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Introduction: Skin diseases, ranging from benign conditions to malignant 
tumors such as melanoma, present substantial diagnostic challenges due to 
their visual complexity and the inherent subjectivity in manual examination.
Methods: This paper introduces a hybrid deep learning framework specifically 
designed for skin lesion segmentation and multi-class classification using 
dermoscopic images. The proposed model integrates a dual-task architecture, 
which combines a U-Net-based segmentation network with a classification module 
based on the EfficientNet-B0 backbone. To improve model interpretability and foster 
clinical trust, Grad-CAM is incorporated, allowing clinicians to visualize heatmaps 
that highlight the regions influencing the model’s decisions.
Results: The model was trained and evaluated on the HAM10000 dataset, 
demonstrating robust performance, with a Dice coefficient surpassing 0.85 for 
segmentation and classification accuracy nearing 85%. Despite challenges such 
as class imbalance and the variety of lesion types, the model provides reliable 
results across different skin conditions.
Discussion: The use of explainable AI (XAI) enhances transparency, a crucial 
factor in the clinical acceptance of AI-based diagnostic tools. This approach 
shows promise in improving diagnostic accuracy and supporting dermatologists, 
especially in resource-constrained settings, by providing both accurate 
lesion delineation and reliable class predictions. Future research will focus on 
improving the model’s generalizability, addressing underrepresented classes, 
and validating its effectiveness in real-world scenarios.
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1 Introduction

Skin diseases form a wide and heterogeneous spectrum characterized by a series of 
dermatologic disorders giving constant challenges in its diagnosis and management (1). Being the 
largest body part, the skin is the most important physical defense against external agents and at 
the same time subject to a variety of pathologies (2). The skin disorders comprise conditions like 
acne, eczema, and psoriasis and malignancies like melanoma (3). The pathologies that lead to 
these conditions are diverse; they can be genetic predispositions, pathologies of immune system, 
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and other environmental factors like sunlight, and air pollution. An 
example is acne that is regularly related to the fluctuation of hormones, 
and eczema can be attributed to allergies or genetics (4, 5). Melanoma in 
particular, has very close connection with long time exposure to sun and 
increased cases of it are being reported in areas with high levels of 
ultraviolet radiation (6, 7). Understanding the determinants could mean 
accurate diagnosis and effective treatment.

The prevalence of dermatological conditions has been steadily 
increasing during the last few years and there has been notable expansion 
in cases of skin diseases recorded both in developed and developing 
countries (8, 9). Melanoma is still more common in experienced sunny 
areas (9); however, more and more disorders of the skin, including, 
eczema, and psoriasis are increasing their distribution, especially in 
urban big cities where it is possible to find many vertices that promote 
their increasing rate, including polluted air and stressful living styles. As 
the incidence increases in multiple groups of people, especially between 
18 and 45 years of age (10), there is a marked necessity to enhance 
diagnostic techniques that can assist the clinicians in providing timely 
and precise therapy. Clear discrimination and subdivision of skin lesions 
still require intense professional competence which in the past has been 
based on hectic manual inspection that is still vulnerable to subjective 
errors. Consequently, there is an increasing emphasis on machine 
learning and deep learning techniques as methods to automate and 
enhance the diagnostic process (11).

The integration of artificial intelligence and deep learning has 
greatly advanced medical imaging, disease diagnosis, and healthcare 
decision-making. At the systemic level, innovation networks play a 
critical role in supporting regional digital health systems and enabling 
collaboration in advanced medical equipment industries (12). In 
dermatology, novel architectures such as multimodal masked 
autoencoders for vitiligo stage classification (13, 14) and interaction 
transformer modules for white patchy skin lesion analysis (14) have 
improved diagnostic accuracy. Similarly, transformer-based methods 
like CenterFormer have enhanced unconstrained dental plaque 
segmentation (15), while deep learning models have accelerated 
super-resolution ultrasound microvessel imaging (16). Clinical studies 
further underscore the importance of AI by complementing 
retrospective analyses of immunotherapy-induced psoriasis, such as 
pembrolizumab- and nivolumab-related cases (17, 18). In 
ophthalmology, adaptive multi-scale feature fusion networks have 
shown strong potential in diabetic retinopathy classification (19), and 
bio-inspired optimization algorithms have supported MRI 
segmentation in sports injury assessment (20). Parallel research in 
oncology has emphasized efficient melanoma detection using pixel 
intensity masking (21), hybrid deep learning with dual encoders and 
channel-wise attention (22), precision-driven dual encoder 
segmentation models (23), and synergistic CNN-based frameworks 
for early melanoma detection and treatment strategies (24).

Moreover, Over the past few years, deep learning has achieved 
remarkable advancements in the realm of medical image analysis, 
particularly within dermatology Convolution-based neural 
networks are extensively utilized in these applications, excel at 
discerning patterned features within images with high accuracy 
(25–27). The same has made the models essential in automatic 
identification and demarcation of skin lesions thus ensuring fast 
and reliable diagnoses (28). The AI systems by providing potential 
clinical assistance to the diagnosis improve its effectiveness, 
providing a second opinion, helping diagnosticians see the early 

symptoms that cannot be noticed by humans, and cutting the time 
it would take to analyze the images and obtain the findings. Further 
technological optimization is likely to achieve a rather decisive role 
of AI in dermatological practice, especially in those areas where the 
availability of specialized medical staff is restricted.

Despite these advances, existing methods still fall short of clinical 
demands. Many models lack precision in delineating lesion 
boundaries, fail to generalize across varied skin pathologies, and suffer 
from the black-box nature of deep learning frameworks, which limits 
interpretability and reduces clinician trust (29, 30), which handicaps 
the clinicians to entrust and incorporate the systems in standard care. 
However, even though some of the segmentation methods perform 
well on benchmarking, they always demand very high-frequency 
images and provide inefficient results on various skin lesions and fail 
to offer clear insight into their decision-making framework. Powerful 
segmentation together with Grad-CAM explainable images can 
considerably drive clinical accuracy and location evaluation of skin 
lesions (31). Such capability is especially advantageous in settings 
characterized by scarce dermatological expertise, where diagnostic 
delays are highest and the demand for quality care is most acute, 
notably in regions of elevated ultraviolet (UV) exposure or within low- 
and middle-income countries (LMICs).

