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Introduction: Skin diseases, ranging from benign conditions to malignant
tumors such as melanoma, present substantial diagnostic challenges due to
their visual complexity and the inherent subjectivity in manual examination.
Methods: This paper introduces a hybrid deep learning framework specifically
designed for skin lesion segmentation and multi-class classification using
dermoscopic images. The proposed model integrates a dual-task architecture,
which combines a U-Net-based segmentation network with a classification module
based on the EfficientNet-B0O backbone. To improve modelinterpretability and foster
clinical trust, Grad-CAM is incorporated, allowing clinicians to visualize heatmaps
that highlight the regions influencing the model's decisions.

Results: The model was trained and evaluated on the HAM10000 dataset,
demonstrating robust performance, with a Dice coefficient surpassing 0.85 for
segmentation and classification accuracy nearing 85%. Despite challenges such
as class imbalance and the variety of lesion types, the model provides reliable
results across different skin conditions.

Discussion: The use of explainable Al (XAl) enhances transparency, a crucial
factor in the clinical acceptance of Al-based diagnostic tools. This approach
shows promise in improving diagnostic accuracy and supporting dermatologists,
especially in resource-constrained settings, by providing both accurate
lesion delineation and reliable class predictions. Future research will focus on
improving the model's generalizability, addressing underrepresented classes,
and validating its effectiveness in real-world scenarios.

KEYWORDS
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1 Introduction

Skin diseases form a wide and heterogeneous spectrum characterized by a series of
dermatologic disorders giving constant challenges in its diagnosis and management (1). Being the
largest body part, the skin is the most important physical defense against external agents and at
the same time subject to a variety of pathologies (2). The skin disorders comprise conditions like
acne, eczema, and psoriasis and malignancies like melanoma (3). The pathologies that lead to
these conditions are diverse; they can be genetic predispositions, pathologies of immune system,
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and other environmental factors like sunlight, and air pollution. An
example is acne that is regularly related to the fluctuation of hormones,
and eczema can be attributed to allergies or genetics (4, 5). Melanoma in
particular, has very close connection with long time exposure to sun and
increased cases of it are being reported in areas with high levels of
ultraviolet radiation (6, 7). Understanding the determinants could mean
accurate diagnosis and effective treatment.

The prevalence of dermatological conditions has been steadily
increasing during the last few years and there has been notable expansion
in cases of skin diseases recorded both in developed and developing
countries (8, 9). Melanoma is still more common in experienced sunny
areas (9); however, more and more disorders of the skin, including,
eczema, and psoriasis are increasing their distribution, especially in
urban big cities where it is possible to find many vertices that promote
their increasing rate, including polluted air and stressful living styles. As
the incidence increases in multiple groups of people, especially between
18 and 45 years of age (10), there is a marked necessity to enhance
diagnostic techniques that can assist the clinicians in providing timely
and precise therapy. Clear discrimination and subdivision of skin lesions
still require intense professional competence which in the past has been
based on hectic manual inspection that is still vulnerable to subjective
errors. Consequently, there is an increasing emphasis on machine
learning and deep learning techniques as methods to automate and
enhance the diagnostic process (11).

The integration of artificial intelligence and deep learning has
greatly advanced medical imaging, disease diagnosis, and healthcare
decision-making. At the systemic level, innovation networks play a
critical role in supporting regional digital health systems and enabling
collaboration in advanced medical equipment industries (12). In
dermatology, novel architectures such as multimodal masked
autoencoders for vitiligo stage classification (13, 14) and interaction
transformer modules for white patchy skin lesion analysis (14) have
improved diagnostic accuracy. Similarly, transformer-based methods
like CenterFormer have enhanced unconstrained dental plaque
segmentation (15), while deep learning models have accelerated
super-resolution ultrasound microvessel imaging (16). Clinical studies
further underscore the importance of AI by complementing
retrospective analyses of immunotherapy-induced psoriasis, such as
pembrolizumab- and nivolumab-related cases (17, 18). In
ophthalmology, adaptive multi-scale feature fusion networks have
shown strong potential in diabetic retinopathy classification (19), and
supported MRI
segmentation in sports injury assessment (20). Parallel research in

bio-inspired optimization algorithms have
oncology has emphasized efficient melanoma detection using pixel
intensity masking (21), hybrid deep learning with dual encoders and
channel-wise attention (22), precision-driven dual encoder
segmentation models (23), and synergistic CNN-based frameworks
for early melanoma detection and treatment strategies (24).
Moreover, Over the past few years, deep learning has achieved
remarkable advancements in the realm of medical image analysis,
particularly within dermatology Convolution-based neural
networks are extensively utilized in these applications, excel at
discerning patterned features within images with high accuracy
(25-27). The same has made the models essential in automatic
identification and demarcation of skin lesions thus ensuring fast
and reliable diagnoses (28). The Al systems by providing potential
clinical assistance to the diagnosis improve its effectiveness,
providing a second opinion, helping diagnosticians see the early
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symptoms that cannot be noticed by humans, and cutting the time
it would take to analyze the images and obtain the findings. Further
technological optimization is likely to achieve a rather decisive role
of Al in dermatological practice, especially in those areas where the
availability of specialized medical staff is restricted.

Despite these advances, existing methods still fall short of clinical
demands. Many models lack precision in delineating lesion
boundaries, fail to generalize across varied skin pathologies, and suffer
from the black-box nature of deep learning frameworks, which limits
interpretability and reduces clinician trust (29, 30), which handicaps
the clinicians to entrust and incorporate the systems in standard care.
However, even though some of the segmentation methods perform
well on benchmarking, they always demand very high-frequency
images and provide inefficient results on various skin lesions and fail
to offer clear insight into their decision-making framework. Powerful
segmentation together with Grad-CAM explainable images can
considerably drive clinical accuracy and location evaluation of skin
lesions (31). Such capability is especially advantageous in settings
characterized by scarce dermatological expertise, where diagnostic
delays are highest and the demand for quality care is most acute,
notably in regions of elevated ultraviolet (UV) exposure or within low-
and middle-income countries (LMICs).

