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Introduction: This study used the Extreme Gradient Boosting (XGBoost) machine 
learning model to conduct an in-depth analysis of the potential relationship 
between pulse index continuous cardiac output (PiCCO) and multiple clinical 
prognostic indicators, including left ventricular ejection fraction (LVEF), N-terminal 
pro-brain natriuretic peptide (NT-proBNP) levels, and 30-day major adverse 
cardiovascular events (MACE), in patients with cardiogenic shock. The aim of this 
study was to investigate the predictive ability of PiCCO hemodynamic parameters 
and the relative contribution features based on the XGBoost model.
Methods: Multi-class receiver operating characteristic (ROC) curves explored 
that the XGBoost prediction model performed extremely well about LVEF and 
NT-proBNP. Further SHapley Additive explanation (SHAP) value analysis revealed 
the contributions of different PiCCO hemodynamic parameters.
Results: Features such as CI (cardiac index), CPI (cardiac power index), and SVRI 
(systemic vascular resistance index) showed significant positive effects on the 
prediction of LVEF and NT-proBNP. In terms of MACE, dPmax (index of the left 
ventricular contractility), CFI (cardiac function index), and GEDVI (global end-
diastolic volume index) showed significant predictive value.
Discussion: Overall, XGBoost machine learning model based on PiCCO 
hemodynamic parameters provide evidence that effectively predict key clinical 
prognostic indicators in the patients with cardiogenic shock. These results 
provide important theoretical basis for further individualized clinical decision-
making in cardiogenic shock patients.
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1 Introduction

Cardiogenic shock is a critical condition characterized by cardiac dysfunction resulting in 
an inadequate cardiac output (1–3). It is associated with substantial morbidity and mortality 
(2–4). Despite significant advances in etiological treatment, pharmacological therapy, and 
mechanical circulatory support, the diagnosis and treatment of cardiogenic shock continue to 
present formidable clinical challenges.

Previous studies have mainly guided the management of cardiogenic shock through 
clinical manifestations and biochemical indicators, emphasizing the identification of “warm/
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cold” and “dry/wet” phenotypes (5, 6). However, the clinical 
manifestations and biochemical indicators of most patients lag behind 
the dynamic changes of hemodynamic parameters (6). Therefore, the 
dynamic hemodynamic assessment, accurate risk stratification, and 
timely therapeutic intervention are essential for improving clinical 
outcomes. Previous guidelines and expert consensus have suggested 
that invasive hemodynamic monitoring should be  performed for 
patients with critical conditions or those whose symptoms do not 
improve significantly after initial optimized treatment (3, 7–9).

Pulse index continuous cardiac output (PiCCO) monitoring, based 
on transpulmonary thermodilution curves and arterial pulse contour 
analysis, can provide comprehensive, continuous, real-time, and 
accurate hemodynamic parameters (10, 11). This minimally invasive 
technology helps evaluate the myocardial contractility, preload, 
afterload, and pulmonary edema, and facilitates dynamic adjustment 
of treatment strategies based on monitoring results, aiming to quickly 
establish and maintain a stable circulatory state (10, 11). Our previous 
study have confirmed that compared with treatment regimens based 
on conventional biomarkers or scoring systems, PiCCO-guided 
management exerts a beneficial effect on therapeutic decision-making 
and improves clinical outcomes and cardiac function in patients with 
cardiogenic shock (12).

Compared with the classic pulmonary artery catheter, PiCCO has 
the following significant advantages: (1) The PiCCO system is less 
invasive, avoiding severe complications related to the operation. 
Patients with cardiogenic shock often have an indwelling central 
venous catheter, and the monitoring loop can be completed by only 
inserting an additional dedicated 4-French arterial catheter; (2) PiCCO 
provides continuous hemodynamic parameters, helping clinicians 
dynamically monitor real-time changes in the entire circulatory system 
and adjust treatment strategies in a timely manner; (3) Extravascular 
lung water index (EVLWI), a unique parameter of PiCCO, is very 
effective for fluid management in patients with cardiogenic shock and 
is closely related to the prognosis. Nonetheless, the interpretation of 
this multidimensional data in a time-sensitive clinical setting remains 
complex and highly dependent on clinician experience.

