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Introduction: Children with Autism Spectrum Disorder (ASD) often find it
difficult to maintain eye contact, which is vital for social communication. Eye
tracking (ET) technology helps determine how long children with ASD focus
on someone, how frequently they do so, and in which direction their gaze
moves. ET provides insights into social attention by enabling precise, real-time
tracking of gaze patterns as individuals process social information visually. It
is a dependable method for identifying and developing social attentional
biomarkers, particularly in challenging conditions like ASD.

Objective: This study aims to implement deep learning (DL) algorithms using
eye-tracking data from social attention tasks involving children with ASD.
Methods: The approach was tested using standard datasets collected
from individuals with and without ASD through eye-tracking technology.
Convolutional neural networks (CNNs) and long short-term memory (LSTM)
models were used to analyze data from children with ASD. Data preprocessing
techniques addressed missing data and converted categorical features into
numerical values. Mutual information-based feature selection was employed
to reduce the feature set by identifying the most relevant features, thereby
improving system performance. These features were then analyzed using LSTM
and CNN-LSTM models to evaluate their potential for diagnosing ASD.

Results: The experimental results showed that the highest accuracy achieved
was 99.78% with the CNN-LSTM model. Furthermore, the findings indicated that
the proposed method outperformed previous studies.

Conclusion: The system successfully diagnosed ASD using the ET dataset.
This approach shows promise for clinical application, assisting healthcare
professionals in diagnosing ASD more accurately through advanced artificial
intelligence technology.
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1 Introduction

Autism is a condition characterized by various signs that affect an
individual’s communication, behavior, and social interaction. Autism
has recently increased worldwide. The numerous symptoms displayed
by autistic children make diagnosis more challenging (1-3). Autism
is typically diagnosed by a team of professionals who observe the
child’s behavior, a process that takes time and can be prone to errors,
since the behavior of an autistic child may resemble that of children
with other psychiatric conditions. Therefore, technical innovations are
needed to develop alternative diagnostic methods (4).

Computer-aided (CA) systems are becoming increasingly
important in diagnosing ASD (5). This category includes
electroencephalography (EEG) (6), magnetic resonance imaging
(MRI) (7), and ET (8). Genetic testing, eye-tracking (ET), facial
features (9), emotion analysis (10), facial landmark identification
(11), robot-assisted interaction, and eye contact training (12), as
well as brain imaging, are all non-invasive methods to record,
track, and measure eye movements or the specific point where a
person’s eyes focus on a picture (3). These techniques help identify
ASD in younger children, especially those who do not display
obvious signs or symptoms, allowing for timely support and
therapy. Understanding and interpreting ET scanpaths requires
significant expertise in the field. Kids with ASD typically have
difficulty focusing, which shows as unstable eye movements and
reduced attention to important stimuli. Measuring eye movement
fixation with scan path devices can be challenging because
participants’ focal points may vary greatly depending on their
interests and the experimental context. Traditional methods of
diagnosing ASD are helpful, but they often rely on clinical
interviews and behavioral observations, which some view as time-
consuming, costly, and subjective. These approaches can also delay
early diagnosis, particularly in younger children who may not yet
show clear behavioral signs. When working with complex data
streams, artificial intelligence (AI) techniques can significantly
improve pattern recognition and prediction accuracy (13).
Automation has the potential to simplify the identification of
individuals with ASD by making the process more objective, faster,
and precise.

The new AI model utilizes DL and machine learning (ML)
techniques to improve existing methods by integrating objective
biomarkers with clinical expertise (14, 15). These tools can replace
traditional diagnostic approaches but are more effectively used as
screening tools in support systems for healthcare providers. The aim
is to increase accuracy and speed, leading to earlier and more reliable
diagnoses. This approach seeks to accelerate the diagnosis process,
reduce the time needed for diagnosis, and lessen the workload for
healthcare workers (16-18).

1.1 Research question

o What is the appropriate feature selection method used to select
the essential features?

o What is the approach of the DL model for diagnosing ASD bae
on eye-tracking.

o How can DL assist in diagnosing ASD at early stages using
eye-tracking technology?
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« Developing an eye-tracking system based on the CNN-LSTM
model for diagnosing ASD.

« Identifying the appropriate feature selection strategy to identify
the significant features related to the ASD component that can
assist the deep learning model in achieving high accuracy.

 The proposed approach achieves accuracy superior to prior
studies by employing cross-validation methods.

This study aims to present an improved version of the autism
recognition model by leveraging the benefits of deep learning through
enhanced training and testing processes, including stratified cross-
validation and feature selection methods. The main contribution is to
refine the existing process that uses the same dataset for diagnosing
ASD (19, 20). We are tracking the contributions of this research. The
collection includes eye-tracking data gathered from 29 children
diagnosed with ASD and 30 typically developing (TD) children.
During data collection, the children remained engaged with both still
images (such as balloons and cartoon characters) and moving videos.
This study achieved an impressive accuracy level of 99.78% with the
CNN-LSTM, marking a significant step forward in innovation.

2 Background

This section summarizes the studies used to analyze and diagnose
ASD. Several studies and methods have been conducted for diagnosing
ASD. Such methods include brain imaging, kinematic analysis, eye
tracking, and more. Many research studies have employed DL and ML
algorithms to confirm a diagnosis or assist in initial detection of ASD.