In this study, we introduce a multi-task framework that integrates
lesion segmentation, multi-class classification, and model
explainability within a single pipeline. Unlike many existing
approaches that treat segmentation and classification as separate tasks,
our design emphasizes their joint optimization, demonstrating that
improvements in segmentation can directly enhance classification
accuracy, and vice versa. To address the persistent challenge of
imbalanced dermatological datasets, the framework incorporates
curriculum-based training together with stochastic hard-example
replay, a strategy that, to our knowledge, has not yet been explored in
this context. Beyond improving diagnostic accuracy, this integrated
approach also enhances model interpretability, thereby strengthening
both the methodological rigor and the clinical relevance of the
proposed system.

1.1 Problem statement

Despite advances in dermatological image segmentation, existing
methods often fail to meet the critical requirements for real-world
clinical deployment. In particular, they struggle to achieve: (i) precise
and accurate delineation of lesion boundaries, (ii) steady effectiveness
across a diverse array of dermatological conditions and (iii) model
interpretability, which is essential for clinicians to trust and effectively
use the system. While segmentation models have demonstrated
promising outcomes, they frequently struggle to achieve high accuracy
across various skin conditions and offer limited transparency in their
decision-making processes.

The ability to predict the correct lesion mask, combined with
Grad-CAM’s visual explanation, significantly aids dermatologists in
precisely recognizing the type and location of the skin disease. These
advancements are particularly critical in clinical settings with limited
access to skilled dermatologists, as they reduce diagnostic delays and
improve the overall quality of care, particularly in areas with
significant UV exposure or in low- and middle-income countries
(LMICs).
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1.2 Objectives and approach

The current research study focuses on some of the modern
challenges of medical imaging analysis and suggesting a hybrid deep-
learning model structure where lesion segmentation and classification
are done in the same deep-learning model architecture. In order to
sustain high diagnostic performance yet enhance transparency, the
procedural design also integrates explainable-AI (XAI) techniques.

The module segmentation was defined as a multi-scale dilated
U-Net to ensure contextual information remained despite limiting the
complexity of the model. There is then a separate but complementary
classification module with cases of tumors being dichotomized into
malignant and benign. To interpret the model, heatmaps are generated
using Grad-CAM, which mark the sections of the input image that
play a role in determining the model’s predictions. Such an integrated
approach not only increases the rate of accuracy in classification but
also visual explanations that are congruent with clinical expertise.

Combining the high diagnostic accuracies with explanations that
can be understood by clinicians, the strategy aims at widening the
know-how acceptance of Al-based diagnostic systems, and thus
enhancing patient outcomes.

2 Literature review

A diagnosis of skin pathology, in particular skin cancer, continues
to pose a serious clinical challenge due to the heterogeneity of the
lesions at the skin surface and to the apparent visual similarity of
different conditions. A broad band of tools has been adopted to
additional ascertain that what a dermatologist sees with the help of his
eyes and some form of clinical judgment, to cover the extreme
(non-invasive to invasive biopsy). However, these conventional
methods are known to be biased by the experience of the examiner
and therefore bring forth unwanted variability and subjectivity.

The emergence of digital imaging technologies have redefined the
scenario with dermoscopy as the most relevant non-surveillance
magnification method of cutaneous structures (32). Dermoscopy
complements the evaluation of lesions through the increase in visual
resolution (33). However, the manual interpretation is slow to die off,
retaining its labor-interest nature, and the tendency to produce
accidental errors. This has brought about an interest in increasing the
technology of computer-aided diagnostic (CAD) system as a
potential solution.

The modern advancements of machine learning (and deep
learning specifically) have highlighted the possibility of the effective
automation of the process of evaluating skin lesions. The use of
convolutional neural networks (CNNs) has become the leading
approach to the analysis of images in dermatology (34). They are
Al-based tools as well, which aim to reduce clinician diagnostic
workload, and more importantly improve accuracy with regards to
timely melanoma and skin cancer detectives. Empirical evidence,
however, indicates that a number of fundamental problems remain
such as the need to deal with the issue of class imbalance, issue of
model transparency and issue of high generalizability among varying
skin conditions. These challenges are vital to success in implementing
such systems to the extent of making them reliable and clinically
relevant. The following gives an account of recent research studies
concerning skin lesions like,
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In the current research (35), two convolutional neural networks
are studied, namely DenseNet —201 and Inception -V3, and how they
can be used to classify cutaneous malignancies. The study was
conducted in 2024 and based on the ISIC 2019 archive that includes
25, 331 dermoscopic images, divided into 60, 20, and 20 percent
training, validation and testing, respectively. DenseNet-201 was able
to achieve general accuracy of 84.3 and Inception V3 hit 81.5. Similar
to the efficacy of deep-learning methods to detect skin-lesions, these
findings only indicate the fact that the platform still faces significant
challenges (including issues of class discrepancy and larger, more
thoroughly annotated datasets).

In this study (36), the authors proposed anti-aliasing convolutional
neural network (AA -CNN) architecture to supplement classification
performance in dermoscopic image, in their 2023 study. The model
was assessed in 2022 on the ISIC 2018 archive of 10,015 training and
1,512 test images of seven different categories of skin -lesion. The
AA-CNN had an average accuracy and area under receiver operating
characteristic of 88.87 and 0.945, respectively, as compared to
traditional baseline CNNs. Though the authors do emphasize the
benefits of including the use of anti-aliasing filters in order to ensure
model robustness, they also note constraints in the matter of
generalizability and the complex nature of real-world clinical data.

