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1 Introduction

Today, membranes play an increasing role in separation processes across a wide range of
industries, including water treatment, biomedical applications, bioseparations, and gas
separations (Yeom et al., 2022). Numerous different membrane types exist, which can be
broadly categorized as either porous or non-porous, where poresmay be ormay not be filled with
a separate phase from the bulk solvent and membrane phases. In addition, various driving forces
exist - pressure, concentration, electric field, etc.—that lead to transport across themembrane. For
a porous membrane, solute transport is usually governed by convective flow through the pores.
Micron-sized pores are used to reject particles such as cells and cell debris while at the other end of
the size range, nanoscale pores act as molecular sieves, selectively allowing smaller molecules to
pass through. Nanoscale domains in non-porous (dense) membranes control separation
selectivity and permeability by manipulating solute distribution and diffusivity. These
nanostructures can also influence solute behavior, like adsorption/desorption at membrane
interfaces. At intermediate pore sizes, convection and diffusionmay both play a significant role in
solute transport as is often observed for nanofiltration membranes. In addition surface properties
such as charge can have a significant effect on performance.

Simulation and modeling play an increasingly important role in the design of these
separation processes. Computational methods offer the possibility of enabling rational
design of new membranes and membrane processes (Kancherla et al., 2021; Samei and
Raisi, 2022), supporting the optimization and understanding of complex membrane-based
systems. They can be used to examine molecular interactions that lead to adsorption and
desorption of species as well as fouling. This can guide the development of new membranes
leading to improved performance. Nonetheless, the simulation and modeling of membrane
separation processes presents a range of formidable challenges that demand our attention.
In this contribution, we delve into the existing hurdles relating to simulation and modeling.
Our aim is to highlight these issues and emphasize the need for increased focus by
researchers engaged in the simulation and modeling field.

This article is divided into three sections. The first focuses on the membrane casting
process and modeling of membrane structure. The second section discusses simulation of
separations using dense membranes, which includes, gas separations, pervaporation, and
perstraction. The final section discusses separations involving porous membranes. Some
membranes, such as those used for reverse osmosis, forward osmosis, dialysis, etc. may be
considered at the boundary between dense and porous membranes and have been included
with dense membranes.
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2 Challenges in modeling membrane
formation and structure

The specific process used to create a membrane largely
determines its structure and, in turn, its separation properties
and performance. For instance, porous and dense membranes are
typically formed through distinct mechanisms, which leads to
distinct challenges (Wang et al., 2022). Modeling the formation
process is important for understanding how controllable changes to
the fabrication protocol can adjust membrane function. It is
important to distinguish between modeling of the actual
formation process and the development of algorithms that
predict the resulting membrane structure. As we will highlight,
there are many valid procedures, differing widely from the real
formation process, that produce membrane structures reflecting
experimentally determined properties. This is not indicative of
the value of the models—rather, predictions of how formation
conditions affect the final structure of the membrane are
important for both future modeling studies as well as engineering
design. However, accurate predictions of structure do not indicate a
causal link to the details of formation. Due to the scarcity of real-
time experimental data, models are often judged solely on their
ability to produce final structures matching experiments. We
encourage, instead, careful consideration and a statement of the
limitations of a particular modeling technique and to strive towards
an understanding of precisely which features of the membrane
formation process, or the final structure, are emulated.

2.1 Porous membranes

Many models have been developed for predicting pore
geometry, however, accurately representing the complex and
often irregular pore structures within membranes can be
challenging. Though there has been interest in producing
membranes through electrospinning (Chiao et al., 2022; Aijaz
et al., 2023) or controlling block-copolymer morphologies
(Nunes, 2016; Hampu et al., 2020), the primary mechanism for
forming porous membranes is through phase inversion (Tang et al.,
2021). This involves inducing solid‒liquid phase separation through
a non-equilibrium process to modify either temperature and/or
solution composition (either through evaporation of solvent or
introduction of a non-solvent).

For detailed surveys of porous membrane formation modeling
techniques, we direct readers to a comprehensive recent review by
Tang et al. (2021). Modeling techniques can roughly be divided into
four categories: continuum models, phase-field (or, more generally,
mean-field) treatments, coarse particle-based simulations, and
atomistic particle-based simulations. Continuum models can
capture long time and length scales associated with the phase
inversion process, but do not directly provide details on the
molecular or meso-structure of the formed membrane. Such
features are inferred heuristically by tracing the time-series of
composition or temperature within regions of the precipitating
polymer solution through a known phase diagram. While this
methodology helps to rationalize and improve membrane
formation processes, the requirement of significant experimental
data (e.g., thermophysical properties) pertaining to the specific

system of interest remains a barrier to the rapid computational
exploration of novel polymeric species or more complex
fluid mixtures.