In this study, we introduce a multi-task framework that integrates 
lesion segmentation, multi-class classification, and model 
explainability within a single pipeline. Unlike many existing 
approaches that treat segmentation and classification as separate tasks, 
our design emphasizes their joint optimization, demonstrating that 
improvements in segmentation can directly enhance classification 
accuracy, and vice versa. To address the persistent challenge of 
imbalanced dermatological datasets, the framework incorporates 
curriculum-based training together with stochastic hard-example 
replay, a strategy that, to our knowledge, has not yet been explored in 
this context. Beyond improving diagnostic accuracy, this integrated 
approach also enhances model interpretability, thereby strengthening 
both the methodological rigor and the clinical relevance of the 
proposed system.

1.1 Problem statement

Despite advances in dermatological image segmentation, existing 
methods often fail to meet the critical requirements for real-world 
clinical deployment. In particular, they struggle to achieve: (i) precise 
and accurate delineation of lesion boundaries, (ii) steady effectiveness 
across a diverse array of dermatological conditions and (iii) model 
interpretability, which is essential for clinicians to trust and effectively 
use the system. While segmentation models have demonstrated 
promising outcomes, they frequently struggle to achieve high accuracy 
across various skin conditions and offer limited transparency in their 
decision-making processes.

The ability to predict the correct lesion mask, combined with 
Grad-CAM’s visual explanation, significantly aids dermatologists in 
precisely recognizing the type and location of the skin disease. These 
advancements are particularly critical in clinical settings with limited 
access to skilled dermatologists, as they reduce diagnostic delays and 
improve the overall quality of care, particularly in areas with 
significant UV exposure or in low- and middle-income countries 
(LMICs).
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1.2 Objectives and approach

The current research study focuses on some of the modern 
challenges of medical imaging analysis and suggesting a hybrid deep-
learning model structure where lesion segmentation and classification 
are done in the same deep-learning model architecture. In order to 
sustain high diagnostic performance yet enhance transparency, the 
procedural design also integrates explainable-AI (XAI) techniques.

The module segmentation was defined as a multi-scale dilated 
U-Net to ensure contextual information remained despite limiting the 
complexity of the model. There is then a separate but complementary 
classification module with cases of tumors being dichotomized into 
malignant and benign. To interpret the model, heatmaps are generated 
using Grad-CAM, which mark the sections of the input image that 
play a role in determining the model’s predictions. Such an integrated 
approach not only increases the rate of accuracy in classification but 
also visual explanations that are congruent with clinical expertise.

Combining the high diagnostic accuracies with explanations that 
can be understood by clinicians, the strategy aims at widening the 
know-how acceptance of AI-based diagnostic systems, and thus 
enhancing patient outcomes.

2 Literature review

A diagnosis of skin pathology, in particular skin cancer, continues 
to pose a serious clinical challenge due to the heterogeneity of the 
lesions at the skin surface and to the apparent visual similarity of 
different conditions. A broad band of tools has been adopted to 
additional ascertain that what a dermatologist sees with the help of his 
eyes and some form of clinical judgment, to cover the extreme 
(non-invasive to invasive biopsy). However, these conventional 
methods are known to be biased by the experience of the examiner 
and therefore bring forth unwanted variability and subjectivity.

The emergence of digital imaging technologies have redefined the 
scenario with dermoscopy as the most relevant non-surveillance 
magnification method of cutaneous structures (32). Dermoscopy 
complements the evaluation of lesions through the increase in visual 
resolution (33). However, the manual interpretation is slow to die off, 
retaining its labor-interest nature, and the tendency to produce 
accidental errors. This has brought about an interest in increasing the 
technology of computer-aided diagnostic (CAD) system as a 
potential solution.

The modern advancements of machine learning (and deep 
learning specifically) have highlighted the possibility of the effective 
automation of the process of evaluating skin lesions. The use of 
convolutional neural networks (CNNs) has become the leading 
approach to the analysis of images in dermatology (34). They are 
AI-based tools as well, which aim to reduce clinician diagnostic 
workload, and more importantly improve accuracy with regards to 
timely melanoma and skin cancer detectives. Empirical evidence, 
however, indicates that a number of fundamental problems remain 
such as the need to deal with the issue of class imbalance, issue of 
model transparency and issue of high generalizability among varying 
skin conditions. These challenges are vital to success in implementing 
such systems to the extent of making them reliable and clinically 
relevant. The following gives an account of recent research studies 
concerning skin lesions like,

In the current research (35), two convolutional neural networks 
are studied, namely DenseNet −201 and Inception -V3, and how they 
can be  used to classify cutaneous malignancies. The study was 
conducted in 2024 and based on the ISIC 2019 archive that includes 
25, 331 dermoscopic images, divided into 60, 20, and 20 percent 
training, validation and testing, respectively. DenseNet-201 was able 
to achieve general accuracy of 84.3 and Inception V3 hit 81.5. Similar 
to the efficacy of deep-learning methods to detect skin-lesions, these 
findings only indicate the fact that the platform still faces significant 
challenges (including issues of class discrepancy and larger, more 
thoroughly annotated datasets).

In this study (36), the authors proposed anti-aliasing convolutional 
neural network (AA -CNN) architecture to supplement classification 
performance in dermoscopic image, in their 2023 study. The model 
was assessed in 2022 on the ISIC 2018 archive of 10,015 training and 
1,512 test images of seven different categories of skin -lesion. The 
AA-CNN had an average accuracy and area under receiver operating 
characteristic of 88.87 and 0.945, respectively, as compared to 
traditional baseline CNNs. Though the authors do emphasize the 
benefits of including the use of anti-aliasing filters in order to ensure 
model robustness, they also note constraints in the matter of 
generalizability and the complex nature of real-world clinical data.