The authors conduct a study in which they address the question
of the usefulness of explainability methods as a way of understanding
the decision-making process of skin lesion classifiers (37). The study
staff trained an Inception model of —4 with the ISIC 2018 dataset and
achieved classification achievement of 89.96-400. They contrasted
seven explainability techniques namely Grad-CAM, Score-CAM,
LIME, SHAP, ACE, ICE and CME. As previously shown in the
analysis, though these techniques indicate pertinent parts of the image
or abstract ideas, most of them exhibit uncontrollable artifacts, and,
most importantly, most of them do not give viable explanations of
model reasoning. Although CME reached the fidelity 88, the study
also made a conclusion that neither one method could fully produce
satisfactory explanations, which supports the necessity of performing
a combination of approaches and being cautious when applying
explainable Al in clinical practices.

The current (38) research paper proposes a collaborative deep
convolutional neural network, CL-DCNN, a type of neural network
that separates the skin lesion into segments and classifies the skin
lesion by sharing learning. By using pseudo-label generating, class
activation map (CAM), and segmentation mask, the model transforms
each of the other, with the aim of performance improvement. The
effectiveness of the approach is supported by empirical analyses of the
ISIC 2017 and ISIC Archive datasets, where, the Jaccard index would
be 79.1 percent for segmentation and the area under the ROC curve
is 93.7 percent to classify. These indicators are better than a number
of modern techniques. Despite the fact that the proposal operated well
on reducing the annotation burdens and enhancing the diagnostic
accuracy, its external validity is limited, especially when extended to
the real clinical situations.

The authors describe a deep-learning structure adopted in this
research (39), which uses a hybrid architecture of a convolutional
neural network to enhance the detection of skin lesions. The network
was trained with the HAM10000 dataset as a test dataset and the input
images were preprocessed, enhanced with data augmentation, and
strategies of class -balance were implemented. With evaluation scores,
it was found that the proposed model had an accuracy of 94.6 -, which
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is an improvement compared to various traditional CNN base models
including VGG — 16 and ResNet —50. The outcomes validate the
advantage of deep-learning methods to analyze dermatological
images, but the necessity to consider the problem of the imbalance in
the number of processed cases and focus on the model interpretability
to stimulate clinical confidence and practical applicability.

In this study (40), the researchers propose an entirely machine-
driven Deep Neural Network used to recognize the location of skin
lesions and additionally categorize multiclassified dermoscopic
therapies, using refined features. They use a 10-layer customized
convolutional neural network to perform saliency-guided
segmentation and use ResNet101 and DenseNet201 to utilize strong
feature extractors. In order to enhance classification, better Moth
Flame Optimization (IMFO) algorithm is employed in terms of
feature selection and Multiset Maximum Correlation Analysis
(MMCA) parameter is used to fuse features. Finally, the final
classification is implemented using a Kernel Extreme Learning
Machine (KELM) with an accuracy of 90.67 Jennifer Hammond: A
Timeline 10,000 delivered Decision-Control OS. Despite the fact that
the approach has good performance in both the ISBI and the ISIC
data, issues of class imbalance exist, as well as asymmetrical
morphology of the lesions.

This study (41) presents an optimized U-Net architecture
employing along with pooling operations and attention to support the
skin-lesion segmentation allowing the focus thereafter of convolutional
neural network (CNN)-supported classifiers. The segmentation
subnet performed better, being trained and tested on the ISIC2018
database as it enhanced better boundary delineation and localization
of the lesion regions compared to the traditional U-Net. A CNN was
trained on the same dataset in the classification task where
categorization of seven skin-lesion classes was undertaken, the Dice
similarity coefficient was 91.28 percent, and classification accuracy
was 89.14 percent. Despite these encouraging statistics, the study is
aware of the lingering limitations, such as heterogeneity of lesion sizes
and imaging artifacts, which remain the limitations of the
overall robustness.

The authors describe a single architecture, called SkinNet, which
is U-Net additionally designed to result in the precise distribution of
skin lesions (42). This model integrates the dilated convolutions
within the bottleneck that seeks to expand the receptive field and
dense convolution block to keep spatial detail. Competition on Dice
coefficient and Jaccard index for the ISBI 2017 challenge dataset
produced 85.1 and a 76.7 index, both above a series of some of the
state-of-the-art techniques. These results confirm that SkinNet is
resistant to distinguish the lesions of various morphologies and sizes,
still, there are complications, especially where the contrast between
the lesion and the surrounding skin is low.

The proposed classification framework proposed by the authors
in this paper (43) uses the multi-scale convolutional neural network
that is tied to the Inception-v 3 architecture. The network was trained
using the ISIC 2017 skin lesion dataset taking both coarse and the fine
resolution images to obtain both global and local lesion features. Using
the training set as a starting point with added images by the
ISICMSK21 dataset and various practices to achieve a high level of
accuracy which included fine-tuning, image augmentation and
10-model ensembling, led to the development of the resulting classifier
producing, on average, 90.3% accurate results with the area-under-
the-curve (AUC) of 0.896 with melanoma and 0.990 with seborrhoeic
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keratosis, respectively. Although this work focuses on the ability of
architectural optimizations and careful training scenarios to improve
the performance in processing the medical image classification even
in a setting that is limited by training data.

In the current research (44), the authors research the effectiveness
of deep convolutional neural networks in the detection of skin lesions.
The three architectures assessed in the study, namely, AlexNet,
ResNet-18, and ResNet-50, are trained using a dataset consisting of
10,015 dermoscopic images of different categories (7). ResNet-50
records the best performance of 86.6 later resnet-18 with the 83.2
accuracy and lastly AlexNet with the performance of 78.4. Such results
point to the potential of deep learning models to classify different
types of skin lesions. The authors, however, note that there are still
challenges that persist and include the availability of either imbalanced
data and the need to have a better generalization of features between
different classes.