While phase-field simulations can provide approximate
dynamics of phase separation across a wide range of length-
scales, and hence directly predict morphologies, they are limited
by a similar lack of generality to unknown systems. Specifically, such
simulations are only chemically specific to the extent of known data,
typically utilizing simple Flory‒Huggins or polynomial models of
thermodynamics. While the possibility of introducing further
information on chemical structure through more sophisticated
thermodynamic models exists, the computational feasibility and
limit for improving phase-field simulations in this manner remains
to be clarified.

Particle-based simulations can provide chemical specificity,
enhanced transferability to new systems, and resolution at a
molecular scale. However, this comes at increased computational
expense and hence smaller overall length and time scales that can be
explored. In dissipative particle dynamics (DPD), molecules are
represented as coarse blobs experiencing both molecular as well as
hydrodynamic forces. Unlike fully atomistic models, DPD
simulations can currently reach the length and time scales
necessary for observing the formation of membrane meso-
structures. Currently, atomistic simulations are not commonly
used to model membrane formation but are more typically
employed to study nanoscale membrane properties once an
overall structure is known. A major challenge lies in identifying
ways to couple models at different scales in a single simulation.
Complications arise from the strong coupling during phase
inversion of fluid dynamics, mass transport, and
thermodynamics, all in an intrinsically non-equilibrium, non-
steady-state setting.

2.2 Non-porous membranes

Dense membranes are frequently produced through interfacial
polymerization to ensure a very thin film that ensures selectivity,
while minimizing overall membrane resistance (Ji et al., 2000; Wang
et al., 2021). Though interfacial polymerization takes place over
smaller length and time scales than phase inversion, it introduces the
unique challenge of modeling chemical reactions simultaneously
with mass transport and phase separation. Non-porous membranes
often have intricate molecular structures that require accurate
representation in simulations. Obtaining detailed structural
information can be challenging, both for synthetic and complex
natural membranes.

Dense membrane formation modeling employs some of the
same methods as for porous membranes. However, a greater
emphasis is placed on atomistic simulations and phase-field
treatments are excluded due to phase separation of the thin film
occurring in tandem with the growth of polymer chains rather than
their nucleation or diffusion. Continuum models of interfacial
polymerization focus on reaction‒diffusion mechanisms, both
analytically and numerically, varying in the detail with which
polymer chains are treated (Berezkin and Khokhlov, 2006).
Though some techniques predict chain length distributions or
changes in diffusivities of polymers or monomers with degree of
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polymerization, details of the actual chain configurations or their
chemical structure are not present.

DPD simulations emulating polymerization through
aggregation of monomers have provided a more detailed view of
the interfacial polymerization process (Oizerovich-Honig et al.,
2010). Berezkin and Kudryavtsev (2013) used a multiscale
framework to couple DPD simulations to continuum-based
numerical simulations of the monomer diffusion. While the rigor
of such methods requires further validation, this represents an
important step in coupling simulation approaches at different
scales. Working in between DPD and atomistic resolution,
Muscatello et al. (2017) introduced a coarse-grained model of
interfacial polymerization that accounts for molecular shape and
bonding specificity. While accurately capturing many experimental
observations, these simulations were still limited by the size of the
simulation box and discrete, finite number of available reactants.

At an atomistic scale, models to this point have not focused on
the exact process of membrane formation, but instead on
“unphysical” algorithms (heuristic with no accurate
representation of the actual physics of the formation process) for
generating dense amorphous membranes that correspond to
experimental structures (Harder et al., 2009; Luo et al., 2011;
Ridgway et al., 2017; Liu et al., 2022; Vickers et al., 2022). A
number of software packages exist for generating amorphous,
long-chain polymer structures with atomistic resolution (Abbott
et al., 2013; Gissinger et al., 2020; Zhang et al., 2023). Applications of
such tools, in particular the most flexible, REACTER framework
(Gissinger et al., 2020), may prove fruitful for investigating the
interfacial polymerization process. It is important to note, however,
that all such tools heuristically simulate reactions. Simulations that
accurately represent reactions, and thus on some level include
quantum dynamics, are too computationally expensive to study
dense membrane formation on informative time and length scales.
However, neural-network potentials that accurately reproduce bond
breaking and forming in quantum simulations at a similar
computational cost to classical dynamics (Smith et al., 2017;
Zhang et al., 2018) represent an additional interesting future
possibility. While application of such toolsets and models may
lead to additional molecular-level insights, multiscale models will
likely be necessary to fully capture dense membrane formation at all
relevant time and length scales. For instance, if we wish to predict the
impact of a porous support with even small pores of tens to
hundreds of nanometers, atomistic simulations will quickly
become intractable. Such considerations again reinforce the
necessity of improved coupling between models at different scales.

