
Frontiers in Medicine 01 frontiersin.org

Diagnosing autism spectrum 
disorder based on eye tracking 
technology using deep learning 
models
Mosleh Hmoud Al-Adhaileh 1,2*, Saleh N. M. Alsubari 3, 
Abdullah H. Al-Nefaie 1,4, Sultan Ahmad 5,6* and 
Asma Abdulmana Alhamadi 7

1 King Salman Center for Disability Research, Riyadh, Saudi Arabia, 2 Deanship of E-Learning and 
Distance Education and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia, 
3 Department of Computer Science, College of Technology and Business, Riyadh Elem University, 
Riyadh, Saudi Arabia, 4 Department of Quantitative Methods, School of Business, King Faisal University, 
Al-Ahsa, Saudi Arabia, 5 Department of Computer Science, College of Computer Engineering and 
Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia, 6 School of Computer Science 
and Engineering, Lovely Professional University, Phagwara, India, 7 Department of Humanities, College 
of Science and Theoretical Studies, Saudi Electronic University, Riyadh, Saudi Arabia

Introduction: Children with Autism Spectrum Disorder (ASD) often find it 
difficult to maintain eye contact, which is vital for social communication. Eye 
tracking (ET) technology helps determine how long children with ASD focus 
on someone, how frequently they do so, and in which direction their gaze 
moves. ET provides insights into social attention by enabling precise, real-time 
tracking of gaze patterns as individuals process social information visually. It 
is a dependable method for identifying and developing social attentional 
biomarkers, particularly in challenging conditions like ASD.
Objective: This study aims to implement deep learning (DL) algorithms using 
eye-tracking data from social attention tasks involving children with ASD.
Methods: The approach was tested using standard datasets collected 
from individuals with and without ASD through eye-tracking technology. 
Convolutional neural networks (CNNs) and long short-term memory (LSTM) 
models were used to analyze data from children with ASD. Data preprocessing 
techniques addressed missing data and converted categorical features into 
numerical values. Mutual information-based feature selection was employed 
to reduce the feature set by identifying the most relevant features, thereby 
improving system performance. These features were then analyzed using LSTM 
and CNN-LSTM models to evaluate their potential for diagnosing ASD.
Results: The experimental results showed that the highest accuracy achieved 
was 99.78% with the CNN-LSTM model. Furthermore, the findings indicated that 
the proposed method outperformed previous studies.
Conclusion: The system successfully diagnosed ASD using the ET dataset. 
This approach shows promise for clinical application, assisting healthcare 
professionals in diagnosing ASD more accurately through advanced artificial 
intelligence technology.
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1 Introduction

Autism is a condition characterized by various signs that affect an 
individual’s communication, behavior, and social interaction. Autism 
has recently increased worldwide. The numerous symptoms displayed 
by autistic children make diagnosis more challenging (1–3). Autism 
is typically diagnosed by a team of professionals who observe the 
child’s behavior, a process that takes time and can be prone to errors, 
since the behavior of an autistic child may resemble that of children 
with other psychiatric conditions. Therefore, technical innovations are 
needed to develop alternative diagnostic methods (4).

Computer-aided (CA) systems are becoming increasingly 
important in diagnosing ASD (5). This category includes 
electroencephalography (EEG) (6), magnetic resonance imaging 
(MRI) (7), and ET (8). Genetic testing, eye-tracking (ET), facial 
features (9), emotion analysis (10), facial landmark identification 
(11), robot-assisted interaction, and eye contact training (12), as 
well as brain imaging, are all non-invasive methods to record, 
track, and measure eye movements or the specific point where a 
person’s eyes focus on a picture (3). These techniques help identify 
ASD in younger children, especially those who do not display 
obvious signs or symptoms, allowing for timely support and 
therapy. Understanding and interpreting ET scanpaths requires 
significant expertise in the field. Kids with ASD typically have 
difficulty focusing, which shows as unstable eye movements and 
reduced attention to important stimuli. Measuring eye movement 
fixation with scan path devices can be  challenging because 
participants’ focal points may vary greatly depending on their 
interests and the experimental context. Traditional methods of 
diagnosing ASD are helpful, but they often rely on clinical 
interviews and behavioral observations, which some view as time-
consuming, costly, and subjective. These approaches can also delay 
early diagnosis, particularly in younger children who may not yet 
show clear behavioral signs. When working with complex data 
streams, artificial intelligence (AI) techniques can significantly 
improve pattern recognition and prediction accuracy (13). 
Automation has the potential to simplify the identification of 
individuals with ASD by making the process more objective, faster, 
and precise.

The new AI model utilizes DL and machine learning (ML) 
techniques to improve existing methods by integrating objective 
biomarkers with clinical expertise (14, 15). These tools can replace 
traditional diagnostic approaches but are more effectively used as 
screening tools in support systems for healthcare providers. The aim 
is to increase accuracy and speed, leading to earlier and more reliable 
diagnoses. This approach seeks to accelerate the diagnosis process, 
reduce the time needed for diagnosis, and lessen the workload for 
healthcare workers (16–18).

1.1 Research question

	•	 What is the appropriate feature selection method used to select 
the essential features?

	•	 What is the approach of the DL model for diagnosing ASD bae 
on eye-tracking.

	•	 How can DL assist in diagnosing ASD at early stages using 
eye-tracking technology?

