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In this work, a dataset including structural and mechanical properties of

refractory multicomponent alloys was developed by fusing computations of

phase diagram (CALPHAD) and density functional theory (DFT). The refractory

multicomponent alloys, also named refractory complex concentrated alloys

(CCAs) which contain 2–5 types of refractory elements were constructed based

on Special Quasi-random Structure (SQS). The phase of alloys was predicted

using CALPHAD and the mechanical property of alloys with stable and single

body-centered cubic (BCC) at high temperature (over 1,500°C) was investigated

using DFT-based simulation. As a result, a dataset with 393 refractory alloys and

12 features, including volume, melting temperature, density, energy, elastic

constants, mechanical moduli, and hardness, were produced. To test the

capability of the dataset on supporting machine learning (ML) study to

investigate the property of CCAs, CALPHAD, and DFT calculations were

compared with principal components analysis (PCA) technique and rule of

mixture (ROM), respectively. It is demonstrated that the CALPHAD and DFT

results are more in line with experimental observations for the alloy phase,

structural and mechanical properties. Furthermore, the data were utilized to

train a verity of ML models to predict the performance of certain CCAs with

advanced mechanical properties, highlighting the usefulness of the dataset for

ML technique on CCA property prediction.
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1 Introduction

Complex concentrated alloys (CCAs) (Yeh et al., 2004a; Tsai

and Yeh, 2014; Ye et al., 2016; Miracle and Senkov, 2017), the

multicomponent alloys containing five or more elements with

equal or near-equal concentrations, have recently received

increased attention due to their new and important properties,

such as high strength at both room temperature and elevated

temperatures (Senkov et al., 2011; Kang et al., 2018), exceptional

ductility (Yao et al., 2014), and toughness (Patriarca et al., 2016).

Numerous studies on CCAs were motivated by the possibility

that the high configurational entropy may simply favor a single

phase, such as face-centered cubic (FCC) or body-centered cubic

(BCC) phases (Yeh et al., 2004b). Thus, research on CCAs has

become tightly associated with finding single-phase solid

solutions by controlling their configurational entropy.

Based on the elements contained in CCAs, they can be

classified into: 1) 3d transition metal alloys (formed of 4 or

more of the following elements: Al, Co, Cr, Cu, Fe, Mn, Ni, Ti,

and V), 2) refractory metal alloys (formed of 4 or more of the

following elements: Cr, Hf, Mo, Nb, Ta, Ti, V, W, Re, and Zr),

and 3) other alloys that include light metal and lanthanide

transition metal (Miracle and Senkov, 2017). 3d transition

metal alloys, for example, Ni-based alloys have been

developed for high temperature applications in aircrafts,

power generation turbines, rocket engines and other

challenging environments (Ezugwu et al., 1999; Griffiths, 2019;

Morinaga, 2019). A recent key goal for generating metallic alloys

with high melting temperatures, which could potentially be

employed in nuclear reactors and comparable applications,

has motivated the development of refractory alloys. Alloys

with single phase or dual phase were reported to have high

strength (Li et al., 2016; Singh et al., 2018; Maresca and Curtin,

2020) and high hardness (Borkar et al., 2016). Additionally, the

variety of refractory elemental characteristics offers significant

design flexibility for refractory multicomponent alloys. For

instance, BCC MoNbTaVW has demonstrated high Vickers

micro-hardness of 11.4 GPa at 1,150°C (Xin et al., 2018) and

strong yield strength of 1,246 MPa at room temperature which

decreases to 842 MPa at 1,000°C (Senkov et al., 2011). This

demonstrates promising mechanical property of

refractory CCAs.

CCAs with simple crystal symmetry and remarkable

mechanical properties is one of the areas that draw attention

of scientists worldwide. The principal components analysis

(PCA) technique was employed to predict the single phase of

the multicomponent alloys (Zhang et al., 2008; Guo et al., 2011;

