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Innate immune recognition and inflammasome activation in 
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Listeria monocytogenes is an intracellular, Gram-positive bacterium that can cause life-threatening 
illness especially in immunocompromised individuals and newborns. The pathogen propagates 
within the cytosol of various host cells after escaping from the phagosomal compartment 
depending on the cytolysin listeriolysin O. While L. monocytogenes can manipulate the 
endocytic and many host-cell signaling cascades to its advantage, host cells are however 
capable of detecting Listeria infection at different cellular compartments by expressing innate 
immune receptors that trigger antibacterial defense pathways. These receptors include the Toll-
like receptors, NOD-like receptors (NLRs), and cytosolic DNA sensors. Some NLRs as well as 
the DNA sensor AIM2 form multiprotein complexes called inflammasomes. Inflammasomes 
regulate caspase-1-dependent production of the key inflammatory cytokines IL-1β and IL-18 as 
well as pyroptotic cell death in L. monocytogenes-infected cells. This review describes the current 
knowledge about innate immune sensing and inflammasome activation in Listeria infection.
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induce host-cell actin polymerization and direct spread from cell 
to cell, thereby  escaping immune detection and defense at the 
extracellular compartment (Tilney and Portnoy, 1989; Domann 
et al., 1992; Kocks et al., 1992). In addition to the cytosolic repli-
cation, a vacuolar growth of some bacteria might play a role for 
persistent infection in mice (Birmingham et al., 2008). Overall, 
L. monocytogenes manipulates the endocytic and many host-cell 
signaling cascades in order to replicate. On the other hand, host 
cells possess surveillance systems at different cellular compart-
ments capable of detecting Listeria infection and activating defense 
pathways which in most cases might control infection.

SenSing of L. monocytogenes by pattern 
recognition receptorS of the innate immune SyStem
Upon infection with L. monocytogenes, innate immune responses 
are rapidly triggered and are essential for host survival (Pfeffer et al., 
1993; Krull et al., 1997; Unanue, 1997). However, the activation 
of innate immunity by pattern recognition receptors (PRRs) in 
response to infection with L. monocytogenes is still not completely 
understood. In general, the membrane-bound Toll-like receptors 
(TLRs), as well as the cytosolic nuclear oligomerization domain 
(NOD)-like receptors (NLRs) and DNA sensors are critical for 
innate defense by recognizing conserved structures of microor-
ganisms (Corr and O’Neill, 2009; Opitz et al., 2009; Takeuchi and 
Akira, 2010). Some of these PRRs activate signaling pathways 
leading to activation of transcription factors such as NF-κB and/
or IFN regulatory factor 3 (IRF3) which direct upregulation of 
proinflammatory genes such as TNFα, IL-8 and pro-IL-1β, or type 
I IFNs, respectively. Other PRRs form protein complexes called 
inflammasomes that regulate production of IL-1β and IL-18 at a 
post-translational level and trigger the caspase-1-dependent inflam-
matory cell death (pyroptosis; Bergsbaken et al., 2009; Schroder and 
Tschopp, 2010).