	•	 Developing an eye-tracking system based on the CNN-LSTM 
model for diagnosing ASD.

	•	 Identifying the appropriate feature selection strategy to identify 
the significant features related to the ASD component that can 
assist the deep learning model in achieving high accuracy.

	•	 The proposed approach achieves accuracy superior to prior 
studies by employing cross-validation methods.

This study aims to present an improved version of the autism 
recognition model by leveraging the benefits of deep learning through 
enhanced training and testing processes, including stratified cross-
validation and feature selection methods. The main contribution is to 
refine the existing process that uses the same dataset for diagnosing 
ASD (19, 20). We are tracking the contributions of this research. The 
collection includes eye-tracking data gathered from 29 children 
diagnosed with ASD and 30 typically developing (TD) children. 
During data collection, the children remained engaged with both still 
images (such as balloons and cartoon characters) and moving videos. 
This study achieved an impressive accuracy level of 99.78% with the 
CNN-LSTM, marking a significant step forward in innovation.

2 Background

This section summarizes the studies used to analyze and diagnose 
ASD. Several studies and methods have been conducted for diagnosing 
ASD. Such methods include brain imaging, kinematic analysis, eye 
tracking, and more. Many research studies have employed DL and ML 
algorithms to confirm a diagnosis or assist in initial detection of ASD.

Zhao et al. (21) examined the effectiveness of eye-tracking data 
from in-person talks in reliably recognizing individuals with ASD. The 
researchers used four ML models: support vector machine (SVM), 
linear discriminant analysis, decision tree, and random forest. When 
variables related to ocular fixation and session time were included, the 
SVM model achieved a maximum testing accuracy of 92.31%. This 
outperformed methods that only used visual fixation characteristics 
or session length. Fadhel and Hussein (22) applied an ML approach to 
identify factors that hinder children’s growth and development. The 
system achieved 89% accuracy, detecting subtle differences that are 
difficult for the human eye to perceive. This study demonstrates that 
ML surpasses traditional methods in diagnosing autism because it is 
faster, more accurate, and more effective. Cilia et al. (23) note that 
early diagnosis of ASD is challenging due to cognitive testing, clinical 
exams, and symptom variability. This article proposes incorporating 
eye tracking into the ASD screening process. The study involved 59 
school-aged volunteers who viewed age-appropriate images and 
videos related to social cognition. Eye-tracking scan paths were 
converted into visual representations of images, and a convolutional 
neural network was trained to categorize these images. The outcomes 
suggest that visualizations can streamline the diagnostic process and 
attain high accuracy. The approach may also apply to various 
conditions, especially neurodevelopmental disorders.

Kanhirakadavath et al. (24) conducted research using machine 
learning to assess the effectiveness of eye-tracking data in early autism 
screening for children. The deep neural network model outperformed 
existing models when tested on a benchmark dataset of 547 scan paths. 
This suggests that it could be utilized for quick and reliable autism 
screening, thereby enhancing physicians’ efficiency. Praveena et al. (25) 
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employed Convolutional Neural Networks (CNN) to classify children 
with ASD and those with distinct developmental progress by analyzing 
fixation maps of the observer’s attention on the image. The model 
achieved 75.23% accuracy during testing, suggesting it could aid in 
analyzing visual input. Carette et al. (20) introduced ML methods to 
facilitate early detection of ASD in young children. This technology uses 
an ML approach to recognize eye-tracking patterns associated with 
ASD, converting scan paths into visual representations. The 
experimental results show that the predictions are quite accurate and 
simple to perform, with basic neural network models classifying data 
very effectively (AUC > 0.9). Elbattah et al. (26) developed an innovative 
method for diagnosing autism using AI tools. The research utilizes the 
Eye Gaze Fixes Map dataset and the ET Scanpath dataset to diagnose 
ASD. The hybrid model achieved higher accuracy rates of 96.1%.

Kang et al. (27) conducted research using ML to analyze EEG and 
eye-tracking data from toddlers, concentrating on their responses to 
face images of dissimilar competitors. Minimal redundancy was used 
for feature selection. The system showed that children with ASD paid 
more attention to hair and clothing than to facial features when 
observing face expressions. Current years have seen noteworthy 
advancements in research aimed at classifying and detecting ASD 
based on different ML techniques that utilize variables such as facial 
features and eye-tracking data (11, 28–32). Akter et al. (29) used an ML 
approach for detecting ASD by using ET technology. Satu et al. (33) 
applied multiple methodologies to identify ASD, aiming to determine 
the characteristics that distinguish autism from typical development 
across different ages. Erkan et al. (34) used RF algorithms to evaluate 
the effectiveness of each method in identifying ASD. Akter et al. (35) 
employed SVM to demonstrate higher performance on datasets 
involving toddlers, older children, and adults. Table 1 summarizes 
some notable research related to eye-tracking technologies for ASD 
identification. Carette et al. (20), applied simple neural networks with 
moderate accuracy (83%), while more advanced approaches like 
CNN-LSTM achieved superior performance, with Ahmed et al. (19) 
reporting 98.33% on clinical eye-tracking data. Other hybrid 
architectures, including CNN-LSTM (26) and CNN-GRU-ANN (36), 
also demonstrated robust accuracy above 84 and 93%, respectively. 
Deep neural networks (DNN) have been effective as well, with 

Kanhirakadavat et  al. (24) reporting 93.28%, whereas MLP-based 
studies achieved around 87% (29, 30). In comparison, traditional 
machine learning methods such as SVM and logistic regression 
generally produced lower accuracies, ranging from 75 to 92% across 
face recognition, video, and gaze datasets (21, 25, 30, 37–39). Overall, 
these findings highlight the advantage of deep learning particularly 
hybrid architectures in capturing complex spatial and temporal 
patterns, leading to more reliable and accurate ASD diagnostic systems.