Guo and Liu, 2011; Murty et al., 2014; Zhang et al., 2014). By

using this statistical technique, the variables of the dataset can be

reduced into principal components. The original database is

preserved as much as correlation will allow in the principal

components, which are made up of orthogonal linear

combinations of the original variables. Based on the PCA

technique, the mixing entropy (ΔSmix), valence electron

concentration (VEC), atomic size difference (δ), and mixing

enthalpy (ΔHmix) were utilized as critical conditions for the

formation of the CCA solid solutions. The formation of BCC

CCAs requires that the following conditions are satisfied (Zhang

et al., 2008; Guo et al., 2011; Guo and Liu, 2011; Zhang et al.,

2014): −15 ≤ ΔHmix ≤ 5 kJ/mol, δ ≤ 6.6%, 12 ≤ ΔSmix ≤ 17.5

J/(Kmol) for CCAs that contain 5 or more elements, and VEC

< 6.87. On the other hand, the calculation of phase diagrams

using CALPHAD was widely used to predict phase stability of CCAs

and to understand their formation mechanisms. Thermo-Calc’s

High Entropy Alloy database (Andersson et al., 2002; Chen et al.,

2018) was used in CALPHAD software along with the high

entropy alloy database. These have been claimed to lead to good

agreement with the experimental observations on the phase of

refractory CCAs, such as MoNbTaTiVW and TixNbMoTaW

(Andersson et al., 2002; Gao et al., 2015; Zhang et al., 2015; Yao

et al., 2016b; Yao et al., 2017; Chen et al., 2018; Han et al., 2018).

Thanks to the increase of computational capacity, the

utilization of machine learning (ML) accelerates the study of

CCA phases (Lederer et al., 2018; Huang et al., 2019; Zhou et al.,

2019; Zhang et al., 2020). Additionally, ML has also been used in

prediction of CCAs with predefined properties, such as high

strength and high hardness, (Chang et al., 2019; Himanen et al.,

2019; Wen et al., 2019; Hu et al., 2022; Vazquez et al., 2022) and

high elasticity (Kim et al., 2019). However, designing CCAs with

desirable properties byML urgently requires statistical analysis of

these alloys. Many of the current databases for ML studies were

built using only mathematical models such as rule of mixture

(ROM) (Couzinié et al., 2018; Roy et al., 2020; Li et al., 2021).

ROM is a weighted mean method used to predict the properties

of alloys, the parameter of an alloy fmix can be estimated by

equation fmix � ∑Cifi , where Ci and fi are the atomic fraction

and the parameter of element i. While forming alloys lattice

distortion may occur because of atomic level mismatches

between components (e.g., atom size, valence electrons, etc.).

In this case, the potentially novel mechanical, electronic, and

thermal properties of CCAs may be missed, leading to significant

deviation of mathematical models from reality. Therefore,

physics-based optimizations which accurately characterize

atomic interactions and atomic scale features are critically

needed for building databases. For example, Lederer et al.

(2018) used the Lederer-Toher-Vecchio-Curtarolo (LTVC)

method to create a dataset for predicting refractory alloys

with stable single phase by incorporating ab initio computed

energies into a mean-field statistical mechanics model. To create

a comprehensive dataset that can be used to train ML models to

predict performance, more computational studies of CCAs are

needed.

In a recent research, the phase and melting temperature of

quaternary and quinary refractory CCAs with equivalent atomic

numbers were reported by using CALPHAD, and the results were

compared with those obtained by ROM (Shaikh et al., 2020),
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demonstrating the advance of CALPHAD in CCA prediction. In

this work, we integrated CALPHAD and the density functional

theory (DFT) to examine the structural and mechanical

properties for not only quaternary and quinary, but many

more binary and ternary refractory alloys with stable single

phase as well. The calculated structural and mechanical

properties were compared with ROM and experimental

observations. A dataset was built based on the calculations,

and it was used to train ML models to predict mechanical

properties of CCAs such as hardness and elastic constants.

2 Methodology

Since most pure refractory metals have stable BCC crystals, it

is desirable that multicomponent alloys which contain only

refractory elements have a predominantly BCC crystal

structure. In this paper, the general procedures for building

the dataset of structural and mechanical properties for BCC

refractory multicomponent alloys are described as follows: 1)

construct possible prototype binary, ternary, quaternary, and

quinary alloys based on the Special Quasi-random Structure

(SQS) (Zunger et al., 1990). The binary and ternary SQSs

were provided by MedeA software, and the quaternary and

quinary SQSs were generated through Alloy Theoretic

Automated Toolkit (ATAT) (van de Walle et al., 2002; van de

Walle, 2009) (Figure 1A). The reliability of SQS models on

calculating the vibrational, electronic, and mechanical

properties of alloys were validated by Gao et al. (2016)

through hybrid Monte Carlo/molecular dynamics simulations.

