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Advances in artificial intelligence
applications for the management
of chronic obstructive
pulmonary disease

Mingyu Wang†, Luhan Li†, Min Feng* and Zhuo Liu*

The First Affiliated Hospital of Dalian Medical University, Dalian, China

Chronic obstructive pulmonary disease (COPD), characterized by high incidence
and mortality rates, is a chronic respiratory disorder that places a substantial
burden on healthcare systems. Artificial Intelligence (AI), with its deep integration
into the medical field, particularly through its core branches—Machine Learning
(ML) and Deep Learning (DL)—has demonstrated significant potential in the
intervention and management of COPD. From early risk prediction based
on multimodal data to the enhancement of precise diagnosis and treatment
through radiomics and clinical decision support systems, and further to the
dynamic assessment of acute exacerbation and comorbidity risks via machine
learning models, AI has, in combination with bioinformatics and multi-omics
analysis, established a novel intelligent management framework that spans
the entire disease continuum. This framework offers innovative, individualized
solutions aimed at alleviating the burden on healthcare systems. This article
reviews the technical applications and clinical value of AI in the diagnosis,
prevention, treatment, and prognosis of COPD, discusses current challenges, and
outlines future development directions to provide insights for clinical practice
and research.
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1 Introduction

Artificial Intelligence, as an emerging technology that simulates, extends, and
enhances human cognitive capabilities, has become deeply integrated into the medical
field across multiple dimensions. Its rapid advancement in the healthcare sector has
driven innovation in medical algorithms, encompassing both disease diagnosis and
treatment as well as the management of patient health data (1–3). The core branches
of AI applied in the medical field include Machine Learning and Deep Learning.
Machine Learning enables autonomous decision-making through the recognition of
data patterns and, in clinical applications, has generated a series of diagnostic,
therapeutic, and predictive models by applying AI algorithms to structured data (4–
6). Deep Learning processes high-dimensional, unstructured data using multi-layer
neural networks. For example, Convolutional Neural Networks (CNNs) excel in image
analysis, Recurrent Neural Networks (RNNs) are effective for time-series data (such
as lung sound signals), and Graph Neural Networks (GNNs) are capable of analyzing
complex biological network relationships (such as airway tree structures) (7). The
primary value of AI in healthcare lies in transforming raw medical data—such as
images, physiological signals, and genetic information—into actionable clinical insights.
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Chronic Obstructive Pulmonary Disease is a progressive
respiratory disorder characterized by persistent airflow limitation.
Its underlying pathophysiological mechanisms are complex,
and the responses to smoking exposure and pharmacological
interventions remain incompletely understood (8). As the third
leading cause of mortality globally, COPD is associated with
risk factors such as tobacco smoking, environmental pollutants,
and genetic predisposition. Disease management primarily centers
on community-based and individualized approaches. The core
challenges in intervention and management include the difficulty
of early diagnosis–due to reliance on specialized equipment and
limited accessibility of pulmonary function testing–the high risk
of acute exacerbations that may increase mortality, the presence
of multiple comorbidities (such as depression and cardiovascular
diseases), and substantial inter-individual variability (9, 10).

The current focus of integrating AI with respiratory medicine
primarily centers on the diagnosis of chronic diseases and
the development of electrochemical sensing monitoring systems
(11). Machine Learning can integrate lung function assessments,
transcriptomics, RNA sequencing, and imaging techniques to
construct frameworks for diagnostic, predictive, and interventional
models. Through standardized AI-based monitoring, it is possible
to enhance lung function evaluation, achieve high-precision
qualitative imaging diagnoses, and utilize Deep Learning neural
networks for accurate lung sound classification to distinguish
between healthy and pathological conditions, thereby enabling
early detection and risk prediction of COPD (6, 12, 13).
Furthermore, AI can identify COPD-related biomarkers at the
molecular and genetic levels, offering more precise insights into
disease progression and potential complications. The application of
AI in respiratory diseases is primarily oriented toward healthcare
delivery and patient self-management, particularly benefiting
elderly individuals with COPD. By generating personalized
management plans based on regular assessments, AI can enhance
self-management effectiveness and improve treatment adherence.
These interventions also contribute to alleviating the burden on
healthcare systems (14, 15).