3 Challenges in membrane simulation
and modeling in non-
porous membranes

3.1 Elucidating transport mechanisms

While macroscopic fluid flow through pores dominates
transport in porous membranes, non-porous membranes are
typically considered to involve a solution-diffusion mechanism of
transport. In the case of reverse osmosis, or more generally when
solvent significantly swells a membrane, there has been recent

debate over the balance between homogeneous diffusion and
diffusion through nanoscopic pores (Hegde et al., 2022;
Heiranian et al., 2023; Wang et al., 2023). While the picture of
clusters of water “hopping” between fluctuating nanoscale voids in
reverse osmosis membranes has been established in molecular
dynamics simulations (Shen et al., 2016), it has been elusive to
validate experimentally. Further, most efforts to date have focused
heavily on polyamide membranes for desalination. A significant
challenge lies in uncovering mechanistic understanding of transport
in novel membrane materials.

While solvent, water in particular, has been the focus of many
studies of transport through membranes, exploring solute transport
is also important and can provide critical insights into the
mechanism of transport (Shen et al., 2016). Unfortunately, this is
a tremendous challenge for solutes, such as ions, with very low
solubility in the membrane phase or nanoporous channel. The
reason is that passage of such a solute becomes an incredibly
rare event, occurring only on the order of microseconds at the
fastest. While a single event is potentially within the realm of state-
of-the art molecular dynamics simulations (at great computational
expense), a meaningful statistical sample for determining flux would
require hundreds of such events at a minimum. While non-
equilibrium pulling of ions through a membrane provides insight
into nanoscale pathways through a membrane (Luo et al., 2011),
rigorous estimates of transition rates of ions are only recently
emerging through the application of advanced sampling
techniques (Shoemaker et al., 2022).

3.2 Accounting for non-equilibrium effects

Transport across a membrane is by definition a non-equilibrium
process. Non-equilibrium approaches in molecular simulations
introduce external forces or biases to perturb the system from its
equilibrium state. Non-equilibrium methods enable the exploration
of specific processes, transitions, or reactions that may not occur
spontaneously in equilibrium simulations. The information
obtained from these simulations is particularly valuable for
understanding membrane-related phenomena, as they provide a
level of detail and resolution that surpasses what is achievable
through experimental techniques alone (Mollahosseini and
Abdelrasoul, 2021). This computational approach aids in
deciphering the intricacies of membrane structure, composition,
and dynamics, offering insights that can inform and guide
experimental studies. Moreover, the knowledge gained from
classical equilibrium molecular dynamics simulations and non-
equilibrium approaches plays a pivotal role in advancing the
design of the next-generation of reverse osmosis (RO)
membranes, fuel cell-energy production, and blood purification
through hemodialysis. The challenge is to ensure that the
simulated system represents reality.

Most typically, non-equilibrium driving forces are introduced
intomolecular dynamics simulations through net applied forces (per
unit area) to all or some subset of solution-phase molecules in order
to emulate a transmembrane pressure difference (Heiranian et al.,
2022). This may take the form of a solid interface that acts as a piston
(Shen et al., 2016; Shoemaker et al., 2022; Wang et al., 2023), a
constant acceleration or force applied to all solvent-phase molecules
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(Jiao et al., 2022), or a force applied to only a small region of solvent-
phase molecules (Monet et al., 2023). The latter has the advantage of
being generalizable to any external driving force, not just pressure
gradients. It also promises steady-state simulations without the
transient effects associated with rigid boundaries displacing a
fixed amount of fluid. Further innovations for applied non-
equilibrium gradients will be crucial moving forwards,
particularly those that rigorously couple to macroscopic fluid
transport theories or simulations.

3.3 Finite-size effects and
multiscale modeling

As mentioned in Section 2.2, there is already uncertainty
concerning the atomic-level structure of dense membranes. Further,
we expect significant variations in membrane morphologies for the size
of a typical membrane structure simulated in a particle-based
simulation. While in a macroscopic membrane, numerous polymer
and void configurations might be observed, a simulation only samples a
small snapshot of this diversity. Liu et al. (2022) have recently explored
the effect of random differences in membrane morphology on
permeance of water. They found that membrane density and pore
volume strongly correlate with equilibriumwater mobility, and, in turn,
water flux. Along with other recent studies highlighting the
heterogeneity of simulated membrane structures (Vickers et al.,
2022), this emphasizes a current need for examinations of finite-size
effects onmolecular simulation results. Recentwork byHaji-Akbari and
coworkers (Shoemaker et al., 2022) has highlighted the potential of
elegant theoretical corrections but requires generalization to
additional systems.