Recent studies have also explored ways to improve fairness and
strengthen feature representation. For instance (45), introduced a
classification framework that fused deep features to reduce dataset
bias, while (46) developed a hybrid model combining InceptionV3
and DenseNet121, which yielded improved classification outcomes.
These approaches highlight the importance of feature integration;
however, our framework advances this idea further by unifying
classification, and

segmentation, interpretability within a

single pipeline.

2.1 Principal contributions

o Unified dual-task framework: The proposed work introduces a
unified dual-task framework in which a single end-to-end model
performs both skin lesion segmentation and multi-class
classification. By integrating these two tasks within the same
architecture, the network benefits from shared feature
representations, which leads to stronger performance than
training each task independently

o Curriculum-guided learning: To make the learning more stable,
the proposed framework establishes curriculum-managed
training. In this paradigm model is introduced with other simpler
more common samples and then in more complex and less
common situations. Graduated exposure of this type reduces the
training instability and enhances the ability of the network to
address the strong imbalance between the classes of skin
lesions dataset.

o Strong and effective evaluation: The HAM10000 dataset was
carefully evaluated using popular performance measures such as
Dice Coeflicient, intersection over Union (IoU), accuracy, area
under the ROC curve (AUC) and F1 -score. Competitive results
were attained with this model, and the inference time per image
in this instance was more than 40 milliseconds, which makes it a
practical speed (enough) to operate in diagnostic scenarios in
real-time.

o Accurate mask prediction: In addition to class prediction, each
class produces a lesion mask at a high level of precision, allowing
proper boundary drawing. This feature guides clinicians in such
important decision-making during excision or biopsy planning.

o Class-aware explanations: The interpretability is going to
be addressed by deploying Grad-CAM into the classification
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module. The produced heatmaps are class specific visual
explanations which can immediately compare the lesion
delimitations generated through the segmentation task. This dual
view provides extra confidence in clinical practice as it is
guaranteed that the areas on which the model predictions are
dependent are related to real-life locations of pathology.

o Class-specific mask generation: At last, the model produces
matching segmentation masks per each of the classes, which will
provide it with dual functionality and thus enable dermatologists
to spot the type of lesion and its exact location to optimize the
diagnostic process and treatment plans.

o Comprehensive model evaluation: The present work shows that
the considerable performance is generalizable along many
clinical lesion types using rigorous validation based upon several
performance indicators, namely accuracy, AUC-ROC, and
specificity. The model identifies specific competence in the

basal cell

identification of melanoma, carcinoma or

vascular lesions.

Practical clinical utility: In a practical clinical standpoint, the
insertion of classification, segmentation, and the explainability
achieved by Grad-CAM makes this system applicable in
day-to-day use of dermatology. The ability to classify the type of
the lesion and to provide clear boundaries, which is accompanied
by clear, Grad-CAM-based decision-making, makes it especially
context  of

suitable to  tele-dermatology in the

resource-low environments.

2.2 Limitations of previous approaches and
our contribution

The previous work in skin lesion segmentation and classification
presents several limitations. Class imbalance is a key challenge, where
certain lesion types, such as benign nevi, dominate the dataset, leading
to reduced performance for rarer lesions like melanoma and
dermatofibroma. Model interpretability remains limited, as many
existing methods use black-box deep learning models that lack
transparency, undermining clinicians’ confidence in the models
decisions. Generalizability is a major issue in the detection of
melanoma. Most of the existing models are validated using a single
dataset and hence show a lower ability to support a heterogeneous
skin type or clinical setting. Adding to these limitations is the fact that
it is quite challenging to segment accurately, especially when speaking
of irregular lesional morphology, which complicates the process of
contour detection. Last, overfitting remains a prominent challenge,
whereby the model has inadequate generalization when the quality of
the image or the lighting changes. An overview of these limitations is
mentioned in Table 1 which gives a comparison on what was done by
other researchers in this field.

Our study addresses these challenges by introducing a dual-task
deep learning model that integrates both segmentation and
classification tasks thus, solving some of the problems faced by
dermatopathology. These interpretations, coupled with our approach,
which incorporates Grad-CAM, help the clinicians recognize
transparency of model decisions and interrogate these decisions
accordingly. We use the combination of data-augmentation methods
and curriculum-guided training to account for the presence of the
imbalance in classes. The model is built to be generalized, tested on a
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non-homogenous data, and that it has been optimized to clinical
heterogeneity. It is also aimed at improving the effectiveness of
segmentation of irregular lesions with the help of complex architectures.

3 Proposed methodology

In the detection of skin tumors using dermoscopic imagery, one
of the primary challenges lies in accurately determining lesion edges
and categorizing lesions into discrete disease categories. The solution
to these challenges consists in the usage of an approach that is able to
conduct segmentation and classification procedures concurrently. This
requirement is fulfilled by a unified dual-task deep-learning network,
which combines both of these tasks in one architecture, which
functions in parallel. Initial experimental studies on the HAM10000
dataset (47) that contains 10,015 dermoscopic images with detailed
segmentation masks and seven diagnostic labels, such as melanoma
and basal-cell carcinoma, show promising results with this framework.
Its model architecture includes a well-defined preprocessing pipeline,
stratified data division, a general architecture, and strict training and
validation, and the post-hoc interpretability is provided by Grad-
CAM. Figure 1 illustrates the distribution of the classes in the dataset,
where it can be seen that there are strong imbalances between the
classes, with most of the images belonging to the class NV
(Melanocytic Nevus).

The proposed framework is grounded in the principles of multi-
task learning (MTL), which emphasize that related tasks can benefit
from shared representation learning (48). In our case, segmentation
and classification are inherently connected: accurate lesion boundary
detection improves class discrimination, while class-specific features,
in turn, strengthen segmentation accuracy. To further guide this
process, we employ curriculum learning (49), where training
progresses in a structured manner, improving stability and
generalization under conditions of class imbalance. Given the
significant imbalance present in the HAM10000 dataset, curriculum-
based training is combined with stochastic hard-example replay,
encouraging the model to gradually focus on more difficult samples
while avoiding overfitting to majority classes. This theoretical
foundation underpins the design and training of the dual-task
framework presented in the subsequent sections.