Recent advances in artificial intelligence (AI), particularly machine 
learning (ML), has demonstrated great promise in handling complex 
clinical datasets, discovering nonlinear relationships, and generating 
predictive models for precision medicine (13, 14). The integration of 
artificial intelligence into hemodynamic monitoring represents a 
significant advancement in the field (13–15). XGBoost is a novel 
explainable AI technique, which has excellent predictive capabilities in 
cardiovascular diseases such as myocardial infarction and related 
biomarkers (16–26). By integrating PiCCO-derived hemodynamic 
parameters with machine learning algorithms, this study aims to develop 
a predictive model for assessing heart failure-related clinical indicators—
such as left ventricular ejection fraction (LVEF), N-terminal pro-brain 
natriuretic peptide (NT-proBNP) levels, and 30-day major adverse 
cardiovascular events (MACE) in patients with cardiogenic shock.

2 Methods

2.1 Study design and population

In this retrospective observational study, we enrolled 200 patients 
diagnosed with cardiogenic shock who underwent hemodynamic 

monitoring using the PiCCO system (Pulsion Medical Systems, Munich, 
Germany). All participants were admitted to the Cardiac Care Unit 
(CCU) of Shanghai East Hospital between January 2024 and May 2025.

The inclusion criteria were as follows: (1) age ≥ 18 years old and 
(2) patients diagnosed with cardiogenic shock. The diagnosis of 
cardiogenic shock was based on the following criteria according to the 
guidelines: (1) objective evidence of cardiac dysfunction; (2) systolic 
blood pressure < 90 mmHg or mean arterial pressure < 60 mmHg for 
at least 30 min, or requiring vasopressor agents or intra-aortic balloon 
pump (IABP) to maintain blood pressure above these thresholds; (3) 
cardiac index (CI) < 2.2 L/(min·m2); and (4) clinical signs of tissue 
hypoperfusion (cold, clammy skin, altered mental status, oliguria or 
peripheral vasoconstriction, etc.).

The exclusion criteria included the following: (1) severe peripheral 
vascular disease; (2) significant valve heart disease; (3) treatment with 
mechanical circulatory support (MCS), including extracorporeal 
membrane oxygenation (ECMO), Impella, TandemHeart, or left 
ventricular assist device (LVAD); (4) complicated with severe infection 
or acute respiratory distress syndrome; and (5) pregnancy or lactation.

2.2 Interventions

The hemodynamic monitoring was performed by experienced 
intensivists following standard protocols. In addition to inserting a 
central venous catheter via the internal jugular or femoral vein, a 
PiCCO arterial catheter was placed in the femoral artery. The pressure 
transducer and temperature probe were connected to the machine 
module according to the operation manual. For cardiac output 
measurement, the zero point was first calibrated, and then 15–20 mL 
of 0–4 °C saline solution was injected via the venous catheter 3–5 
times, with the average values recorded and calculated. Calibration 
was performed at least every 8 h to ensure the accuracy of the data. 
The hemodynamic parameters were continuously recorded until the 
patient either resolved from cardiogenic shock or death occurred (27).

2.3 Data collection

Clinical data were extracted from the electronic medical record 
system, including demographic characteristics, laboratory values (e.g., 
NT-proBNP), echocardiographic findings (e.g., LVEF), and 30-day 
MACE, defined as the composite of all-cause mortality, cardiac 
mortality, and heart failure readmission.

Hemodynamic parameters obtained via the PiCCO system 
included: CI (cardiac index), CPI (cardiac power index), CFI (cardiac 
function index), GEF (global ejection fraction), dPmax (index of the 
left ventricular contractility), GEDVI (global end-diastolic volume 
index), CVP (central venous pressure), PPV (pulse pressure variation), 
SVV (stroke volume variation), EVLWI (extravascular lung water 
index), PVPI (pulmonary vascular permeability index), SVRI 
(systemic vascular resistance index) (28).

The selection of PiCCO hemodynamic parameters was based on 
their established clinical relevance in reflecting cardiac function, 
preload, afterload, and pulmonary edema in cardiogenic shock 
patients. For instance, CI, CPI, CFI, GEF and dPmax are direct 
indicators of cardiac function; GEDVI and CVP reflect volume status; 
PPV and SVV are the parameters for volume responsiveness; SVRI 
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represents afterload; EVLWI and PVPI indicate pulmonary edema 
risk. These parameters are routinely used in critical care settings to 
guide fluid management, inotropic support, and vasopressor therapy. 
Their inclusion in the model aligns with current hemodynamic 
monitoring guidelines and clinical practices, ensuring that the 
predictive features are physiologically interpretable and actionable.

