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UDRNet: unsupervised
deformable registration network
of lung CT images with hybrid
attention mechanism

Xida Ma†, Mingyu Wang†, Limin Zhang, Zhuo Liu* and
Yongshun Zhao*

The First Affiliated Hospital of Dalian Medical University, Dalian, China

With the continuous updates and iterations of diagnostic equipment and
technologies, the diagnosis of lung diseases has shifted from single-time-point
imaging to multi-time-point imaging data, and from single-modal diagnostic
data to multi-modal diagnostic data. However, during this process, factors
such as respiratory motion and organ deformation pose challenges for tracking
the same lung lesion across multiple time points or modalities, as well as for
observing its progression trends. Therefore, to address the challenge of tracking
the same lesion region in lung images across different states, we proposes an
unsupervised deformable registration network of lung CT images with hybrid
attention mechanism. The model directly predicts the deformation vector
field (DVF) through an end-to-end encoder-decoder architecture, solving the
problems of time consumption and dependence on annotated data in traditional
methods. Specifically, we design a Spatial and Channel Hybrid Attention Fusion
Module (scHAF) to fuse shallow spatial and channel features in skip connections,
enhancing the model’s semantic alignment ability and improving the learning
of registration-relevant region features. Meanwhile, we design an unsupervised
training strategy that optimizes the model using image similarity loss, avoiding
the reliance on real deformation field labels. Finally, extensive experiments on the
CT Lung Registration dataset demonstrate that our model outperforms baseline
methods like 3D VoxelMorph in metrics such as Dice (54.92%), NCC (91.49%), and
MSE (89.90%). Further ablation experiments confirm the effectiveness of modules
such as scHAF.
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1 Introduction

Medical image registration is a key technology in medical image analysis, aimed
at aligning anatomical structures between images by finding the optimal spatial
transformation parameters. It is widely applied in clinical diagnosis and treatment, such
as surgical guidance (1–3), disease treatment, and tracking (4, 5). Through medical image
registration, clinicians are able to compare and analyze lesion locations and changes, and
explore the trends and severity of patient conditions, thereby improving the accuracy of
disease diagnosis and the rationality of treatment plan formulation (6). Among the various
applications of medical image registration, lung CT image registration is one of the most
necessary and important use cases (7, 8). This is because the lung is a complex and highly
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elastic organ, and its internal anatomical structures undergo
complex deformations due to factors such as respiration, organ
motion, as well as equipment and patient posture during imaging.
These deformations can vary in magnitude and some tissues
may undergo significant changes. For example, during radiation
therapy for lung cancer, the tumor’s motion range can reach
several centimeters (9). By registering CT images at different
respiratory phases, the tumor’s movement trajectory can be
quantified, ensuring that the radiation therapy covers all potential
tumor locations while avoiding excessive radiation to surrounding
healthy tissues caused by tumor displacement.

However, with the development of big data technology and
advancements in imaging equipment, acquiring lung CT image
data itself is no longer a significant challenge. However, large
amounts of lung CT images often face issues such as uneven data
quality and missing labels. Additionally, two CT images of the same
lung cancer patient may have inconsistencies in imaging equipment
parameters and pose deviations. This necessitates the use of medical
image registration technology to align the patient’s CT images,
allowing clinicians to observe changes in the patient’s lung lesion
area across multiple CT scans and accurately assess the disease
or formulate treatment plans. Existing medical image registration
research still has certain limitations in addressing these issues.
Therefore, to address these challenges, we propose a deformable
lung CT image registration model based on unsupervised learning.
By establishing an end-to-end registration architecture, the model
performs lung CT image registration while designing a hybrid
attention mechanism to achieve semantic fusion and alignment
of shallow and deep features. Moreover, an unsupervised learning
strategy is used to train the model on a large number of unlabeled
lung CT images.

Our contributions in this paper are three-fold:

1. We propose a deformable lung CT image registration model
(UDRNet )based on unsupervised learning. This model
adopts an encoder-decoder structure and directly predicts the
deformation vector field (DVF) between image pairs through
an end-to-end learning approach, thereby achieving efficient
unsupervised registration. The model is particularly well-suited
for handling complex deformation issues in lung CT images,
such as tissue changes caused by respiratory motion and
image discrepancies resulting from inconsistencies in imaging
equipment parameters.