Zhao et al. (21) examined the effectiveness of eye-tracking data
from in-person talks in reliably recognizing individuals with ASD. The
researchers used four ML models: support vector machine (SVM),
linear discriminant analysis, decision tree, and random forest. When
variables related to ocular fixation and session time were included, the
SVM model achieved a maximum testing accuracy of 92.31%. This
outperformed methods that only used visual fixation characteristics
or session length. Fadhel and Hussein (22) applied an ML approach to
identify factors that hinder children’s growth and development. The
system achieved 89% accuracy, detecting subtle differences that are
difficult for the human eye to perceive. This study demonstrates that
ML surpasses traditional methods in diagnosing autism because it is
faster, more accurate, and more effective. Cilia et al. (23) note that
early diagnosis of ASD is challenging due to cognitive testing, clinical
exams, and symptom variability. This article proposes incorporating
eye tracking into the ASD screening process. The study involved 59
school-aged volunteers who viewed age-appropriate images and
videos related to social cognition. Eye-tracking scan paths were
converted into visual representations of images, and a convolutional
neural network was trained to categorize these images. The outcomes
suggest that visualizations can streamline the diagnostic process and
attain high accuracy. The approach may also apply to various
conditions, especially neurodevelopmental disorders.

Kanhirakadavath et al. (24) conducted research using machine
learning to assess the effectiveness of eye-tracking data in early autism
screening for children. The deep neural network model outperformed
existing models when tested on a benchmark dataset of 547 scan paths.
This suggests that it could be utilized for quick and reliable autism
screening, thereby enhancing physicians’ efficiency. Praveena et al. (25)
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employed Convolutional Neural Networks (CNN) to classify children
with ASD and those with distinct developmental progress by analyzing
fixation maps of the observer’s attention on the image. The model
achieved 75.23% accuracy during testing, suggesting it could aid in
analyzing visual input. Carette et al. (20) introduced ML methods to
facilitate early detection of ASD in young children. This technology uses
an ML approach to recognize eye-tracking patterns associated with
ASD, converting scan paths into visual representations. The
experimental results show that the predictions are quite accurate and
simple to perform, with basic neural network models classifying data
very effectively (AUC > 0.9). Elbattah et al. (26) developed an innovative
method for diagnosing autism using Al tools. The research utilizes the
Eye Gaze Fixes Map dataset and the ET Scanpath dataset to diagnose
ASD. The hybrid model achieved higher accuracy rates of 96.1%.
Kang et al. (27) conducted research using ML to analyze EEG and
eye-tracking data from toddlers, concentrating on their responses to
face images of dissimilar competitors. Minimal redundancy was used
for feature selection. The system showed that children with ASD paid
more attention to hair and clothing than to facial features when
observing face expressions. Current years have seen noteworthy
advancements in research aimed at classifying and detecting ASD
based on different ML techniques that utilize variables such as facial
features and eye-tracking data (11, 28-32). Akter et al. (29) used an ML
approach for detecting ASD by using ET technology. Satu et al. (33)
applied multiple methodologies to identify ASD, aiming to determine
the characteristics that distinguish autism from typical development
across different ages. Erkan et al. (34) used RF algorithms to evaluate
the effectiveness of each method in identifying ASD. Akter et al. (35)
employed SVM to demonstrate higher performance on datasets
involving toddlers, older children, and adults. Table 1 summarizes
some notable research related to eye-tracking technologies for ASD
identification. Carette et al. (20), applied simple neural networks with
moderate accuracy (83%), while more advanced approaches like
CNN-LSTM achieved superior performance, with Ahmed et al. (19)
reporting 98.33% on clinical eye-tracking data. Other hybrid
architectures, including CNN-LSTM (26) and CNN-GRU-ANN (36),
also demonstrated robust accuracy above 84 and 93%, respectively.
Deep neural networks (DNN) have been effective as well, with

TABLE 1 Existing ASD systems.

10.3389/fmed.2025.1690177

Kanhirakadavat et al. (24) reporting 93.28%, whereas MLP-based
studies achieved around 87% (29, 30). In comparison, traditional
machine learning methods such as SVM and logistic regression
generally produced lower accuracies, ranging from 75 to 92% across
face recognition, video, and gaze datasets (21, 25, 30, 37-39). Overall,
these findings highlight the advantage of deep learning particularly
hybrid architectures in capturing complex spatial and temporal
patterns, leading to more reliable and accurate ASD diagnostic systems.

3 Materials and methods

This module presents the proposed method for developing a DL
system to detect autism using eye-tracking data. The process starts with
collecting raw gaze and behavioral features from participants as they
view visual stimuli. These features are then processed and selected based
on their relevance using mutual information scores. The most
informative signals, such as tracking ratio, gaze coordinates, and CARS
scores, are retained for modeling. The integrated DL model, which
includes convolutional and recurrent layers, is trained to recognize subtle
patterns in the selected features. This model captures both spatial and
temporal aspects of gaze activity, enabling it to distinguish more
accurately between autism and non-autism profiles. Cross-validation
and early stopping are employed to ensure reliability and prevent
overfitting during training. Figure 1 illustrates the framework of the
proposed methodology. The details of the framework are discussed below.