3 Materials and methods

This module presents the proposed method for developing a DL 
system to detect autism using eye-tracking data. The process starts with 
collecting raw gaze and behavioral features from participants as they 
view visual stimuli. These features are then processed and selected based 
on their relevance using mutual information scores. The most 
informative signals, such as tracking ratio, gaze coordinates, and CARS 
scores, are retained for modeling. The integrated DL model, which 
includes convolutional and recurrent layers, is trained to recognize subtle 
patterns in the selected features. This model captures both spatial and 
temporal aspects of gaze activity, enabling it to distinguish more 
accurately between autism and non-autism profiles. Cross-validation 
and early stopping are employed to ensure reliability and prevent 
overfitting during training. Figure 1 illustrates the framework of the 
proposed methodology. The details of the framework are discussed below.

3.1 Clinical dataset

This research work uses a benchmark and standard dataset (36) 
entitled “ET Dataset to Support the Research on ASD.” The dataset 
contains raw statistical information derived from eye-tracking 
experiments. It includes data collected from a total of 59 children, 29 
diagnosed with ASD and 30 typically developing (TD) children, as 
summarized in Table 2. The dataset contains 1,048,575 instances.

The dataset used in this study was collected with a RED mobile 
ET operating at 60 Hz. The tracker was connected to a 17-inch display 

TABLE 1  Existing ASD systems.

Ref. Type of dataset Models Purpose Acc. %

Carette et al. (20) Eye-tracking images Neural network Eye-tracking 83%

Ahmed et al. (19) Eye-tracking clinical data CNN-LSTM, LSTM ASD diagnosing 98.33%

Akter et al. (29) Eye-tracking Clinical data MLP Eye-tracking 87%

Liu et al. (37) Face recognition SVM SD Diagnosing 85%

Zhao et al. (21) Eye-tracking clinical data SVM ASD Diagnosing 92.31

Wan et al. (38) Video ASD dataset SVM Detecting ASD 85

Akter et al. (30) ASD face image MLP Classification of ASD based on MLP 87%

Alcañiz et al. (39) Eye gaze data SVM ASD Diagnosing 91%

Elbattah et al. (26) Eye-tracking clinical data CNN and LSTM ASD Diagnosing 84% CNN

Kanhirakadavat et al. (24) Eye-tracking images DNN ASD Diagnosing 93.28%

Yaneva et al. (25) Eye gaze data Logistic regression ASD diagnosing 75%

Aneva et al. (42) Eye gaze image CNN ASD diagnosing 75.32%

Cilia et al. (36) Eye-tracking clinical data CNN-GRU-ANN 93.10
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showing the visual stimuli during the experiment. Data collectors 
followed a controlled process in a dedicated experimental setting. 
Participants sat about 60 centimeters from the screen, enabling the eye 
tracker to record their gaze by detecting infrared reflections.

To effectively engage participants, the researchers used a mix of active 
and static visual stimuli. The dynamic content included short videos with 
engaging elements like cartoon characters and balloons, specifically 
created to attract children’s attention. The static stimuli comprised images 
of faces, objects, and scenes aimed at encouraging visual engagement. 
Each session lasted about five minutes, with the sequence and 

arrangement of items changing throughout the experiment. A key part of 
the stimulus design involved video clips of a human presenter delivering 
spoken content, intended to direct participant attention to specific 
elements on the screen, even if they were not visible all the time.

This setup enabled the collection of valuable data on eye contact, 
attention span, and engagement levels. The dataset offers insights into 
visual behavior through metrics like fixation patterns, saccadic 
movements, and blink rates. It helps distinguish the visual attention 
profiles of kids with ASD from those without it. The recorded dataset 
contains approximately 2.17 million rows of gaze statistics. Figure 2 
illustrates how the classes are distributed within the dataset. Figure 3 
displays a list of dataset features.

3.2 Data preprocessing

Preparing data is a vital step in any data analysis process. It involves 
organizing, cleaning, and transforming raw inputs to ensure the dataset 
is accurate and dependable. The goal at this stage is to make the data 
suitable for modeling by selecting the most relevant features, handling 

FIGURE 1

General framework of the proposed methodology.

TABLE 2  Summary participant group details.

#Gender ASD group Non-ASD group

#Female_numbers 4 17

#Male_numbers 25 13

#Total 29 30

#Total instance 1,048,575

Age/mean 7.88
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missing or incorrect values, and applying proper scaling. These steps 
help build a strong foundation for any analysis or machine learning 
tasks that follow. Figure 4 shows the data preprocessing steps performed.

3.2.1 Handling missing values
The dataset had missing entries in several numerical features. To 

fix this while keeping the dataset’s structure and size, missing values 
were filled with the mean of each relevant feature. This method 
maintains the data’s central tendency and prevents losing informative 
instances that could happen with deletion. The amount of missing 
data for each feature is shown graphically in Figure 5.