2. We designed the Spatial and Channel Hybrid Attention
Fusion Module (scHAF), which combines shallow spatial and
channel features at skip connections to encourage better
semantic fusion and alignment, allowing the model to learn the
underlying relationships between the images to be registered
and the deformation field. This hybrid attention mechanism
not only retains the information from shallow features that
are more relevant to registration but also enhances the model
ability to capture features by weighting both spatial and
channel dimensions.

3. We conducted extensive experiments on the CT Lung
Registration dataset to validate the effectiveness of the proposed
model and the scHAF module. The experimental results show
that our model outperforms or is comparable to several
other advanced registration methods across various registration

metrics. Specifically, after incorporating the scHAF module,
the model showed improvements in all evaluation metrics.
These results demonstrate the significant impact of the scHAF
module in enhancing registration accuracy and robustness,
especially when dealing with complex lung CT images, as it can
more accurately capture the changes in lung structures, thereby
improving both registration accuracy and robustness.

2 Related works

2.1 Conventional medical image
registration methods

Traditional registration methods are based on local similarity
between images, manually computing the deformation field
from the image to be registered to the registered image.
This approach is highly time-consuming and labor-intensive
(10). Researchers are exploring faster, more robust, and more
general methods. Deep learning approaches use deep neural
networks with strong inclusivity and fitting capabilities (11,
12). Deep learning-based lung image registration methods can
leverage trained models to directly predict the deformation
vector field between image pairs through a single forward pass,
thus completing the registration in a short time. Additionally,
deep learning-based methods can overcome the issue of lacking
corresponding features in multimodal registration tasks, as they
can learn task-specific features without requiring strict prior
definitions. While many deep learning-based methods have
shown registration accuracy comparable to traditional methods
in certain tasks, there are still several challenges in clinical
applications. These include the high cost and errors in data
labeling, computational efficiency in model training and inference,
improving model generalization ability, the interpretability of
model decision-making processes, the complexity of multimodal
image registration, the lack of training datasets, and the issue of
derivative smoothing in the optimization process. These problems
limit the effectiveness and reliability of deep learning-based
registration technologies in clinical applications, requiring further
research to address them.

One approach is to borrow from the research paradigm
of optical flow methods, treating the non-rigid registration
problem as a diffusion process by continuously estimating the
driving deformation to achieve the alignment force vector (13),
known as the Demons algorithm. This method has undergone
numerous deformable and improved variations (14–16) and is
used in the well-known open-source project ITK (The Insight
Segmentation and Registration Toolkit) (17). A method sharing the
differential diffeomorphic mapping hypothesis with the Demons
algorithm is Large Deformation Diffeomorphic Metric Mapping
(LDDMM) (18), which focuses on differential metric mapping
under large deformations and formally proves the existence of
a minimization function under smoothness assumptions, making
an important step forward in large deformation registration.
However, for organs such as the lungs, which experience significant
and frequent motion, methods under the large deformation
assumption, although effective in fitting anatomical structures
affected by abrupt changes such as respiratory motion, still
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cannot handle deformations like sliding motion (19). To address
this, some methods use segmentation of the lung mask or
chest structures during registration. This allows for separately
smoothing the tangential and normal components near the lung
surface, and then combining these solutions to obtain a composite
velocity field to help restore strong local discontinuities along the
lung boundary.

