective studies have also
confirmed that a respiratory rate exceeding 20 breaths per minute
is an independent predictor of irreversible AKI and mortality risk
(35). Although these indicators can be influenced by interventions
such as sedation and mechanical ventilation (36), their clinical
warning value remains significant. Therefore, models should
adequately consider these contextual factors during the modeling
process. Lactate, as a metabolic indicator, has been repeatedly
included in final models. It serves as a crucial indicator of tissue
hypoperfusion and acid-base imbalance and has been widely
utilized in clinically predicting mortality risk among critically ill
patients. Its inclusion improves the model’s ability to capture states
of metabolic imbalance (37). Several studies have incorporated
composite scoring indices, such as the SOFA score and the GCS
score, to evaluate multi-organ dysfunction and neurological status.
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Although these indices possess strong explanatory power, their
reliance on multiple variables may hinder their usefulness in
real-time decision support systems (38). Future research should
investigate simpler scoring alternatives to enhance the efficiency
of model deployment. In summary, these studies have identified
a set of stable, interpretable key variables that are crucial in the
convergence of predictive factors. Future model development
should give priority to these robust variables, focusing on
their dynamic characteristics. Additionally, these variables can be
integrated with others, such as the lactate-to-albumin ratio (39, 40),
the urea nitrogen-to-albumin ratio (41, 42), and combinations of
SOFA scores with serum biomarkers (43), for constructing models.
It is important to find a balance between model interpretability and
performance to improve the model’s generalization capability and
clinical practicality, thereby facilitating its transferability to ICU
clinical applications.

4.3 Differences among ML algorithms in
SA-AKI mortality prediction models

The included studies employed various ML algorithms to
develop mortality prediction models for SA-AKI, potentially
contributing to variations in reported performance. This analysis
involved a total of 18 algorithms, with RF and XGBoost being
the most frequently used. XGBoost, in particular, demonstrated
superior performance in five studies. As tree-based algorithms,
RF and XGBoost have an inherent capacity to capture non-
linear relationships and complex interactions between predictors
(44)—attributes that are especially pertinent to SA-AKI, where
mortality risk may be influenced by interdependent factors such
as the interplay between renal function, inflammatory markers,
and organ failure status. As ensemble methods aggregating outputs
from multiple decision trees, these algorithms often achieve robust
predictive performance in clinical datasets, a strength supported by
prior empirical evidence (45). Secondly, LR is the most frequently
used linear model. Linear models offer distinct advantages in terms
of interpretability: their outputs, such as odds ratios for individual
predictors, enable clinicians to quantify how specific variables
(46) (e.g., serum creatinine levels, sepsis onset time) contribute to
the mortality risk associated with SA-AKI. This feature enhances
clinical trust in model outputs. However, this interpretability
comes with a significant limitation: linear models assume a
linear relationship between predictors and the mortality outcome,
which may not adequately capture the complex, non-linear
patterns intrinsic to SA-AKI pathophysiology (47). Consequently,
these models may exhibit suboptimal predictive performance
compared to more flexible algorithmic approaches. SVMs were also
employed in select studies, leveraging their strength in handling
high-dimensional datasets—datasets that may include multiple
laboratory parameters, vital signs, and comorbidity indicators
(48). For SA-AKI mortality classification tasks, SVMs can deliver
strong performance, but their efficacy is highly dependent on
two critical steps: selecting an appropriate kernel function (to
transform data into a separable space) and rigorous parameter
tuning [e.g., adjusting regularization parameters to balance model
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complexity and generalizability (49, 50)]. For advancing research in
mortality prediction related to SA-AKJ, it is imperative to possess
a sophisticated comprehension of the strengths and limitations
inherent to each algorithm, thereby facilitating informed decisions
regarding model selection. This comprehension must be aligned
with the specific objectives of each study; for instance, tree-based
algorithms or neural networks may be prioritized when the primary
goal is to maximize predictive accuracy, whereas linear models may
be preferable when interpretability and clinical transparency are
of utmost importance. Such deliberate selection of algorithms not
only augments the reliability of individual studies but also enhances
the comparability and cumulative value of evidence within the field
of SA-AKI mortality prediction research.

