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1 Introduction

Ion exchange membranes are essential components in electrochemical systems, playing
a crucial role in energy and environmental applications. These membranes are broadly
classified into proton exchange membranes (PEMs) and anion exchange membranes
(AEMs). Despite being a relatively young technology, AEMs have attracted considerable
attention for energy applications due to their potential to achieve a significant reduction in
materials and device costs thanks to their alkaline character. This cost reduction facilitates
mass production and commercialization, thereby expanding the applicability of
electrochemical energy technologies.

AEMs serve as barriers between the electrochemical device’s anode and cathode,
enabling selective anion transport between the electrodes, while preventing the
undesired crossover of reactants and gases. Since the first energy-related application
was demonstrated about a decade ago for fuel cells (Dekel, 2013), AEM-based
technologies have expanded their applications to water electrolysis, redox flow batteries,
CO2 electrolysis, CO2 separation, and, very recently, electrochemical oxygen separation.
Figures 1, 2 show different AEM-based electrochemical systems and their schematic
representations, respectively. Intensive research efforts have recently been dedicated to
developing innovative AEMs for specific targeted activities to meet the diverse needs of both
established and emerging AEM-based electrochemical systems.

Structurally, AEMs consist of a polymeric backbone embedded with fixed positively
charged functional groups (Dekel, 2017). Various polymer backbones such as polysulfone
(Parrondo et al., 2014), poly (phenylene oxide) (Parrondo and Ramani, 2014; Willdorf-
Cohen et al., 2018; Chu et al., 2019), fluoropolymers (Ponce-González et al., 2018; Adhikari
et al., 2020; Soni et al., 2021), polystyrene (Vengatesan et al., 2015), and polybenzimidazole
(Aili et al., 2017), have been developed, along with different cationic functional group
chemistries including piperidinium (Lu et al., 2020; Xiao et al., 2021), trimethyl ammonium
(Arges et al., 2012; Li et al., 2012; Cha et al., 2020), spirocyclic (Xue et al., 2020; Qiao et al.,
2021), imidazolium (Fan et al., 2019; Park et al., 2020) and carbazolium (Gjineci et al., 2020)
groups to optimize ion conductivity and chemical stability.

Each electrochemical system has different specific requirements for AEM properties,
and a thorough understanding of these requirements is crucial for determining optimal
membrane performance. Understanding their impact on overall system performance is
essential for advancing AEM technology. Numerous studies have explored and developed
new approaches to tailor and improve the properties of AEMs (You et al., 2020; Clemens
et al., 2023; Zhang et al., 2025) and evaluated their performance in different AEM-based
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systems. Yet, significant gaps remain in understanding the
interactions between AEM properties and the specific demands
of diverse electrochemical systems. Addressing these challenges
will provide insights to drive further research and innovation in
AEM technology, ultimately advancing both scientific
understanding and practical implementation of AEMs in
electrochemical systems.

2 Challenges in anion exchange
membranes across different energy-
related applications

2.1 AEM fuel cells (AEMFCs)

AEMFCs (Figure 2a) have gained considerable attention in
recent years as a promising technology for sustainable energy
production due to their ability to utilize a wide range of
affordable and abundant precious-metal-free catalysts and cost-
effective fluorine-free hydrocarbon AEMs (Dekel, 2017). As the
core component of the AEMFC, AEMs allow the transport of

hydroxide anions and water between the electrodes and prevent
fuel, usually H2, crossover.

Remarkable progress has been reported in AEMFCs in the past
few years, including the development of highly active platinum
group metal (PGM)-free catalysts (Lilloja et al., 2020; Santori et al.,
2020; Hossen et al., 2023) and critical raw material (CRM)-free
AEMFCs (Biemolt et al., 2021). An AEMFC lifetime of 5,000-
15,000 h was theoretically demonstrated (Yassin et al., 2020), and
a cell lifetime of 2,000 h was experimentally proven (Ul Hassan et al.,
2020). Altogether, the research community has made very
impressive progress in such a short time. Despite these
significant advances in AEMFCs, certain AEM-specific challenges
still need to be addressed to bring the performance and stability of
this technology closer to practical levels. A recent study identified
key parameters and ideal properties required to design future
advanced AEMs for AEMFC technology (Yassin et al., 2024).
This provides a framework for developing highly stable
membranes capable of long-term operation of AEMFCs.