HAM10000 dataset consists of RGB images with the resolution of
600 X 450 pixels and are categorized into dermoscopic grade. In order
to achieve consistency and increase computational performance,
image and mask normalization and reducing to a standard size of 224
x 224 have been performed as preprocessing measures a setup that fits
the requirements of an EfficientNet-based model. The images are read
and processed using OpenCV and PIL, and data augmentation
techniques, such as the random rotation, horizontal and vertical flips,
brightness changes, etc., are implemented using the albumentations
library. These enhancements expand inter-class separation, the
robustness of models, and reduce overfitting. In addition, stratified
sampling is presented with the help of the GroundTruth.csv metadata
to maintain the initial distribution of the classes, which is considered
a crucial step due to the strong imbalance between the dataset classes.
The dataset was divided into 60% for training (6,009 images), 20% for
validation (2,003 images), and 20% for testing (2,003 images), as
illustrated in Figure 2. The data is split using scikit-learn’s train_test_
split function, and the resulting partitions are converted into PyTorch
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TABLE 1 Comparative summary of previous studies.

10.3389/fmed.2025.1681542

Authors Challenges Methods Evaluation metrics XAl
Hameed et al. (35) Data duplication, class imbalance, varying image = Review of CNNs, ViTs, and machine learning Systematic review of SCC and SCS N
resolution, labeling accuracy models applied to ISIC dataset metrics on ISIC datasets
Leetal. (36) Low image quality, accuracy in segmentation Anti-aliasing attention U-Net, data Dice score: 0.881, F1 score: 0.900 on N
augmentation ISIC 2018 dataset
Paccotacya-Yanque | Lack of interpretability, artifact detection in Grad-CAM, Score-CAM, SHAP, ICE, ACE ROC AUC for CME: 0.88, IoU with Y
etal. (37) saliency maps LIME, CME, compared for skin lesion ground truth masks for all XAI
classification with Inception v4 methods
Wang et al. (38) Insufficient labeled data, model interpretability, CL-DCNN, self-training, class activation maps = Jaccard score: 79.1%, AUC: 93.7% on Y
class imbalance for segmentation ISIC 2017 & ISIC Archive datasets
Thwin and Park Class imbalance, varying lesion appearance U-Net, SegNetVGG16, ResNet-50, Dice coefficient: 0.93, IoU: 0.90, N
(39) Inception-V3 (classification), DeepLabV3 accuracy: 93% on balanced dataset
(segmentation)
Khan et al. (40) High irregularity and boundary issues, dataset Deep learning features with IMFO for feature Dice: 0.87, Classification accuracy: N
imbalance selection, CNN for segmentation and 90.67% on HAM10000 dataset
classification
Liuetal. (41) High visual similarity, lesion size variation, color | MRP-UNet with multi-scale input fusion and Dice: 0.90, IoU: 0.85 on ISIC 2016, N
contrast, boundary irregularities pyramid dilated convolution 2017, 2018, HAM10000 datasets
Alsahafi et al. (42) Difficulty distinguishing melanoma from benign | Residual learning, multi-level feature Accuracy: 90% on ISIC-2020 dataset N
lesions extraction, cross-channel correlation, multi-
layer deep CNNs
DeVries and Visual similarity among lesion types, class Multi-scale CNN with Inception-v3 fine-tuned | Accuracy: 88% on ISIC 2017 dataset N
Ramachandram imbalance for classification
(43)
Cassidy et al. (44) Duplicate images within and across ISIC Benchmarking 19 deep learning architectures VGG19-Accuracy: 0.56, InceptionV3- N
datasets (train/test overlap), class imbalance, (e.g., EfficientNet, VGG, ResNet), UMAP Accuracy: 0.30, EfficientNetB3: 0.53,
label noise from non-biopsy-verified ground visualization and statistical clustering analysis | DenseNet201-Accuracy: 0.36
truth,
Distribution of Classes in the Dataset
7000

FIGURE 1
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Class distribution of the HAM10000 dataset across seven diagnostic categories.
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FIGURE 2
Dataset split distribution showing training (60%), validation (20%), and testing (20%) sets.

DataLoader objects, optimized for memory management and training
efficiency with a batch size of 16. Shuffling of the training set is
performed to introduce stochasticity, enhancing the generalization of
the model.

The classification branch of the
EfficientNet-B0, chosen for its strong trade-off between accuracy and

framework is built on

computational efficiency. The features extracted by this backbone are
propagated across the architecture, enriching the encoder
representations that drive the segmentation module. Through this
shared representation, the segmentation network gains access to the
same discriminative cues that guide the classification task, leading to
more precise lesion boundary detection and improved
overall performance.

The proposed framework employs EfficientNet-BO as the
backbone of the classification head to ensure efficient and accurate
feature extraction, while the segmentation branch is constructed on a
U-Net architecture with a ResNet34 encoder. The model architecture
comprises a dual-task design built upon the ResNet34 encoder
backbone, with a U-Net-style segmentation framework and a
classification head. The model utilizes the segmentation-models-
pytorch library, which combines ResNet34’s optimized convolutional
blocks with U-Net’s encoder-decoder design. Input images, sized at
224 x 224 x 3 RGB, are processed through ResNet34’s convolutional
layers, progressively abstracting spatial information into feature maps.
The segmentation path decodes these feature maps using skip
connections from previous layers to produce a 224 x 224 x 1 binary
mask for lesion detection. Simultaneously, the classification path
applies global average pooling to the final feature maps and passes
them through dense layers with optional dropout regularization
before a softmax-activated dense layer predicts the class probabilities.
Both segmentation and classification tasks are jointly optimized using
a composite loss function: Dice Loss for segmentation and Cross-
Entropy Loss for classification. In practice, the principle of multi-task
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learning is realized by optimizing Dice Loss for segmentation
alongside Cross-Entropy Loss for classification, allowing both tasks to
reinforce one another during training.