2) analyze the possibility of forming stable solid state for each

configuration based on the critical factors for forming solid

solutions of high entropy alloys; 3) calculate phase diagram

using CALPHAD to determine the solid solution phases at

various thermodynamic conditions, screen out the alloys that

have only BCC phase at high temperature (Figure 1B); and 4)

predict the structural and mechanical properties of alloys with

stable BCC phase by DFT calculations (Figure 1C). The dataset

FIGURE 1
Workflow of machine learning based prediction of CCAs with advanced performance.
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would be used to train ML models to anticipate CCAs with

advanced mechanical properties once it had been built (Figures

1D, E). When building the dataset by DFT calculation, two

questions that have come up are answered: 1) Do alloys with

less than five different types of elements still adhere to the critical

factors (VEC, , ΔSmix , and ΔHmix) obtained by PCA? 2) How

much of an advantage do DFT calculations have over the ROM

method?

The possible SQS configurations of the alloys include AB,

A3B, ABC, A2BC, ABCD, and ABCDE, in which A, B, C, D, E

represent the refractory elements Cr, Hf, Mo, Nb, Re, Ta, Ti, V,

W, and Zr. There were 1,077 alloys altogether, with initial

configurations for 135 binary, 480 ternary, 210 quaternary,

and 252 quinary alloys. CALPHAD calculations helped to

eliminate alloys with stable single BCC phase at high

temperature.

The structural and mechanical properties of BCC

refractory multicomponent alloys at ground states were

checked by the DFT (Hohenberg and Kohn, 1964; Kohn

and Sham, 1965) calculations. The unit cell of each BCC

alloys defined by SQS was analyzed using Vienna Ab Initio

Simulation Package (VASP 5.4) (Kresse and Furthmuller,

1996). The electron-ion interactions were described by the

projector augmented wave (PAW) (Perdew et al., 1992), while

electron exchange-correlation interactions were described by

the generalized gradient approximation (GGA) (Perdew et al.,

1996) in the Perdew-Burke-Ernzerhof (PBE) scheme

(Monkhorst and Pack, 1976). The relaxation of the alloy

atomic structures was performed using congregate-gradient

algorithm (Gonze, 1997) implemented in VASP. An energy

cutoff was set to be 300 eV for the plane wave basis in all

calculations, and the criteria for the convergences of energy

and force in relaxation processes were set to be 10–5 eV and

10–5 eV/Å, respectively. A smearing parameter of ~0.2 eV was

used for the Methfessel-Paxton (Methfessel and Paxton, 1989)

technique.

Bulk modulus (B), shear modulus (G), and Pugh’s ratio (B/G)

(Pugh, 1954) of all alloys screened out by CALPHAD were

calculated at 0 K, using the Voigt-Reuss-Hill averaging scheme

(Zuo et al., 1992). In addition, Young’s modulus (E) and

Poisson’s ratio (]) were calculated using the following

equations: E � 9BG/(3B + G) and � (3B − 2G)/2(3b + G) .

The Vickers hardness (Hv) was obtained by Tian’s model

(Tian et al., 2012). Consequently, a dataset of alloys which

contains properties including the mentioned features can be

built. In this dataset, Tm implies the alloy temperature

resistance, E describes the tendency of alloys to deform when

stress is applied along a given axis, B denotes the deformation in

all directions, and G represents deformation at constant volume.

All features are essential for quantifying the alloy resistance to

deformation.

The dataset was further screened by the Pearson correlation

coefficient (Schober et al., 2018) in Pandas library to determine

the association between any two features:

rxy � 1
n − 1

∑n
i�1(xi − �x) − (yi − �y)

σxσy
(1)

where n is the sample size, �x and �y are the mean values of two

input features, σx and σy are the standard deviation of the two

features. When the correlation coefficient’s absolute value is near

to 1, it suggests that the properties are tightly connected. A

correlation coefficient that is close to zero, on the other hand,

indicates completely unconnected facts.

Through the Scikit-learn library (Pedregosa et al., 2011), the

dataset was used to train the ML models, which comprise the

Neural Network (NN), Random Forest (RF) regressor, Gradient

Boosting Regressor (GBR), and XGBoost (XGB) (Chen and

Guestrin, 2016). Information is sent from the input layer,

hidden layer, and output layer by the NN model in order to

create the output. The RF model uses a large number of decision

trees in an ensemble technique to increase prediction accuracy

and decrease over-fitting by averaging the trees. The GBR model

is a kind of ensemble model that consists of an iterative collection

of tree models and is able to draw lessons from themistakes made

by the preceding model. The XGB mode is a potent machine

learning technique that quickly decides by efficiently and

effectively deploying boosted decision trees. 90% of the data

were used for training ML models that were used to predict the

performance of refractory alloys, and 10% were used for testing

and validating the outcomes. With a cross-validation score of 5,

the GridSearchCV function from the Sklearn package was utilized

to enhance the machine learning model. Each ML model’s

performance is assessed using the mean absolute error, average

coefficient of determination, and root-mean-squared error.