Water management poses a significant challenge during
AEMFC operations, particularly at high current densities. The
anode produces excess water while the cathode consumes it,

FIGURE 1
Anion-exchange membrane-based electrochemical systems.
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leading to an imbalance that can cause flooding at the anode and
dehydration at the cathode (Omasta et al., 2018; Eriksson et al.,
2023). This decrease in hydration reduces the hydroxide
conductivity of the ionomeric materials, resulting in increased
ohmic losses and resulting in poorer cell performance and
stability (Dekel et al., 2019). Strategies to enhance water
transport include developing AEMs with higher water diffusivity

and thinner thickness (Leonard et al., 2020; Yassin et al., 2020) and
increasing operating temperature to facilitate water redistribution in
the cell (Douglin et al., 2020; Yassin et al., 2021).

The cathode dehydration also affects the AEM chemical
stability, which remains a critical challenge for achieving long-
term AEMFC operation (Dekel et al., 2019). Under high pH and
low hydration conditions, the cationic functional groups become

FIGURE 2
Schematic representation of different electrochemical systems based on Anion-Exchange Membranes (AEMs). (a) AEM fuel cell (AEMFC); (b) AEM
water electrolyzer (AEMWE); (c) Redox flowbattery (RFB); (d)CO2 electrolysis (CO2E); (e) AEMCO2 separator (AEMCS); (f)AEMoxygen separator (AEMOS).
Hydrogen oxidation reaction (HOR); Oxygen reduction reaction (ORR); Hydrogen evolution reaction (HER); Oxygen evolution reaction (OER); CO2

reduction reaction (CO2RR).
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susceptible to severe chemical attack by poorly solvated and highly
reactive hydroxide anions (Dekel et al., 2018). The cation
degradation causes a reduction of the polymer ion exchange
capacity and, in turn, a reduction in membrane ionic
conductivity, resulting in a rapid decline in cell performance
(Dekel et al., 2019; Adabi et al., 2021; Lorenz et al., 2022).
Therefore, developing chemically stable AEMs capable of long-
term exposure to alkaline conditions at low hydration levels is
crucial for advancing AEMFC technology.

Another key issue in AEMFCs is the carbonation of the AEM
when ambient air containing CO2 is introduced to the cathode (Ziv
et al., 2018). The literature highlights the lack of experimental
studies examining the impact of carbonation on AEMFCs and
the underlying factors responsible for the marked deterioration in
performance in the presence of CO2 (Ziv et al., 2018). The OH−

anions generated in the cathode react with CO2 to form (bi)
carbonate anions. The impact of CO2 on AEMFCs is very
complex, involving multi-anion transport phenomena,
concentration polarization, and back diffusion, as well as changes
in water distribution, cation stability, and local pH. These
interconnected processes alter the behavior of the electrocatalysts
and ionomeric materials, significantly reducing the performance and
durability of the cell. Enhancing our understanding of the transport
mechanisms and electrochemical effects of CO2 will assist in
addressing the challenges associated with carbonation and
evaluating the feasibility of operating AEMFCs using ambient air.
The challenge also calls for the design and development of AEMs
that can adsorb less CO2 as well as AEMs with higher (bi)carbonate
anion conductivity (Yassin et al., 2025).

Fuel versatility in AEMFCs also presents a unique avenue of
research. In addition to hydrogen, AEMFCs can utilize other fuels
such as methanol (Vecchio et al., 2023), ethanol (Roschger et al.,
2023), urea (Kim et al., 2021), hydrazine (Sakamoto et al., 2018), and
ammonia (Dekel et al., 2023), offering advantages in terms of higher
energy density and simplified storage and handling. However,
operating with liquid fuels presents unique issues for AEMs, such
as fuel crossover and probable chemical degradation due to reaction
intermediates. Tailoring AEM features like selectivity, fuel crossover,
and chemical stability against fuels is critical for ensuring long-term
performance and durability in liquid-fuel-based AEMFCs.

2.2 AEM water electrolysis (AEMWE)

Water electrolysis is a promising technology for producing
high-purity, pressurized hydrogen through electrochemical
conversion, which involves breaking down water into hydrogen
and oxygen using electricity (Chatenet et al., 2022). AEMWE
technology (Figure 2b) has recently attracted significant
attention, mainly due to the ability to remove the expensive and
scarce iridium and other precious metal catalysts from the cells,
significantly alleviating the bill of materials (López-Fernández
et al., 2021). Despite the numerous reports demonstrating
AEMWE performance data, most studies present AEMWE
operation with liquid electrolytes, commonly with concentrated
KOH solution. This highly alkaline environment enhances the
ionic conductivity of the ionomeric materials and improves oxygen
evolution reaction (OER) kinetics (Liu et al., 2021); however, it also

introduces challenges related to material durability, safety, and
hydrogen purity.