Listeria monocytogenes – infection and 
intracellular life-Style
Listeria monocytogenes is a flagellated Gram-positive bacterium 
that can cause life-threatening illness characterized by gastroen-
teritis, meningitis, encephalitis, materno-fetal, and perinatal infec-
tions. Infection with L. monocytogenes occurs through ingestion 
of contaminated food, such as unpasteurized dairy products and 
undercooked meats (Allerberger and Wagner, 2010). Listeria cross 
the intestinal barrier by invading intestinal epithelial cells, reaching 
the liver as well as spleen via the lymphoid system and the blood, 
where they are internalized by splenic and hepatic macrophages. 
During severe infections, the bacteria disseminate via the blood 
and cross the blood–brain barrier resulting in infections of the 
meninges and the brain. Furthermore it can cross the fetopla-
cental barrier in pregnant women which leads to infection of the 
fetus. L. monocytogenes is able to invade different non-phagocytic 
cells and is resistant to intracellular killing by macrophages after 
phagocytosis (Hamon et al., 2006; Barbuddhe and Chakraborty, 
2009). In the intestinal tract, L. monocytogenes invades epithelial 
cells via interaction of its virulence protein internalin A (InlA) 
with epithelial cadherin (E-cadherin), leading to bacterial inter-
nalization within a membrane-bound vacuole (Mengaud et al., 
1996; Schubert et al., 2002). In contrast, internalin B (InlB) binds 
to c-Met, a receptor tyrosine kinase and the natural receptor for 
hepatocyte growth factor (HGF) and thus promotes invasion 
of multiple mammalian cell types (Shen et al., 2000; Veiga and 
Cossart, 2005). InlB has been implicated in murine liver coloniza-
tion after intravenous infection (Dramsi et al., 1995; Shen et al., 
2000). In the vacuole, a decreased pH activates the pore-forming 
toxin listeriolysin O (LLO) that destroys the phagosomal mem-
brane and the bacterium subsequently escapes into the cytosol 
(Bielecki et al., 1990). This allows the bacterium to replicate in 
the cytosol to high numbers. Cytosolic Listeria express ActA to 
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tor domain (Franchi et al., 2009). This effector domain is either 
a caspase-recruitment domain (CARD) or pyrin domain (PYD; 
Figure 1). Some NLR members that contain a PYD (this NLR 
subgroup is called NLRP), and the NLR member NLRC4 which 
contains a CARD are able to form inflammasomes (Schroder 
and Tschopp, 2010). These protein complexes also include the 
CARD-bearing caspase-1 and, in most cases, the CARD- and 
PYD-containing adapter molecule ASC. Homophilic interactions 
between respective domains in the NLRs, ASC, and caspase-1 
are necessary for inflammasome activation. The NLRP protein 
NLRP3 plays a central role in caspase-1 activation in response to 
a variety of exogenous and endogenous stimuli, such as bacterial 
pore-forming toxins, ATP, uric acid crystals, cholesterol crystals, 
and alum (Martinon et al., 2002, 2006; Kanneganti et al., 2006; 
Mariathasan et al., 2006; Duewell et al., 2010). While it appears 
unlikely that these NLRP3 activators directly bind to NLRP3, the 
exact signal(s) that stimulates NLRP3 itself is still a matter of debate. 
Some studies suggest that lysosomal damage and the accompanying 
release of lysosomal cathepsins lead to the activation of the NLRP3 
pathway (Halle et al., 2008; Hornung et al., 2008). Another model 
proposes that the generation of reactive oxygen species by mito-
chondria is an event upstream of NLRP3 activation (Dostert et al., 
2008; Zhou et al., 2010). Future studies are required to clarify the 
underlying mechanism of NLRP3 activation (see also Stutz et al., 
2009; Schroder and Tschopp, 2010). The cytosolic NLRC4 detects 
bacterial flagellin and the presence of type III secretion systems 
(Franchi et al., 2006; Miao et al., 2006, 2010). Upon activation, 
NLRs oligomerize and recruit procaspase-1 via the CARD domain, 
directly or indirectly via the adaptor protein ASC (Mariathasan 
et al., 2004). The assembled inflammasome then mediates caspase-1 
activation. Activated caspase-1 post-translationally processes pro-
IL-1β as well as pro-IL-18 to their mature forms and stimulates 
pyroptosis (Martinon et al., 2002; Bergsbaken et al., 2009). Recently, 
the HIN-200 family member AIM2 has been identified as a cytosolic 
double-stranded DNA (dsDNA) sensor that induces caspase-1-
dependent IL-1β maturation and thus is the first non-NLR family 
member forming an inflammasome (Burckstummer et al., 2009; 
Fernandes-Alnemri et al., 2009; Hornung et al., 2009; Roberts et al., 
2009). In contrast to the NLRs, oligomerization of the AIM2 com-
plex presumably is mediated by clustering upon direct binding to 
the ligand dsDNA, to which AIM2 binds via its C-terminal HIN-
domain (Burckstummer et al., 2009; Fernandes-Alnemri et al., 
2009; Hornung et al., 2009). The AIM inflammasome is composed 
of AIM2, ASC, and caspase-1.

In addition to the above-mentioned stimuli, L. monocytogenes 
infection also leads to a strong activation of caspase-1, produc-
tion of IL-1β as well as IL-18, and to caspase-1-dependent cell 
death (Tsuji et al., 2004; Ozoren et al., 2006; Cervantes et al., 2008). 
Listeria eradication in the early phase of infection was impaired in 
caspase-1-deficient mice. These mutant mice showed a prominent 
decrease in production of IL-18, and as a consequence, of IFNγ 
(Tsuji et al., 2004). The first inflammasome identified to be activated 
by L. monocytogenes was the NLRP3 inflammasome (Mariathasan 
et al., 2006). In mouse macrophages infected with L. monocytogenes, 
NLRP3 as well as the adapter ASC were essential for caspase-1 acti-
vation and secretion of IL-1β and IL-18 (Mariathasan et al., 2006; 
Ozoren et al., 2006; Figure 2). Furthermore, mouse macrophages 