Training is performed using the Adam optimizer for 20 epochs,
with a constant learning rate and no explicit weight decay
regularization. Overfitting is monitored by observing validation loss
during each epoch. Performance is assessed using metrics such as
accuracy, along with segmentation metrics like the Dice coefficient
and Intersection-over-Union (IoU). The model shows strong
performance, with classification accuracy exceeding 85% and Dice
coefficients above 0.85, aligning with leading results on the
HAM10000 dataset.

The selection of hyperparameters followed common practices in
deep learning research. Typical ranges for learning rates (le-3-1e-5)
and batch sizes (8, 16, or 32) were considered, as these values are
known to provide stable training, faster convergence, and manageable
memory requirements. Optimizers such as Adam are widely used for
multi-task learning because of their robustness and adaptability, and
thus were adopted in this study. In practice, smaller batch sizes tend
to improve recall for minority classes, though at the cost of longer
training times, while lower learning rates enhance stability in
segmentation tasks but may slow convergence. The final configuration
in this work reflects a balance between accuracy, efficiency, and
stability, guided by these general considerations.

During the prediction phase, the model processes an image,
generates a binary segmentation mask to highlight lesion areas, and
applies the classification model to predict the lesion’s class based on
the entire image. The predicted segmentation mask and classification
label are compared to the ground truth, with the results visualized for
performance assessment. Metrics such as the Dice coefficient, IoU,
accuracy, precision, recall, and F1-score are calculated to evaluate the
model’s performance. Thus, the framework is supported not only by
empirical performance but also by strong theoretical grounding in
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MTL and curriculum learning, ensuring that segmentation and
classification remain mutually beneficial while maintaining robustness
against class imbalance.

To improve the explainability of deep neural networks,
visualization techniques such as Grad-CAM are commonly integrated
into the model. This tool produces a saliency heatmap, emphasizing
the regions of the input image that play a key role in influencing the
model’s output. Each class is visualized separately, with the original
image displayed alongside the corresponding Grad-CAM heatmap.
This approach facilitates a deeper understanding and greater trust in
the model’s predictions as shown in the pipeline architecture diagram
(Figure 3).

4 Experimental results

The proposed dual-task deep learning framework was assessed
using the HAM10000 dataset, with standardized splits for training,
validation, and testing (60, 20, and 20%, respectively). The proposed
model was implemented and trained on a GPU-enabled system with
the following specifications: 11th Gen Intel(R) Core (TM) i5-1135G7
@ 2.40 GHz processor, 8 GB of system RAM (7.75 GB usable), and a
64-bit operating system on an x64-based architecture. The
experimental environment was built using Python 3.8, supported by
several key libraries. Data preprocessing and manipulation were
handled with pandas and numpy, while matplotlib was employed for
visualization. For deep learning, we used PyTorch and torchvision,
along with torch.nn modules for model development. Image handling
was performed with PIL, and segmentation tasks were carried out
using the segmentation_models_pytorch library. Utilities such as os
and random were also included for system-level operations and
reproducibility. The training set comprised 6,009 images, while the
validation and testing sets each contained 2,003 images. The results
will be provided both in the form of segmentation and classification
performance, with quantitative measures and qualitative visualizations.

4.1 Classification performance

The model attained an overall classification accuracy of 85.57%,
demonstrating consistent performance across the seven skin lesion
categories, despite the inherent imbalances within the dataset. The
AUC-ROC was 0.9350, indicating strong discriminative power across
the classes. Values of specificity by class indicated the strength of the
model in the accurate classification of negative cases; a high specificity
was indicated in DF (0.9985), AKIEC (0.9871) and VASC (0.9934).
The model also showed good values of MEL (0.9860) and BCC
(0.9916), but lower values of specificity were observed in BKL (0.9383)
and NV (0.8535). These findings indicate the model has the ability to
reduce false positives, especially among classes of critical and
underrepresented classes as shown in Figure 4.

Table 2 reports the class-wise performance of the proposed
framework across several key metrics: Precision, Recall, F1-score,
Intersection over Union (IoU), and Dice coeflicient. Precision
indicates how many of the lesions identified as positive are truly
positive, which is critical for reducing false alarms. Recall, on the other
hand, reflects how many of the actual positive cases the model
successfully detects, a measure directly tied to the risk of missing
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malignant cases. The F1-score balances the trade-off between these
two measures, offering a more comprehensive view of classification
performance. IoU and Dice, typically used in segmentation tasks,
capture how well the predicted regions overlap with the ground truth,
with Dice being more sensitive to smaller lesion areas.

Evaluating these metrics at the class level is particularly important
in dermatological datasets, where class imbalance is the norm. For
example, benign nevi (NV) are far more common than malignant
melanoma (MEL). An overall accuracy score, while seemingly strong,
can conceal poor performance on rare but clinically critical classes. In
Table 2, the recall for melanoma is noticeably lower than that for
benign classes. This is a significant finding: a reduced recall for
melanoma heightens the likelihood of false negatives, meaning
malignant cases might go undetected and untreated.

Comparing individual class scores with the macro- and weighted
averages further emphasizes this point. While the model achieves high
precision and recall for NV (Precision = 0.8965, Recall = 0.9433), its
performance is less consistent for minority classes such as
dermatofibroma (DF) and melanoma (MEL). This variability
underscores why class-specific reporting is indispensable; aggregated
metrics alone would obscure these disparities.

The segmentation branch also demonstrates strong results, with
Dice = 0.8622, IoU =0.7736, and Accuracy = 0.9338, indicating
precise delineation of lesion boundaries. Taken together, these
findings illustrate both the strengths of the framework—particularly
its ability to generalize across diverse lesion types—and the clinical
importance of achieving high sensitivity for malignant categories. A
class-wise comparison of precision, recall, and F1-score is visually
presented in Figure 5, which highlights the variation in model
performance across different lesion types.