All PiCCO measurements were obtained within the first 24 h of a 
patient’s CCU admission to reflect the early hemodynamic 
characteristics of cardiogenic shock.

Outcome data were collected by trained medical professionals 
either during hospitalization or through outpatient follow-up. All data 
were retrieved from electronic medical records and anonymized to 
ensure patient confidentiality. Two independent cardiologists 
determined MACE based on medical records and follow-up; any 
disagreement was arbitrated by a third senior physician. Readmissions 
were limited to unplanned hospitalizations related to heart failure 
decompensation. Mortality information was obtained from in-hospital 
records or authoritative follow-up sources, clarifying the principles of 
“loss to follow-up.”

2.4 AI model establishment and training 
process

For the AI model’s establishment and training process, the XGBoost 
machine learning model was selected. XGBoost machine learning model 
is an optimized distributed gradient boosting library that provides better 
predictive power by transforming a set of weak learners into strong 
learners. The algorithm is powerful due to several innovations such as 
approximate greedy search, parallel learning, and hyperparameters (26, 
29). This study selected the XGBoost model to build a prediction AI 
model, which was applied to: (1) Multi-class prediction of LVEF levels. 
LVEF were stratified into five classes: ≤20, 21–30%, 31–40%, 41–50%, 
≥50%; (2) Multi-class prediction of NT-proBNP stratification. 
NT-proBNP levels were stratified into four classes: <10,000 ng/L, 10,001–
20,000 ng/L, 20,001–30,000 ng/L, and >30,000 ng/L; (3) Binary 
classification prediction of 30-day MACE events occurrence. The 
XGBoost model has advantages such as efficiency, scalability, and strong 
regularization capabilities, and is suitable for processing high-dimensional 
non-linear structured data sets. To optimize model performance and 
minimize overfitting, hyperparameter tuning was conducted using a grid 
search strategy, exploring learning rate, maximum tree depth, number of 
estimators, subsample ratio, column sampling, and L1/L2 regularization 
terms. The dataset was randomly divided into training (50%) and testing 
(50%) cohorts, with 5-fold cross-validation performed within the training 
set. Overfitting was mitigated by incorporating early stopping, shrinkage 
through learning rate adjustment, and regularization penalties, thereby 
ensuring robust and generalizable model performance.

2.5 AI model interpretability analysis

To enhance the clinical interpretability of the model, the SHapley 
Additive exPlanations (SHAP) algorithm was employed to conduct a 
feature importance analysis of the model output. This method is based 
on the Shapley value calculation principle in game theory and can 
reveal the contribution direction and magnitude of each feature to the 
prediction results from both a global and local perspective (30, 31).

By drawing SHAP beeswarm diagrams, feature influence ranking 
diagrams (bar plots), and global feature influence heatmaps (summary 
plots), the roles of key variables such as CI, dPmax, and GEDVI in the 
model prediction can be  clearly demonstrated. This provides a 
theoretical basis for further optimizing feature selection and 
simplifying the model in clinical practice.

2.6 AI model evaluation and comparison

The LVEF and NT-proBNP model uses the multi-class ROC curve 
and its AUC (Area Under Curve) value as the main evaluation 
indicators. The MACE model uses ROC-AUC, accuracy, sensitivity, 
and specificity for evaluation. Calibration analysis assesses the 
consistency between the predicted probabilities output by the model 
and the actual events by drawing a calibration curve. Comparative 
analysis compares the performance of the XGBoost model with that 
of Logistic regression to verify its advantages in high-dimensional data 
scenarios (24, 32–34).

3 Results

3.1 Analysis of hemodynamic monitoring 
by PiCCO and prediction of LVEF based on 
XGBoost model

In this study, the XGBoost machine learning model was used to 
analyze the relationship between hemodynamic indicators by PiCCO 
and LVEF in cardiogenic shock patients. By using various visualization 
tools, we comprehensively explored the prediction effect and feature 
contribution of the model to deeply understand the influence of each 
feature on the prediction of LVEF.