3.2.2 Categorical encoding
When working with the eye-tracking dataset, certain categorical 

features needed to be  converted into a numerical format to ensure 
compatibility with the DL model. To do this, label encoding was used. 
This method assigns unique numeric values to each group in a variable, 
enabling the model to interpret and process the data effectively. 
Characteristics like (Trial, Stimulus, Color, Category Right, and Category 
Left) were among those transformed. This step is vital because most ML 
and DL approaches work with numerical input rather than categorical text.

3.2.3 Target variable encoding
The target variable, which indicated participant group 

classification, was converted into binary form to support binary 
classification. This change was necessary to make class labels 
compatible with the model’s output layer and loss function.

3.2.4 Feature selection
To reduce dimensionality and enhance the model’s performance, a 

mutual information-based feature selection method was employed to 
focus on the most relevant input features. The top 15 features with the 
strongest mutual relationship to the target variable were selected. This step 

reduced noise, improved computational efficiency, and minimized 
overfitting. Table 3 displays the selected features and their definitions.

Mutual information was used as feature selection to assess the 
importance of each feature in relation to the target class. This approach 
measures the shared information between features and class labels, 
aiding in identifying which attributes are most helpful in differentiating 
between ASD and TD groups. By ranking features according to their 
mutual information scores, the model emphasizes those that most 
contribute to accurate classification. Figure  6 illustrates the 
significance of a set of features using the mutual information method.

The correlation between features can be  effectively calculated 
using a correlation coefficient, which shows the strength and direction 
of their relationship (40). To visualize these correlations, a heatmap is 
often used because it provides an intuitive visual way to see how 
different features are related. By using a gradient color scale, the 
heatmap emphasizes areas of strong positive or negative relationships; 
darker shades typically indicate stronger positive correlations, while 
lighter or contrasting shades suggest negative or weaker links (41, 43). 
As shown in Figure  6, this visual approach makes it easier to 
understand complex interactions within the dataset, offering clearer 
insights into the patterns and dependencies among various features.

3.2.5 Feature normalization
After feature selection, the remaining features were normalized using 

min–max scaling. This approach scaled the feature values to a consistent 
range between 0 and 1, which is crucial for optimizing convergence and 
ensuring stable gradient behavior during model training.

3.2.6 Data reshaping
To match the input structure needed by the recurrent neural 

network, the feature matrix was reshaped into a three-dimensional 
format. Each sample was represented as a single timestep with multiple 
input features, enabling the use of sequential modeling techniques.

FIGURE 2

The class distribution existing in the dataset.
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3.2.7 Cross-validation strategy
To ensure the strength and generalizability of the experimental 

outcomes, a stratified k-fold cross-validation technique with five splits 
was used. This method maintained the distribution of the target 
variable in each fold and allowed for evaluation across multiple data 
partitions. Figure 7 shows a graphical representation of the stratified 
5-fold cross-validation strategy used.

3.3 Deep learning models

3.3.1 LSTM model
The classification model in this study was built around a deep 

neural network that included a recurrent structure, specifically a LSTM 
layer. Even though the input consisted of only a single timestep, the 
model was designed to learn subtle patterns and interactions within the 

FIGURE 3

The number of non-values for each feature.
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selected features. The core of the network was an LSTM layer with 64 
memory units, serving as the main feature extractor. To prevent 
overfitting, dropout regularization was applied immediately afterward, 
deactivating 40% of the units randomly during training.

Following the LSTM, the network structure includes 32 neurons 
in a dense layer, along with a ReLU nonlinear activation function that 
enables the model to learn more abstract, higher-level representations 
of the training and validation data. The LSTM model architecture is 
shown in Figure 8.

Another dropout layer was added here as well, further decreasing 
the chance of overfitting. The final prediction used only one output 
neuron with a nonlinear sigmoid activation, giving a probability score 
for binary class sorting.

Furthermore, memory cells are considered the main components 
of the LSTM; each cell has three essential components called gates: the 
forget gate, input gate, and output gate. These gates are organized by 

sigmoid activation functions that determine how information flows 
through the cell. Specifically, the input gate decides which new data 
should be kept, the forget gate determines what information or data 
should be discarded from the cell’s memory, and the output gate decides 
what information is passed to the next step. These operations are guided 
by a set of equations that describe how data is processed within each cell. 
Equations (1–9) of LSTM model are as follows:

	 ( )σ −= + +1. .t f t f t ff W X W h b 	 (1)

	 ( )σ −= + +1. .t c t i t ii W X W h b 	 (2)

	 ( )( )−= ∗ 1. ,t f t t fC W h x b 	 (3)

	 ( )σ −= + + + +1. .t o t o t o t oo W X W h V C b 	 (4)

FIGURE 4

Preprocessing steps.

FIGURE 5

The importance of features using the mutual information approach.
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	 ( )= + tanht t th o C 	 (5)

The input, hidden state, memory cell state, biases, and weights of 
the network are denoted by s sW U b, while the input, forget, and output 
gates are represented t , − − −, ,i t f t o t  Respectively. The hyperbolic 
tangent activation function is represented by tanh, whereas the sigma 
function represents the nonlinear sigmoid activation function.