The authors conduct a study in which they address the question 
of the usefulness of explainability methods as a way of understanding 
the decision-making process of skin lesion classifiers (37). The study 
staff trained an Inception model of −4 with the ISIC 2018 dataset and 
achieved classification achievement of 89.96–400. They contrasted 
seven explainability techniques namely Grad-CAM, Score-CAM, 
LIME, SHAP, ACE, ICE and CME. As previously shown in the 
analysis, though these techniques indicate pertinent parts of the image 
or abstract ideas, most of them exhibit uncontrollable artifacts, and, 
most importantly, most of them do not give viable explanations of 
model reasoning. Although CME reached the fidelity 88⦻, the study 
also made a conclusion that neither one method could fully produce 
satisfactory explanations, which supports the necessity of performing 
a combination of approaches and being cautious when applying 
explainable AI in clinical practices.

The current (38) research paper proposes a collaborative deep 
convolutional neural network, CL-DCNN, a type of neural network 
that separates the skin lesion into segments and classifies the skin 
lesion by sharing learning. By using pseudo-label generating, class 
activation map (CAM), and segmentation mask, the model transforms 
each of the other, with the aim of performance improvement. The 
effectiveness of the approach is supported by empirical analyses of the 
ISIC 2017 and ISIC Archive datasets, where, the Jaccard index would 
be 79.1 percent for segmentation and the area under the ROC curve 
is 93.7 percent to classify. These indicators are better than a number 
of modern techniques. Despite the fact that the proposal operated well 
on reducing the annotation burdens and enhancing the diagnostic 
accuracy, its external validity is limited, especially when extended to 
the real clinical situations.

The authors describe a deep-learning structure adopted in this 
research (39), which uses a hybrid architecture of a convolutional 
neural network to enhance the detection of skin lesions. The network 
was trained with the HAM10000 dataset as a test dataset and the input 
images were preprocessed, enhanced with data augmentation, and 
strategies of class -balance were implemented. With evaluation scores, 
it was found that the proposed model had an accuracy of 94.6 -, which 
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is an improvement compared to various traditional CNN base models 
including VGG − 16 and ResNet −50. The outcomes validate the 
advantage of deep-learning methods to analyze dermatological 
images, but the necessity to consider the problem of the imbalance in 
the number of processed cases and focus on the model interpretability 
to stimulate clinical confidence and practical applicability.

In this study (40), the researchers propose an entirely machine-
driven Deep Neural Network used to recognize the location of skin 
lesions and additionally categorize multiclassified dermoscopic 
therapies, using refined features. They use a 10-layer customized 
convolutional neural network to perform saliency-guided 
segmentation and use ResNet101 and DenseNet201 to utilize strong 
feature extractors. In order to enhance classification, better Moth 
Flame Optimization (IMFO) algorithm is employed in terms of 
feature selection and Multiset Maximum Correlation Analysis 
(MMCA) parameter is used to fuse features. Finally, the final 
classification is implemented using a Kernel Extreme Learning 
Machine (KELM) with an accuracy of 90.67 Jennifer Hammond: A 
Timeline 10,000 delivered Decision-Control OS. Despite the fact that 
the approach has good performance in both the ISBI and the ISIC 
data, issues of class imbalance exist, as well as asymmetrical 
morphology of the lesions.

This study (41) presents an optimized U-Net architecture 
employing along with pooling operations and attention to support the 
skin-lesion segmentation allowing the focus thereafter of convolutional 
neural network (CNN)-supported classifiers. The segmentation 
subnet performed better, being trained and tested on the ISIC2018 
database as it enhanced better boundary delineation and localization 
of the lesion regions compared to the traditional U-Net. A CNN was 
trained on the same dataset in the classification task where 
categorization of seven skin-lesion classes was undertaken, the Dice 
similarity coefficient was 91.28 percent, and classification accuracy 
was 89.14 percent. Despite these encouraging statistics, the study is 
aware of the lingering limitations, such as heterogeneity of lesion sizes 
and imaging artifacts, which remain the limitations of the 
overall robustness.

The authors describe a single architecture, called SkinNet, which 
is U-Net additionally designed to result in the precise distribution of 
skin lesions (42). This model integrates the dilated convolutions 
within the bottleneck that seeks to expand the receptive field and 
dense convolution block to keep spatial detail. Competition on Dice 
coefficient and Jaccard index for the ISBI 2017 challenge dataset 
produced 85.1 and a 76.7 index, both above a series of some of the 
state-of-the-art techniques. These results confirm that SkinNet is 
resistant to distinguish the lesions of various morphologies and sizes, 
still, there are complications, especially where the contrast between 
the lesion and the surrounding skin is low.

The proposed classification framework proposed by the authors 
in this paper (43) uses the multi-scale convolutional neural network 
that is tied to the Inception-v 3 architecture. The network was trained 
using the ISIC 2017 skin lesion dataset taking both coarse and the fine 
resolution images to obtain both global and local lesion features. Using 
the training set as a starting point with added images by the 
ISICMSK21 dataset and various practices to achieve a high level of 
accuracy which included fine-tuning, image augmentation and 
10-model ensembling, led to the development of the resulting classifier 
producing, on average, 90.3% accurate results with the area-under-
the-curve (AUC) of 0.896 with melanoma and 0.990 with seborrhoeic 

keratosis, respectively. Although this work focuses on the ability of 
architectural optimizations and careful training scenarios to improve 
the performance in processing the medical image classification even 
in a setting that is limited by training data.

In the current research (44), the authors research the effectiveness 
of deep convolutional neural networks in the detection of skin lesions. 
The three architectures assessed in the study, namely, AlexNet, 
ResNet-18, and ResNet-50, are trained using a dataset consisting of 
10,015 dermoscopic images of different categories (7). ResNet-50 
records the best performance of 86.6 later resnet-18 with the 83.2 
accuracy and lastly AlexNet with the performance of 78.4. Such results 
point to the potential of deep learning models to classify different 
types of skin lesions. The authors, however, note that there are still 
challenges that persist and include the availability of either imbalanced 
data and the need to have a better generalization of features between 
different classes.

Recent studies have also explored ways to improve fairness and 
strengthen feature representation. For instance (45), introduced a 
classification framework that fused deep features to reduce dataset 
bias, while (46) developed a hybrid model combining InceptionV3 
and DenseNet121, which yielded improved classification outcomes. 
These approaches highlight the importance of feature integration; 
however, our framework advances this idea further by unifying 
segmentation, classification, and interpretability within a 
single pipeline.