3 Results

According to the PCA technique as mentioned before, the

parameters VEC, and ΔHmix of alloy should reach the following

requirement to have stable BCC phase: VEC < 6.87, −15 ≤
ΔHmix ≤ 5 kJ/mol, and δ ≤ 6.6%. 545 out of 1,077 alloys were

predicted to have stable BCC phase based on the PCA analysis.

CALPHAD was then employed to calculate the phase diagram of

alloys. It was found that most alloys, especially at low

temperature, have more than one stable phase. Possible phase

at low temperature may include BCC, hexagonal close-packed

(HCP), sigma phase, and so on. Given that some pure refractory

metals (Hf, Re, Ti, and Zr) are HCP crystals and others (Cr, Mo,

Nb, Ta, V, and W) are BCC crystals, the observation is probable.

Alloys made up of different element types tend to have more

stable phases at low temperature due to their complex
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interactions. While the proportion of BCC phase increase with

temperature for most refractory alloys. As a result, 393 refractory

alloys appeared to have only BCC phase at high temperature.

Figure 2 demonstrates the transition temperature and

melting temperature of alloys with only BCC phase present

prior to melting, where the transition temperature represents

the temperature at which other phases dissolve. The binary alloys

were marked by black triangles; ternary alloys were marked by

red triangles; quaternary alloys were marked by green triangles;

and quinary alloys were marked by blue triangles, respectively. It

has been found that BCC crystal formation in multicomponent

alloys is promoted when only BCC type elements are present. In

this work, the phase diagram of alloys was investigated in the

temperature range 0°C–3,500°C, where the transition

temperature is 0°C for 111 out of 393 alloys. It indicates that

111 multicomponent alloys exclusively contain BCC phase.

As shown in Figure 2, the melting temperature of all

multicomponent alloys are above 1,300°C. These refractory

alloys exhibit extremely high temperature resistance, 245 of

them even have high melting temperature above 2000°C.

Some of high melting temperature alloys are shown in the

figure for reference. It should be noticed refractory alloys

with high concentrations of W, Re, and Ta are anticipated to

also have high melting temperatures since W has a high

melting temperature above 3,000°C, followed by Re and Ta.

For instance, the TaW3 alloy has the highest melting

temperature of 3,315°C. The ternary alloy MoTaW2 has

the highest melting temperature of 3,036°C. Even

quaternary and quinary alloys MoReTaW, MoReTaVW

and MoNbReTaW, also show high melting temperature

above 2,500°C.

4 Discussion

4.1 Phase prediction by CALPHAD and PCA

Significant mismatch was found between PCA and

CALPHAD on predicting phase of alloys. As mentioned

above, 545 alloys out of 1,077 appeared to have stable BCC

structure based on PCA correlation studies of VEC, ΔHmix and δ

. While according to the CALPHAD prediction, only 393 alloys

have stable single BCC phase before melting. In detail, 18.7%

binary, 20.5% trinary, 26.5% quaternary and 22.1% quinary

alloys from the PCA estimation do not have a stable BCC

single phase based on the CALPHAD calculations. Especially,

the two methods differed significantly in predicting the phase of

alloys containing Re, Hf, and Zr. It is reasonable since the PCA

were studied based on only a small group of CCAs (Guo et al.,

2011; Guo and Liu, 2011) (less than 100 alloys), in which

insufficient data related to the Re, Hf, and Zr in their

database were collected. While the database of CALPHAD

calculation was built for CCAs involving a 15-element

thermodynamic database. Meanwhile, nearly all of the stable

solution phases of refractory binaries and trinaries in each of the

evaluated systems are present in the database (Chen et al., 2018).

In this case, the phases predicted by CALPHAD are more

reliable.

4.2 Structure and mechanical properties
by DFT and ROM

The SQS models for BCC crystal structures are shown in

Figure 1A, where elements are represented in different colors.

