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PiCCO hemodynamic parameters
in cardiogenic shock: prediction
of LVEF, NT-proBNP and MACE
based on XGBoost machine
learning model

Jieyun You', Tianwen Wei', Yue Yu, Jing Huang, Yuxiao Sun,
Wei Guo* and Qi Zhang*

Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai,
China

Introduction: This study used the Extreme Gradient Boosting (XGBoost) machine
learning model to conduct an in-depth analysis of the potential relationship
between pulse index continuous cardiac output (PICCO) and multiple clinical
prognostic indicators, including left ventricular ejection fraction (LVEF), N-terminal
pro-brain natriuretic peptide (NT-proBNP) levels, and 30-day major adverse
cardiovascular events (MACE), in patients with cardiogenic shock. The aim of this
study was to investigate the predictive ability of PICCO hemodynamic parameters
and the relative contribution features based on the XGBoost model.

Methods: Multi-class receiver operating characteristic (ROC) curves explored
that the XGBoost prediction model performed extremely well about LVEF and
NT-proBNP. Further SHapley Additive explanation (SHAP) value analysis revealed
the contributions of different PiICCO hemodynamic parameters.

Results: Features such as Cl (cardiac index), CPI (cardiac power index), and SVRI
(systemic vascular resistance index) showed significant positive effects on the
prediction of LVEF and NT-proBNP. In terms of MACE, dPmax (index of the left
ventricular contractility), CFl (cardiac function index), and GEDVI (global end-
diastolic volume index) showed significant predictive value.

Discussion: Overall, XGBoost machine learning model based on PiCCO
hemodynamic parameters provide evidence that effectively predict key clinical
prognostic indicators in the patients with cardiogenic shock. These results
provide important theoretical basis for further individualized clinical decision-
making in cardiogenic shock patients.

KEYWORDS
XGBoost machine learning model, pulse index continuous cardiac output, left

ventricular ejection fraction, N-terminal pro-brain natriuretic peptide, major adverse
cardiovascular events

1 Introduction

Cardiogenic shock is a critical condition characterized by cardiac dysfunction resulting in
an inadequate cardiac output (1-3). It is associated with substantial morbidity and mortality
(2-4). Despite significant advances in etiological treatment, pharmacological therapy, and
mechanical circulatory support, the diagnosis and treatment of cardiogenic shock continue to
present formidable clinical challenges.

Previous studies have mainly guided the management of cardiogenic shock through
clinical manifestations and biochemical indicators, emphasizing the identification of “warm/
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cold” and “dry/wet” phenotypes (5, 6). However, the clinical
manifestations and biochemical indicators of most patients lag behind
the dynamic changes of hemodynamic parameters (6). Therefore, the
dynamic hemodynamic assessment, accurate risk stratification, and
timely therapeutic intervention are essential for improving clinical
outcomes. Previous guidelines and expert consensus have suggested
that invasive hemodynamic monitoring should be performed for
patients with critical conditions or those whose symptoms do not
improve significantly after initial optimized treatment (3, 7-9).

Pulse index continuous cardiac output (PiCCO) monitoring, based
on transpulmonary thermodilution curves and arterial pulse contour
analysis, can provide comprehensive, continuous, real-time, and
accurate hemodynamic parameters (10, 11). This minimally invasive
technology helps evaluate the myocardial contractility, preload,
afterload, and pulmonary edema, and facilitates dynamic adjustment
of treatment strategies based on monitoring results, aiming to quickly
establish and maintain a stable circulatory state (10, 11). Our previous
study have confirmed that compared with treatment regimens based
on conventional biomarkers or scoring systems, PiCCO-guided
management exerts a beneficial effect on therapeutic decision-making
and improves clinical outcomes and cardiac function in patients with
cardiogenic shock (12).