2.1 Principal contributions

	•	 Unified dual-task framework: The proposed work introduces a 
unified dual-task framework in which a single end-to-end model 
performs both skin lesion segmentation and multi-class 
classification. By integrating these two tasks within the same 
architecture, the network benefits from shared feature 
representations, which leads to stronger performance than 
training each task independently

	•	 Curriculum-guided learning: To make the learning more stable, 
the proposed framework establishes curriculum-managed 
training. In this paradigm model is introduced with other simpler 
more common samples and then in more complex and less 
common situations. Graduated exposure of this type reduces the 
training instability and enhances the ability of the network to 
address the strong imbalance between the classes of skin 
lesions dataset.

	•	 Strong and effective evaluation: The HAM10000 dataset was 
carefully evaluated using popular performance measures such as 
Dice Coefficient, intersection over Union (IoU), accuracy, area 
under the ROC curve (AUC) and F1 -score. Competitive results 
were attained with this model, and the inference time per image 
in this instance was more than 40 milliseconds, which makes it a 
practical speed (enough) to operate in diagnostic scenarios in 
real-time.

	•	 Accurate mask prediction: In addition to class prediction, each 
class produces a lesion mask at a high level of precision, allowing 
proper boundary drawing. This feature guides clinicians in such 
important decision-making during excision or biopsy planning.

	•	 Class-aware explanations: The interpretability is going to 
be  addressed by deploying Grad-CAM into the classification 
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module. The produced heatmaps are class specific visual 
explanations which can immediately compare the lesion 
delimitations generated through the segmentation task. This dual 
view provides extra confidence in clinical practice as it is 
guaranteed that the areas on which the model predictions are 
dependent are related to real-life locations of pathology.

	•	 Class-specific mask generation: At last, the model produces 
matching segmentation masks per each of the classes, which will 
provide it with dual functionality and thus enable dermatologists 
to spot the type of lesion and its exact location to optimize the 
diagnostic process and treatment plans.

	•	 Comprehensive model evaluation: The present work shows that 
the considerable performance is generalizable along many 
clinical lesion types using rigorous validation based upon several 
performance indicators, namely accuracy, AUC-ROC, and 
specificity. The model identifies specific competence in the 
identification of melanoma, basal cell carcinoma or 
vascular lesions.

	•	 Practical clinical utility: In a practical clinical standpoint, the 
insertion of classification, segmentation, and the explainability 
achieved by Grad-CAM makes this system applicable in 
day-to-day use of dermatology. The ability to classify the type of 
the lesion and to provide clear boundaries, which is accompanied 
by clear, Grad-CAM-based decision-making, makes it especially 
suitable to tele-dermatology in the context of 
resource-low environments.

2.2 Limitations of previous approaches and 
our contribution

The previous work in skin lesion segmentation and classification 
presents several limitations. Class imbalance is a key challenge, where 
certain lesion types, such as benign nevi, dominate the dataset, leading 
to reduced performance for rarer lesions like melanoma and 
dermatofibroma. Model interpretability remains limited, as many 
existing methods use black-box deep learning models that lack 
transparency, undermining clinicians’ confidence in the model’s 
decisions. Generalizability is a major issue in the detection of 
melanoma. Most of the existing models are validated using a single 
dataset and hence show a lower ability to support a heterogeneous 
skin type or clinical setting. Adding to these limitations is the fact that 
it is quite challenging to segment accurately, especially when speaking 
of irregular lesional morphology, which complicates the process of 
contour detection. Last, overfitting remains a prominent challenge, 
whereby the model has inadequate generalization when the quality of 
the image or the lighting changes. An overview of these limitations is 
mentioned in Table 1 which gives a comparison on what was done by 
other researchers in this field.

Our study addresses these challenges by introducing a dual-task 
deep learning model that integrates both segmentation and 
classification tasks thus, solving some of the problems faced by 
dermatopathology. These interpretations, coupled with our approach, 
which incorporates Grad-CAM, help the clinicians recognize 
transparency of model decisions and interrogate these decisions 
accordingly. We use the combination of data-augmentation methods 
and curriculum-guided training to account for the presence of the 
imbalance in classes. The model is built to be generalized, tested on a 

non-homogenous data, and that it has been optimized to clinical 
heterogeneity. It is also aimed at improving the effectiveness of 
segmentation of irregular lesions with the help of complex architectures.

3 Proposed methodology

In the detection of skin tumors using dermoscopic imagery, one 
of the primary challenges lies in accurately determining lesion edges 
and categorizing lesions into discrete disease categories. The solution 
to these challenges consists in the usage of an approach that is able to 
conduct segmentation and classification procedures concurrently. This 
requirement is fulfilled by a unified dual-task deep-learning network, 
which combines both of these tasks in one architecture, which 
functions in parallel. Initial experimental studies on the HAM10000 
dataset (47) that contains 10,015 dermoscopic images with detailed 
segmentation masks and seven diagnostic labels, such as melanoma 
and basal-cell carcinoma, show promising results with this framework. 
Its model architecture includes a well-defined preprocessing pipeline, 
stratified data division, a general architecture, and strict training and 
validation, and the post-hoc interpretability is provided by Grad-
CAM. Figure 1 illustrates the distribution of the classes in the dataset, 
where it can be seen that there are strong imbalances between the 
classes, with most of the images belonging to the class NV 
(Melanocytic Nevus).

The proposed framework is grounded in the principles of multi-
task learning (MTL), which emphasize that related tasks can benefit 
from shared representation learning (48). In our case, segmentation 
and classification are inherently connected: accurate lesion boundary 
detection improves class discrimination, while class-specific features, 
in turn, strengthen segmentation accuracy. To further guide this 
process, we  employ curriculum learning (49), where training 
progresses in a structured manner, improving stability and 
generalization under conditions of class imbalance. Given the 
significant imbalance present in the HAM10000 dataset, curriculum-
based training is combined with stochastic hard-example replay, 
encouraging the model to gradually focus on more difficult samples 
while avoiding overfitting to majority classes. This theoretical 
foundation underpins the design and training of the dual-task 
framework presented in the subsequent sections.