AI is playing a pivotal role in advancing medical paradigms,
demonstrating considerable potential in the early prediction,
diagnostic-therapeutic optimization, and prognostic evaluation
of COPD. The field encompasses a spectrum of architectures,
ranging from traditional machine learning (ML), including
support vector machines and random forests, to deep neural
networks–such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and graph neural networks
(GNNs). More recent developments include multi-modal fusion,
adversarial generative models, and integrated reinforcement-
learning systems, which substantially improve capabilities
in processing and interpreting multi-source, heterogeneous
medical data. To provide a systematic overview of the AI
models discussed herein and their applications in COPD
management, we have categorized key algorithms and their
respective functions in Figure 1. This figure serves as a conceptual
and technical framework for the subsequent discussion of each
model’s mechanistic role and clinical utility across the stages
of prediction, diagnosis, and prognosis in COPD. Finally, this
review systematically examines the role of AI in predictive and
early-warning systems, innovations in diagnostic identification,

and the distinctive implications for prognostic assessment
in COPD.

2 The role of artificial intelligence in
the early prediction and warning
of COPD

The continuous refinement of various intelligent, data-
driven models within the medical field significantly enhances
the precision of early screening and predictive capabilities
for patients with COPD. The integration of AI improves
both the accuracy and efficiency of diagnostic assessments.
Furthermore, intelligent predictive systems enable the rapid
identification of abnormal indicators, support clinical decision-
making processes, and hold the potential to uncover novel
biomarkers and disease patterns. These systems are distinguished
by their user-friendly design and cost-effectiveness, thereby making
them highly suitable for broad implementation across primary
healthcare settings.

In the prevention of COPD, AI algorithms are primarily
integrated into various digital health platforms, focusing on
processing complex and high-dimensional data generated
by sensors, wearable devices, and other health monitoring
technologies. These raw health data are transformed into
actionable insights, thereby achieving the goal of early high-
precision prediction (16). In resource-limited primary healthcare
settings, specialized recording programs designed with neural
networks, i.e., deep learning methods, can be applied to accurately
identify lung sounds through exhalation and coughing, further
predicting the risk of COPD (13, 17). Research indicates that the
LASSO model, based on machine learning and incorporating
various algorithms and random forest models, may be the optimal
risk model for screening potential COPD cases. This model can also
predict potential susceptibility loci, enabling early identification
of high-risk populations and facilitating personalized health
interventions to delay or prevent disease onset (18). Currently,
a clinical prediction model for COPD has been developed
using high-dimensional weighted gene co-expression network
analysis combined with ML and RNA sequencing data. ML is
particularly sensitive in predicting cardiopulmonary dysfunction
and related diseases in the elderly (15). In regions with relatively
accessible medical resources, ML can be linked with CT imaging
to predict the likelihood of high-risk individuals progressing to
COPD (19).

The rapid advancement of AI has markedly improved the
accuracy of predicting COPD using limited clinical data and
pulmonary function measurements, while also reducing inter-
physician variability in subjective assessments. For example,
by analyzing recordings of the vowel “a” or signals from
accelerometers placed at lung auscultation sites, AI systems
can achieve high sensitivity and specificity in COPD prediction
based on features such as pronunciation, breathing patterns,
and respiratory rate. Particularly in regions with constrained
medical resources, AI-assisted respiratory disease evaluation
holds promise for expanding access to high-quality medical
care (20–22).

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2025.1685254
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1685254

FIGURE 1

A review structure diagram of COPD and artificial intelligence.

Despite the potential of sound-based AI models in the early
detection of COPD, several limitations impede their current
clinical applicability. Firstly, the generalizability of these models
remains limited: most existing studies (23, 24) rely on single-
center, small-sample datasets that underrepresent rare disease
subtypes and specific populations (e.g., pediatric patients), and
are vulnerable to inconsistencies in recording conditions, thereby
hindering broader population-wide deployment. Secondly, the
translation of acoustic signals into physiologically meaningful
parameters poses theoretical challenges—specifically (25), the
nonlinear relationship between smartphone-captured sound
amplitude and expiratory flow rate remains poorly characterized,
and oversimplified processing approaches may introduce
systematic bias. Furthermore, most models (26) are currently
restricted to binary classification (e.g., “healthy” vs. “unhealthy”),
lacking discriminative capacity for differentiating among specific
respiratory diseases such as COPD and asthma, which limits
their utility in clinical decision-making for precise diagnosis.
Additionally, many algorithms remain at a proof-of-concept
stage, with performance benchmarks still at baseline levels
and without rigorous validation against spirometry as the
gold standard.