2.2 Deep learning-based medical image
registration

Existing deep learning-based medical image registration
methods are mainly divided into supervised learning-based
methods, unsupervised learning-based methods, and generative
adversarial network (GAN)-based methods (19). Supervised
learning-based registration methods require the use of real
deformation fields or deformation fields simulated for training
supervision signals. These include fully supervised learning
methods that require deformation field labels, as well as
weakly supervised learning methods that rely on other related
information labels. These methods typically use architectures
such as CNNs to directly learn the displacement vector field
(DVF) from a pair of input images. They have achieved state-of-
the-art performance in the registration of medical images from
various organs, including the lungs (20), brain (21), abdomen
(22), and prostate (23). Unsupervised learning-based registration
methods do not rely on any form of ground truth data.
Instead, they train the network by minimizing the difference
between the fixed image and the transformed moving image,
typically using image feature matching and similarity metrics as
loss functions (24). One of the earliest unsupervised learning-
based registration methods, VoxelMorph (25), parametrizes the
mapping from input image pairs to deformation fields using
CNNs. Subsequent works, inspired by this pioneering work,
such as TransMorph (26), experimented with several hybrid
architectures combining Transformers and CNNs. These studies
confirmed the effectiveness of Transformer architectures in
the field of medical image registration. Generative adversarial
network (GAN)-based registration methods use a generator
network to predict the deformation field while employing a
discriminator network to evaluate the similarity between the
deformed image and the fixed image. Adversarial training is
used to enhance the quality of the deformation field (27, 28).
Although supervised registration methods, which have accurate
labels, achieve the best training results, their limitations are
significant, whether they use deformation fields obtained from
traditional methods or artificially simulated synthetic deformation
fields for supervised training. To reduce the dependency on
real deformation field labels, weakly supervised registration
methods that use indirect reference labels have been widely
adopted. For example, Hering et al. (9) employed multiple
constraints to penalize unrealistic deformations, using a multi-
scale framework to progressively refine the registration and
calculate deformation fields at different scales to handle large
deformations. Additionally, they applied volume change control
to penalize image folding more strictly than regularization

methods. It is worth noting that traditional methods are also
applied in many deep learning approaches, especially in the
regularization terms of loss functions designed based on different
assumptions (29, 30). However, current research in medical image
registration, particularly in lung CT image registration, mainly
focuses on addressing deformation issues arising from multiple
images, such as lung tissue movement caused by respiration
and organ sliding. These studies aim to improve registration
accuracy, particularly when dealing with deformations caused
by respiratory motion, as well as 2D–3D reconstruction or
inter-modal reconstruction.

2.3 Unsupervised learning

Unsupervised learning is a training strategy in machine
learning, where the core idea is to directly mine the inherent
features, potential relationships, or patterns from the data
without the need for manually annotated labels. However, precise
medical image registration typically requires domain experts
to manually annotate corresponding points or structures for
registration. This annotation process is often time-consuming,
labor-intensive, and costly. Moreover, annotations may vary
due to subjective differences in expert judgment, leading to
annotation bias. Therefore, compared to supervised learning,
unsupervised learning can take advantage of the distribution
characteristics of large amounts of unlabeled data, saving the
need for high-quality data annotation and reducing associated
costs. It has been widely applied in current medical image
registration research. One classic medical registration model,
VoxelMorph (25), is an unsupervised registration model based
on the UNet architecture. The input to the model is the reference
image (also known as the fixed image, If ) and the moving image
(also known as the moving image, Im). The model’s output is
the registered image (also known as the warped image, Iw).
The registration process calculates a deformation vector field
(DVF) based on feature matching between If and Im and then
transforms Im using the DVF to obtain Iw. Currently, most
unsupervised models follow the same workflow as VoxelMorph,
where the features of the two images are first learned, spatial
feature matching positions are sought, and similarity losses
are used to optimize the model. The DVF is calculated to
map from the space of If to that of Im, and the final warped
image is obtained through the deformation calculation. The
advantage of unsupervised learning in medical image registration
lies in its ability to leverage the distribution characteristics of
large amounts of unlabeled data, thus avoiding the high costs
and subjective biases associated with manual annotation. For
instance, by learning from vast amounts of unlabeled medical
image data, the model can automatically discover anatomical
structures and feature patterns in the images, enabling automated
registration. Additionally, unsupervised learning methods can
improve the model generalization ability through techniques
like data augmentation, allowing it to better adapt to images
from different patients and imaging conditions. Through this
process, unsupervised learning in medical image registration
enables efficient and automated registration, providing strong
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support for disease diagnosis, treatment monitoring, and
prognostic evaluation.