HAM10000 dataset consists of RGB images with the resolution of 
600 × 450 pixels and are categorized into dermoscopic grade. In order 
to achieve consistency and increase computational performance, 
image and mask normalization and reducing to a standard size of 224 
× 224 have been performed as preprocessing measures a setup that fits 
the requirements of an EfficientNet-based model. The images are read 
and processed using OpenCV and PIL, and data augmentation 
techniques, such as the random rotation, horizontal and vertical flips, 
brightness changes, etc., are implemented using the albumentations 
library. These enhancements expand inter-class separation, the 
robustness of models, and reduce overfitting. In addition, stratified 
sampling is presented with the help of the GroundTruth.csv metadata 
to maintain the initial distribution of the classes, which is considered 
a crucial step due to the strong imbalance between the dataset classes. 
The dataset was divided into 60% for training (6,009 images), 20% for 
validation (2,003 images), and 20% for testing (2,003 images), as 
illustrated in Figure 2. The data is split using scikit-learn’s train_test_
split function, and the resulting partitions are converted into PyTorch 
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TABLE 1  Comparative summary of previous studies.

Authors Challenges Methods Evaluation metrics XAI

Hameed et al. (35) Data duplication, class imbalance, varying image 

resolution, labeling accuracy

Review of CNNs, ViTs, and machine learning 

models applied to ISIC dataset

Systematic review of SCC and SCS 

metrics on ISIC datasets

N

Le et al. (36) Low image quality, accuracy in segmentation Anti-aliasing attention U-Net, data 

augmentation

Dice score: 0.881, F1 score: 0.900 on 

ISIC 2018 dataset

N

Paccotacya-Yanque 

et al. (37)

Lack of interpretability, artifact detection in 

saliency maps

Grad-CAM, Score-CAM, SHAP, ICE, ACE 

LIME, CME, compared for skin lesion 

classification with Inception v4

ROC AUC for CME: 0.88, IoU with 

ground truth masks for all XAI 

methods

Y

Wang et al. (38) Insufficient labeled data, model interpretability, 

class imbalance

CL-DCNN, self-training, class activation maps 

for segmentation

Jaccard score: 79.1%, AUC: 93.7% on 

ISIC 2017 & ISIC Archive datasets

Y

Thwin and Park 

(39)

Class imbalance, varying lesion appearance U-Net, SegNetVGG16, ResNet-50, 

Inception-V3 (classification), DeepLabV3 

(segmentation)

Dice coefficient: 0.93, IoU: 0.90, 

accuracy: 93% on balanced dataset

N

Khan et al. (40) High irregularity and boundary issues, dataset 

imbalance

Deep learning features with IMFO for feature 

selection, CNN for segmentation and 

classification

Dice: 0.87, Classification accuracy: 

90.67% on HAM10000 dataset

N

Liu et al. (41) High visual similarity, lesion size variation, color 

contrast, boundary irregularities

MRP-UNet with multi-scale input fusion and 

pyramid dilated convolution

Dice: 0.90, IoU: 0.85 on ISIC 2016, 

2017, 2018, HAM10000 datasets

N

Alsahafi et al. (42) Difficulty distinguishing melanoma from benign 

lesions

Residual learning, multi-level feature 

extraction, cross-channel correlation, multi-

layer deep CNNs

Accuracy: 90% on ISIC-2020 dataset N

DeVries and 

Ramachandram 

(43)

Visual similarity among lesion types, class 

imbalance

Multi-scale CNN with Inception-v3 fine-tuned 

for classification

Accuracy: 88% on ISIC 2017 dataset N

Cassidy et al. (44) Duplicate images within and across ISIC 

datasets (train/test overlap), class imbalance, 

label noise from non-biopsy-verified ground 

truth,

Benchmarking 19 deep learning architectures 

(e.g., EfficientNet, VGG, ResNet), UMAP 

visualization and statistical clustering analysis

VGG19-Accuracy: 0.56, InceptionV3- 

Accuracy: 0.30, EfficientNetB3: 0.53, 

DenseNet201-Accuracy: 0.36

N

FIGURE 1

Class distribution of the HAM10000 dataset across seven diagnostic categories.
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DataLoader objects, optimized for memory management and training 
efficiency with a batch size of 16. Shuffling of the training set is 
performed to introduce stochasticity, enhancing the generalization of 
the model.

The classification branch of the framework is built on 
EfficientNet-B0, chosen for its strong trade-off between accuracy and 
computational efficiency. The features extracted by this backbone are 
propagated across the architecture, enriching the encoder 
representations that drive the segmentation module. Through this 
shared representation, the segmentation network gains access to the 
same discriminative cues that guide the classification task, leading to 
more precise lesion boundary detection and improved 
overall performance.

The proposed framework employs EfficientNet-B0 as the 
backbone of the classification head to ensure efficient and accurate 
feature extraction, while the segmentation branch is constructed on a 
U-Net architecture with a ResNet34 encoder. The model architecture 
comprises a dual-task design built upon the ResNet34 encoder 
backbone, with a U-Net-style segmentation framework and a 
classification head. The model utilizes the segmentation-models-
pytorch library, which combines ResNet34’s optimized convolutional 
blocks with U-Net’s encoder-decoder design. Input images, sized at 
224 × 224 × 3 RGB, are processed through ResNet34’s convolutional 
layers, progressively abstracting spatial information into feature maps. 
The segmentation path decodes these feature maps using skip 
connections from previous layers to produce a 224 × 224 × 1 binary 
mask for lesion detection. Simultaneously, the classification path 
applies global average pooling to the final feature maps and passes 
them through dense layers with optional dropout regularization 
before a softmax-activated dense layer predicts the class probabilities. 
Both segmentation and classification tasks are jointly optimized using 
a composite loss function: Dice Loss for segmentation and Cross-
Entropy Loss for classification. In practice, the principle of multi-task 

learning is realized by optimizing Dice Loss for segmentation 
alongside Cross-Entropy Loss for classification, allowing both tasks to 
reinforce one another during training.