3.1 Clinical dataset

This research work uses a benchmark and standard dataset (36)
entitled “ET Dataset to Support the Research on ASD” The dataset
contains raw statistical information derived from eye-tracking
experiments. It includes data collected from a total of 59 children, 29
diagnosed with ASD and 30 typically developing (TD) children, as
summarized in Table 2. The dataset contains 1,048,575 instances.

The dataset used in this study was collected with a RED mobile
ET operating at 60 Hz. The tracker was connected to a 17-inch display

Ref. Type of dataset Models Purpose Acc. %
Carette et al. (20) Eye-tracking images Neural network Eye-tracking 83%
Ahmed et al. (19) Eye-tracking clinical data CNN-LSTM, LSTM ASD diagnosing 98.33%
Akter et al. (29) Eye-tracking Clinical data MLP Eye-tracking 87%
Liu et al. (37) Face recognition SVM SD Diagnosing 85%
Zhao et al. (21) Eye-tracking clinical data SVM ASD Diagnosing 92.31
Wan et al. (38) Video ASD dataset SVM Detecting ASD 85
Akter et al. (30) ASD face image MLP Classification of ASD based on MLP 87%
Alcaniz et al. (39) Eye gaze data SVM ASD Diagnosing 91%
Elbattah et al. (26) Eye-tracking clinical data CNN and LSTM ASD Diagnosing 84% CNN
Kanhirakadavat et al. (24) Eye-tracking images DNN ASD Diagnosing 93.28%
Yaneva et al. (25) Eye gaze data Logistic regression ASD diagnosing 75%
Aneva et al. (42) Eye gaze image CNN ASD diagnosing 75.32%
Cilia et al. (36) Eye-tracking clinical data CNN-GRU-ANN 93.10
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FIGURE 1
General framework of the proposed methodology.

TABLE 2 Summary participant group details.

#Gender ASD group Non-ASD group
#Female_numbers 4 17
#Male_numbers 25 13

#Total 29 30

#Total instance 1,048,575

Age/mean 7.88

showing the visual stimuli during the experiment. Data collectors
followed a controlled process in a dedicated experimental setting.
Participants sat about 60 centimeters from the screen, enabling the eye
tracker to record their gaze by detecting infrared reflections.

To effectively engage participants, the researchers used a mix of active
and static visual stimuli. The dynamic content included short videos with
engaging elements like cartoon characters and balloons, specifically
created to attract children’s attention. The static stimuli comprised images
of faces, objects, and scenes aimed at encouraging visual engagement.
Each session lasted about five minutes, with the sequence and

Frontiers in Medicine

arrangement of items changing throughout the experiment. A key part of
the stimulus design involved video clips of a human presenter delivering
spoken content, intended to direct participant attention to specific
elements on the screen, even if they were not visible all the time.

This setup enabled the collection of valuable data on eye contact,
attention span, and engagement levels. The dataset offers insights into
visual behavior through metrics like fixation patterns, saccadic
movements, and blink rates. It helps distinguish the visual attention
profiles of kids with ASD from those without it. The recorded dataset
contains approximately 2.17 million rows of gaze statistics. Figure 2
illustrates how the classes are distributed within the dataset. Figure 3
displays a list of dataset features.

3.2 Data preprocessing

Preparing data is a vital step in any data analysis process. It involves
organizing, cleaning, and transforming raw inputs to ensure the dataset
is accurate and dependable. The goal at this stage is to make the data
suitable for modeling by selecting the most relevant features, handling
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FIGURE 2
The class distribution existing in the dataset.

Class

missing or incorrect values, and applying proper scaling. These steps
help build a strong foundation for any analysis or machine learning
tasks that follow. Figure 4 shows the data preprocessing steps performed.

3.2.1 Handling missing values

The dataset had missing entries in several numerical features. To
fix this while keeping the dataset’s structure and size, missing values
were filled with the mean of each relevant feature. This method
maintains the data’s central tendency and prevents losing informative
instances that could happen with deletion. The amount of missing
data for each feature is shown graphically in Figure 5.

3.2.2 Categorical encoding

When working with the eye-tracking dataset, certain categorical
features needed to be converted into a numerical format to ensure
compatibility with the DL model. To do this, label encoding was used.
This method assigns unique numeric values to each group in a variable,
enabling the model to interpret and process the data effectively.
Characteristics like (Trial, Stimulus, Color, Category Right, and Category
Left) were among those transformed. This step is vital because most ML
and DL approaches work with numerical input rather than categorical text.

3.2.3 Target variable encoding

The target variable, which indicated participant group
classification, was converted into binary form to support binary
classification. This change was necessary to make class labels
compatible with the model’s output layer and loss function.

3.2.4 Feature selection

To reduce dimensionality and enhance the models performance, a
mutual information-based feature selection method was employed to
focus on the most relevant input features. The top 15 features with the
strongest mutual relationship to the target variable were selected. This step
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reduced noise, improved computational efficiency, and minimized
overfitting. Table 3 displays the selected features and their definitions.
Mutual information was used as feature selection to assess the
importance of each feature in relation to the target class. This approach
measures the shared information between features and class labels,
aiding in identifying which attributes are most helpful in differentiating
between ASD and TD groups. By ranking features according to their
mutual information scores, the model emphasizes those that most
contribute to accurate classification. Figure 6 illustrates the
significance of a set of features using the mutual information method.
The correlation between features can be effectively calculated
using a correlation coefficient, which shows the strength and direction
of their relationship (40). To visualize these correlations, a heatmap is
often used because it provides an intuitive visual way to see how
different features are related. By using a gradient color scale, the
heatmap emphasizes areas of strong positive or negative relationships;
darker shades typically indicate stronger positive correlations, while
lighter or contrasting shades suggest negative or weaker links (41, 43).
As shown in Figure 6, this visual approach makes it easier to
understand complex interactions within the dataset, offering clearer
insights into the patterns and dependencies among various features.