Compared with the classic pulmonary artery catheter, PiCCO has
the following significant advantages: (1) The PiCCO system is less
invasive, avoiding severe complications related to the operation.
Patients with cardiogenic shock often have an indwelling central
venous catheter, and the monitoring loop can be completed by only
inserting an additional dedicated 4-French arterial catheter; (2) PiCCO
provides continuous hemodynamic parameters, helping clinicians
dynamically monitor real-time changes in the entire circulatory system
and adjust treatment strategies in a timely manner; (3) Extravascular
lung water index (EVLWI), a unique parameter of PiCCO, is very
effective for fluid management in patients with cardiogenic shock and
is closely related to the prognosis. Nonetheless, the interpretation of
this multidimensional data in a time-sensitive clinical setting remains
complex and highly dependent on clinician experience.

Recent advances in artificial intelligence (AI), particularly machine
learning (ML), has demonstrated great promise in handling complex
clinical datasets, discovering nonlinear relationships, and generating
predictive models for precision medicine (13, 14). The integration of
artificial intelligence into hemodynamic monitoring represents a
significant advancement in the field (13-15). XGBoost is a novel
explainable Al technique, which has excellent predictive capabilities in
cardiovascular diseases such as myocardial infarction and related
biomarkers (16-26). By integrating PiCCO-derived hemodynamic
parameters with machine learning algorithms, this study aims to develop
a predictive model for assessing heart failure-related clinical indicators—
such as left ventricular ejection fraction (LVEF), N-terminal pro-brain
natriuretic peptide (NT-proBNP) levels, and 30-day major adverse
cardiovascular events (MACE) in patients with cardiogenic shock.

2 Methods
2.1 Study design and population

In this retrospective observational study, we enrolled 200 patients
diagnosed with cardiogenic shock who underwent hemodynamic
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monitoring using the PiICCO system (Pulsion Medical Systems, Munich,
Germany). All participants were admitted to the Cardiac Care Unit
(CCU) of Shanghai East Hospital between January 2024 and May 2025.

The inclusion criteria were as follows: (1) age > 18 years old and
(2) patients diagnosed with cardiogenic shock. The diagnosis of
cardiogenic shock was based on the following criteria according to the
guidelines: (1) objective evidence of cardiac dysfunction; (2) systolic
blood pressure < 90 mmHg or mean arterial pressure < 60 mmHg for
at least 30 min, or requiring vasopressor agents or intra-aortic balloon
pump (IABP) to maintain blood pressure above these thresholds; (3)
cardiac index (CI) < 2.2 L/(min-m?); and (4) clinical signs of tissue
hypoperfusion (cold, clammy skin, altered mental status, oliguria or
peripheral vasoconstriction, etc.).

The exclusion criteria included the following: (1) severe peripheral
vascular disease; (2) significant valve heart disease; (3) treatment with
mechanical circulatory support (MCS), including extracorporeal
membrane oxygenation (ECMO), Impella, TandemHeart, or left
ventricular assist device (LVAD); (4) complicated with severe infection
or acute respiratory distress syndrome; and (5) pregnancy or lactation.

2.2 Interventions

The hemodynamic monitoring was performed by experienced
intensivists following standard protocols. In addition to inserting a
central venous catheter via the internal jugular or femoral vein, a
PiCCO arterial catheter was placed in the femoral artery. The pressure
transducer and temperature probe were connected to the machine
module according to the operation manual. For cardiac output
measurement, the zero point was first calibrated, and then 15-20 mL
of 0-4 °C saline solution was injected via the venous catheter 3-5
times, with the average values recorded and calculated. Calibration
was performed at least every 8 h to ensure the accuracy of the data.
The hemodynamic parameters were continuously recorded until the
patient either resolved from cardiogenic shock or death occurred (27).

2.3 Data collection

Clinical data were extracted from the electronic medical record
system, including demographic characteristics, laboratory values (e.g.,
NT-proBNP), echocardiographic findings (e.g., LVEF), and 30-day
MACE, defined as the composite of all-cause mortality, cardiac
mortality, and heart failure readmission.

Hemodynamic parameters obtained via the PiCCO system
included: CI (cardiac index), CPI (cardiac power index), CFI (cardiac
function index), GEF (global ejection fraction), dPmax (index of the
left ventricular contractility), GEDVI (global end-diastolic volume
index), CVP (central venous pressure), PPV (pulse pressure variation),
SVV (stroke volume variation), EVLWI (extravascular lung water
index), PVPI (pulmonary vascular permeability index), SVRI
(systemic vascular resistance index) (28).