Training is performed using the Adam optimizer for 20 epochs, 
with a constant learning rate and no explicit weight decay 
regularization. Overfitting is monitored by observing validation loss 
during each epoch. Performance is assessed using metrics such as 
accuracy, along with segmentation metrics like the Dice coefficient 
and Intersection-over-Union (IoU). The model shows strong 
performance, with classification accuracy exceeding 85% and Dice 
coefficients above 0.85, aligning with leading results on the 
HAM10000 dataset.

The selection of hyperparameters followed common practices in 
deep learning research. Typical ranges for learning rates (1e-3–1e-5) 
and batch sizes (8, 16, or 32) were considered, as these values are 
known to provide stable training, faster convergence, and manageable 
memory requirements. Optimizers such as Adam are widely used for 
multi-task learning because of their robustness and adaptability, and 
thus were adopted in this study. In practice, smaller batch sizes tend 
to improve recall for minority classes, though at the cost of longer 
training times, while lower learning rates enhance stability in 
segmentation tasks but may slow convergence. The final configuration 
in this work reflects a balance between accuracy, efficiency, and 
stability, guided by these general considerations.

During the prediction phase, the model processes an image, 
generates a binary segmentation mask to highlight lesion areas, and 
applies the classification model to predict the lesion’s class based on 
the entire image. The predicted segmentation mask and classification 
label are compared to the ground truth, with the results visualized for 
performance assessment. Metrics such as the Dice coefficient, IoU, 
accuracy, precision, recall, and F1-score are calculated to evaluate the 
model’s performance. Thus, the framework is supported not only by 
empirical performance but also by strong theoretical grounding in 

FIGURE 2

Dataset split distribution showing training (60%), validation (20%), and testing (20%) sets.
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MTL and curriculum learning, ensuring that segmentation and 
classification remain mutually beneficial while maintaining robustness 
against class imbalance.

To improve the explainability of deep neural networks, 
visualization techniques such as Grad-CAM are commonly integrated 
into the model. This tool produces a saliency heatmap, emphasizing 
the regions of the input image that play a key role in influencing the 
model’s output. Each class is visualized separately, with the original 
image displayed alongside the corresponding Grad-CAM heatmap. 
This approach facilitates a deeper understanding and greater trust in 
the model’s predictions as shown in the pipeline architecture diagram 
(Figure 3).

4 Experimental results

The proposed dual-task deep learning framework was assessed 
using the HAM10000 dataset, with standardized splits for training, 
validation, and testing (60, 20, and 20%, respectively). The proposed 
model was implemented and trained on a GPU-enabled system with 
the following specifications: 11th Gen Intel(R) Core (TM) i5-1135G7 
@ 2.40 GHz processor, 8 GB of system RAM (7.75 GB usable), and a 
64-bit operating system on an x64-based architecture. The 
experimental environment was built using Python 3.8, supported by 
several key libraries. Data preprocessing and manipulation were 
handled with pandas and numpy, while matplotlib was employed for 
visualization. For deep learning, we used PyTorch and torchvision, 
along with torch.nn modules for model development. Image handling 
was performed with PIL, and segmentation tasks were carried out 
using the segmentation_models_pytorch library. Utilities such as os 
and random were also included for system-level operations and 
reproducibility. The training set comprised 6,009 images, while the 
validation and testing sets each contained 2,003 images. The results 
will be provided both in the form of segmentation and classification 
performance, with quantitative measures and qualitative visualizations.

4.1 Classification performance

The model attained an overall classification accuracy of 85.57%, 
demonstrating consistent performance across the seven skin lesion 
categories, despite the inherent imbalances within the dataset. The 
AUC-ROC was 0.9350, indicating strong discriminative power across 
the classes. Values of specificity by class indicated the strength of the 
model in the accurate classification of negative cases; a high specificity 
was indicated in DF (0.9985), AKIEC (0.9871) and VASC (0.9934). 
The model also showed good values of MEL (0.9860) and BCC 
(0.9916), but lower values of specificity were observed in BKL (0.9383) 
and NV (0.8535). These findings indicate the model has the ability to 
reduce false positives, especially among classes of critical and 
underrepresented classes as shown in Figure 4.

Table  2 reports the class-wise performance of the proposed 
framework across several key metrics: Precision, Recall, F1-score, 
Intersection over Union (IoU), and Dice coefficient. Precision 
indicates how many of the lesions identified as positive are truly 
positive, which is critical for reducing false alarms. Recall, on the other 
hand, reflects how many of the actual positive cases the model 
successfully detects, a measure directly tied to the risk of missing 

malignant cases. The F1-score balances the trade-off between these 
two measures, offering a more comprehensive view of classification 
performance. IoU and Dice, typically used in segmentation tasks, 
capture how well the predicted regions overlap with the ground truth, 
with Dice being more sensitive to smaller lesion areas.

Evaluating these metrics at the class level is particularly important 
in dermatological datasets, where class imbalance is the norm. For 
example, benign nevi (NV) are far more common than malignant 
melanoma (MEL). An overall accuracy score, while seemingly strong, 
can conceal poor performance on rare but clinically critical classes. In 
Table 2, the recall for melanoma is noticeably lower than that for 
benign classes. This is a significant finding: a reduced recall for 
melanoma heightens the likelihood of false negatives, meaning 
malignant cases might go undetected and untreated.

Comparing individual class scores with the macro- and weighted 
averages further emphasizes this point. While the model achieves high 
precision and recall for NV (Precision = 0.8965, Recall = 0.9433), its 
performance is less consistent for minority classes such as 
dermatofibroma (DF) and melanoma (MEL). This variability 
underscores why class-specific reporting is indispensable; aggregated 
metrics alone would obscure these disparities.

The segmentation branch also demonstrates strong results, with 
Dice = 0.8622, IoU = 0.7736, and Accuracy = 0.9338, indicating 
precise delineation of lesion boundaries. Taken together, these 
findings illustrate both the strengths of the framework—particularly 
its ability to generalize across diverse lesion types—and the clinical 
importance of achieving high sensitivity for malignant categories. A 
class-wise comparison of precision, recall, and F1-score is visually 
presented in Figure  5, which highlights the variation in model 
performance across different lesion types.