Pure water operation has emerged as a goal for high-
performance AEMWE offering safer and more flexible operation
(Santoro et al., 2022). However, this shift poses issues in ensuring
appropriate ionic conductivity and water transport for OER. When
pure water substitutes alkaline electrolytes, membranes must be
capable of efficiently transporting hydroxide anions throughout the
cell. This emphasizes the need for AEMs with higher hydroxide
conductivity and superior water diffusivity to maintain optimal
hydration across the membrane and the cathode catalyst layer
(Muhyuddin et al., 2025).

Efficient water management within AEMWE cells operating in
dry-cathode mode (Wang et al., 2022) is crucial to prevent cathode
dehydration and ensure adequate water delivery to the anode.
Although water management strategies are frequently studied in
AEMFCs, this research topic on AEMWE is scarce. Improving water
transport from the anode to the cathode is critical, especially when
the cathode is operated under dry conditions (Koch et al., 2022).
Potential approaches include designing AEMs with increased water
diffusivity and/or developing cell designs that encourage water
back-diffusion.

2.3 AEM redox flow batteries (AEM-RFBs)

In recent years, a pronounced focus has been placed on
researching and developing low-cost hydrocarbon AEMs,
demonstrating a promising substitute for the PEMs in RFB
technologies such as organic and vanadium RFBs (Figure 2c)
(Yang et al., 2024). AEMs play a vital role in all types of RFBs by
acting as physical separators between the anode and the cathode
electrodes, allowing ion passage to maintain electrical neutrality and
preventing internal short circuits in the system. Key properties of
ideal AEMs include high ion selectivity, low electrical resistance,
mechanical strength, and chemical stability. Despite advancements,
challenges remain, especially related to membrane properties that
affect efficiency and durability.

In AEM-RFBs, the membrane must conduct selected anions
while preventing the crossover of active redox anions/cations
between the anolyte and catholyte chambers. The AEM selectivity
is essential for maintaining charge balance and avoiding self-
discharge, which can dramatically lower battery efficiency and
cycle life. Furthermore, the anion transport behavior in AEMs is
complex and poorly understood since various anions with variable
valences coexist in the system. For example, preventing vanadium
ion crossover in vanadium AEM-RFB is particularly challenging due
to the small ionic radii and high diffusivity of vanadium species,
leading to efficiency losses and capacity fade (Zhao et al., 2023).
However, achieving great selectivity frequently comes at the expense
of ionic conductivity, resulting in a difficult balance between
performance and durability.

The chemical stability of the AEM is another major concern due
to the highly alkaline environment and the high concentrations of
metal ions and oxidative species like VO2

+, Ce4+, and Br2. These
harsh conditions can break down the polymer backbone and
functional groups of the AEM (Herrmann et al., 2021; Hao et al.,
2022). This degradation affects the ionic conductivity of the

Frontiers in Membrane Science and Technology frontiersin.org04

Yassin and Dekel 10.3389/frmst.2025.1691096

https://www.frontiersin.org/journals/membrane-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frmst.2025.1691096


membrane, causes structural weakness, and increases ion crossover,
resulting in worse battery efficiency and capacity decline (Herrmann
et al., 2021; Hao et al., 2022). Developing robust AEMs capable of
withstanding these harsh alkaline oxidative media is critical for
maintaining long-term stability in operando AEM-RFBs.

Mechanical robustness is especially important for AEMs in RFB
applications. The physicochemical characteristics and ion
accumulation significantly influence tensile strength and
elongation at break. Metal ion fouling can further reduce
mechanical stability; however, research into these issues is limited
(Gao et al., 2022). This emphasizes the significance of developing
mechanically and chemically stable AEM to ensure long-term
stability. Overall, the chemical stability and mechanical integrity
of the AEM are controlled by the polymer matrix, while its
functionality determines properties such as physicochemical,
electrochemical, and ion selectivity. Consequently, innovative
design approaches and advanced synthesis strategies are crucial
for driving progress in the development of high-performance AEMs
for RFB applications.