Figure 6 presents the confusion matrix for all classes on the
validation set, offering insights into the model’s classification behavior
and highlighting misclassifications due to class imbalance. For
instance, the model correctly identifies most cases of NV (1,269 true
positives), but struggles with rare classes like MEL, where significant
false positives (205) occur. These observations reinforce the
importance of addressing class imbalance to improve overall
classification accuracy.

4.2 Segmentation performance

To evaluate segmentation performance, Dice coefficient and IoU
metrics were applied to the test dataset. The model achieved an
average Dice coefficient exceeding 0.85, placing it among the top
performers on this dataset and indicating strong alignment between
predicted and ground truth lesion masks. The model’s performance
metrics, including Dice: 0.8622, IoU: 0.7736, and Accuracy: 0.9338,
are summarized in Table 3. The low Dice loss values observed
throughout training (Figure 7) underscore the stability of the
segmentation branch even under joint training conditions.

To visually validate the segmentation results, Figure 8 presents
examples from each of the seven classes (MEL, NV, BCC, AKIEC,
BKL, DF, VASC), where the predicted lesion masks are closely aligned
with the true lesion boundaries. These examples demonstrate the
model’s ability to accurately segment lesions across a wide variety of
morphological patterns and class types, further supporting the
robustness of the proposed dual-task framework.
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FIGURE 3

Pipeline architecture of the proposed dual-task deep learning framework for skin lesion segmentation and classification.

Although the framework integrates both segmentation and
classification, its design relies on three key decisions. First,
EfficientNet-B0 is adopted as a lightweight yet effective backbone.

Second, the encoder features are shared across both tasks, enabling  and allow it to achieve real-time inference speeds.
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efficient representation learning. Third, all input images are resized to
a fixed resolution of 224 x 224, which reduces memory usage.
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TABLE 2 Class-wise classification metrics.

Class Precision Recall F1- Support
score
MEL 0.640909 0.632287 0.636569 223
NV 0.896527 0.943326 0.919331 1,341
BCC 0.902778 0.631068 0.742857 103
AKIEC 0.810811 0461538 0.588235 65
BKL 0.723810 0.690909 0.706977 220
DF 0.692308 0391304 0.500000 23
VASC 0.675000 0.964286 0.794118 28
Accuracy 0.843235 2003
Macro avg 0.763163 0.673531 0.698298 2003
Weighted 0.841196 0.843235 0.838142 2003
avg

4.3 Explainability and visual interpretability

For clinical adoption, deep learning systems must provide a
degree of explainability, as clinicians require insight into how a model
arrives at its decisions. In this work, we employ Grad-CAM (Gradual-
weighted Class Activation Mapping) not only as a visualization tool
but also as a means of quantitatively assessing interpretability.

Figure 9 presents qualitative results demonstrating the model’s
explainability using Gradient-weighted Class Activation Mapping
(Grad-CAM). In the example shown, the left panel displays the
original dermoscopic image, while the right panel overlays the
Grad-CAM heatmap, highlighting the lesion region most
influential to the classification decision. This visual alignment
provides clinicians with interpretive cues, enhancing trust in the
model’s predictions.

Figure 10 expands this analysis across all seven diagnostic
categories. For each class, including melanoma (MEL), nevus
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(NV), basal cell carcinoma (BCC), actinic keratoses (AKIEC),
benign keratosis (BKL), dermatofibroma (DF), and vascular
lesions (VASC), the top row displays the original input, while the
bottom row shows the corresponding Grad-CAM visualizations.
The heatmaps consistently align with clinically relevant lesion
features, confirming the model’s capacity to focus on diagnostically
meaningful regions.

Alongside the qualitative heatmaps, interpretability was
evaluated by comparing Grad-CAM outputs with the segmentation
masks generated by the model. Specifically, thresholded Grad-CAM
maps were compared against lesion boundaries, and the average
Intersection-over-Union (IoU) was calculated across all classes. The
resulting mean IoU of 0.7736 indicates a strong correspondence
between the highlighted decision regions and the true
lesion locations.

This analysis extends the role of explainable AI from being merely
a qualitative aid to a more measurable and credible component of
clinical validation, thereby reinforcing trust in the system’s outputs.

Table 4 presents a comparative summary of recent deep learning
approaches for skin lesion segmentation and classification published
between 2023 and 2025. The table highlights each method’s key
architectural innovations, reported Dice scores (or equivalent
performance metrics), and the extent of explainable AI (XAI)
integration. In contrast, the proposed model combines a dual-task
architecture with multi-class Grad-CAM overlays, delivering
competitive Dice scores (exceeding 0.85 on HAM10000) alongside
visual explanations aligned with clinical decision-making. This
combination addresses both performance and transparency
requirements, positioning the model as a promising candidate for
real-world dermatological applications.

Although Grad-CAM offers a useful way to visualize the regions
of an image that most influence a model’s decision, its interpretive
power remains limited. Saliency-based methods may sometimes
generate misleading artifacts or highlight regions that are not truly
causal to the underlying pathology, which raises doubts about their
direct reliability in clinical practice. As a result, these visual outputs
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TABLE 3 Segmentation performance metrics.

Metric Value

Dice 0.8622
ToU 0.7736
Accuracy 0.9338

should be regarded as supportive tools that enhance the transparency
of automated systems rather than as definitive diagnostic evidence.
Future research should focus on incorporating clinician-in-the-loop
validation and developing quantitative measures of interpretability to
better assess the trustworthiness of such explanations and ensure their
alignment with established diagnostic reasoning.
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5 Conclusion

This research presents a hybrid deep learning framework that
integrates lesion segmentation with multi-class classification, employing
a U-Net architecture with an EfficientNet-B3 backbone, and enhanced
by explainable AI (XAI) techniques through Grad-CAM. The framework
was evaluated on the HAM 10000 dataset, the proposed model achieved
competitive performance, with a Dice coefficient exceeding 0.85 and
classification accuracy approaching 90%, demonstrating its capacity to
deliver robust diagnostic support for dermatological applications.