Figure  6 presents the confusion matrix for all classes on the 
validation set, offering insights into the model’s classification behavior 
and highlighting misclassifications due to class imbalance. For 
instance, the model correctly identifies most cases of NV (1,269 true 
positives), but struggles with rare classes like MEL, where significant 
false positives (205) occur. These observations reinforce the 
importance of addressing class imbalance to improve overall 
classification accuracy.

4.2 Segmentation performance

To evaluate segmentation performance, Dice coefficient and IoU 
metrics were applied to the test dataset. The model achieved an 
average Dice coefficient exceeding 0.85, placing it among the top 
performers on this dataset and indicating strong alignment between 
predicted and ground truth lesion masks. The model’s performance 
metrics, including Dice: 0.8622, IoU: 0.7736, and Accuracy: 0.9338, 
are summarized in Table  3. The low Dice loss values observed 
throughout training (Figure  7) underscore the stability of the 
segmentation branch even under joint training conditions.

To visually validate the segmentation results, Figure 8 presents 
examples from each of the seven classes (MEL, NV, BCC, AKIEC, 
BKL, DF, VASC), where the predicted lesion masks are closely aligned 
with the true lesion boundaries. These examples demonstrate the 
model’s ability to accurately segment lesions across a wide variety of 
morphological patterns and class types, further supporting the 
robustness of the proposed dual-task framework.
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Although the framework integrates both segmentation and 
classification, its design relies on three key decisions. First, 
EfficientNet-B0 is adopted as a lightweight yet effective backbone. 
Second, the encoder features are shared across both tasks, enabling 

efficient representation learning. Third, all input images are resized to 
a fixed resolution of 224 × 224, which reduces memory usage. 
Together, these choices keep the model computationally lightweight 
and allow it to achieve real-time inference speeds.

FIGURE 3

Pipeline architecture of the proposed dual-task deep learning framework for skin lesion segmentation and classification.
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4.3 Explainability and visual interpretability

For clinical adoption, deep learning systems must provide a 
degree of explainability, as clinicians require insight into how a model 
arrives at its decisions. In this work, we employ Grad-CAM (Gradual-
weighted Class Activation Mapping) not only as a visualization tool 
but also as a means of quantitatively assessing interpretability.

Figure 9 presents qualitative results demonstrating the model’s 
explainability using Gradient-weighted Class Activation Mapping 
(Grad-CAM). In the example shown, the left panel displays the 
original dermoscopic image, while the right panel overlays the 
Grad-CAM heatmap, highlighting the lesion region most 
influential to the classification decision. This visual alignment 
provides clinicians with interpretive cues, enhancing trust in the 
model’s predictions.

Figure  10 expands this analysis across all seven diagnostic 
categories. For each class, including melanoma (MEL), nevus 

(NV), basal cell carcinoma (BCC), actinic keratoses (AKIEC), 
benign keratosis (BKL), dermatofibroma (DF), and vascular 
lesions (VASC), the top row displays the original input, while the 
bottom row shows the corresponding Grad-CAM visualizations. 
The heatmaps consistently align with clinically relevant lesion 
features, confirming the model’s capacity to focus on diagnostically 
meaningful regions.

Alongside the qualitative heatmaps, interpretability was 
evaluated by comparing Grad-CAM outputs with the segmentation 
masks generated by the model. Specifically, thresholded Grad-CAM 
maps were compared against lesion boundaries, and the average 
Intersection-over-Union (IoU) was calculated across all classes. The 
resulting mean IoU of 0.7736 indicates a strong correspondence 
between the highlighted decision regions and the true 
lesion locations.

This analysis extends the role of explainable AI from being merely 
a qualitative aid to a more measurable and credible component of 
clinical validation, thereby reinforcing trust in the system’s outputs.

Table 4 presents a comparative summary of recent deep learning 
approaches for skin lesion segmentation and classification published 
between 2023 and 2025. The table highlights each method’s key 
architectural innovations, reported Dice scores (or equivalent 
performance metrics), and the extent of explainable AI (XAI) 
integration. In contrast, the proposed model combines a dual-task 
architecture with multi-class Grad-CAM overlays, delivering 
competitive Dice scores (exceeding 0.85 on HAM10000) alongside 
visual explanations aligned with clinical decision-making. This 
combination addresses both performance and transparency 
requirements, positioning the model as a promising candidate for 
real-world dermatological applications.

Although Grad-CAM offers a useful way to visualize the regions 
of an image that most influence a model’s decision, its interpretive 
power remains limited. Saliency-based methods may sometimes 
generate misleading artifacts or highlight regions that are not truly 
causal to the underlying pathology, which raises doubts about their 
direct reliability in clinical practice. As a result, these visual outputs 

FIGURE 4

Bar chart representing Specificity per class at epoch 20.

TABLE 2  Class-wise classification metrics.

Class Precision Recall F1-
score

Support

MEL 0.640909 0.632287 0.636569 223

NV 0.896527 0.943326 0.919331 1,341

BCC 0.902778 0.631068 0.742857 103

AKIEC 0.810811 0.461538 0.588235 65

BKL 0.723810 0.690909 0.706977 220

DF 0.692308 0.391304 0.500000 23

VASC 0.675000 0.964286 0.794118 28

Accuracy 0.843235 2003

Macro avg 0.763163 0.673531 0.698298 2003

Weighted 

avg

0.841196 0.843235 0.838142 2003
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should be regarded as supportive tools that enhance the transparency 
of automated systems rather than as definitive diagnostic evidence. 
Future research should focus on incorporating clinician-in-the-loop 
validation and developing quantitative measures of interpretability to 
better assess the trustworthiness of such explanations and ensure their 
alignment with established diagnostic reasoning.

5 Conclusion

This research presents a hybrid deep learning framework that 
integrates lesion segmentation with multi-class classification, employing 
a U-Net architecture with an EfficientNet-B3 backbone, and enhanced 
by explainable AI (XAI) techniques through Grad-CAM. The framework 
was evaluated on the HAM10000 dataset, the proposed model achieved 
competitive performance, with a Dice coefficient exceeding 0.85 and 
classification accuracy approaching 90%, demonstrating its capacity to 
deliver robust diagnostic support for dermatological applications.