3.2.5 Feature normalization

After feature selection, the remaining features were normalized using
min-max scaling. This approach scaled the feature values to a consistent
range between 0 and 1, which is crucial for optimizing convergence and
ensuring stable gradient behavior during model training.

3.2.6 Data reshaping

To match the input structure needed by the recurrent neural
network, the feature matrix was reshaped into a three-dimensional
format. Each sample was represented as a single timestep with multiple
input features, enabling the use of sequential modeling techniques.
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Feature Names and their Non-Null Value Counts
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FIGURE 3
The number of non-values for each feature.
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3.2.7 Cross-validation strategy

To ensure the strength and generalizability of the experimental
outcomes, a stratified k-fold cross-validation technique with five splits
was used. This method maintained the distribution of the target
variable in each fold and allowed for evaluation across multiple data
partitions. Figure 7 shows a graphical representation of the stratified
5-fold cross-validation strategy used.
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3.3 Deep learning models

3.3.1 LSTM model

The classification model in this study was built around a deep
neural network that included a recurrent structure, specifically a LSTM
layer. Even though the input consisted of only a single timestep, the
model was designed to learn subtle patterns and interactions within the
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FIGURE 4
Preprocessing steps.
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The importance of features using the mutual information approach.
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selected features. The core of the network was an LSTM layer with 64
memory units, serving as the main feature extractor. To prevent
overfitting, dropout regularization was applied immediately afterward,
deactivating 40% of the units randomly during training.

Following the LSTM, the network structure includes 32 neurons
in a dense layer, along with a ReLU nonlinear activation function that
enables the model to learn more abstract, higher-level representations
of the training and validation data. The LSTM model architecture is
shown in Figure 8.

Another dropout layer was added here as well, further decreasing
the chance of overfitting. The final prediction used only one output
neuron with a nonlinear sigmoid activation, giving a probability score
for binary class sorting.

Furthermore, memory cells are considered the main components
of the LSTM; each cell has three essential components called gates: the
forget gate, input gate, and output gate. These gates are organized by

Frontiers in Medicine 07

sigmoid activation functions that determine how information flows
through the cell. Specifically, the input gate decides which new data
should be kept, the forget gate determines what information or data
should be discarded from the cell’s memory, and the output gate decides
what information is passed to the next step. These operations are guided
by a set of equations that describe how data is processed within each cell.
Equations (1-9) of LSTM model are as follows:

fr=o(Wp.Xy + Wy +by) )

iy =0 (W.. Xy + W hy_y +b;) )

Cr =(Wy *(ho1x; )by 3)

0p =0 (W + Xy + Wy hy_y +V,.Cy +by) (4)
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TABLE 3 Selected features and definitions. ht =0, + tanh(Ct) (5)
NO. Feature Name
| Tracking Ratio %] The input, hidden state, memory c.ell stat'e, biases, and weights of
the network are denoted by WU b, while the input, forget, and output
2 Point_Regard_Right X . X .
oint_Regard Right X [px] gates are represented t, i_t, f_t,0_t Respectively. The hyperbolic
3 Point_Regard Right Y [px] tangent activation function is represented by tanh, whereas the sigma
4 Point_Regard_Left X [px] function represents the nonlinear sigmoid activation function.
5 Point_Regard _Left Y [px] During the training process, the model was optimized and trained
) using binary cross-entropy loss, a common choice for two-class
6 Gaze_Vector_Right X . . . .
problems, especially when there is class imbalance. An adaptive
7 Gaze_Vector_Right Y optimization algorithm was employed to dynamically adjust the
8 Gaze_Vector_Right Z learning process, helping the model converge efficiently. To prevent
9 Gaze_Vector_Left X overtraining, early stopping was implemented, stopping training if the
10 Gaze_Vector_Left Y validation loss did not improve after several epochs, with the best
model weights automatically restored. The model’s evaluation
11 Gaze_Vector_Left Z . . e
performance was conducted using multiple cross-validation folds to
12 Tracking Ratio %].1 verify the reliability and consistency of the results. Table 4 summarizes
13 Category_Right the LSTM model parameters used in its structure.
14 Category_Left
: 3.3.2 CNN-LSTM model
15 #Stimulus
To support the binary classification of ASD using eye-tracking
16 CARS_Score L. .
data, a DL model combining convolutional and recurrent layers was
— — 1.00
Tracking Ratio [%] ¥4 0.50 0.48 0.49 0.48 0.06 0.25-0.25 0.23 -0.24-0.00 0.02 0.02 -0.01-0.22
Point of Regard Right X [px] -10,50 1.00 |560) 0.91 0.38 0.24-0.25 0.18 -0.20 0.00 0.01 0.01 -0.02-0.14
[ ) 0.75
Point of Regard Right Y [px] -0.48 "+ .| [BHee}| |(X:E] 0.14 0.19-0.29 0.15 -0.25 0.02 0.01 0.01 0.00 -0.09
Point of Regard Left X [px] -0.49 [E3Y ) 151 0.32 0.18-0.18 0.24 0.25 0.00 0.01 0.00 -0.02-0.14
= - 0.50
Point of Regard Left Y [px] -‘0.48 (OX:1] 1 CBRee) 0.11 0.16-0.24 0.21 -0.31 0.02 0.02 0.01 -0.01-0.11
Gaze Vector Right X -0.06 0.38 0.14 0.32 0.11 p¥s[s} 0.29 -0.25 0.25 -0.24 0.00 0.02 0.02 0.01 0.06
- 0.25
Gaze Vector Right Y -0.25 0.24 0.19 0.18 0.16 0.29 PEIEVELLELERE] 0.01 0.03 0.04 0.07 0.05
Gaze Vector Right Z —0.25-0.25-0.29-0.18-0.24 -0.25LEERRIERLXX:E]-0.00-0.03-0.04 -0.06-0.09
- 0.00
Gaze Vector Left Y -0.23 0.18 0.15 0.24 0.21 0.25 DE:EEJFEBNER-1]-0.01 0.01 0.02 0.10 0.06
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The correlation coefficient.
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Stratified 5-fold cross-validation.
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The architecture of LSTM model.