During the training process, the model was optimized and trained 
using binary cross-entropy loss, a common choice for two-class 
problems, especially when there is class imbalance. An adaptive 
optimization algorithm was employed to dynamically adjust the 
learning process, helping the model converge efficiently. To prevent 
overtraining, early stopping was implemented, stopping training if the 
validation loss did not improve after several epochs, with the best 
model weights automatically restored. The model’s evaluation 
performance was conducted using multiple cross-validation folds to 
verify the reliability and consistency of the results. Table 4 summarizes 
the LSTM model parameters used in its structure.

3.3.2 CNN-LSTM model
To support the binary classification of ASD using eye-tracking 

data, a DL model combining convolutional and recurrent layers was 

FIGURE 6

The correlation coefficient.

TABLE 3  Selected features and definitions.

NO. Feature Name

1 Tracking_Ratio [%]

2 Point_Regard_Right X [px]

3 Point_Regard_Right Y [px]

4 Point_Regard_Left X [px]

5 Point_Regard _Left Y [px]

6 Gaze_Vector_Right X

7 Gaze_Vector_Right Y

8 Gaze_Vector_Right Z

9 Gaze_Vector_Left X

10 Gaze_Vector_Left Y

11 Gaze_Vector_Left Z

12 Tracking_Ratio [%].1

13 Category_Right

14 Category_Left

15 #Stimulus

16 CARS_Score
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developed. The model’s input is a fixed-length feature vector created 
from preprocessed gaze data, capturing behavioral and statistical 
features relevant to ASD diagnosis.

Initially, local feature patterns were extracted using a 
one-dimensional convolutional layer, which helps capture spatial 
dependencies within the input vector. A pooling operation then 
followed to reduce noise and stabilize the extracted feature maps. The 
output was subsequently passed to a recurrent layer composed of 
LSTM units, allowing the model to recognize and capture temporal 
dependencies and sequential behavior in gaze data features, which are 
often indicative of atypical visual processing in ASD. Figure 9 shows 
the architecture of the CNN-LSTM model.

Subsequently, a fully connected layer was added to improve the 
learned representations, followed by dropout layers placed at key 
points in the architecture to prevent overfitting. The final 
classification was made using a single sigmoid-activated output 

neuron, providing a probabilistic prediction of class membership 
(ASD vs. non-ASD).

Binary cross-entropy served as the loss function for training the 
model, optimized with an adaptive gradient-based algorithm. 
Additionally, early stopping was employed based on validation loss 
with a fixed patience to ensure convergence and minimize overfitting. 
Training was performed in mini-batches to improve stability and 
computational efficiency. Table 5 outlines the parameters used in the 
CNN-LSTM architecture.

4 Experimental results

In this module, the experimental design of our study, containing 
the measurement metrics used and a summary of the DL model 
performance results, is presented.

FIGURE 7

Stratified 5-fold cross-validation.

FIGURE 8

The architecture of LSTM model.
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FIGURE 9

The structure of the CNN-LSTM based model.

4.1 Environment setup

The procedures in our experiments were performed on a laptop 
with a 7th-generation Intel Core i7 processor, 8 GB of RAM, and a 
GPU with 16 GB of dedicated memory. The deep learning models 
were built and tested using a suitable computational framework for 
neural network training. These software and hardware setups 
provided sufficient resources for practical model training and 
performance assessment.

4.2 Data splitting

The clinical autism dataset was split using a stratified 5-fold 
cross-validation method to ensure each fold had a balanced mix 
of ASD and non-ASD samples. This method enhances the 
robustness of model evaluation by reducing bias and variance, 
enabling the model to be  trained and tested on representative 
data subsets.

4.3 Evaluation metrics

This subsection presents the evaluation of the performance of the 
proposed deep learning models used for autism detection in our 
experiments. A variety of evaluation and performance metrics, 
including sensitivity, precision, recall, accuracy, F1 score, and the 
confusion matrix, are employed for this purpose. Each of these 
measures offers a different perspective, highlighting various aspects of 
the model’s effectiveness and identifying areas where it performs well 
or may need improvement.
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4.4 Validation results of the LSTM model

The outcomes of testing the LSTM model for autism detection 
are presented in the subsection and shown in Table  6, which 
demonstrates that it performs consistently well across all five folds 
for both ASD and Non-ASD classifications. In nearly all cases, 
precision, recall, and F1-scores stay above 99%, indicating that the 
LSTM provides good performance at correctly classifying both 
positive (ASD) and negative (non-ASD) cases with very few 
mistakes. Non-ASD predictions have very balanced precision and 
recall, often approaching perfect agreement. At the same time, ASD 
predictions also reach similarly high values, showing that the model 
can capture subtle temporal patterns in eye-tracking data. The slight 
differences between folds suggest that the model’s generalization 
results are steady, with no significant decline in predictive quality 

TABLE 4  The parameters used in the LSTM model structure.

Parameter Value/description

Input shape (1, k) – one timestep, k selected features

LSTM units 64 memory units

Dropout rate (after LSTM) 0.4

Dense layer units 32 neurons

Dense layer activation ReLU (Rectified Linear Unit)

Dropout rate (after dense) 0.4

Output layer 1 neuron (sigmoid activation)

Optimizer Adaptive optimizer (Adam) with learning 

rate = 0.001

Batch size 32

Number of epochs Up to 20

Early stopping Patience = 5 epochs, monitor = validation loss
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across different data partitions. Overall, the LSTM model’s metrics 
confirm that it is strong and reliable at distinguishing between ASD 
and non-ASD participants.