The selection of PiCCO hemodynamic parameters was based on
their established clinical relevance in reflecting cardiac function,
preload, afterload, and pulmonary edema in cardiogenic shock
patients. For instance, CI, CPI, CFI, GEF and dPmax are direct
indicators of cardiac function; GEDVI and CVP reflect volume status;
PPV and SVV are the parameters for volume responsiveness; SVRI
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represents afterload; EVLWI and PVPI indicate pulmonary edema
risk. These parameters are routinely used in critical care settings to
guide fluid management, inotropic support, and vasopressor therapy.
Their inclusion in the model aligns with current hemodynamic
monitoring guidelines and clinical practices, ensuring that the
predictive features are physiologically interpretable and actionable.

All PiCCO measurements were obtained within the first 24 h of a
patients CCU admission to reflect the early hemodynamic
characteristics of cardiogenic shock.

Outcome data were collected by trained medical professionals
either during hospitalization or through outpatient follow-up. All data
were retrieved from electronic medical records and anonymized to
ensure patient confidentiality. Two independent cardiologists
determined MACE based on medical records and follow-up; any
disagreement was arbitrated by a third senior physician. Readmissions
were limited to unplanned hospitalizations related to heart failure
decompensation. Mortality information was obtained from in-hospital
records or authoritative follow-up sources, clarifying the principles of
“loss to follow-up.”

2.4 Al model establishment and training
process

For the Al model’s establishment and training process, the XGBoost
machine learning model was selected. XGBoost machine learning model
is an optimized distributed gradient boosting library that provides better
predictive power by transforming a set of weak learners into strong
learners. The algorithm is powerful due to several innovations such as
approximate greedy search, parallel learning, and hyperparameters (26,
29). This study selected the XGBoost model to build a prediction AI
model, which was applied to: (1) Multi-class prediction of LVEF levels.
LVEF were stratified into five classes: <20, 21-30%, 31-40%, 41-50%,
>50%; (2) Multi-class prediction of NT-proBNP stratification.
NT-proBNP levels were stratified into four classes: <10,000 ng/L, 10,001-
20,000 ng/L, 20,001-30,000 ng/L, and >30,000ng/L; (3) Binary
classification prediction of 30-day MACE events occurrence. The
XGBoost model has advantages such as efficiency, scalability, and strong
regularization capabilities, and is suitable for processing high-dimensional
non-linear structured data sets. To optimize model performance and
minimize overfitting, hyperparameter tuning was conducted using a grid
search strategy, exploring learning rate, maximum tree depth, number of
estimators, subsample ratio, column sampling, and L1/L2 regularization
terms. The dataset was randomly divided into training (50%) and testing
(50%) cohorts, with 5-fold cross-validation performed within the training
set. Overfitting was mitigated by incorporating early stopping, shrinkage
through learning rate adjustment, and regularization penalties, thereby
ensuring robust and generalizable model performance.

2.5 Al model interpretability analysis

To enhance the clinical interpretability of the model, the SHapley
Additive exPlanations (SHAP) algorithm was employed to conduct a
feature importance analysis of the model output. This method is based
on the Shapley value calculation principle in game theory and can
reveal the contribution direction and magnitude of each feature to the
prediction results from both a global and local perspective (30, 31).
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By drawing SHAP beeswarm diagrams, feature influence ranking
diagrams (bar plots), and global feature influence heatmaps (summary
plots), the roles of key variables such as CI, dPmax, and GEDVI in the
model prediction can be clearly demonstrated. This provides a
theoretical basis for further optimizing feature selection and
simplifying the model in clinical practice.

2.6 Al model evaluation and comparison

The LVEF and NT-proBNP model uses the multi-class ROC curve
and its AUC (Area Under Curve) value as the main evaluation
indicators. The MACE model uses ROC-AUGC, accuracy, sensitivity,
and specificity for evaluation. Calibration analysis assesses the
consistency between the predicted probabilities output by the model
and the actual events by drawing a calibration curve. Comparative
analysis compares the performance of the XGBoost model with that
of Logistic regression to verify its advantages in high-dimensional data
scenarios (24, 32-34).