3 Methods

3.1 The overall structure of the
VoxelMorph model

VoxelMorph is a deep learning-based framework for medical
image registration, the core idea of which is to utilize deep neural
networks to directly predict the deformation vector field (DVF)
between a pair of images. The model employs an encoder-decoder
architecture, enabling efficient processing of image registration
tasks. Comprising an encoder and a decoder, VoxelMorph
leverages the DVF generated by the decoder to warp the moving
image, thereby aligning it spatially with the reference image within
a unified coordinate system.

The encoder component progressively extracts high-level
features from the input image through a series of convolutional
and pooling layers. Each convolutional block generally comprises
two convolutional layers, each followed by a nonlinear activation
function–commonly the Rectified Linear Unit. The convolution
operation applies a set of learnable filters to the input, enabling the
network to capture spatial hierarchies and local patterns, such as
edges and textures. Subsequently, pooling operations are employed
to downsample the spatial dimensions of the resulting feature
maps, thereby reducing computational complexity, enhancing
translational invariance, and facilitating the extraction of more
abstract, higher-level features. This hierarchical processing allows
the network to build increasingly complex representations of the
input data. The specific formula is as follows:

E(x) = MaxPool(ReLU(φ3×3(ReLU(φ3×3(x))))) (1)

Here, φ3×3 represents the convolution operation using a 3 × 3
convolutional kernel, ReLU is the nonlinear activation function,
and MaxPool refers to the max pooling operation. Each layer of
the encoder progressively extracts local features of the image and
captures higher-level feature abstractions in the deeper layers of
the network.

The decoder part gradually restores the spatial resolution of
the feature maps through upsampling and convolution operations.
Each layer of the upsampling operation typically uses transposed
convolution (also known as deconvolution) to increase the spatial
dimensions of the feature maps. Each layer of the decoder
receives features from the corresponding encoder layer via skip
connections, preserving low-level feature information. The specific
formula is as follows:

D(x) = ConvTranspose3×3(ReLU(φ3×3(ReLU(φ3×3(x))))) (2)

where, = ConvTranspose3×3 represents the upsampling operation
using a 3 × 3 transposed convolution kernel. The output of the
decoder is a deformation vector field (DVF), which describes how
to map each voxel in the moving image to its corresponding
position in the fixed image.

The ultimate goal of VoxelMorph is to deform the moving
image into the space of the fixed image using the predicted

deformation field. Specifically, for a given moving image Im and
fixed image If , the moving image Im is deformed into the warped
image Iw through the deformation field (DVF), such that Iw aligns
as closely as possible with If . The application process for the
deformation field is as follows:

Iw(i) = Im(i + DVF(i)) (3)

where i represents the position in the image, and DVF(i) represents
the deformation vector at position i. Linear interpolation is
applied to handle non-integer coordinate values, ensuring that the
deformed image Iw aligns with the fixed image If .

VoxelMorph adopts an unsupervised learning strategy, training
the model by minimizing the similarity loss between the fixed image
and the deformed image. Through this unsupervised learning
approach, VoxelMorph can learn the optimal deformation field
based on the similarity between the images without the need for real
deformation field labels, thus achieving efficient image registration.

3.2 Spatial and channel hybrid attention
fusion module

To encourage the model to better achieve semantic fusion
alignment and learn the potential relationships between the target
image and the deformation field, we designed the Spatial and
Channel Hybrid Attention Fusion (scHAF) Module. This module
employs a hybrid strategy along the skip connection path to capture
spatial feature attention and channel feature attention from shallow
features. It retains the more registration-relevant information from
the shallow features, enabling the semantic fusion alignment of
deep and shallow features, and facilitating the optimization of the
deformation field by the model.

As Figure 1 shows, we first perform a 1 × 1 × 1 convolution
on the shallow feature F ∈ R

H×W×C to obtain a feature map of
size H ×W. Through a broadcasting operation, the channel feature
attention AttChannel ∈ R

H×W×C is applied, and then the shallow
features F are multiplied pointwise with the channel-weighted
attention to get the channel-weighted feature FChannel ∈ R

H×W×C.
At the same time, we perform global pooling and average

pooling on the shallow features, resulting in vectors MP ∈ R
1×1×C

and AP ∈ R
1×1×C, respectively. These two vectors represent the

most prominent and average features of the shallow features F
along each channel dimension. We concatenate the vectors MP
and AP to obtain the vector MPAP ∈ R