To explore the strong classification ability and good generalization 
performance of the XGBoost model in the LVEF prediction task, 
we first constructed multi-class ROC curves. The ROC curve shows 
the model’s performance at different classification thresholds, with the 
x-axis representing the false positive rate (FPR) and the y-axis 
representing the true positive rate (TPR). This result demonstrated the 
performance of ROC curves for different classes (Class 0, Class 1, 
Class 2, Class 3, Class 4). The area under the curve (AUC) values of 
each curve were 0.998, 0.998, 0.985, 0.955, and 0.985, respectively, 
indicating the excellent performance of the model in LVEF 
classification prediction. Among them, the AUC values of class 0 and 
class 1 were close to 1, indicating that the model had a strong 
discrimination ability for these two classes and predicted LVEF levels 
with a relatively high degree of accuracy (Figure 1).

In order to explore the contribution of each PiCCO hemodynamic 
parameters to the output of the XGBoost model, we used SHAP for 
further evaluation. The SHAP value is typically used to indicate the 
presumed influence degree of each feature on the model output. The 
SHAP value of each feature is displayed horizontally, with colors 
ranging from blue (low value) to red (high value), indicating the size 
of the feature value. Generally, the larger SHAP value represents the 
greater influence of the feature on the prediction result. As can be seen 
from the figure, features such as CI, SVRI, CPIand CFI had a 
significant positive effect on the model output. In particular, when 
these feature values were high, the accuracy of LVEF prediction was 

https://doi.org/10.3389/fmed.2025.1683425
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


You et al.� 10.3389/fmed.2025.1683425

Frontiers in Medicine 04 frontiersin.org

significantly improved. On the other hand, features such as SVV, GEF 
and CVP had relatively low impact on the model output, indicating 
that their contribution to the LVEF prediction results was relatively 
small. This showed that the choice of features and their value ranges 
directly affected the prediction accuracy of the model (Figure 2A).

To further reveal the global contribution of different features to 
LVEF prediction, we constructed an XGBoost global feature influence 
figure (Figure 2B). This figure showed the distribution of SHAP values 
for each PiCCO hemodynamic parameter. It can be seen that features 
such as CI, SVRI, CPI and CFI had a more significant impact across 
the entire dataset, especially when their values were high, contributing 
most significantly to LVEF prediction. In contrast, features such as 
CVP, GEF and SVV had a smaller impact, with a more dispersed 
distribution of SHAP values, indicating that these features had a less 
pronounced impact on the overall model. This provides guidance for 
further optimizing model feature selection and identifying which 
features seem to constitute the key factors in predicting LVEF.

These results offer a deeper understanding of the PiCCO 
parameters play an important role in predicting LVEF among patients 
with cardiogenic shock. Multi-class ROC curves demonstrate the 
model predictive power for different LVEF categories. Contribution 
distribution plots and global influence diagrams also reveal the crucial 
role of different PiCCO metrics in model prediction. These findings 
provide important theoretical support for future model optimization 
and personalized prediction.

3.2 Prediction analysis of PiCCO 
hemodynamic parameters and NT-proBNP 
levels based on XGBoost model

We also constructed a multi-class ROC curve to analyze the accuracy 
of the relationship between PiCCO parameters and NT-proBNP levels. 
The AUC values for class 0, class 1, class 2, and class 3 were 0.999, 1.000, 
0.997, and 0.996, respectively, demonstrating that the model performed 
well in predicting NT-proBNP. In particular, the AUC for class 1 was 
1.000, indicating high predictive accuracy for this category. Additionally, 
the AUC values for other categories were also very close to 1. Therefore, 
the XGBoost model could distinguish different NT-proBNP levels and 
possessed a high classification ability (Figure 3).

The SHAP values figure demonstrated that features such as CI, CPI, 
and SVRI played a significant role in influencing the model output, 
especially when their values were high, which significantly increased 
the model output. In contrast, features like CVP, SVV, and PPV had a 
relatively small contribution to the model, showing a relatively 
concentrated influence. This indicated that CI, CPI, and SVRI features 
had important positive or negative effects on NT-proBNP prediction, 
while the influence of other features was relatively weak (Figure 4A).