3 Results

3.1 Analysis of hemodynamic monitoring
by PiCCO and prediction of LVEF based on
XGBoost model

In this study, the XGBoost machine learning model was used to
analyze the relationship between hemodynamic indicators by PiCCO
and LVEF in cardiogenic shock patients. By using various visualization
tools, we comprehensively explored the prediction effect and feature
contribution of the model to deeply understand the influence of each
feature on the prediction of LVEE.

To explore the strong classification ability and good generalization
performance of the XGBoost model in the LVEF prediction task,
we first constructed multi-class ROC curves. The ROC curve shows
the model’s performance at different classification thresholds, with the
x-axis representing the false positive rate (FPR) and the y-axis
representing the true positive rate (TPR). This result demonstrated the
performance of ROC curves for different classes (Class 0, Class 1,
Class 2, Class 3, Class 4). The area under the curve (AUC) values of
each curve were 0.998, 0.998, 0.985, 0.955, and 0.985, respectively,
indicating the excellent performance of the model in LVEF
classification prediction. Among them, the AUC values of class 0 and
class 1 were close to 1, indicating that the model had a strong
discrimination ability for these two classes and predicted LVEF levels
with a relatively high degree of accuracy (Figure 1).

In order to explore the contribution of each PiCCO hemodynamic
parameters to the output of the XGBoost model, we used SHAP for
further evaluation. The SHAP value is typically used to indicate the
presumed influence degree of each feature on the model output. The
SHAP value of each feature is displayed horizontally, with colors
ranging from blue (low value) to red (high value), indicating the size
of the feature value. Generally, the larger SHAP value represents the
greater influence of the feature on the prediction result. As can be seen
from the figure, features such as CI, SVRI, CPland CFI had a
significant positive effect on the model output. In particular, when
these feature values were high, the accuracy of LVEF prediction was
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21-30%, 31-40%, 41-50%, >50%.

Multi-class ROC curves for LVEF classification prediction. The figure displays ROC curves for five LVEF classes (Class O to Class 4), representing the
model's performance across different thresholds. The area under the curve (AUC) values (0.998, 0.998, 0.985, 0.955, 0.985) indicate excellent
discriminatory ability for each class. Higher AUC values indicate stronger discriminatory ability of the model. LVEF were stratified into five classes: <20,

significantly improved. On the other hand, features such as SVV, GEF
and CVP had relatively low impact on the model output, indicating
that their contribution to the LVEF prediction results was relatively
small. This showed that the choice of features and their value ranges
directly affected the prediction accuracy of the model (Figure 2A).

To further reveal the global contribution of different features to
LVEEF prediction, we constructed an XGBoost global feature influence
figure (Figure 2B). This figure showed the distribution of SHAP values
for each PiICCO hemodynamic parameter. It can be seen that features
such as CI, SVRI, CPI and CFI had a more significant impact across
the entire dataset, especially when their values were high, contributing
most significantly to LVEF prediction. In contrast, features such as
CVP, GEF and SVV had a smaller impact, with a more dispersed
distribution of SHAP values, indicating that these features had a less
pronounced impact on the overall model. This provides guidance for
further optimizing model feature selection and identifying which
features seem to constitute the key factors in predicting LVEE.

These results offer a deeper understanding of the PiCCO
parameters play an important role in predicting LVEF among patients
with cardiogenic shock. Multi-class ROC curves demonstrate the
model predictive power for different LVEF categories. Contribution
distribution plots and global influence diagrams also reveal the crucial
role of different PiCCO metrics in model prediction. These findings
provide important theoretical support for future model optimization
and personalized prediction.
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3.2 Prediction analysis of PiICCO
hemodynamic parameters and NT-proBNP
levels based on XGBoost model

We also constructed a multi-class ROC curve to analyze the accuracy
of the relationship between PiCCO parameters and NT-proBNP levels.
The AUC values for class 0, class 1, class 2, and class 3 were 0.999, 1.000,
0.997, and 0.996, respectively, demonstrating that the model performed
well in predicting NT-proBNP. In particular, the AUC for class 1 was
1.000, indicating high predictive accuracy for this category. Additionally,
the AUC values for other categories were also very close to 1. Therefore,
the XGBoost model could distinguish different NT-proBNP levels and
possessed a high classification ability (Figure 3).