1×1×2C. Then, we apply
two layers of MLP to compress and restore the features of MPAP.
Finally, through a broadcasting operation, we obtain the spatial
attention AttSpace ∈ R

H×W×C, which is multiplied pointwise with
F to get the spatially weighted feature FSpace ∈ R

H×W×C.
FChannel ∈ R

H×W×C and FSpace ∈ R
H×W×C strengthen the

importance of shallow features in different spatial locations and
channels, respectively. To fuse them, we designed a hybrid fusion
strategy. As shown in Equation 4, for each position in FChannel
and FSpace, we apply three operations: pointwise multiplication,
pointwise addition, and pointwise maximum. The results of these
three operations are concatenated along the channel dimension.
Finally, a 3 × 3 convolution operation is applied to reshape the
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FIGURE 1

The architecture of UDRNet. The model takes a moving image, Im, as input. It performs feature extraction through successive convolutional and
downsampling operations, and subsequently accomplishes feature recovery via successive upsampling and transposed convolutional operations. At
the skip connection points, scHAF (spatially-adaptive feature filtering and fusion module) is employed for feature filtering and fusion. Ultimately, the
model outputs a deformation field that represents the mapping from Im to the fixed image, If. The moving image Im is then warped using this
deformation field to produce the registered image.

dimensions, obtaining the mixed feature.

FHybrid = Conv3×3(Concate([
∏

(FChannel, FSpace),
∑

(FChannel, FSpace), Max(FChannel, FSpace)])) (4)

4 Experiment and results

4.1 Dataset

We conducted performance validation of our model on the CT
Lung Registration dataset (31). The CT Lung Registration dataset
was part of a task in the Learn2Reg 2022 challenge, and it contains
30 3D CT lung images collected from the Department of Radiology
at the Radboud University Medical Center. Out of these, 20 CT
images were assigned to the training set, and 10 CT images were
assigned to the test set. The training set also includes the lung region
segmentation mask for each CT image and automatically detected
anatomical keypoints for guiding deformation field learning. The
test set contains manually labeled keypoints by clinical experts,
which serve as the benchmark for evaluating registration accuracy.
The main purpose of this dataset is to study large deformations
of the lungs during the breathing process. As the lungs undergo
significant non-rigid deformation during the breathing cycle, some
lung areas may not be fully visible in certain expiration phase CT
scans (e.g., due to scanning range or patient position), making
precise registration necessary.

We performed preprocessing operations such as windowing,
normalization, and image cropping on the dataset to minimize
noise interference and reduce the impact of differences in scanning
devices or parameters. Below is a detailed introduction to the
preprocessing operations.

1. Windowing: By adjusting the Window Width (WW) and
Window Level (WL) of the lung CT images, the grayscale
range of the lungs and related tissues is emphasized, allowing
the model to more clearly observe target structures such as
lung parenchyma, blood vessels, and nodules. The windowing
operation is shown in Equation 1, where IHU represents the
CT value of each pixel in the original CT image. After the
windowing operation, the pixel values corresponding to all
pixels in the CT image are mapped to the range [0, 255].

Iwindowed =

⎧⎪⎪⎨
⎪⎪⎩

0, if IHU ≤ WL − WW
2

255, if IHU ≥ WL + WW
2

255 × IHU−(WL− WW
2 )

WW , otherwise

2. Normalization: to enhance the contrast of the lungs and related
tissues, highlighting the differences between different tissues,
and to accelerate the model learning process, we performed a
min-max normalization operation on all CT images, mapping
the pixel values of each CT image to the range [0, 1]. The process
of min-max normalization is shown in Equation 2, where Inorm
represents the normalized pixel value of each pixel, Iwindowed
represents the pixel value after windowing, and max() and
min() represent the functions for calculating the maximum and
minimum values, respectively.

Inorm = Iwindowed − min(Iwindowed)
max(Iwindowed) − min(Iwindowed)

3. Image Cropping: To reduce the impact of regions outside
the region of interest for registration and to lower the
computational burden, thus accelerating the optimization
process, we performed the final step of data preprocessing by
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cropping the original data from 192× 192× 208 to 192× 192×
192. The cropped areas correspond to the initial and final CT
images in the patient’s CT sequence, which are not relevant to
the registration task.