Based on SQS, there are 8 atoms per unit cell for AB binary alloys,

16 atoms in AB3, 36 atoms in ABC, 32 atoms in A2BC, 64 atoms

in ABCD, and 125 atoms in ABCDE. The calculated structural

and mechanical properties, as well as the melting temperature

obtained by CALPHAD, are listed in the Supplementary Table

S1. The structural properties of refractory alloys, including

density and volume, obtained by DFT and ROM are

compared in Figures 3A,B. The diagonal line in Figure 3

indicates excellent matching of the density and volume

calculated by DFT and ROM, respectively. It is no surprise

that the obtained refractory alloys are made of refractory

elements with large densities. Both density and volume data

are very close to the diagonal lines with trend functions of

DensityDFT = 1.007 × DensityROM + 0.131 and VolumeROM =

0.939 × VolumeDFT + 0.859, and correlation coefficients of

0.996 and 0.995, respectively. These indicate that structural

properties predicted by DFT and ROM are similar. The

maximum difference of density between DFT and ROM

calculation is 7.54%, and the maximum difference of volume

between these twomethods is 6.82%. Table 1 lists the DFT, ROM,

and experimental density of selected refractory alloys. The error

FIGURE 2
Melting and Transition temperature of (▲) binary, (▲) ternary,
(▲) quaternary, and (▲) quinary multicomponent alloys. The
111 alloys (which appear lined-up at transition temperature equals
to 0°C) have only BCC phase.
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FIGURE 3
(A) Density and (B) Volume of refractory alloys calculated by ROM as a function of those calculated by DFT; red lines are the trends for each
dataset.

TABLE 1 The experimental observation (expt) of density and Young’s moduli of refractory alloys. The error percentage (e%) for DFT and ROM to
experiments are listed in the table.

Alloys Density (g/cm3) Young’s modulus (GPa) Ref.

Expt DFT/ROM e% Expt. DFT/ROM e%

CrTaVW 13.0 DFT 13.056 0.43 — - — — Waseem et al. (2018)

ROM 12.289 5.47

HfMoNbTiZr 8.7 DFT 8.809 1.25 — — — — Guo et al. (2015)

ROM 8.608 1.06

HfNbTaTiZr 9.9 DFT 9.965 0.66 99.2 DFT 77.51 21.86 Lin et al. (2015)

ROM 9.763 1.38 ROM 154.71 55.96

HfNbTaZr 11.1 DFT 11.23 1.17 — — — — Maiti and Steurer. (2016)

ROM 11.182 0.74

HfNbTiZr 8.4 DFT 8.533 1.58 — — — — Wu et al. (2014)

ROM 8.205 2.32

MoNbTaTiV 9.4 DFT 9.435 0.37 130.5 DFT 135.36 3.72 Yao et al. (2017)

ROM 9.223 1.88 ROM 166.38 27.49

MoNbTaV 10.7 DFT 10.673 0.25 — — — — Yao et al. (2016a)

ROM 10.382 2.97

MoNbTaVW 12.4 DFT 12.311 0.72 180.0 DFT 161.79 10.12 Senkov et al. (2011)

ROM 12.079 2.59 ROM 214.89 19.38

MoNbTiV 7.3 DFT 7.431 1.79 161.1 DFT 149.31 7.32 Chen et al. (2014)

ROM 7.405 1.44 ROM 161.18 0.05

NbTaTiV 9.2 DFT 9.216 0.17 108 DFT 104.11 3.60 Yang et al. (2012)

ROM 8.973 2.47 ROM 123.05 13.94

NbTaVW 12.9 DFT 12.824 0.59 — — — — Yao et al. (2016b)

ROM 12.544 2.76
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percentage (%), which accounts for the deviation of DFT/ROM

from experimental data are also listed for comparison. The low

error percentages are less than 5.5%, indicating that both DFT

and ROM calculations are close to experimental data.

Particularly, the overall error percentages for DFT to

experiment data are less than 1%, whereas they are greater

than 2% for ROM estimation, demonstrating higher accuracy

of DFT.

Different understanding of the mechanical properties based on

DFT and ROM are presented in Figure 4, where the elastic

constants C11, C12, and C44, bulk moduli, shear moduli and

Young’s moduli determined by DFT and ROM are

demonstrated. Even through the correlation coefficients of

certain parameters are close to 1, The significant difference

between DFT and ROM can be obtained. The data in each

figure are scattered with the correlation coefficients less than

0.97. The correlation coefficients of shear moduli and Young’s

moduli are much lower, which represent that DFT and ROM

simulation produced unrelated results. Furthermore, the

tendencies of data in each figure are off the diagonal line with

the coefficient of tendency less than 0.925, therefore indicating

difference of DFT and ROM on calculating the mentioned

property of alloys. The poor correlation coefficients, especially

for C44, shear moduli and Young’s moduli, represent the difference

between DFT and ROM for predicting mechanical properties.