To overcome these challenges, future efforts should prioritize
the development of large-scale, multi-center, standardized
prospective cohorts that incorporate multidimensional clinical
variables such as smoking history and genetic predisposition
to enhance model robustness. Technologically, further
investigation into advanced neural network architectures—
including convolutional and time-series models—is warranted.
The development of interpretable AI approaches could help
elucidate the mechanistic links between acoustic features
and airway pathophysiology. Ultimately, through combined
software and hardware innovations (e.g., high-fidelity
recording devices) and prospective clinical validation, such
models may transition from experimental tools to practical
applications—particularly in primary care and home-based
health monitoring—enabling early screening and effective
of COPD.

3 Optimization and innovation of
artificial intelligence in the diagnosis
and treatment of chronic obstructive
pulmonary disease

The integration of AI algorithms into digital health
management for COPD enables smartphones and AI-powered
devices to objectively capture respiratory symptoms, while digital
technologies can monitor changes in physiological and behavioral
states (15). In the diagnostic domain, artificial intelligence
has been explored through auscultation, pulmonary function
tests, and imaging for diagnostic and phenotypic analysis. The
multidimensional optimization of AI plays a pivotal role in clinical
diagnosis and treatment, which will transform the entire patient
care pathway from diagnosis to symptom alleviation.

The current application of AI in respiratory systems involves
the utilization of wearable devices, intelligent equipment,
and medical sensors to collect measurable and quantifiable
physiological, behavioral, and environmental parameters of
individuals (27–29). By leveraging digital technologies, physicians
can gather data and AI insights, such as interpreting diagnostic
genes for COPD in immune cell subsets through ML algorithms,
and constructing clinical diagnostic models. Concurrently,
the stability of these diagnostic models in predicting chronic
obstructive pulmonary disease is evaluated using AUC curves
in conjunction with bulk RNA sequencing data (30, 31). The
analysis of respiratory sound recordings (cough and breath) using
ML-based monitoring technologies, combined with convolutional
long short-term memory networks, Mel-frequency cepstral
coefficients, and chromatograms to capture relevant acoustic
features, represents a newly developed edge computing system for
the automatic detection of chronic respiratory diseases based on
audio analysis. This system exhibits high sensitivity and specificity,
facilitating the diagnosis of COPD by primary healthcare workers
solely through respiratory sounds (32–34).

In the field of medical imaging, artificial intelligence has
transcended the limitations of traditional visual assessment
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through the application of high-precision segmentation and
quantification techniques in computed tomography, offering a
promising pathway for the transformation of chronic obstructive
pulmonary disease diagnosis and management. Deep learning
technology has demonstrated substantial potential in the medical
imaging analysis of COPD, particularly in conjunction with CT,
optimizing radiological diagnosis through both qualitative and
quantitative enhancements (35–38). By analyzing key radiological
features in CT, such as airway alterations, emphysema, and
vascular characteristics, DL has improved diagnostic accuracy
and efficiency through CNN-based lobar and airway tree
segmentation and ventilation quantification, thereby providing
more precise treatment strategies for COPD patients (39–43).
Furthermore, the integration of multimodal models combining
CT imaging, spirometry data, and demographic characteristics
has elevated COPD diagnostic accuracy to over 90%, surpassing
single indicators. The application of deep learning convolutional
neural networks for automated staging of COPD patient CT
scans has enabled the prediction of disease progression and
mortality (44–46).