From a global perspective, we observed that some features such as 
CI, CPI, and SVRI had a significant impact throughout the dataset, 
and their SHAP values were mostly concentrated in a high range, 
indicating their significant contribution to predicting NT-proBNP. In 

FIGURE 1

Multi-class ROC curves for LVEF classification prediction. The figure displays ROC curves for five LVEF classes (Class 0 to Class 4), representing the 
model’s performance across different thresholds. The area under the curve (AUC) values (0.998, 0.998, 0.985, 0.955, 0.985) indicate excellent 
discriminatory ability for each class. Higher AUC values indicate stronger discriminatory ability of the model. LVEF were stratified into five classes: ≤20, 
21–30%, 31–40%, 41–50%, ≥50%.
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contrast, features like CVP, SVV, and PPV had a relatively small 
influence on a global scale and having an insignificant impact. This 
provides a strong basis for identifying the most predictive features in 
the model (Figure 4B).

3.3 Prediction analysis of PiCCO 
hemodynamic parameters and 30-day 
MACE based on XGBoost model

This research also used the XGBoost machine learning model to 
clarify the relationship between invasive PiCCO hemodynamic 
parameters and 30-day MACE, including all-cause mortality, cardiac 
mortality, and heart failure readmission. As an important clinical 

event, the prediction of MACE is of great significance for the early 
intervention of patients.

The ROC curve provided an intuitive assessment of the prediction 
model. The area under the curve (AUC) value of the curve was 0.796, 
indicating good but not optimal discrimination between patients with 
and without adverse events (Figure 5).

The heatmap was constructed to observe how the influence of 
different features, such as CFI, dPmax, and GEDVI, varied across the 
dataset, and helped us understand how each feature impacts the 
prediction for each instance. The color of heatmap gradually changes 
from blue to red, indicating the change in SHAP values, further 
revealing the predictive power of different features at different data 
points (Figure 6).

To further analyze the model, the SHAP values for each feature 
were used to illustrate the degree to which different feature values 
influence the model output. Features with larger SHAP values, such as 
dPmax, CFI, and GEDVI, had a wider distribution, indicating that 
these features contributed more significantly to the prediction results 
under different circumstances. In contrast, other features, such as GEF, 
PPV, and SVV, had a smaller impact on the model output and their 
SHAP values were more concentrated, indicating that their 
contribution to the prediction results is weaker (Figure 7A).

The global feature influence plot showed the impact of each 
PiCCO parameter on MACE, helping us understand the importance 
of each parameter across the entire dataset (Figure 7B). In this figure, 
features such as dPmax, CFI, and GEDVI played a more significant 
role in model prediction. In contrast, some features, such as GEF, PPV 
and SVV, had a relatively small impact on the model. This global 
perspective allows us to further understand feature importance and 
provide guidance for future model optimization and feature selection.

The SHAP value summary figure showed the contribution of each 
feature to the model prediction results. SHAP values help us 
understand how each PiCCO parameters affects the model output. 
Red in the chart indicates a positive impact of the feature value on the 
prediction result, while blue indicates a negative impact. SHAP 
summary figure indicated that dpmax and GEDVI exerted positive 
effects on prediction scores, whereas SVV and PPV were associated 
with negative contributions (Figure 8).

Therefore, through these figures, we  have gained a deep 
understanding of the influence of each PiCCO hemodynamic 
parameters on the prediction of MACE results in the XGBoost model. 
SHAP value analysis, ROC curves, and feature contribution 
distribution figure help us comprehensively evaluate the performance 
of the XGBoost-based PiCCO hemodynamic parameters and MACE 
prediction model, as well as its reliability in predicting MACE. These 
results provide important insights for further model optimization and 
improved prediction accuracy in cardiogenic shock patients.

4 Discussion

LVEF, NT-proBNP can facilitate prompt recognition, diagnosis, 
and management of shock, ultimately improving patient outcomes 
(35–38). However, the biochemical indicators lag behind the dynamic 
changes of hemodynamic parameters (6). Hemodynamic status is a 
critical determinant of both risk stratification and clinical prognosis 
in cardiogenic shock (39, 40). ML-based phenotyping is playing a 
growing role in risk stratification and therapeutic decision-making for 