4.2 Implementation details

We implement our network by Python 3.10.16, Pytorch 2.2.2
and train our network 150 epochs on NVIDIA GeForce RTX 4090
24G. Adam optimizer with a learning rate set to 1e − 5 is selected
to optimize our network. And if the test loss does not descend
within five epochs, we will terminate the training in advance to
avoid overfitting. Meanwhile, the Batch Size is set to 16, and the
random number seed is 666.

4.3 Evaluation metrics

We choose to use three metrics: Dice Similarity Coefficient
(Dice), Mean Squared Error (MSE), and Normalized Cross-
Correlation (NCC) to evaluate the model performance in image
registration. Below is a detailed introduction to the calculation and
meaning of these three evaluation metrics.

Dice(A, B) = 2|A ∩ B|
|A| + |B| (5)

The calculation of the Dice coefficient is shown in Equation 5,
where A and B represent the masks of the regions to be registered
before and after registration, respectively. This metric measures
the overlap between the segmented regions of the two images,
with a value range of [0, 1]. The larger the value, the better the
registration performance.

MSE(If , Im) = 1
N

N∑
i=1

(
If (i) − Im(i)

)2 (6)

The calculation of the MSE (Mean Squared Error) is shown in
Equation 6, where If is the fixed image, Im is the moving image,
N is the total number of pixels, and IF(i) and IB(i) represent the
grayscale values of the corresponding pixel in the two images.
This metric calculates the mean squared difference in pixel values
between the two images, with a smaller value indicating better
registration accuracy.

NCC(If , Im) =
∑

i
(
If (i) − μf

) (
Im(i) − μm

)
√∑

i
(
If (i) − μf

)2 ∑
i
(
Im(i) − μm

)2
(7)

The calculation of the NCC (Normalized Cross-Correlation) is
shown in Equation 7, where If is the fixed image, Im is the moving
image, N is the total number of pixels, If (i) and Im(i) represent
the grayscale values of the corresponding pixel in the two images,
and μf and μm are the mean grayscale values of the fixed and
moving images, respectively. This metric is used to assess the linear
correlation of the grayscale patterns between the two images, with
a range of [−1, 1]. A higher value indicates better image alignment,
and NCC = 1 means the two images are perfectly aligned.

TABLE 1 Comparison of our models with other registration models.

Method 1-MSE (%) NCC (%) Dice (%)

3D AttUNet (32) 88.91 89.72 54.13

3D ResUNet (33) 89.60 91.08 54.55

3D VoxelMorph (25) 89.72 91.36 54.67

3D TransUNet (34) 89.89 91.45 54.90

Ours 89.90 91.49 54.92

TABLE 2 Comparison of our models with other registration models (TOP
5).

Method 1-MSE (%)
(TOP 5)

NCC (%)
(TOP 5)

Dice (%)
(TOP 5)

3D AttUNet (32) 90.86 90.54 58.34

3D ResUNet (33) 91.56 91.84 58.91

3D VoxelMorph
(25)

91.65 92.04 58.99

3D TransUNet (34) 91.79 92.13 59.20

Ours 91.82 92.27 59.27

4.4 Comparison with other methods

In the comparative experiments, we conducted a
comprehensive performance evaluation of the proposed
unsupervised learning-based deformable lung CT image
registration model and compared it with several advanced
registration methods. Table 1 shows the average performance
comparison on all validation set data, while Table 2 presents the
average performance comparison on the top five best-performing
data. The best results are marked in bold. The experimental results
indicate that our model outperforms or is comparable to other
advanced registration methods, such as 3D AttUNet (32), 3D
ResUNet (33), 3D VoxelMorph (25), and 3D TransUNet (34).
Specifically, our model achieves a Dice score of 54.92%, a 1-MSE
score of 89.90%, and an NCC score of 91.49%, demonstrating
significant advantages in registration accuracy and robustness.