developed. The model’s input is a fixed-length feature vector created
from preprocessed gaze data, capturing behavioral and statistical
features relevant to ASD diagnosis.

Initially, local feature patterns were extracted using a
one-dimensional convolutional layer, which helps capture spatial
dependencies within the input vector. A pooling operation then
followed to reduce noise and stabilize the extracted feature maps. The
output was subsequently passed to a recurrent layer composed of
LSTM units, allowing the model to recognize and capture temporal
dependencies and sequential behavior in gaze data features, which are
often indicative of atypical visual processing in ASD. Figure 9 shows
the architecture of the CNN-LSTM model.

Subsequently, a fully connected layer was added to improve the
learned representations, followed by dropout layers placed at key
points in the architecture to prevent overfitting. The final
classification was made using a single sigmoid-activated output

Frontiers in Medicine

neuron, providing a probabilistic prediction of class membership
(ASD vs. non-ASD).

Binary cross-entropy served as the loss function for training the
model, optimized with an adaptive gradient-based algorithm.
Additionally, early stopping was employed based on validation loss
with a fixed patience to ensure convergence and minimize overfitting.
Training was performed in mini-batches to improve stability and
computational efficiency. Table 5 outlines the parameters used in the
CNN-LSTM architecture.

4 Experimental results

In this module, the experimental design of our study, containing
the measurement metrics used and a summary of the DL model
performance results, is presented.
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4.1 Environment setup

The procedures in our experiments were performed on a laptop
with a 7th-generation Intel Core i7 processor, 8 GB of RAM, and a
GPU with 16 GB of dedicated memory. The deep learning models
were built and tested using a suitable computational framework for
neural network training. These software and hardware setups
provided sufficient resources for practical model training and
performance assessment.

4.2 Data splitting

The clinical autism dataset was split using a stratified 5-fold
cross-validation method to ensure each fold had a balanced mix
of ASD and non-ASD samples. This method enhances the
robustness of model evaluation by reducing bias and variance,
enabling the model to be trained and tested on representative
data subsets.

TABLE 4 The parameters used in the LSTM model structure.

Parameter Value/description

Input shape (1, k) - one timestep, k selected features
LSTM units 64 memory units

Dropout rate (after LSTM) 0.4

Dense layer units 32 neurons

Dense layer activation ReLU (Rectified Linear Unit)

Dropout rate (after dense) 0.4

Output layer 1 neuron (sigmoid activation)

Optimizer Adaptive optimizer (Adam) with learning
rate = 0.001

Batch size 32

Number of epochs Up to 20

10.3389/fmed.2025.1690177

4.3 Evaluation metrics

This subsection presents the evaluation of the performance of the
proposed deep learning models used for autism detection in our
experiments. A variety of evaluation and performance metrics,
including sensitivity, precision, recall, accuracy, F1 score, and the
confusion matrix, are employed for this purpose. Each of these
measures offers a different perspective, highlighting various aspects of
the model’s effectiveness and identifying areas where it performs well
or may need improvement.

TN+TP

Accuracy =—————x100 (6)
TP+TN+FN+FP
Precision x Recall
Fl-score=2x———x100 (7)
Precision + Recall
Sensitivi P (8)
ensitivity = ——
RIS
. N
Specificity = T 9)

N+FN

4.4 Validation results of the LSTM model

The outcomes of testing the LSTM model for autism detection
are presented in the subsection and shown in Table 6, which
demonstrates that it performs consistently well across all five folds
for both ASD and Non-ASD classifications. In nearly all cases,
precision, recall, and F1-scores stay above 99%, indicating that the
LSTM provides good performance at correctly classifying both
positive (ASD) and negative (non-ASD) cases with very few
mistakes. Non-ASD predictions have very balanced precision and
recall, often approaching perfect agreement. At the same time, ASD
predictions also reach similarly high values, showing that the model
can capture subtle temporal patterns in eye-tracking data. The slight
differences between folds suggest that the model’s generalization

Eye-tracking
dataset

Convolutional

Convolutional
Layer with 128 Layer with 64

Early stopping Patience = 5 epochs, monitor = validation loss . I L L .
results are steady, with no significant decline in predictive quality
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: ... 5 ASD
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FIGURE 9
The structure of the CNN-LSTM based model.
Frontiers in Medicine 10 frontiersin.org


https://doi.org/10.3389/fmed.2025.1690177
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Al-Adhaileh et al.

across different data partitions. Overall, the LSTM model’s metrics
confirm that it is strong and reliable at distinguishing between ASD
and non-ASD participants.