On average, the LSTM model achieved excellent performance, 
with Non-ASD classifications showing 99.70% accuracy, 99.69% 
precision, 99.86% recall, and a 99.77% F1-score. For ASD 
classifications, the model demonstrated similarly strong results, 
with 99.74% accuracy, 99.39% precision, 99.56% recall, and a 
well-balanced F1-score. These averages highlight the model’s 
consistent ability to correctly classify both categories with 
minimal performance trade-offs, indicating high reliability and 
generalization across all folds. As shown in Figure  10, which 
represents the confusion matrices for the LSTM model, in Fold 
1, the model demonstrated commendable performance, achieving 
137,666 TN and 71,359 TP. The presence of only 507 and 183 FN 
underscores its effectiveness in accurately classifying instances. 

In Fold 2, the model maintained this strong trajectory, with 
138,149 TN, a mere 24 FP, and 213 FN, reflecting high specificity 
and sensitivity in its predictions. Moving to Fold 3, the results 
revealed 138,065 TN and 70,609 TP, though the FN count 
increased to 933, indicating a slight rise in misclassifications 
while still demonstrating robust classification capabilities. In 
Fold 4, the model recorded 137,867 TN and 71,202 TP, 
accompanied by 306 FP and 340 FN, which points to a balanced 
performance across classifications. Finally, Fold 5 showcased the 
model’s impressive predictive accuracy with 138,172 TN and only 
1 FP; however, the FN rose to 503, suggesting the necessity for 
further examination of these misclassifications to enhance overall 
performance. Figure  10 describes the model training and 
validation accuracies within five folds.

The accuracy curves for the LSTM model across the five folds 
offer a clear view of its training and validation performance 
throughout the epochs. In Fold 1, the training accuracy begins at 
around 0.96 and steadily rises to about 0.99 by the end, while the 
validation accuracy starts similarly at 0.96 and stays at a 
comparable level. This shows a good fit, with no significant 
overfitting. Moving to Fold 2, both training and validation 
accuracies follow a similar pattern, starting near 0.95 and 
approaching 1.00, indicating strong generalization of the model.

In Fold 3, the training accuracy begins at approximately 0.94 
and increases to nearly 1.00, with validation accuracy showing a 
similar upward trend and remaining high throughout. For Fold 
4, training accuracy starts around 0.94 and gradually rises, 
stabilizing near 0.99, while validation accuracy reflects this 
improvement, indicating the model’s robustness across epochs. 
Finally, in Fold 5, training accuracy begins at roughly 0.95 and 
reaches about 0.99, with validation accuracy consistently close to 
this level, demonstrating strong performance without notable 
differences between training and validation results. Figure  11 
shows the training and validation losses across five folds.

The loss plots for the LSTM model across the five folds, shown in 
Figure 12, provide valuable insights into its training and validation 
performance during the epochs. In Fold 1, the training loss starts 
relatively high but quickly drops to about 0.02, indicating effective 
learning. However, there is a noticeable spike in validation loss around 

TABLE 5  Summary of the parameters used in the CNN-LSTM model 
architecture.

Component Parameter/setting

Input shape (1, k) — one timestep, k selected features

Convolutional layer 64 filters, kernel size = 3, activation = ReLU

Padding Same (to preserve input dimensions)

Pooling layer Max pooling, pool size = 1

LSTM layer 64 memory units

Dropout (after LSTM) 0.4

Dense layer 32 neurons, activation = ReLU

Dropout (after dense) 0.4

Output layer 1 neuron, activation = Sigmoid

Loss function Binary Cross-Entropy

Optimizer Adam, learning rate = 0.001

Batch size 32

Epochs Up to 20

Early stopping Patience = 5 epochs, monitor = validation loss

TABLE 6  Summary of testing classification results of the LSTM model.

Fold No. Labels Accuracy Precision Recall F1-score Support

Fold 1 Non-ASD 99.67 99.87 99.63 99.63 138,173

ASD 99.29 99.74 99.52 71,542

Fold 2 Non-ASD 99.89 99.85 99.98 99.91

ASD 99.97 99.70 99.83

Fold 3 Non-ASD 99.50 99.33 99.92 99.62

ASD 99.85 99.70 99.27

Fold 4 Non-ASD 99.69 99.75 99.78 99.77

ASD 99.57 99.52 99.55

Fold 5 Non-ASD 99.76 99.64 100 99.82

ASD 100 99.30 99.65

Average Non-ASD 99.70 99.69 99.86 99.77

ASD 99.74 99.39 99.56
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epoch 12, reflecting some fluctuation in the model’s ability to 
generalize. In Fold 2, the training loss shows a similar pattern, 
decreasing from around 0.14 to approximately 0.02, while the 
validation loss remains stable and low, emphasizing the model’s 
strong performance.

In Fold 3, the model’s training loss begins at approximately 0.16 
and declines to around 0.04, with validation loss closely following at 
about 0.02, suggesting consistent performance and minimal 

overfitting. For Fold 4, training loss steadily decreases from about 0.17 
to around 0.05, while validation loss shows minor fluctuations but 
stays low, indicating the model’s robustness throughout the training 
process. Finally, in Fold 5, the training loss begins at around 0.14 and 
drops to approximately 0.04, with validation loss remaining 
consistently around 0.02, demonstrating strong overall performance 
and effective generalization without significant discrepancies between 
training and validation losses.