FIGURE 2

Contribution of each feature in the LVEF prediction model. (A) The 
overall impact of each feature; (B) the detailed contribution of each 
feature for every individual patient. The X-axis shows the SHAP value, 
indicating the magnitude and direction (positive or negative) of each 
feature’s impact on LVEF prediction. Color changes reflect the 
magnitude of the feature value (blue: low, red: high). The larger the 
absolute SHAP value, the greater the feature’s impact on the model’s 
prediction accuracy. For example, features such as CI, SVRI, and CPI 
show high contributions, while SVV, GEF and CVP have minimal 
impact.
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cardiogenic shock (41–44). This research lies at the forefront of critical 
care cardiology and embodies the convergence of state-of-the-art 
hemodynamic monitoring with cutting-edge computational 
approaches. By leveraging AI-driven analytics, our model has the 
potential to uncover clinically actionable insights, provide real-time 
risk prediction, and guide individualized treatment strategies. This 
work offers a novel direction for the diagnosis and management of 
cardiogenic shock, enhances the precision and personalization of care 
for critically ill cardiovascular patients, and ultimately aims to improve 
prognosis, reduce mortality, and lower healthcare costs. The proposed 
model not only holds significant clinical value but also carries 
important societal and economic implications in the era of 
intelligent medicine.

In recent years, XGBoost-based machine learning prediction 
models have been widely used in the medical field, demonstrating 
remarkable predictive performance in cardiovascular disease, 
sepsis, and kidney injury management (19–26, 45–47).

This study utilized the XGBoost algorithm to systematically 
evaluate the predictive value of PiCCO-derived hemodynamic 
parameters for LVEF, NT-proBNP, and MACE in patients with 
cardiogenic shock. Our results showed that the XGBoost model 
achieved extremely high classification accuracy in multiple prediction 
tasks. Especially, The AUC values of the ROC curves in the predictions 
of LVEF and NT-proBNP are close to 1, indicating a strong 
discriminative capacity even in a complex and unstable hemodynamic 
setting (48).

Through SHAP value analysis, we  further revealed the 
contribution degree of each hemodynamic parameter to the 
model’s prediction results. CI, SVRI, and CPI had significant 
influences on the prediction of LVEF and NT-proBNP, indicating 
that these parameters should be given high attention in clinical 
practice (49). However, parameters such as PPV, SVV and CVP had 
relatively weak influences on the prediction. CI reflects global 
cardiac output adjusted for body surface area, directly mirroring 
the extent of myocardial contractile impairment. In cardiogenic 
shock, reduced CI indicates severe cardiac dysfunction and 
inadequate tissue perfusion. After identifying the specific causes of 
the reduced cardiac index—considering myocardial contractility, 
preload, afterload, and pulmonary edema status—we can apply a 
hemodynamic and volume management decision model to guide 
inotrope titration, vasoactive therapy, and fluid management (12). 
SVRI reflects afterload and vascular tone, both of which are 
profoundly influenced by neurohormonal activation and 
vasopressor use during cardiogenic shock. CPI is a comprehensive 
indicator representing the pump and work capacity of the heart, 
and it is a core parameter for measuring cardiac function. From a 
pathophysiological perspective, the key predictive features of these 
parameters reveal the importance of improving myocardial 
contractility, preload, and afterload in the treatment of cardiogenic 
shock. Deteriorated CPI is a strong prognosticator of mortality in 
cardiogenic shock and helps stratify high-risk patients requiring 
more aggressive mechanical circulatory support.

FIGURE 3

Multi-class ROC curves for NT-proBNP prediction. ROC curves for four NT-proBNP classes (Class 0 to Class 3) demonstrate the model’s high 
predictive accuracy, with AUC values of 0.999, 1.000, 0.997, and 0.996. An AUC value close to 1 indicates a high predictive accuracy of the model. 
NT-proBNP levels were stratified into four classes: <10,000 ng/L, 10,001–20,000 ng/L, 20,001–30,000 ng/L, and >30,000 ng/L.
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For 30-day MACE prediction, although the AUC (0.796) was 
lower than that for LVEF and NT-proBNP, it was still at a good 
prediction level, and the key influencing features identified by the 
model (such as dPmax, CFI, GEDVI) were closely related to cardiac 
function and had high clinical relevance (50). This finding aligns with 
the understanding that persistent contractile dysfunction (low dPmax, 
reduced CFI) and inappropriate preload (abnormal GEDVI) are 
critical determinants of adverse outcomes in CS survivors. dPmax and 
CFI are sensitive indicators of cardiac contractility and its response to 
inotropic drugs. They can provide real-time insight into myocardial 
inotropy and guide optimization of inotropic therapy. GEDVI serves 
as a preload marker and help differentiate hypovolemia from fluid 
overload, informing tailored volume management strategies. These 
parameters likely capture residual myocardial dysfunction and 
suboptimal hemodynamic profiles that predispose patients to 

recurrent heart failure or death. This model serves as a powerful 
auxiliary tool to quickly and accurately identify high-risk patients. The 
key indicators require more attention to cardiogenic shock patients 
with low dPmax, low CFI, and high GEDVI. Our results indicate that 
the multi-dimensional parameters provided by the PiCCO system can 
not only reflect the current hemodynamic state but also predict the 
risk of future adverse events to a certain extent.