On average, the LSTM model achieved excellent performance,
with Non-ASD classifications showing 99.70% accuracy, 99.69%
precision, 99.86% recall, and a 99.77% Fl-score. For ASD
classifications, the model demonstrated similarly strong results,
with 99.74% accuracy, 99.39% precision, 99.56% recall, and a
well-balanced F1-score. These averages highlight the model’s
consistent ability to correctly classify both categories with
minimal performance trade-offs, indicating high reliability and
generalization across all folds. As shown in Figure 10, which
represents the confusion matrices for the LSTM model, in Fold
1, the model demonstrated commendable performance, achieving
137,666 TN and 71,359 TP. The presence of only 507 and 183 FN
underscores its effectiveness in accurately classifying instances.

TABLE 5 Summary of the parameters used in the CNN-LSTM model

architecture.

Component Parameter/setting

Input shape

(1, k) — one timestep, k selected features

Convolutional layer

64 filters, kernel size = 3, activation = ReLU

Padding Same (to preserve input dimensions)
Pooling layer Max pooling, pool size = 1
LSTM layer 64 memory units

Dropout (after LSTM) 0.4

Dense layer

32 neurons, activation = ReLU

Dropout (after dense)

0.4

Output layer

1 neuron, activation = Sigmoid

Loss function

Binary Cross-Entropy

Optimizer Adam, learning rate = 0.001

Batch size 32

Epochs Up to 20

Early stopping Patience = 5 epochs, monitor = validation loss

TABLE 6 Summary of testing classification results of the LSTM model.

10.3389/fmed.2025.1690177

In Fold 2, the model maintained this strong trajectory, with
138,149 TN, a mere 24 FP, and 213 FN, reflecting high specificity
and sensitivity in its predictions. Moving to Fold 3, the results
revealed 138,065 TN and 70,609 TP, though the FN count
increased to 933, indicating a slight rise in misclassifications
while still demonstrating robust classification capabilities. In
Fold 4, the model recorded 137,867 TN and 71,202 TP,
accompanied by 306 FP and 340 FN, which points to a balanced
performance across classifications. Finally, Fold 5 showcased the
model’s impressive predictive accuracy with 138,172 TN and only
1 FP; however, the FN rose to 503, suggesting the necessity for
further examination of these misclassifications to enhance overall
performance. Figure 10 describes the model training and
validation accuracies within five folds.

The accuracy curves for the LSTM model across the five folds
offer a clear view of its training and validation performance
throughout the epochs. In Fold 1, the training accuracy begins at
around 0.96 and steadily rises to about 0.99 by the end, while the
validation accuracy starts similarly at 0.96 and stays at a
comparable level. This shows a good fit, with no significant
overfitting. Moving to Fold 2, both training and validation
accuracies follow a similar pattern, starting near 0.95 and
approaching 1.00, indicating strong generalization of the model.

In Fold 3, the training accuracy begins at approximately 0.94
and increases to nearly 1.00, with validation accuracy showing a
similar upward trend and remaining high throughout. For Fold
4, training accuracy starts around 0.94 and gradually rises,
stabilizing near 0.99, while validation accuracy reflects this
improvement, indicating the model’s robustness across epochs.
Finally, in Fold 5, training accuracy begins at roughly 0.95 and
reaches about 0.99, with validation accuracy consistently close to
this level, demonstrating strong performance without notable
differences between training and validation results. Figure 11
shows the training and validation losses across five folds.

The loss plots for the LSTM model across the five folds, shown in
Figure 12, provide valuable insights into its training and validation
performance during the epochs. In Fold 1, the training loss starts
relatively high but quickly drops to about 0.02, indicating effective
learning. However, there is a noticeable spike in validation loss around

Fold No. Labels Accuracy Precision Recall Fl-score Support
Fold 1 Non-ASD 99.67 99.87 99.63 99.63 138,173
ASD 99.29 99.74 99.52 71,542
Fold 2 Non-ASD 99.89 99.85 99.98 99.91
ASD 99.97 99.70 99.83
Fold 3 Non-ASD 99.50 99.33 99.92 99.62
ASD 99.85 99.70 99.27
Fold 4 Non-ASD 99.69 99.75 99.78 99.77
ASD 99.57 99.52 99.55
Fold 5 Non-ASD 99.76 99.64 100 99.82
ASD 100 99.30 99.65
Average Non-ASD 99.70 99.69 99.86 99.77
ASD 99.74 99.39 99.56
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epoch 12, reflecting some fluctuation in the models ability to
generalize. In Fold 2, the training loss shows a similar pattern,
decreasing from around 0.14 to approximately 0.02, while the
validation loss remains stable and low, emphasizing the model’s
strong performance.