FIGURE 10

Displaying the confusion matrices obtained by the LSTM model within five-fold cross-validation.
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4.5 Validation results of the CNN-LSTM

The CNN-LSTM model validated consistently high testing results 
across all folds for individual Non-ASD and ASD classifications. 
Non-ASD predictions showed near-perfect precision, recall, and 
F1-scores of about 99.8%, while ASD predictions maintained similarly 
strong results with precision at 99.72%, recall at 99.63%, and F1-score 
at 99.67%. These stable metrics indicate the model’s strong 
generalization ability and its success in taking spatial and temporal 
patterns in eye-tracking data for accurate autism detection. Table 7 
presents a summary of testing and evaluation results of the 
CNN-LSTM model.

The CNN-LSTM model demonstrated outstanding average 
performance, with Non-ASD classifications attaining 99.78% 
(±0.010%) accuracy, alongside precision, recall, and F1-scores of 
99.81, 99.85, and 99.83%, respectively. For ASD classifications, the 
model achieved similarly strong outcomes, recording a 99.67% 
F1-score. These testing results highlight the model’s balanced 
predictive strength and its consistent reliability in distinguishing 
between the two classes. As shown in figure cited above, across all five 
folds, the confusion matrices gained by the CNN-LSTM model 
revealed consistently strong classification performance for both ASD 
and Non-ASD classes, with high amounts of true positives (TP) and 
true negatives (TN) and only minimal false positives (FP) and false 

FIGURE 11

Displaying the model training and validation accuracies within five folds of the LSTM model. (a) fold 1 (b) fold 2 (c) fold 3 (d) fold 4 (e) fold 5.
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negatives (FN). In Fold 1, there were 138,073 TN, 71,160 TP, 100 FP, 
and 382 FN, while Fold 2 recorded 138,091 TN, 71,383 TP, 82 FP, and 
159 FN. Similarly, Fold 3 achieved 138,081 TN, 71,326 TP, 92 FP, and 
216 FN; Fold 4 yielded 138,095 TN, 71,354 TP, 78 FP, and 188 FN; and 
Fold 5 resulted in 138,090 TN, 71,333 TP, 83 FP, and 209 FN. These 
results demonstrate the model’s stable and reliable capability to 
differentiate between non-ASD and ASD individuals, with 
misclassifications remaining minimal relative to the total rate of 
samples in each class. Figure  13 depicts the CNN-LSTM model 
training and validation accuracies across five folds.

The accuracy plots for the CNN-LSTM model across the five folds, 
as represented in Figure 14, which is cited above, introduce a detailed 

view of the model training and validation performance throughout 
the epochs.

In Fold 1, the training accuracy begins at approximately 0.93 and 
climbs steadily to nearly 1.00 by the end of the training, while the 
validation accuracy follows closely, stabilizing at around 0.99. This 
suggests a strong fit of the model without significant overfitting. In Fold 
2, the training accuracy exhibits a similar trajectory, beginning around 
0.93 and reaching over 0.99, though it experiences some fluctuations. The 
validation accuracy remains high, indicating effective generalization.

For Fold 3, the training accuracy starts at about 0.93 and fluctuates 
before ultimately stabilizing near 1.00, while the validation accuracy 
experiences notable dips, reflecting some challenges in generalization 

FIGURE 12

The training and validation losses of the LSTM model cross five folds. (a) fold 1 (b) fold 2 (c) fold 3 (d) fold 4 (e) fold 5.
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during certain epochs. In Fold 4, training accuracy exhibits a similar 
pattern, beginning at approximately 0.94 and rising towards 1.00, with 
validation accuracy following suit, although it too shows slight 
fluctuations at various points.

Finally, in Fold 5, the training accuracy commences at around 0.90 
and gradually ascends to approximately 1.00, with validation accuracy 
closely tracking this increase, albeit with some variability early in the 
training. Inclusively, the CNN-LSTM model demonstrates strong 
performance across all folds, characterized by high training and 
validation accuracies, although occasional fluctuations highlight areas 
for further investigation regarding generalization. Figure  14 gives 
model training and validation losses during five-fold cross-validation.

The training and validation losses, as depicted in Figure 15 for the 
CNN-LSTM model across the five folds, provide critical insights into 
its training and validation dynamics through the epochs.

In Fold 1, the training loss initiates at a relatively high value 
but demonstrates a rapid decline, stabilizing around 0.02, which 
indicates effective model training. However, validation loss 
remains consistently low, reflecting robust generalization 
capabilities. In Fold 2, the training loss follows a similar descending 
trajectory, beginning at approximately 0.18 and reducing to about 
0.02. Validation loss exhibits minor fluctuations but remains stable, 
underscoring the model’s reliability.

In Fold 3, the training loss fluctuates significantly, starting at 
around 0.20, with notable spikes at certain epochs, while validation 
loss remains comparatively low, suggesting intermittent challenges in 
the model’s generalization ability. In Fold 4, training loss illustrates a 
marked decrease from nearly 0.20 to around 0.05, but experiences a 
spike around epoch 7. Validation loss, on the other hand, remains 
consistently low, indicating resilience in performance.

Finally, in Fold 5, the training loss begins at about 0.25 and 
decreases sharply, stabilizing around 0.02. Validation loss remains low 
throughout, further confirming the model’s effective generalization.