2.4 AEM CO2 electrolysis (AEM-CO2E)

Electrochemical CO2 reduction (Figure 2d) has been achieved in
several cell architectures, including the zero-gap reactor (or
membrane-electrode assembly) originally developed for low-
temperature water electrolysis and fuel cell systems. The AEM-
CO2E offers a sustainable method to convert CO2 into high-value
chemicals (Salvatore et al., 2021), producing carbon monoxide and
multi-carbon products like ethylene, methane, and ethanol. Gaseous
products exit through the cathode, while liquid products diffuse
through the AEM to the anode, where they are collected. The anode,
typically supplied with an aqueous electrolyte (e.g., KOH, HKCO3),
facilitates the OER to complete the electrochemical circuit. Despite
the promise of this configuration, AEM-CO2E systems face
numerous operational and material challenges. AEMs have been
extensively studied in the context of fuel cells and water electrolysis,
but established performance metrics for CO2 electrolyzers remain
unavailable.

Water management seems to be a critical factor affecting the
performance of the AEM-CO2E, as observed in other AEM-based
technologies such as fuel cells and water electrolyzers (Weng et al.,
2019). Water acts as a reactant in the conversion of CO2, but excess
water can hinder the diffusion of CO2 to the catalyst and shift the
reaction preference toward OER. Water transport within the
system–via diffusion, electro-osmotic drag, or convection–is
influenced by the microstructure and chemical composition of
the membrane and operating conditions. This underscores the
need for AEMs with improved water transport properties to
balance water availability for CO2 reduction while minimizing
flooding and unwanted side reactions (Reyes et al., 2020).

Product and reactant crossover further complicates the
operation. Negatively charged products (e.g., formate) migrate
across the positively charged AEM while neutral molecules (e.g.,
ethanol) can diffuse through the AEM, reducing efficiency.
Moreover, the reaction of CO2 with the produced OH− in the
CO2 reduction reaction generates CO3

2- and HCO3
−, further

reducing the free CO2 available to the catalyst in the cathode.

The produced HCO3
− and CO3

2- ions are transported through
the AEM to the anode electrolyte, where they are reconverted to
a significant amount of CO2, often surpassing the CO2 converted
into the desired product (with up to 60% of the total CO2 being
neutralized) (Larrazábal et al., 2019). These effects highlight the need
for AEMs with enhanced selectivity for the transport of desirable
anions (such as carbonate and bicarbonate) over undesirable
negatively charged products (e.g., formate), reducing crossover
and improving system efficiency (Banerjee et al., 2022).

Additionally, AEMs used in CO2 electrolysis face mechanical
and chemical stability issues. The high pH and harsh conditions
(high temperature and high pressure) at the cathode degrade AEMs,
limiting cell longevity. Combined with interfacial and ohmic losses
that contribute to high operating voltages (Salvatore and
Berlinguette, 2020), these challenges demonstrate the need for
innovative membrane materials tailored to AEM-CO2E systems.
Recent advances in AEMs have shown promise for gas-phase CO2

electrolysis, but substantial innovation is required to overcome these
barriers and achieve commercially viable AEM-CO2E technologies.

2.5 AEM CO2 separator (AEMCS)

Electrochemical processes offer promising alternatives for CO2

separation, achieving energy requirements up to 80% lower than
traditional chemical absorption methods (Rigdon et al., 2017).
Despite the promising aspects of AEMCSs (Figure 2e), the
technology is in its very early stages, and its potential remains
largely unexplored due to limited research carried out until now. In
an AEMCS, the AEM plays a crucial role by selectively transporting
carbonate or bicarbonate anions from the cathode to the anode,
where they are electrolyzed back into CO2 and O2. This process
enables the capture and separation of CO2 from ambient air in a
more energy-efficient manner, with the membrane ensuring both
the selective transport and effective separation of CO2 from other
gases (e.g., N2, O2).

Carbonate species have long been recognized and addressed as a
significant challenge in AEMFCs as they impart thermodynamic,
kinetic, and ohmic overpotentials. Selectivity for carbonate species is
a significant difficulty in AEMCS applications, especially in mixed-
gas settings. To efficiently separate CO2, AEMs must transport
carbonate or bicarbonate anions to the anode. Increasing
selectivity for CO2-derived anions may affect the total
conductivity of the AEM by limiting ionic mobility. Finding the
right balance between ion selectivity and conductivity is thus a
major challenge.