In Fold 3, the model’s training loss begins at approximately 0.16
and declines to around 0.04, with validation loss closely following at
about 0.02, suggesting consistent performance and minimal

10.3389/fmed.2025.1690177

overfitting. For Fold 4, training loss steadily decreases from about 0.17
to around 0.05, while validation loss shows minor fluctuations but
stays low, indicating the model’s robustness throughout the training
process. Finally, in Fold 5, the training loss begins at around 0.14 and
drops to approximately 0.04, with validation loss remaining
consistently around 0.02, demonstrating strong overall performance
and effective generalization without significant discrepancies between
training and validation losses.
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Displaying the confusion matrices obtained by the LSTM model within five-fold cross-validation.
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Displaying the model training and validation accuracies within five folds of the LSTM model. (a) fold 1 (b) fold 2 (c) fold 3 (d) fold 4 (e) fold 5.
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4.5 Validation results of the CNN-LSTM

The CNN-LSTM model validated consistently high testing results
across all folds for individual Non-ASD and ASD classifications.
Non-ASD predictions showed near-perfect precision, recall, and
F1-scores of about 99.8%, while ASD predictions maintained similarly
strong results with precision at 99.72%, recall at 99.63%, and F1-score
at 99.67%. These stable metrics indicate the models strong
generalization ability and its success in taking spatial and temporal
patterns in eye-tracking data for accurate autism detection. Table 7
presents a summary of testing and evaluation results of the
CNN-LSTM model.

Frontiers in Medicine

The CNN-LSTM model demonstrated outstanding average
performance, with Non-ASD classifications attaining 99.78%
(+0.010%) accuracy, alongside precision, recall, and F1-scores of
99.81, 99.85, and 99.83%, respectively. For ASD classifications, the
model achieved similarly strong outcomes, recording a 99.67%
Fl-score. These testing results highlight the models balanced
predictive strength and its consistent reliability in distinguishing
between the two classes. As shown in figure cited above, across all five
folds, the confusion matrices gained by the CNN-LSTM model
revealed consistently strong classification performance for both ASD
and Non-ASD classes, with high amounts of true positives (TP) and
true negatives (TN) and only minimal false positives (FP) and false
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The training and validation losses of the LSTM model cross five folds. (a) fold 1 (b) fold 2 (c) fold 3 (d) fold 4 (e) fold 5.

negatives (FN). In Fold 1, there were 138,073 TN, 71,160 TP, 100 FP,
and 382 FN, while Fold 2 recorded 138,091 TN, 71,383 TP, 82 FP, and
159 FN. Similarly, Fold 3 achieved 138,081 TN, 71,326 TP, 92 FP, and
216 FN; Fold 4 yielded 138,095 TN, 71,354 TP, 78 FP, and 188 FN; and
Fold 5 resulted in 138,090 TN, 71,333 TP, 83 FP, and 209 EN. These
results demonstrate the models stable and reliable capability to
differentiate between non-ASD and ASD with
misclassifications remaining minimal relative to the total rate of
samples in each class. Figure 13 depicts the CNN-LSTM model
training and validation accuracies across five folds.

The accuracy plots for the CNN-LSTM model across the five folds,
as represented in Figure 14, which is cited above, introduce a detailed

individuals,
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view of the model training and validation performance throughout
the epochs.

In Fold 1, the training accuracy begins at approximately 0.93 and
climbs steadily to nearly 1.00 by the end of the training, while the
validation accuracy follows closely, stabilizing at around 0.99. This
suggests a strong fit of the model without significant overfitting. In Fold
2, the training accuracy exhibits a similar trajectory, beginning around
0.93 and reaching over 0.99, though it experiences some fluctuations. The
validation accuracy remains high, indicating effective generalization.

For Fold 3, the training accuracy starts at about 0.93 and fluctuates
before ultimately stabilizing near 1.00, while the validation accuracy
experiences notable dips, reflecting some challenges in generalization
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TABLE 7 Summary of testing results of the CNN-LSTM model.

Fold No. Labels Accuracy Precision Recall Fl-score Support
Fold 1 Non-ASD 99.77 99.72 99.93 99.83 138,173
ASD 99.77 99.86 99.47 71,542
Fold 2 Non-ASD 99.89 99.88 99.94 99.91
ASD 99.89 99.78 99.83
Fold 3 Non-ASD 99.82 99.84 99.88 99.86
ASD 99.77 99.69 99.73
Fold 4 Non-ASD 99.60 99.82 99.57 99.70
ASD 99.18 99.65 99.41
Fold 5 Non-ASD 99.82 99.78 99.94 99.86
ASD 99.89 99.58 99.73
Average Non-ASD 99.78% + 0.010% 99.81 99.85 99.83
ASD 99.72 99.63 99.67

during certain epochs. In Fold 4, training accuracy exhibits a similar
pattern, beginning at approximately 0.94 and rising towards 1.00, with
validation accuracy following suit, although it too shows slight
fluctuations at various points.

Finally, in Fold 5, the training accuracy commences at around 0.90
and gradually ascends to approximately 1.00, with validation accuracy
closely tracking this increase, albeit with some variability early in the
training. Inclusively, the CNN-LSTM model demonstrates strong
performance across all folds, characterized by high training and
validation accuracies, although occasional fluctuations highlight areas
for further investigation regarding generalization. Figure 14 gives
model training and validation losses during five-fold cross-validation.