4.6 Statistical validation

The CNN-LSTM model was evaluated using 5-fold cross-
validation, achieving a mean accuracy of 99.78% with a standard 

deviation of 0.11%, indicating stable performance across folds. A 
one-sample t-test against a 95% baseline yielded t(4) = 14.2, p < 0.001, 
confirming that the high accuracy is statistically significant and 
unlikely due to chance. These results demonstrate that the model is 
both accurate and robust across different data splits.

5 Results and discussion

ASD is a neurodevelopmental condition that encompasses 
difficulties with social interaction, communication, and repetitive 
behaviors. This complexity requires new assessment methods. In this 
study, we used eye-tracking data to look at visual attention patterns. 
This provides valuable insights into the different gaze behaviors of 
persons with ASD compared to those without the condition. 
Eye-tracking metrics are important indicators of how people respond 
to social stimuli, which can be crucial for diagnosis.

To ensure the strength and consistency of our evaluations, 
we applied a stratified 5-fold cross-validation approach. This approach 
keeps the same proportion of non-ASD and ASD cases across all 
training and validation sets. This approach reduces bias and improves 
the generalizability of our results. We evaluated the performance of 
both the LSTM model and the CNN combined with the LSTM (CNN-
LSTM) model for autism detection. The average accuracy results were 
impressive, with the CNN-LSTM model at 99.78% and the LSTM 
model at 99.70% as shown in Figures 16, 17. These high accuracy rates 
highlight the effectiveness of using machine learning models to find 
subtle patterns linked to autism.

The slight difference in performance suggests that the added 
convolutional layers in the CNN-LSTM model help extract better 
features from the eye-tracking data. Overall, these findings contribute to 
the growing research on autism. They also hold great promise for clinical 
applications by enabling prior and more precise analyses. This could lead 
to enhanced support and intervention strategies for individuals with 
ASD. Figures 15, 16 illustrate a comparison of the accuracy and loss 
performance of the LSTM and CNN-LSTM models for each fold.

The comparison between the existing system and our developing 
model, based on a DL model to detect and diagnose ASD using ET 
technology, is shown in Table 8.

TABLE 7  Summary of testing results of the CNN-LSTM model.

Fold No. Labels Accuracy Precision Recall F1-score Support

Fold 1 Non-ASD 99.77 99.72 99.93 99.83 138,173

ASD 99.77 99.86 99.47 71,542

Fold 2 Non-ASD 99.89 99.88 99.94 99.91

ASD 99.89 99.78 99.83

Fold 3 Non-ASD 99.82 99.84 99.88 99.86

ASD 99.77 99.69 99.73

Fold 4 Non-ASD 99.60 99.82 99.57 99.70

ASD 99.18 99.65 99.41

Fold 5 Non-ASD 99.82 99.78 99.94 99.86

ASD 99.89 99.58 99.73

Average Non-ASD 99.78% ± 0.010% 99.81 99.85 99.83

ASD 99.72 99.63 99.67
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6 Conclusion

In this research, we examined the use of DL models to detect 
autism based on clinical data collected through eye-tracking. 
We evaluated the performance of LSTM and a hybrid CNN-LSTM 
model for this purpose. Using stratified five-fold cross-validation, 
we thoroughly assessed both models. Our results showed that the 
hybrid CNN-LSTM model outperformed the standalone LSTM, 
achieving over 99% accuracy. This suggests that the hybrid model is 

effective in detecting autism using eye-tracking data. The high 
accuracy of the CNN-LSTM highlights the benefits of combining 
convolutional layers for feature extraction and LSTM for analyzing 
temporal patterns in eye-tracking data for autism detection. These 
findings have important implications for developing automated tools 
for autism diagnosis, which could enable earlier detection and 
intervention. Early identification of ASD is essential for better 
management and improved outcomes. By utilizing eye-tracking data 
and deep learning techniques, we can support more accurate and 

FIGURE 13

The confusion matrices obtained by the CNN-LSTM. (a) fold 1 (b) fold 2 (c) fold 3 (d) fold 4 (e) fold 5.
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efficient diagnostic processes. In summary, based on existing literature 
and our experiments, we  found that applying a relevant cross-
validation approach, training the models on different data folds rather 
than all at once, enhances the robustness of deep learning-based 
autism diagnosis models. This method proves more effective than 
other data balancing techniques when only applied to the training 
data. In future work, we plan to expand this research by developing 

multimodal data approaches for autism detection that incorporate 
attention mechanisms into deep learning models. Including attention 
mechanisms could help the model focus on the most relevant features 
in the data, leading to better detection accuracy and more precise 
results. Exploring multimodal data, combining eye-tracking with 
other behavioral or physiological data, could provide deeper insights 
into autism and improve detection capabilities.

FIGURE 14

Depicts the training and validation accuracies of the CNN-LSTM across five folds. (a) fold 1 (b) fold 2 (c) fold 3 (d) fold 4 (e) fold 5.
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FIGURE 16

LSTM model accuracy and loss comparison for each fold.

FIGURE 17

The CNN-LSTM model training accuracy and loss comparison for each fold.

TABLE 8  Comparison results.

Ref. Years Accuracy %

Ahmed et al. (19) 2023 98.33%

Akter et al. (29) 2021 87%

Carette et al. (20) 2022 83%

Cilia et al. (36) 2024 93.10%

Elbattah et al. (26) 2021 84%

Enhanced propped system 2025 99.78

We have used cross-validation against the Ahmed et al. (20), who used the training and 
testing.
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