Furthermore, AI, in conjunction with multi-omics databases,
has comprehensively explored COPD-specific biomarkers from
genes to proteins across multiple dimensions. Literature indicates
that machine learning algorithms, integrated with bioinformatics
analysis, can prioritize key biomarkers of COPD, thereby
providing insights into potential therapeutic targets (47). ML also
facilitates the identification and computational analysis of COPD
microarray datasets, offering diagnostic markers and personalized
immunotherapy targets by delineating aberrant immune cell
profiles associated with the disease (48). The introduction of
digital biomarker monitoring has enabled the decentralization
and widespread adoption of COPD diagnostic and therapeutic
technologies, creating significant opportunities for primary and
secondary healthcare. This advancement supports health risk
assessment and the prevention of disease progression in vulnerable
sub-healthy populations through continuous monitoring of
relevant health parameters via wearable devices or smartphone
applications, allowing both patients and clinicians to track COPD
progression in real-time (49).

Although the application of artificial intelligence in COPD
diagnosis and treatment continues to advance, the clinical
applicability of AI models remains limited by several persistent
challenges. First, the performance of image analysis algorithms
is highly dependent on standardized image acquisition (50). For
instance, in expiratory-phase CT imaging, suboptimal patient
cooperation may introduce motion artifacts or reconstruction
inaccuracies, compromising the quantitative assessment of air
trapping. Second, most existing models (51) focus primarily on
quantifying emphysema and air trapping, yet fail to adequately
incorporate key airway structural parameters—such as airway
wall thickness and lumen diameter—thereby constraining their
ability to fully characterize heterogeneous COPD phenotypes.
Furthermore, diagnostic models (52) based on biomarkers or
imaging features are susceptible to clinical heterogeneity, including
variations in population baseline characteristics, sampling
protocols, and experimental conditions, which diminishes model
robustness and consistency across cohorts. In the analysis of
the immune microenvironment, computational approaches like

transcriptomic deconvolution currently lack the resolution to
accurately distinguish cell subtypes, and their outputs still require
validation through wet laboratory experiments.

To address these limitations, future efforts should prioritize
the establishment of multi-center standardized imaging databases
and the development of AI tools capable of automatically
detecting image quality issues and acquisition artifacts.
Concurrently, integrated modeling frameworks should be
developed that incorporate multidimensional data—including
airway morphology, extent of emphysema and air trapping, serum
biomarkers, and clinical features. To mitigate clinical and technical
heterogeneity, strategies such as transfer learning and domain
adaptation should be employed to enhance model generalizability,
complemented by explainable AI techniques to improve the
interpretability and clinical credibility of predictions. At the
mechanistic level, expanding the use of spatial transcriptomics and
single-cell sequencing data to validate computational inferences
is recommended, thereby facilitating the translation and practical
application of AI in precision diagnosis and management of COPD.

4 Artificial intelligence in prognostic
evaluation of chronic obstructive
pulmonary disease

The prognosis of patients with COPD is primarily determined
by the occurrence of acute exacerbations and the presence of
comorbidities. Machine learning and deep learning-based artificial
intelligence (AI) models for long-term prognostic prediction
in COPD patients can aid both clinicians and patients in
understanding potential disease progression and implementing
timely interventions to mitigate adverse outcomes (6, 45, 53, 54).
Moreover, the onset of acute exacerbations of COPD may intensify
the clinical manifestations of existing comorbid conditions.

Existing research has confirmed that the ML-enhanced
CatBoost model, when integrated with features extracted from
electronic stethoscopes (such as maximum/minimum vibration
energy), has demonstrated efficacy in predicting AECOPD events.
These models hold promise for enhancing remote monitoring,
enabling early risk assessment, and providing a basis for
treatment decisions in home-based COPD patients (55). The
improved DDRIME algorithm can estimate the risk of acute
exacerbation requiring mechanical ventilation, exhibiting high
accuracy and facilitating early intervention in AECOPD patients,
thereby effectively reducing morbidity and mortality (56, 57).
The application of ML methods to integrated data analysis
in COPD patients, predicting impending disease exacerbation
models, contributes to improved disease management and supports
proactive interventions to minimize disease progression (58–60).
Certain AI-supported systematic reviews provide evidence for
identifying markers of acute heart failure in COPD patients,
such as interpreting BNP in conjunction with imaging and
clinical signs, incorporating the potential for acute heart failure
exacerbation in COPD patients (47, 61). Digital inhalers can
enhance medication adherence and control, while symptom
tracking, pulmonary function monitoring, and environmental
parameters aid in identifying triggers for disease exacerbation.
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In assessing disease remission, digital technology can capture
the majority of the defined aspects of remission, from disease
exacerbation to the use of remission medications (62).