In contrast, single-task segmentation models are intentionally 
simplified but the trade-off is that their accuracy can be diminished 
in favor of interpretability. This work goes further to show that it is 
possible to obtain good segmentation accuracy and interpretability 

FIGURE 5

Class-wise performance metrics with Precision, Recall, and F1-Score.

FIGURE 6

Confusion matrix for all classes on the validation set.

TABLE 3  Segmentation performance metrics.

Metric Value

Dice 0.8622

IoU 0.7736

Accuracy 0.9338
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FIGURE 7

Segmentation loss curve and dice score trend across epochs.

FIGURE 8

Predicted masks for input images across all seven lesion classes.

FIGURE 9

Grad-CAM visualization highlighting the lesion region.
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simultaneously. Grad-CAM overlay with three classes was 
incorporated into the standard convolutional U-Net, and the results 
were achieved with both clinical-level precision and explanation. The 
implications of these results are that, in combination, segmentation 
accuracy and visual interpretability can significantly lessen the 
technical and psychological challenges that hinder clinical adoption 
of AI-based diagnostic aids.

Overall, the results confirm the potential of the proposed 
approach as a valuable addition to computer-aided dermatology 
workflows. Future extensions will focus on improving generalizability, 
incorporating advanced interpretability frameworks, and validating 
the system’s impact through prospective clinical studies.

5.1 Limitations and future work

Despite the promising performance of the proposed dual-task deep 
learning framework, several limitations must be acknowledged. The 
model was exclusively trained and evaluated using the HAM10000 
dataset which is large and diverse, may not fully capture the variation in 
global skin types, imaging devices, or clinical acquisition conditions. This 
raises issues about the model’s generalizability to multi-center datasets or 
real-world applications across diverse demographic populations.

Second, while the integration of Grad-CAM provides visual 
interpretability, current saliency-based methods are known to produce 
class-agnostic artifacts and sometimes highlight non-causal regions. 

FIGURE 10

Grad-CAM highlights for all seven lesion classes.

TABLE 4  Comparative summary of recent deep learning approaches for skin lesion analysis and the proposed dual-task model.

Authors Methods Evaluation metrics Class-wise metrics XAI

Hameed et al. (35) Review of CNNs, ViTs, and machine 

learning models applied to ISIC 

dataset

Systematic review of SCC and SCS 

metrics on ISIC datasets

Not applicable (systematic 

review)

N

Le et al. (36) Anti-aliasing attention U-Net, data 

augmentation

Dice score: 0.881, F1 score: 0.900 on 

ISIC 2018 dataset

Dice (Melanoma): 0.85, Dice 

(Non-Melanoma): 0.89 on ISIC 

2018

N

Paccotacya-Yanque et al. (37) Grad-CAM, Score-CAM, LIME, 

SHAP, ACE, ICE, CME, compared for 

skin lesion classification with 

Inception v4

ROC AUC for CME: 0.88, IoU with 

ground truth masks for all XAI 

methods

F1 (Melanoma): 0.84, F1 

(Benign): 0.87 on ISIC dataset

Y

Wang et al. (38) CL-DCNN, self-training, class 

activation maps for segmentation

Jaccard score: 79.1%, AUC: 93.7% on 

ISIC 2017 & ISIC Archive datasets

Jaccard (Melanoma): 0.76, 

Jaccard (Non-Melanoma): 0.80 

on ISIC 2017

Y

Thwin and Park (39) MRP-UNet with multi-scale input 

fusion and pyramid dilated 

convolution

Dice: 0.90, IoU: 0.85 on ISIC 2016, 

2017, 2018, HAM10000 datasets

Dice (Melanoma): 0.87, Dice 

(Non-Melanoma): 0.91 on ISIC 

2016–2018, HAM10000

N

Khan et al. (40) Multi-scale CNN with Inception-v3 

fine-tuned for classification

Accuracy: 88% on ISIC 2017 dataset Accuracy (Melanoma): 0.85, 

Accuracy (Benign): 0.89 on ISIC 

20170

N

Proposed model UNet-Resnet34 for segmentation, 

EfficientNet-B0 for classification

Seg. Accuracy: 93.38%, Dice: 0.8622, 

IoU: 0.7736

Cls. Accuracy: 85.57%, AUC-ROC: 

0.9739

Accuracy (NV): 0.8965, Accuracy 

(BCC): 0.9027, Accuracy (NV): 

0.8108

Y
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Without clinician-in-the-loop validation or quantitative fidelity 
assessments, the interpretability outputs remain qualitative and may 
not fully align with expert diagnostic reasoning.

Third, the model’s effectiveness in identifying underrepresented 
classes like melanoma, actinic keratosis, and dermatofibroma remains 
lower compared to dominant classes like nevus, reflecting the persistent 
challenge of class imbalance despite data augmentation strategies.

To address this limitation, several strategies can be considered in 
future research. One option is the use of focal loss or other adaptive 
loss functions, which place greater emphasis on minority and hard-
to-classify cases. Another direction involves oversampling and data 
augmentation techniques to increase the representation of rare classes, 
alongside class-balanced sampling to ensure fairer optimization 
during training. Incorporating these strategies has the potential to 
reduce recall disparities for melanoma and dermatofibroma, thereby 
strengthening the framework for classes that, although 
underrepresented, carry the greatest clinical importance.

Additionally, the current framework operates under a static 
inference pipeline, without incorporating active learning, uncertainty 
quantification, or continual learning mechanisms that could adapt to 
evolving clinical data streams.

Future work will aim to address these challenges by evaluating the 
system with larger, more diverse datasets from multiple institutions, 
incorporating a broader range of skin tones, lesion types, and imaging 
techniques. We  aim to investigate cutting-edge explainable AI 
approaches, such as concept-driven interpretability and counterfactual 
reasoning, to deliver insights that resonate more with clinicians. 
Additionally, incorporating techniques like domain adaptation, self-
supervised learning, and real-time uncertainty quantification will 
be essential to enhance reliability, particularly in resource-constrained or 
point-of-care environments. Lastly, conducting prospective clinical 
studies will be crucial to confirm the system’s practical value, evaluate its 
influence on diagnostic processes, and gage trust and adoption among 
healthcare professionals.
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