The SHAP values figure demonstrated that features such as CI, CPI,
and SVRI played a significant role in influencing the model output,
especially when their values were high, which significantly increased
the model output. In contrast, features like CVP, SVV, and PPV had a
relatively small contribution to the model, showing a relatively
concentrated influence. This indicated that CI, CPI, and SVRI features
had important positive or negative effects on NT-proBNP prediction,
while the influence of other features was relatively weak (Figure 4A).

From a global perspective, we observed that some features such as
CI, CPI, and SVRI had a significant impact throughout the dataset,
and their SHAP values were mostly concentrated in a high range,
indicating their significant contribution to predicting NT-proBNP. In
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FIGURE 2
Contribution of each feature in the LVEF prediction model. (A) The
overall impact of each feature; (B) the detailed contribution of each
feature for every individual patient. The X-axis shows the SHAP value,
indicating the magnitude and direction (positive or negative) of each
feature's impact on LVEF prediction. Color changes reflect the
magnitude of the feature value (blue: low, red: high). The larger the
absolute SHAP value, the greater the feature's impact on the model's
prediction accuracy. For example, features such as Cl, SVRI, and CPI
show high contributions, while SVV, GEF and CVP have minimal
impact.

contrast, features like CVP, SVV, and PPV had a relatively small
influence on a global scale and having an insignificant impact. This
provides a strong basis for identifying the most predictive features in
the model (Figure 4B).

3.3 Prediction analysis of PiCCO
hemodynamic parameters and 30-day
MACE based on XGBoost model

This research also used the XGBoost machine learning model to
clarify the relationship between invasive PiCCO hemodynamic
parameters and 30-day MACE, including all-cause mortality, cardiac
mortality, and heart failure readmission. As an important clinical
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event, the prediction of MACE is of great significance for the early
intervention of patients.

The ROC curve provided an intuitive assessment of the prediction
model. The area under the curve (AUC) value of the curve was 0.796,
indicating good but not optimal discrimination between patients with
and without adverse events (Figure 5).

The heatmap was constructed to observe how the influence of
different features, such as CFI, dPmax, and GEDV], varied across the
dataset, and helped us understand how each feature impacts the
prediction for each instance. The color of heatmap gradually changes
from blue to red, indicating the change in SHAP values, further
revealing the predictive power of different features at different data
points (Figure 6).

To further analyze the model, the SHAP values for each feature
were used to illustrate the degree to which different feature values
influence the model output. Features with larger SHAP values, such as
dPmax, CFIL, and GEDV], had a wider distribution, indicating that
these features contributed more significantly to the prediction results
under different circumstances. In contrast, other features, such as GEF,
PPV, and SVV, had a smaller impact on the model output and their
SHAP values were more concentrated, indicating that their
contribution to the prediction results is weaker (Figure 7A).

The global feature influence plot showed the impact of each
PiCCO parameter on MACE, helping us understand the importance
of each parameter across the entire dataset (Figure 7B). In this figure,
features such as dPmax, CFI, and GEDVI played a more significant
role in model prediction. In contrast, some features, such as GEE, PPV
and SVV, had a relatively small impact on the model. This global
perspective allows us to further understand feature importance and
provide guidance for future model optimization and feature selection.

The SHAP value summary figure showed the contribution of each
feature to the model prediction results. SHAP values help us
understand how each PiCCO parameters affects the model output.
Red in the chart indicates a positive impact of the feature value on the
prediction result, while blue indicates a negative impact. SHAP
summary figure indicated that dpmax and GEDVT exerted positive
effects on prediction scores, whereas SVV and PPV were associated
with negative contributions (Figure 8).