An additional challenge involving finite sizes relates to the
fluctuations and mesoscale structural shifts of simulated
membranes. In particular for polymeric membranes, the size of
the simulated system sets the size of the polymer chains and
effectively the length scale for voids and related fluctuations.
Even with periodic boundary conditions, the membrane and its
constituent polymer chains can be thought of as being somewhat
analogous to a fluctuating surface with a fixed period of oscillation.
Currently, it is not well-appreciated what size is necessary for these
fluctuations to appear “bulk-like,” or reach the macroscopic limit.
Beyond flexible polymeric membranes, general strategies to enable
mesoscopic structural transitions of the membrane material are
currently not available. While coarse-grained simulations, such as
DPD, can capture these structural transitions, rigorous methods are
largely unavailable for linking them back to atomistic resolutions at
which diffusive transport is represented realistically. While purely
geometric back mapping strategies have a long history (Peter and
Kremer, 2009), they do not ensure rigorous sampling of the
atomistic ensemble. Recent strategies based in machine learning
show promise (Sidky et al., 2020; Monroe and Shen, 2022), but this
remains an open research area that will likely grow in the future.

3.4 Membrane fouling

Unlike porous membranes, fouling on non-porous membranes
does not involve steric blocking of pores, but instead the adsorption

of foulants at a continuous interface. When the layer of adsorbents,
or “cake” grows large enough, it can obstruct the passage of water or
other solutes, hindering the separation process. Fouling at a variety
of interfaces has been extensively investigated with a variety of
models and resolutions and will not be discussed at length here.
Despite extensive literature, strategies for reducing fouling are still
limited by lack of molecular-level mechanistic knowledge and
strategies for manipulating features at this same scale to tune
solute-surface interactions. Foundational studies examining the
influence of nanoscale heterogeneity, both geometrical (Xi et al.,
2017) and chemical (Monroe et al., 2021), on solute adsorption are
still limited to model systems and are just at the beginning of
exploring realistic materials.

4 Challenges in membrane simulation
and modeling in porous membranes

Porous membranes are classified into the following categories.
Pressure driven processes include microfiltration (MF),
ultrafiltration (UF), and nanofiltration (NF). Temperature driven
processes include membrane distillation (MD) (Hitsov et al., 2015;
Dong et al., 2021) while partial pressure-driven processes include
blood oxygenation and dehydration. Other driving forces include
osmotically-driven process such as pressure restarted osmosis
(PRO) and forward osmosis (FO) and electrically driven process
such as electrodialysis (ED) (Pismenskiy et al., 2006). Simulation
and modeling of these porous membranes have many significant
challenges e.g., using an appropriate adsorption isotherm for
adsorptive membranes, description of fouling, etc.

4.1 Pore structure and size distribution

Many models have been developed for predicting pore
geometry, however, accurately representing the complex and
often irregular pore structures within membranes can be
challenging. While modeling the membrane pores, considering
transport phenomena is essential. Different types of diffusion can
occur through porous membranes such as surface diffusion,
molecular diffusion (Brownian motion), and Knudsen diffusion.
As there are different types of diffusion mechanisms present in the
system, it leads to complexity in the modeling process (Bukowski
et al., 2021). Moreover, fully atomistic model of the amorphous
mesoporous materials are not frequently employed due to the time-
consuming nature of generating representative structures. Typically,
simple models are favored for simulating pore structure. For
instance, pore network models are a popular choice for modeling
diffusion through mesoporous materials. This model assumes
simple pore shapes such as long smooth cylinders, which are not
physically realistic. Hence, tortuosity, τ, is generally used as an
adjustment factor to correct for such deficiencies in the models
(Bukowski et al., 2021).

Another challenge is to predict the connectivity of pore networks
in mesoporous materials experimentally. This is often measured
experimentally by mercury porosimetry measurements or nitrogen
adsorption methods. Moreover, tomographic imaging techniques
are unable to visualize amorphous porous materials at a resolution
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better than a few nanometers, which makes it difficult for accurate
models to be created (Bukowski et al., 2021).