Table 1 lists Young’s moduli of various refractory alloys that

were determined experimentally, by DFT, and ROM calculations

in order to more thoroughly assess the predictions made by these

methods. It is clearly shown that DFT calculations have a lower

error percentage than that of ROM, is much lower than that of

ROM, which indicates that DFT calculations are more in line

with experimental data for Young’s modulus. This is reasonable

since DFT takes into account how atoms interact physically while

ROM calculations average the mechanical properties

mathematically.

4.3 Evaluation of the quality of the dataset

As discussed above, in this paper, a dataset that contains

phase, structural, and mechanical properties of refractory alloys

was built based on CALPHAD and DFT calculations. The

correlation between each key parameters in the dataset are

shown in the Heatmap diagram in the upper part of Figure 5,

and the associated data scatter plots are given at the lower part of

the matrix. In the heatmap diagram, the data dots in scatter plots

matrix that are near to the diagonal or anti-diagonal lines show

the absolute value of correlation coefficient close to 1, which

implies features are highly correlated. On the other hand, the

correlation coefficient close to 0 represents disordered data in the

FIGURE 4
Ratios of DFT and ROM calculated elastic constants (A) C11, (B) C12, and (C) C44, (D) bulk, (E) shear, and (F) Young’s moduli.
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scatter plots matrix, which indicates the feature pairs are not

correlated or, at most, weakly correlated. As shown in Figure 5,

the majority of the analyzed traits had correlations between

0.3 and 0.8. These findings show that no irrelevant or

redundant features exist in the developed database, suggesting

that the DFT dataset of refractory alloy properties could yield

reliable predictions for brand-new high-performance CCAs

by ML.

4.4 ML study based on the dataset

The MLmethod is a rapidly developed technique for predicting

materials with advanced performance. The dataset produced in this

study has been utilized to predict the properties of CCAs such as

hardness and elastic constants based on the workflow as shown in

Figure 1. Various ML models were trained to investigate the

mechanical properties of CCAs as illustrated in Figure 1D. Based

on the dataset, the Neural Network (NN) model was trained to

predict the Vickers hardness of alloys. It was predicted that

C0.1Cr3Mo11.9Nb20Re15Ta30W20 have hardness of 686 HV by

(Bhandari et al., 2021), which lead to an error around 10% to

the experimental test of 622.60 HV(Tian et al., 2012). The dataset

was further used to train various ML models, including random

forest regressor, gradient boosting regressor, and XGBoost

regression models, to predict the mechanical properties of CCAs.

For example, the elastic constants in the dataset were used to train

thoseMLmodels (Bhandari et al., 2022) whichwere evaluated by the

root-mean-squared error, the average coefficient of determination,

andmean absolute error. It is found that gradient boosting regressor

has higher prediction accuracy on elastic constants. The elastic

constants of NbTaTiV predicted by gradient boosting regressor

based on the dataset matches the experimental values well (Lee et al.,

2020). Both examples highlight the excellent quality of the dataset

and the potential of training ML models to predict CCA properties.

5 Conclusion

In this work, a dataset for 393 refractory alloys containing 2 to

5 different element types was assembled by combing CALPHAD

and DFT simulations. For each refractory alloy, the phase type,

atomic structure, and mechanical properties were determined,

which include melting temperature (Tm), volume (V), density (ρ),

total energy (Etot), elastic constant (C11, C12, and C44), bulk modulus

(B), shearmodulus (G), Young’smodulus (E), Poisson’s ratio (]) and
Vickers hardness (Hv). For predicting the stable single-phase of

alloys under high temperature, CALPHAD and PCA techniques

were evaluated. Since its database includes more information about

the phase of refractory alloys, CALPHAD calculations are more

trusted than the current PCA results for predicting the phase of

alloys at various temperatures. The structural and mechanical

properties were determined by DFT and ROM were compared.

It is found that the DFT prediction of the structural properties of

FIGURE 5
Heatmap diagram and scatter plots matrix for one to one correlation between features.
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refractory alloy are comparable to those predicted by ROM, while

the DFT prediction are more precise on mechanical property

predictions. The dataset has been employed on predicting CCAs

with advanced mechanical properties by ML technique such as

hardness and elastic constants. Since CCAs performance predicted

by ML trained by the refractory alloy dataset are compatible with

experiments, the refractory alloys dataset can support the refractory

alloy design based on ML model training and property prediction.
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