Therefore, through these figures, we have gained a deep
understanding of the influence of each PiCCO hemodynamic
parameters on the prediction of MACE results in the XGBoost model.
SHAP value analysis, ROC curves, and feature contribution
distribution figure help us comprehensively evaluate the performance
of the XGBoost-based PiCCO hemodynamic parameters and MACE
prediction model, as well as its reliability in predicting MACE. These
results provide important insights for further model optimization and
improved prediction accuracy in cardiogenic shock patients.

4 Discussion

LVEE NT-proBNP can facilitate prompt recognition, diagnosis,
and management of shock, ultimately improving patient outcomes
(35-38). However, the biochemical indicators lag behind the dynamic
changes of hemodynamic parameters (6). Hemodynamic status is a
critical determinant of both risk stratification and clinical prognosis
in cardiogenic shock (39, 40). ML-based phenotyping is playing a
growing role in risk stratification and therapeutic decision-making for
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FIGURE 3
Multi-class ROC curves for NT-proBNP prediction. ROC curves for four NT-proBNP classes (Class 0 to Class 3) demonstrate the model's high
predictive accuracy, with AUC values of 0.999, 1.000, 0.997, and 0.996. An AUC value close to 1 indicates a high predictive accuracy of the model.
NT-proBNP levels were stratified into four classes: <10,000 ng/L, 10,001-20,000 ng/L, 20,001-30,000 ng/L, and >30,000 ng/L.

cardiogenic shock (41-44). This research lies at the forefront of critical
care cardiology and embodies the convergence of state-of-the-art
hemodynamic monitoring with cutting-edge computational
approaches. By leveraging Al-driven analytics, our model has the
potential to uncover clinically actionable insights, provide real-time
risk prediction, and guide individualized treatment strategies. This
work offers a novel direction for the diagnosis and management of
cardiogenic shock, enhances the precision and personalization of care
for critically ill cardiovascular patients, and ultimately aims to improve
prognosis, reduce mortality, and lower healthcare costs. The proposed
model not only holds significant clinical value but also carries
important societal and economic implications in the era of
intelligent medicine.

In recent years, XGBoost-based machine learning prediction
models have been widely used in the medical field, demonstrating
remarkable predictive performance in cardiovascular disease,
sepsis, and kidney injury management (19-26, 45-47).

This study utilized the XGBoost algorithm to systematically
evaluate the predictive value of PiCCO-derived hemodynamic
parameters for LVEE, NT-proBNP, and MACE in patients with
cardiogenic shock. Our results showed that the XGBoost model
achieved extremely high classification accuracy in multiple prediction
tasks. Especially, The AUC values of the ROC curves in the predictions
of LVEF and NT-proBNP are close to 1, indicating a strong
discriminative capacity even in a complex and unstable hemodynamic
setting (48).

Frontiers in Medicine

Through SHAP value analysis, we further revealed the
contribution degree of each hemodynamic parameter to the
model’s prediction results. CI, SVRI, and CPI had significant
influences on the prediction of LVEF and NT-proBNP, indicating
that these parameters should be given high attention in clinical
practice (49). However, parameters such as PPV, SVV and CVP had
relatively weak influences on the prediction. CI reflects global
cardiac output adjusted for body surface area, directly mirroring
the extent of myocardial contractile impairment. In cardiogenic
shock, reduced CI indicates severe cardiac dysfunction and
inadequate tissue perfusion. After identifying the specific causes of
the reduced cardiac index—considering myocardial contractility,
preload, afterload, and pulmonary edema status—we can apply a
hemodynamic and volume management decision model to guide
inotrope titration, vasoactive therapy, and fluid management (12).
SVRI reflects afterload and vascular tone, both of which are
profoundly influenced by neurohormonal activation and
vasopressor use during cardiogenic shock. CPI is a comprehensive
indicator representing the pump and work capacity of the heart,
and it is a core parameter for measuring cardiac function. From a
pathophysiological perspective, the key predictive features of these
parameters reveal the importance of improving myocardial
contractility, preload, and afterload in the treatment of cardiogenic
shock. Deteriorated CPI is a strong prognosticator of mortality in
cardiogenic shock and helps stratify high-risk patients requiring
more aggressive mechanical circulatory support.
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FIGURE 4
Contribution of each feature in the NT-proBNP prediction model.
(A) The overall impact of each feature; (B) the detailed contribution
of each feature for every individual patient. SHAP values represent
the change in predicted NT-proBNP level relative to the baseline. ClI,
CPI, and SVRI show strong effects when values are high, whereas
CVP, SVV, and PPV have limited influence.