Current derivative predictive models for comorbidities in
COPD primarily focus on patients with concomitant depression,
airway obstructive mucus plugs, and lung cancer. Research has
demonstrated that the prevalence of depression in patients with
stable chronic obstructive pulmonary disease ranges from 10%
to 42%, potentially exceeding 80% during acute exacerbations,
significantly compromising the quality of life for COPD patients.
Consequently, the derivative predictive algorithm model serves as
a streamlined online platform, enabling healthcare professionals
to utilize ML algorithms for identifying COPD patients at
risk of depression anytime and anywhere, thereby facilitating
early detection and timely intervention (63). The integration of
circulating tumor DNA detection with ML models in COPD
patients enables precise prediction of ctDNA mutation carriers,
allowing for specific identification of COPD patients with
concomitant lung cancer, with the ultimate goal of achieving early
diagnosis and proactive treatment.

The application of artificial intelligence in COPD prognosis
assessment continues to face challenges related to model
construction and clinical translation. Most existing prediction
models (64) are developed using single-center, retrospective
data with limited sample sizes and a low number of clinical
events, significantly compromising their generalizability and
stability. Furthermore, these models (65) often exhibit limited
interpretability, high computational complexity, sensitivity to
hyperparameter settings, and dependence on manual feature
engineering, which collectively restrict their adaptability and
clinical credibility across heterogeneous medical datasets. In
terms of prognostic evaluation, current models predominantly
rely on static or single-modal data, lacking effective integration
of multidimensional temporal information such as dynamic
physiological parameters, real-time treatment adherence, and
environmental factors. This renders them vulnerable to recall bias
and data incompleteness, thereby reducing predictive accuracy.
Moreover, most models have not undergone multi-center external
validation nor have they been deeply embedded within routine
clinical workflows. Their real-world utility and capacity to improve
patient outcomes remain to be substantiated through prospective
interventional studies.

To enhance the practical utility of AI in COPD prognosis, it is
essential to establish large-scale, multi-center prospective cohorts
and to develop interpretable, lightweight algorithmic frameworks
capable of integrating multimodal dynamic data. Additionally,
efforts should focus on strengthening the integration of AI systems
with clinical information systems—such as electronic medical
records and mobile monitoring devices—to build prognostic tools
equipped with temporal awareness and personalized adaptability.
The clinical benefit and broader applicability of such tools must be
evaluated in real-world settings.

5 Discussion

In the progression and prognosis of COPD, AI has developed
a “multi-algorithm, multi-dimensional” COPD management
system by integrating multimodal data from imaging, genomics,

microbiomics, and provincial health databases. Table 1 presents
an overview of the application of AI in COPD management.
This system embeds lightweight algorithms into wearable devices
through edge intelligence, enabling real-time data processing
and immediate intervention, thereby reducing reliance on cloud
computing. Through policy coordination, an AI model registration
and regulatory framework has been established, promoting
the inclusion of “real-world evidence” into clinical guidelines,
such as the FDA’s approval standards for AI functionalities in
digital inhalers.

According to reports, a novel machine learning tool for
“subtype and stage inference” was already in existence by 2020.
This tool can identify COPD patient subtypes with distinct
longitudinal progression patterns through “tissue-to-airway” and
“airway-to-tissue” subtype recognition, providing a new imaging
biomarker for early disease classification and staging (66). In
respiratory diseases, deep learning approaches combined with
neural network analysis can estimate total lung volume from
pixel-level thickness maps of chest radiographs, thereby assessing
disease severity (67, 68). The newly discovered AI-enhanced
model integrates clinical variables (medical history, dyspnea, and
inhalation therapy) with spirometry image data (flow-volume loops
and volume-time curves) to accurately predict the likelihood of
moderate-to-severe and severe exacerbation events within one
year (69). Currently, the AutoCOPD screening model developed
by Academician Zhong Nanshan’s team in China, based on
quantitative CT of the full lung during inspiration, can accurately
identify COPD using only 10 QCT features (70). Internationally,
deep learning models combined with chest radiographs can also
predict survival rates in COPD patients (71). AI can further
provide personalized treatment recommendations for physicians
by analyzing individual patient characteristics, such as medication
dosage and rehabilitation training plans. However, the limited
interpretability of AI diagnostic results poses challenges for
clinicians to fully comprehend the model’s decision-making basis,
affecting trust in clinical applications. Subsequent research should
focus on enhancing explainable AI, developing visualization tools
to demonstrate key decision nodes and data evidence in the
diagnostic process, thereby improving physician acceptance of AI
diagnostic outcomes.