4.4 Implications for future research and
practice

Currently, the vast majority of studies are plagued by issues
such as the improper handling of missing data and the failure
to strictly distinguish between training and testing sets during
feature selection and data splitting. These shortcomings can lead
to overfitting and an overestimation of model performance. Future
research should adhere strictly to guidelines such as TRIPOD-AI
and PROBAST-AI to standardize data processing, cross-validation,
feature selection, and other processes. This adherence will enhance
the transparency and reproducibility of models. This study has
identified that the frequently included predictive factors—age,
urine output, serum creatinine, BUN, respiratory rate, heart rate,
lactate, and SOFA score—are mostly available clinically and are
highly relevant pathophysiologically. In contrast, some studies have
introduced treatment-related variables, such as CRRT, mechanical
ventilation, and vasopressor use. While these variables may
improve model performance, they could compromise the model’s
applicability in prospective deployments. Future research should
focus on developing models based on “early-available variables”
to facilitate the development of clinical early warning systems.
Additionally, attention should be directed toward the model’s
integrability into clinical workflows. This integration could include
interfacing with electronic health record systems, automating
the triggering of predictions and risk alerts, and ensuring the
comprehensibility and trustworthiness of the model’s explanations
for clinical healthcare providers. By doing so, the complementary
and collaborative use of artificial intelligence and clinical judgment
could be promoted effectively.

4.5 Limitations of the study

The predominant number of prediction models discussed
in this analysis were developed and validated exclusively using
the MIMIC database. This database primarily comprises data
from a single academic medical center in the United States.
Relying on this singular data source introduces inherent ethnic
and geographic selection biases during the model development
process. The demographic and clinical characteristics documented
in MIMIC, which include genetic ancestry, socioeconomic status,
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healthcare delivery protocols, and disease prevalence patterns,
do not mirror the diversity of the global population. This is
particularly true for individuals from low- and middle-income
countries or those belonging to non-Western ethnic groups.
Consequently, the performance and reliability of these models may
not be applicable to diverse patient populations. Therefore, any
conclusions derived from their application should be interpreted
with considerable caution to prevent overgeneralization. A second
significant limitation arises from the geographic homogeneity
of the studies included in this review. All nine investigations
that satisfied the predefined inclusion criteria were conducted
exclusively in China. This concentration of studies persists despite
the research team’s adherence to stringent systematic review
protocols. These included comprehensive searches across multiple
international databases (e.g., PubMed, Embase, the Cochrane
Library, and Web of Science) without regional or language
restrictions, and strict compliance with the inclusion and exclusion
criteria established a priori to minimize selection bias. The absence
of eligible studies from other regions, such as North America,
Europe, Africa, or Southeast Asia, markedly limits the external
validity of the review’s findings. Differences in clinical practice
guidelines, healthcare systems, and patient demographics across
various global contexts can significantly affect the performance
of prediction models in real-world clinical settings. To address
these deficiencies and enhance the scientific evidence base for these
prediction models, future research should prioritize multi-center,
multi-ethnic, and international collaborative studies. Such research
endeavors should aim to integrate clinical data from geographically
diverse populations and multiple healthcare systems. By doing
so, researchers can mitigate the impact of biases associated with
single-region or single-population data, refine model parameters
to account for global variability in patient characteristics, and
ultimately improve the models’ generalizability and clinical utility
on a global scale. These efforts are not merely advantageous
but imperative for ensuring that prediction models facilitate
equitable, evidence-based healthcare decision-making across the
entire spectrum of global patient populations.

5 Conclusion

This systematic review rigorously evaluated nine ML-based
predictive models for mortality risk in patients with SA-AKI,
highlighting prevalent issues and trends in the realms of
model design, variable selection, and performance assessment.
Models employing ML algorithms have been shown to predict
mortality risk in SA-AKI patients with greater accuracy, thereby
demonstrating substantial model applicability. Nevertheless, a
high overall risk of bias persists within these predictive models.
The predictors ultimately incorporated into the models display
a consistent typology. For future research, it is imperative to
standardize methodologies concerning data processing, cross-
validation, and feature selection to improve the transparency and
reproducibility of the models. Additionally, the development of
models that utilize “early available variables” warrants exploration.
This approach should also account for the dynamic nature of these
variables to facilitate dynamic predictions.
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