For 30-day MACE prediction, although the AUC (0.796) was
lower than that for LVEF and NT-proBNP, it was still at a good
prediction level, and the key influencing features identified by the
model (such as dPmax, CFI, GEDVI) were closely related to cardiac
function and had high clinical relevance (50). This finding aligns with
the understanding that persistent contractile dysfunction (low dPmax,
reduced CFI) and inappropriate preload (abnormal GEDVI) are
critical determinants of adverse outcomes in CS survivors. dPmax and
CFI are sensitive indicators of cardiac contractility and its response to
inotropic drugs. They can provide real-time insight into myocardial
inotropy and guide optimization of inotropic therapy. GEDVI serves
as a preload marker and help differentiate hypovolemia from fluid
overload, informing tailored volume management strategies. These
parameters likely capture residual myocardial dysfunction and
suboptimal hemodynamic profiles that predispose patients to
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recurrent heart failure or death. This model serves as a powerful
auxiliary tool to quickly and accurately identify high-risk patients. The
key indicators require more attention to cardiogenic shock patients
with low dPmax, low CFI, and high GEDVI. Our results indicate that
the multi-dimensional parameters provided by the PiCCO system can
not only reflect the current hemodynamic state but also predict the
risk of future adverse events to a certain extent.

The results of this study support the integration of machine
learning methods into clinical hemodynamic monitoring, helping
doctors extract valuable information from high-dimensional and
complex parameters and promoting the formulation of individualized
treatment decisions for cardiogenic shock patients. This approach not
only allows for real-time, individualized risk prediction but also has
the potential to guide targeted interventions—such as preload
optimization, afterload modulation, or tailored inotropic support—
before irreversible organ injury occurs.

5 Conclusion

This study constructed and validated the application of an
XGBoost machine learning model based on PiCCO monitoring
parameters for predicting LVEE, NT-proBNP levels, and MACE in
patients with cardiogenic shock. Results showed that the model
demonstrated high discriminative power for both LVEF and
NT-proBNP grading, and also demonstrated good discriminative
power for MACE prediction. SHAP interpretability analysis revealed
that key hemodynamic parameters, including CI, CPI, SVRI, dPmax,
CFI and GEDVI contributed significantly to the predictions,
suggesting their importance in clinical risk assessment.

The results demonstrate that combining machine learning
methods with dynamic monitoring data can effectively exploit
potential nonlinear relationships, thereby improving the accuracy of
early warning and personalized decision-making. This not only helps
optimize diagnostic and treatment strategies for patients with
cardiogenic shock but also provides a methodological basis for the
development of future intelligent intensive care systems.

5.1 Limitations and perspective

Firstly, a single-center retrospective study design with a relatively
modest sample size may impair the generalizability and increase the
risk of overfitting. Secondly, external validation on independent
multicenter datasets is warranted to confirm robustness and
reproducibility. Thirdly, although PiCCO monitoring provides real-
time and accurate hemodynamic parameters, its limitations restrict its
application in all patients with cardiogenic shock, including
invasiveness, high cost, operator dependency, and uncapable in
patients undergoing advanced MCS. Last but not least, the AUC value
of the MACE prediction model (0.796) is lower than LVEF and
NT-proBNP, while within the acceptable range (>0.7). This may
be due to the fact that MACE, as a composite endpoint, is influenced
by multiple non-hemodynamic factors. Previous studies have also
confirmed that machine learning makes limited contributions to
clinical endpoints including mortality, but the models improved risk
stratification for high-risk individuals (26).
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dp
L prediction accuracy and interpretability. Additionally, it is important
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[ parameters) with PiCCO-derived hemodynamic indices. Moreover,
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EVLWI e system could facilitate dynamic risk stratification and personalized
cpl H management of cardiogenic shock patients.
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