The training and validation losses, as depicted in Figure 15 for the
CNN-LSTM model across the five folds, provide critical insights into
its training and validation dynamics through the epochs.

In Fold 1, the training loss initiates at a relatively high value
but demonstrates a rapid decline, stabilizing around 0.02, which
indicates effective model training. However, validation loss
remains consistently low, reflecting robust generalization
capabilities. In Fold 2, the training loss follows a similar descending
trajectory, beginning at approximately 0.18 and reducing to about
0.02. Validation loss exhibits minor fluctuations but remains stable,
underscoring the model’s reliability.

In Fold 3, the training loss fluctuates significantly, starting at
around 0.20, with notable spikes at certain epochs, while validation
loss remains comparatively low, suggesting intermittent challenges in
the model’s generalization ability. In Fold 4, training loss illustrates a
marked decrease from nearly 0.20 to around 0.05, but experiences a
spike around epoch 7. Validation loss, on the other hand, remains
consistently low, indicating resilience in performance.

Finally, in Fold 5, the training loss begins at about 0.25 and
decreases sharply, stabilizing around 0.02. Validation loss remains low
throughout, further confirming the model’s effective generalization.

4.6 Statistical validation

The CNN-LSTM model was evaluated using 5-fold cross-
validation, achieving a mean accuracy of 99.78% with a standard
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deviation of 0.11%, indicating stable performance across folds. A
one-sample t-test against a 95% baseline yielded t(4) = 14.2, p < 0.001,
confirming that the high accuracy is statistically significant and
unlikely due to chance. These results demonstrate that the model is
both accurate and robust across different data splits.

5 Results and discussion

ASD is a neurodevelopmental condition that encompasses
difficulties with social interaction, communication, and repetitive
behaviors. This complexity requires new assessment methods. In this
study, we used eye-tracking data to look at visual attention patterns.
This provides valuable insights into the different gaze behaviors of
persons with ASD compared to those without the condition.
Eye-tracking metrics are important indicators of how people respond
to social stimuli, which can be crucial for diagnosis.

To ensure the strength and consistency of our evaluations,
we applied a stratified 5-fold cross-validation approach. This approach
keeps the same proportion of non-ASD and ASD cases across all
training and validation sets. This approach reduces bias and improves
the generalizability of our results. We evaluated the performance of
both the LSTM model and the CNN combined with the LSTM (CNN-
LSTM) model for autism detection. The average accuracy results were
impressive, with the CNN-LSTM model at 99.78% and the LSTM
model at 99.70% as shown in Figures 16, 17. These high accuracy rates
highlight the effectiveness of using machine learning models to find
subtle patterns linked to autism.

The slight difference in performance suggests that the added
convolutional layers in the CNN-LSTM model help extract better
features from the eye-tracking data. Overall, these findings contribute to
the growing research on autism. They also hold great promise for clinical
applications by enabling prior and more precise analyses. This could lead
to enhanced support and intervention strategies for individuals with
ASD. Figures 15, 16 illustrate a comparison of the accuracy and loss
performance of the LSTM and CNN-LSTM models for each fold.

The comparison between the existing system and our developing
model, based on a DL model to detect and diagnose ASD using ET
technology, is shown in Table 8.
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6 Conclusion

In this research, we examined the use of DL models to detect
autism based on clinical data collected through eye-tracking.
We evaluated the performance of LSTM and a hybrid CNN-LSTM
model for this purpose. Using stratified five-fold cross-validation,
we thoroughly assessed both models. Our results showed that the
hybrid CNN-LSTM model outperformed the standalone LSTM,
achieving over 99% accuracy. This suggests that the hybrid model is

Frontiers in Medicine

effective in detecting autism using eye-tracking data. The high
accuracy of the CNN-LSTM highlights the benefits of combining
convolutional layers for feature extraction and LSTM for analyzing
temporal patterns in eye-tracking data for autism detection. These
findings have important implications for developing automated tools
for autism diagnosis, which could enable earlier detection and
intervention. Early identification of ASD is essential for better
management and improved outcomes. By utilizing eye-tracking data
and deep learning techniques, we can support more accurate and
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Depicts the training and validation accuracies of the CNN-LSTM across five folds. (a) fold 1 (b) fold 2 (c) fold 3 (d) fold 4 (e) fold 5.
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efficient diagnostic processes. In summary, based on existing literature
and our experiments, we found that applying a relevant cross-
validation approach, training the models on different data folds rather
than all at once, enhances the robustness of deep learning-based
autism diagnosis models. This method proves more effective than
other data balancing techniques when only applied to the training
data. In future work, we plan to expand this research by developing
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multimodal data approaches for autism detection that incorporate
attention mechanisms into deep learning models. Including attention
mechanisms could help the model focus on the most relevant features
in the data, leading to better detection accuracy and more precise
results. Exploring multimodal data, combining eye-tracking with
other behavioral or physiological data, could provide deeper insights
into autism and improve detection capabilities.
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TABLE 8 Comparison results.

Ref. Years Accuracy
Ahmed et al. (19) 2023 98.33%
Akter et al. (29) 2021 87%
Carette et al. (20) 2022 83%
Cilia et al. (36) 2024 93.10%
Elbattah et al. (26) 2021 84%
Enhanced propped system 2025 99.78

We have used cross-validation against the Ahmed et al. (20), who used the training and
testing.
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