The images before and after registration are shown in Figure 2.
The displayed registration results clearly present the corresponding
slices of the fixed image, moving image, and warped image for
the same patient. These images visually illustrate the process
in which the moving image is adjusted to align with the fixed
image in the same spatial coordinate system through spatial
transformation. From the figure, it can be observed that the
model effectively adjusts the deformation in the moving image
through precise spatial transformations, resulting in a high degree
of spatial alignment between the two images. This alignment is
not only well-presented in terms of the macroscopic structure
but also shows high consistency in fine details, indicating that
the registration model exhibits excellent accuracy and robustness.
Such precise registration is of significant importance for subsequent
medical image analysis and clinical applications, providing reliable
imaging support for disease diagnosis, treatment monitoring, and
prognosis assessment.
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FIGURE 2

Display of images before and after registration. Comparison of fixed, moving, and warped images across multiple CT slices.

TABLE 3 Comparison of our models with scHAF and without scHAF.

Method 1-MSE (%) NCC (%) Dice (%)

3D VoxelMorph (25) 89.72 91.36 54.67

Ours (3D VoxelMorph +
scHAF)

89.90 91.49 54.92

4.5 Ablation study

In the ablation study, we compared the performance of the
VoxelMorph model before and after adding the scHAF module,
with the experimental results shown in Table 3. The results
demonstrate that the model performance improved across all
metrics after incorporating the scHAF module. Specifically, 1-MSE
increased from 89.72 to 89.90%, NCC improved from 91.36 to
91.49%, and Dice rose from 54.67 to 54.92%. These results indicate
that the introduction of the scHAF module significantly enhanced
the registration accuracy and robustness of the VoxelMorph model.

The scHAF module, by mixing and fusing shallow spatial and
channel features at the skip connections, better achieves semantic
fusion alignment and learns the potential correlation between the
image to be registered and the deformation field. Specifically,
the scHAF module first extracts channel feature attention and
spatial feature attention from shallow features and then fuses these
two features through a hybrid strategy. This fusion strategy not
only retains the information most relevant to the registration
from the shallow features but also enhances the model ability
to capture features through the weighted consideration of both
channel and spatial dimensions. Experimental results show that
the introduction of the scHAF module significantly improves
the model registration performance, especially when dealing with
complex lung CT images. It enables the model to more accurately

capture structural changes in the lungs, thus enhancing both the
accuracy and robustness of the registration process.

5 Conclusion

In current medical image registration research, despite
significant progress made by deep learning methods in
certain tasks, there are still several challenges. First, traditional
unsupervised registration methods often overlook the dynamic
changes in pathological areas within images, leading to registration
results that fail to accurately reflect real biological changes.
Secondly, existing registration methods face difficulties in
achieving high-precision registration when handling lung CT
images due to the complexity and elasticity of lung tissue, as well
as issues like inconsistent imaging device parameters and pose
deviations. These challenges limit the effectiveness and reliability
of registration techniques in clinical applications.

To address these issues, we propose an unsupervised learning-
based deformable lung CT image registration model and design
the Spatial and Channel Hybrid Attention Fusion (scHAF) module.
The scHAF module mixes and fuses shallow spatial and channel
features at the skip connection, enabling better semantic alignment
and learning the potential correlations between the image to
be registered and the deformation field. Specifically, the scHAF
module first extracts channel feature attention and spatial feature
attention from the shallow features, then fuses these two features
using a hybrid strategy. This approach retains more relevant
information in the shallow features and enhances the model ability
to capture key characteristics. Our baseline model adopts the
VoxelMorph, which is based on an encoder-decoder structure.
The encoder gradually extracts high-level features from the image
using multiple layers of convolution and pooling operations, while
the decoder restores the spatial resolution of the feature maps
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using upsampling and convolution operations. By designing and
incorporating the scHAF module, the model can more effectively
handle complex deformations in lung CT images, improving both
registration accuracy and robustness.

The experimental results show that our model outperforms
or is comparable to several advanced registration methods across
multiple metrics. These results indicate that the introduction
of the scHAF module improves the registration performance
of the model, particularly when handling complex lung CT
images, where it can more accurately capture the changes
in lung structure, thereby enhancing both the accuracy
and robustness of the registration process. Therefore, our
model and the scHAF module provide an effective solution
for unsupervised lung CT image registration, with broad
application potential.
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