In contrast, single-task segmentation models are intentionally
simplified but the trade-off is that their accuracy can be diminished
in favor of interpretability. This work goes further to show that it is
possible to obtain good segmentation accuracy and interpretability
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Grad-CAM visualization highlighting the lesion region.
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TABLE 4 Comparative summary of recent deep learning approaches for skin lesion analysis and the proposed dual-task model.

Authors

Hameed et al. (35)

Methods

Review of CNNs, ViTs, and machine
learning models applied to ISIC

dataset

Evaluation metrics

Systematic review of SCC and SCS

metrics on ISIC datasets

Class-wise metrics

Not applicable (systematic

review)

Leetal. (36)

Anti-aliasing attention U-Net, data

augmentation

Dice score: 0.881, F1 score: 0.900 on
ISIC 2018 dataset

Dice (Melanoma): 0.85, Dice
(Non-Melanoma): 0.89 on ISIC
2018

Paccotacya-Yanque et al. (37)

Grad-CAM, Score-CAM, LIME,
SHAP, ACE, ICE, CME, compared for
skin lesion classification with

Inception v4

ROC AUC for CME: 0.88, IoU with
ground truth masks for all XAI

methods

F1 (Melanoma): 0.84, F1
(Benign): 0.87 on ISIC dataset

Wang et al. (38)

CL-DCNN, self-training, class

activation maps for segmentation

Jaccard score: 79.1%, AUC: 93.7% on
ISIC 2017 & ISIC Archive datasets

Jaccard (Melanoma): 0.76,
Jaccard (Non-Melanoma): 0.80
on ISIC 2017

Thwin and Park (39)

MRP-UNet with multi-scale input
fusion and pyramid dilated

convolution

Dice: 0.90, IoU: 0.85 on ISIC 2016,
2017, 2018, HAM 10000 datasets

Dice (Melanoma): 0.87, Dice
(Non-Melanoma): 0.91 on ISIC
2016-2018, HAM10000

Khan et al. (40)

Multi-scale CNN with Inception-v3

fine-tuned for classification

Accuracy: 88% on ISIC 2017 dataset

Accuracy (Melanoma): 0.85,
Accuracy (Benign): 0.89 on ISIC
20170

Proposed model

UNet-Resnet34 for segmentation,

EfficientNet-B0 for classification

Seg. Accuracy: 93.38%, Dice: 0.8622,
ToU: 0.7736

Cls. Accuracy: 85.57%, AUC-ROC:
0.9739

Accuracy (NV): 0.8965, Accuracy
(BCC): 0.9027, Accuracy (NV):
0.8108

5.1 Limitations and future work

simultaneously. Grad-CAM overlay with three classes was
incorporated into the standard convolutional U-Net, and the results
were achieved with both clinical-level precision and explanation. The
implications of these results are that, in combination, segmentation
accuracy and visual interpretability can significantly lessen the
technical and psychological challenges that hinder clinical adoption
of Al-based diagnostic aids.

Overall, the results confirm the potential of the proposed
approach as a valuable addition to computer-aided dermatology
workflows. Future extensions will focus on improving generalizability,
incorporating advanced interpretability frameworks, and validating
the system’s impact through prospective clinical studies.
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Despite the promising performance of the proposed dual-task deep
learning framework, several limitations must be acknowledged. The
model was exclusively trained and evaluated using the HAM10000
dataset which is large and diverse, may not fully capture the variation in
global skin types, imaging devices, or clinical acquisition conditions. This
raises issues about the model’s generalizability to multi-center datasets or
real-world applications across diverse demographic populations.

Second, while the integration of Grad-CAM provides visual
interpretability, current saliency-based methods are known to produce
class-agnostic artifacts and sometimes highlight non-causal regions.
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Without clinician-in-the-loop validation or quantitative fidelity
assessments, the interpretability outputs remain qualitative and may
not fully align with expert diagnostic reasoning.

Third, the model’s effectiveness in identifying underrepresented
classes like melanoma, actinic keratosis, and dermatofibroma remains
lower compared to dominant classes like nevus, reflecting the persistent
challenge of class imbalance despite data augmentation strategies.

To address this limitation, several strategies can be considered in
future research. One option is the use of focal loss or other adaptive
loss functions, which place greater emphasis on minority and hard-
to-classify cases. Another direction involves oversampling and data
augmentation techniques to increase the representation of rare classes,
alongside class-balanced sampling to ensure fairer optimization
during training. Incorporating these strategies has the potential to
reduce recall disparities for melanoma and dermatofibroma, thereby
the that, although
underrepresented, carry the greatest clinical importance.

strengthening framework for classes

Additionally, the current framework operates under a static
inference pipeline, without incorporating active learning, uncertainty
quantification, or continual learning mechanisms that could adapt to
evolving clinical data streams.

Future work will aim to address these challenges by evaluating the
system with larger, more diverse datasets from multiple institutions,
incorporating a broader range of skin tones, lesion types, and imaging
techniques. We aim to investigate cutting-edge explainable AI
approaches, such as concept-driven interpretability and counterfactual
reasoning, to deliver insights that resonate more with clinicians.
Additionally, incorporating techniques like domain adaptation, self-
supervised learning, and real-time uncertainty quantification will
be essential to enhance reliability, particularly in resource-constrained or
point-of-care environments. Lastly, conducting prospective clinical
studies will be crucial to confirm the system’s practical value, evaluate its
influence on diagnostic processes, and gage trust and adoption among
healthcare professionals.
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