CO2 separation requires chemical stability due to prolonged
exposure to alkaline environments that produce carbonate and
bicarbonate ions. Under these conditions, the polymer backbone
and functional groups of the AEM are expected to degrade, reducing
membrane durability and decreasing separation efficiency. Having
said that, initial research recently suggested that the presence of (bi)
carbonate anions in the AEM helps to stabilize the cationic
functional groups, and therefore, increases the AEM durability in
alkaline medium (Willdorf-Cohen et al., 2025). This requires further
research to confirm initial findings.

Mechanical stress or vibrations can also contribute to
membrane degradation, as they can cause cracks or other

Frontiers in Membrane Science and Technology frontiersin.org05

Yassin and Dekel 10.3389/frmst.2025.1691096

https://www.frontiersin.org/journals/membrane-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frmst.2025.1691096


defects in the membrane structure. This can be exacerbated by the
presence of reactive species and high temperatures, which can
make the membrane more susceptible to mechanical damage.
Therefore, AEMs with high mechanical resilience are essential.

2.6 AEM oxygen separator (AEMOS)

In the realm of electrochemical oxygen separation technologies
in alkaline media, a few studies have contributed to the
understanding and advancement of the feasibility of using an
electrochemical driving force to efficiently separate oxygen from
nitrogen (Arishige et al., 2014; Tian et al., 2022; Zhang et al., 2022).
However, these studies relied on high concentrations of corrosive
KOH solutions as a liquid electrolyte, which introduces safety risks
and requires additional purification steps for oxygen. Therefore,
there is a clear need for all-solid-state-based technology that
eliminates these risks and enables pure oxygen generation
through a safe, reliable, and affordable technology.

Recently, a novel technology based on an electrochemical AEM-
oxygen separator (Figure 2f) device, achieving >96% oxygen purity
from synthetic air, was proposed (Faour et al., 2024). This
technology offers a promising solution to generate oxygen on-site
from the air using an efficient electrochemical driving force and
suitable solid-state AEM polymer electrolytes. This design provides
the necessary alkaline environment while eliminating the need for
corrosive liquid electrolytes. In AEMOS operation, the cathode is fed
with air, and a low potential difference (0.7–1.2 V) is applied
between the cathode and anode electrodes. The OH−anions
generated during the oxygen reduction reaction at the cathode
transport through the AEM to the anode, where oxygen is
produced by OER. This results in the net selective transport of
oxygen from the cathode to the anode, potentially producing pure
oxygen gas at the anode.

A significant challenge for this technology is its ability to operate
in the presence of carbon dioxide from ambient air. Previous studies
on AEMFCs show that even low levels of CO2 can lead to
carbonation of the AEM (Krewer et al., 2018; Ziv et al., 2018),
which reduces anion conductivity and hinders overall performance.
Thus, further research is needed to assess the impact of CO2 on the
alkaline stability of AEMs and to evaluate AEMOS performance
with CO2-containing gas mixtures.

Since AEMOS technology is still in its very early stages, there is
limited information on the specific requirements for the AEMs used
or the challenges of this technology. Thus, the investigation of AEM
properties and their impact on AEMOS performance remains a
critical area of study. Studying the key material properties of AEMs
and ionomers and their impact on the performance and stability of
AEMOS is critical to optimizing the AEMs and the technology and
enhancing their durability.

3 Concluding remarks

AEMs are pivotal to advancing electrochemical energy
systems, driving efforts to enhance their performance,

efficiency, and scalability. As a critical component in various
electrochemical devices, including fuel cells, water electrolysis,
redox flow batteries, CO2 electrolysis, CO2 separators, and
oxygen separators, AEMs enable efficient ion transport,
supporting more sustainable and cost-effective energy
conversion and storage technologies. Optimizing these
membranes not only improves device operation but also
contributes to addressing global energy challenges, aiding the
transition to cleaner energy systems. Ongoing development of
AEMs, particularly improvements in chemical stability, anion
conductivity and selectivity, water diffusivity, and mechanical
robustness, is essential for their integration into next-generation
energy systems.

In this section on “Energy” within the Frontiers in Membrane
Science and Technology journal, high-quality original research
articles and comprehensive review articles are encouraged
and welcomed. Such contributions are expected to make
significant strides in membrane development, particularly in
the context of energy applications. The section aims to
highlight studies that address practical challenges, propose
innovative solutions, and provide insights that help bridge the
gap between laboratory-scale membrane development and
industrial-scale manufacturing.
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