The results of this study support the integration of machine 
learning methods into clinical hemodynamic monitoring, helping 
doctors extract valuable information from high-dimensional and 
complex parameters and promoting the formulation of individualized 
treatment decisions for cardiogenic shock patients. This approach not 
only allows for real-time, individualized risk prediction but also has 
the potential to guide targeted interventions—such as preload 
optimization, afterload modulation, or tailored inotropic support—
before irreversible organ injury occurs.

5 Conclusion

This study constructed and validated the application of an 
XGBoost machine learning model based on PiCCO monitoring 
parameters for predicting LVEF, NT-proBNP levels, and MACE in 
patients with cardiogenic shock. Results showed that the model 
demonstrated high discriminative power for both LVEF and 
NT-proBNP grading, and also demonstrated good discriminative 
power for MACE prediction. SHAP interpretability analysis revealed 
that key hemodynamic parameters, including CI, CPI, SVRI, dPmax, 
CFI and GEDVI contributed significantly to the predictions, 
suggesting their importance in clinical risk assessment.

The results demonstrate that combining machine learning 
methods with dynamic monitoring data can effectively exploit 
potential nonlinear relationships, thereby improving the accuracy of 
early warning and personalized decision-making. This not only helps 
optimize diagnostic and treatment strategies for patients with 
cardiogenic shock but also provides a methodological basis for the 
development of future intelligent intensive care systems.

5.1 Limitations and perspective

Firstly, a single-center retrospective study design with a relatively 
modest sample size may impair the generalizability and increase the 
risk of overfitting. Secondly, external validation on independent 
multicenter datasets is warranted to confirm robustness and 
reproducibility. Thirdly, although PiCCO monitoring provides real-
time and accurate hemodynamic parameters, its limitations restrict its 
application in all patients with cardiogenic shock, including 
invasiveness, high cost, operator dependency, and uncapable in 
patients undergoing advanced MCS. Last but not least, the AUC value 
of the MACE prediction model (0.796) is lower than LVEF and 
NT-proBNP, while within the acceptable range (>0.7). This may 
be due to the fact that MACE, as a composite endpoint, is influenced 
by multiple non-hemodynamic factors. Previous studies have also 
confirmed that machine learning makes limited contributions to 
clinical endpoints including mortality, but the models improved risk 
stratification for high-risk individuals (26).

FIGURE 4

Contribution of each feature in the NT-proBNP prediction model. 
(A) The overall impact of each feature; (B) the detailed contribution 
of each feature for every individual patient. SHAP values represent 
the change in predicted NT-proBNP level relative to the baseline. CI, 
CPI, and SVRI show strong effects when values are high, whereas 
CVP, SVV, and PPV have limited influence.
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FIGURE 5

ROC curve of the 30-day MACE prediction model. This figure shows the ROC curve of the XGBoost model. The AUC value is 0.796, indicating that the 
model has strong discriminatory power in predicting different MACE outcomes.

FIGURE 6

The predictive effect of each feature in 30-day MACE prediction. This chart shows the predictive effect of each feature in the XGBoost model on 
different data instances. Each row represents a feature, each column a patient instance. The colors from blue to red represent the range of SHAP 
values (blue: negative impact, red: positive impact). The heatmap visualizes how each feature variably influences MACE prediction across the cohort.
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Future research can expand model training on prospective, multi-
center, multi-population data and attempt to integrate more advanced 
algorithms such as graph neural networks to further improve 
prediction accuracy and interpretability. Additionally, it is important 
to develop hybrid predictive models that combine noninvasive 
biomarkers (e.g., troponin, lactic acid, and echocardiographic 
parameters) with PiCCO-derived hemodynamic indices. Moreover, 
embedding these models into a real-time bedside decision-support 
system could facilitate dynamic risk stratification and personalized 
management of cardiogenic shock patients.
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