As mentioned in Section 2.1, simulation-derived porous
structures are far from perfect reflections of reality. For instance,
the timescales within DPD are significantly shorter than real-world
cases, particularly in the case of the temperature induced phase
separation (TIPS) process, which takes several seconds to complete
the formation of a membrane pore geometry. Despite time and
length scales of several microseconds and micrometers respectively,
this is insufficient for realistically replicating the exact conditions of
large-pore membranes. As membranes pores can vary in size, shape,
continuity, and distribution, it remains difficult to create a precise
model that accurately reflects real-world conditions.

4.2 Membrane fouling

Membrane fouling, where particles or solutes block the membrane
pores or deposit irreversibly on the membrane surface, can significantly
affect process efficiency. During membrane filtration, foulants have the
strong potential to be attracted towards the membrane surface due to
drag forces. Hence, a concentration gradient builds up near the interface
of the membrane compared to the bulk solution. In addition, cake
formation occurs when increasing amounts of foulants deposit on the
membrane surface and pore blocking occurs when the foulants or
particles smaller than the membrane pores are trapped and adsorbed
onto the pores wall (Yang et al., 2022). There are many studies which
focus on modeling and simulation techniques, such as computational
fluid dynamics (CFD) (Yan et al., 2016), Monte Carlo simulation (Chen
et al., 2005) and artificial neutral networks (ANN) (Corbatón-Báguena
et al., 2016), for predicting fouling behavior. However, there are
challenges due to the diverse nature of foulants, such as physical
structure, conformation, chemistry, functionality, and charge, which
is a very important concern while modeling fouling behavior. Another
concern is model validation. For example, ANN can play a crucial role
in selecting the optimum operating conditions and maximizing
performance; however, this involves trial-and-error processes to
determine the best architecture. It is important to direct attention to
this because such procedures may not consistently provide reasonable
results and extrapolations (Jawad et al., 2021).

4.3 Transport phenomena

Modeling the transport of solutes through membranes involves
intricate phenomena such as diffusion, convection, and adsorption.
There are successful models reported in literature for diffusion
(Wijmans and Baker, 1995), convection (Boon et al., 2011), and
adsorption (Weber et al., 1991). Nevertheless, acquiring these
processes precisely in simulations requires sophisticated models.
In addition, accurately modeling the interactions of the fluid flow
and solute transport can be challenging.

4.4 Multiscale modeling

Membrane separation processes occur at multiple scales,
from the molecular level to the macroscopic system level.

Recent multiscale modeling work by Cooper et al. (2023)
illustrates the necessity of resolving details across various
length scales. The authors first use self-consistent field theory
to generate triblock copolymer membrane structures, then
parametrize a kinetic Monte Carlo model for estimating water
diffusivities based on DPD simulations in select, simple
geometries. By comparing to their previous studies utilizing
only field theory (Howard et al., 2020) and DPD, (Aryal et al.,
2020), respectively, they find that including information on the
conformations of hydrophilic chains extending into the pores
changes the relationship between diffusivity and pore geometric
features. This study highlights how ignoring physics at a specific
scale can drastically change conclusions. Recent techniques for
switching between field theories and coarse-grained molecular
dynamics in a single simulation are promising methods for more
efficiently accessing longer length scales while explicitly retaining
information on chain conformations (Lequieu, 2023).

Another exemplary study of multiscale modeling comes from
investigations of membrane fouling. In early studies of fouling, non-
covalent interactions between proteins and the membrane surface
were not considered. Curcio et al. (2018) improved the multiscale
modeling of fouling in ultrafiltration membranes with consideration
of the interaction between bovine serum albumin and a membrane
surface. Still, integrating these scales into a comprehensive model
can be a challenging task.

5 Outlook

The modeling of membrane processes clearly involves a myriad
of physical phenomena occurring across a broad range of time and
length scales. No single model can capture all relevant physics within
a membrane, indicating a grand challenge in rigorously linking
models within multiscale frameworks (Borg et al., 2018; Curcio et al.,
2018; Nikfar et al., 2020), where, ideally, models at different scales
interact. High-resolution simulations can be computationally
intensive, requiring substantial computational resources. This can
limit the feasibility of simulating large-scale industrial processes. It is
often difficult to obtain experimental data for validation, especially
for new membrane materials and configurations. Accurate
validation is crucial for ensuring the reliability of models. Real-
time experimental monitoring across all relevant length and time
scales remains difficult, making detailed comparisons with
experimental results another grand challenge. There are
opportunities to more closely link modeling results to
experiments through direct calculation of experimental
observables. For instance, it is best practice in atomistic
simulations to calculate scattering patterns (of X-rays, neutrons,
etc.) to compare to experimental data rather than comparing to the
interpretation of this raw data.
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