International research has explored the inference of chronic
obstructive pulmonary disease (COPD) through deep learning
of raw spirometry graphs, identifying novel genetic loci and
improving risk models, which facilitates early intervention at
the disease’s incipient stage to delay its progression (71).
Artificial intelligence (AI) can also be integrated with Mendelian
randomization analysis to predict inflammatory responses and
ferroptosis-related immune cell and gene signatures in pre-COPD
patients, thereby advancing the development of targeted traditional
Chinese medicine (TCM) for COPD-related biomarker screening
and efficacy prediction (72). However, current AI data collection
faces limitations, with inconsistent formats and standards across
different regional sources, impacting the comprehensiveness and
accuracy of model training. Future efforts should establish
unified data collection standards, reduce variability in diagnostic
judgments, expand sample sizes to include data from more regions,
ethnicities, and disease stages, and enhance the generalization
capability of predictive models. Additionally, current assessment
models for COPD’s complex comorbidities remain inadequate, with
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TABLE 1 Applications of AI in COPD management.

Clinical
application

Model Data sources Advantages Limitations

Early prediction
and warning

LASSO, Random Forest, Ensemble
Learning Models

Breath sounds, cough sounds,
speech, lung function, CT imaging,
pathological tissue, RNA
sequencing. Multimodal
approaches: image + speech, image
+ text

Early identification of high-risk
populations; non-invasive; high
flexibility and sensitivity

Insufficient data
standardization, limited
sample size, poor
generalizability

Diagnosis and
treatment

CNN (image segmentation),
CNN+LSTM (pulmonary nodule),
GNN (airway structure),
multimodal fusion models

CT/X-ray, lung sounds,
demographic information,
electronic medical records,
biomarkers. Multimodal
approaches: image + text, image +
voice, speech recognition + App

Automated diagnosis, reduced
human error; combining imaging
and clinical features improves
accuracy; supports individualized
medication and disease
management

Deep learning has
interpretability issues,
complex multimodal
construction, poor
generalizability and local
adaptability

Prognosis
evaluation

CatBoost (AECOPD prediction),
DDRIME (mechanical ventilation
demand), deep learning (survival
prediction), ctDNA+ML (lung
cancer comorbidity risk)

Electronic auscultation, lung
function, CT imaging, liquid
biopsy biomarkers. Multimodal
approaches: image + clinical +
genetic

Enables prediction of disease
progression, exacerbation risk, and
mortality; assists personalized
management and resource
allocation

“Black box” problem of
models affecting clinical
trust; lack of long-term
follow-up data;
supervision and privacy
issues

intricate interrelationships among different comorbidities posing
challenges to AI model construction. Subsequent research should
focus on developing comprehensive multi-comorbidity assessment
models, delving into disease interaction mechanisms, targeted drug
efficacy prediction, and incorporating more prognostic factors such
as patients’ living environments and psychological states. This will
enable more comprehensive and precise prognostic evaluations,
providing stronger support for personalized treatment strategies.

In summary, artificial intelligence presents innovative
opportunities for personalized intervention management in
COPD. By analyzing multi-source data including imaging,
pulmonary respiratory factors, and genetic information, AI
has revolutionized the entire COPD management process,
encompassing diagnosis (e.g., CT-based precise quantification),
prevention (e.g., home-based risk screening), treatment (e.g.,
personalized medication), and prognosis (e.g., exacerbation
prediction). Despite challenges in data integration, algorithm
development, and clinical implementation, with technological
iterations and enhanced interdisciplinary collaboration, AI is
poised to facilitate the transformation of COPD management
from “passive treatment” to “active health” and advance precision-
targeted drug development, thereby providing sustainable
solutions for global respiratory health.
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