Lipoproteins of L. monocytogenes are recognized by TLR2 at 
the cell surface (Machata et al., 2008). Some studies showed that 
mice deficient in TLR2 were more susceptible to L. monocytogenes 
infection with increased bacterial loads and reduced activation of 
macrophages, compared to wild-type mice (Torres et al., 2004). 
Other studies, however, did not reveal differences in susceptibil-
ity of TLR2-knockout and wild-type mice to wild-type Listeria 
(Edelson and Unanue, 2002; Gekara et al., 2009). The adapter 
molecule MyD88, that signals downstream of most TLRs and of 
the IL-1 as well as IL-18 receptors, has been shown to be essential 
for innate immunity to L. monocytogenes (Seki et al., 2002). Mice 
deficient in MyD88 displayed a higher susceptibility to L. monocy-
togenes infection than mice lacking either IFN-γ or both IL-12 and 
IL-18 (Edelson and Unanue, 2002; Seki et al., 2002). Furthermore, 
L. monocytogenes flagellin activates TLR5. However, since some 
L. monocytogenes strains do not express flagellin at 37°C, and bac-
teria mutants deficient in flagellin show an unaltered virulence, the 
role of TLR5 in recognition of Listeria remains unclear (Hayashi 
et al., 2001; Way et al., 2004).

In the cytosol, peptidoglycan fragments of L. monocytogenes are 
sensed by NOD1 and NOD2 leading to expression of proinflam-
matory genes and antimicrobial peptides (Kobayashi et al., 2005; 
Opitz et al., 2006; Park et al., 2007; Mosa et al., 2009). This NOD1/2-
stimulated gene expression is dependent on the receptor interacting 
protein-2 (Rip-2) as well as NF-κB and p38 mitogen-activated pro-
tein kinase (Chin et al., 2002; Kobayashi et al., 2002). Accordingly, 
mice deficient in NOD1 or Rip-2 show increased susceptibility 
toward Listeria infection (Chin et al., 2002; Mosa et al., 2009).

Another surveillance mechanism that detects intracellular 
L. monocytogenes is mediated by a yet-to-be-identified cytosolic 
PRR that triggers a type I IFN response (O’Riordan et al., 2002; 
Stockinger et al., 2002; McCaffrey et al., 2004). This PRR pos-
sibly detects Listeria DNA, although known DNA sensors such 
as AIM2 or DAI/ZBP1 are most likely not involved (Auerbuch 
et al., 2004; Carrero et al., 2004; O’Connell et al., 2004; Stetson 
and Medzhitov, 2006; Leber et al., 2008; Lippmann et al., 2008; 
Rathinam et al., 2010). The Listeria-mediated type I IFN produc-
tion occurs through a pathway dependent on the adapter molecule 
STING, the serine threonine kinase TBK1 and the transcription 
factor IRF3 (Stockinger et al., 2004; O’Connell et al., 2005; Ishikawa 
et al., 2009). Of note, this pathway appears to be detrimental for 
L. monocytogenes infections in vivo since mice deficient in IRF3 
or the type I IFN receptor are more resistant than wild-type mice 
toward the bacterial infection (Auerbuch et al., 2004; Carrero et al., 
2004; O’Connell et al., 2004).

In addition to the above mentioned PRRs that mainly con-
trol immune responses to Listeria infection via transcriptional 
upregulation of inflammatory genes, some NLRs as well as other 
cytosolic receptors regulate production of the key proinflammatory 
cytokines IL-1β and IL-18 at a post-translational level and stimulate 
pyroptosis in L. monocytogenes-infected cells (see below).

role of inflammaSome pathwayS in 
L. monocytogenes infection
The NLR protein family consists of over 20 members in mammals. 
They are all composed of a C-terminal leucine-rich repeat domain, 
a central nucleotide-binding domain, and of an N-terminal effec-
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et al., 2010; Tsuchiya et al., 2010; Warren et al., 2010; Wu et al., 
2010). Knockdown of AIM2 in wild-type macrophages resulted in 
a reduced L. monocytogenes-stimulated caspase-1 activation, IL-1β 
secretion, and cell death (Kim et al., 2010). Caspase-1 activation 
was completely inhibited in NLRP3-deficient macrophages treated 
with AIM2 siRNA. Accordingly, macrophages lacking AIM2 showed 
a lower but not abrogated caspase-1 activation and IL-1β production 
after L. monocytogenes infection (Rathinam et al., 2010). It was indi-
cated that lysis of some Listeria in the host-cell cytosol – maybe as a 
result of vacuolar acidification and lysosomal fusion before vacuolar 
escape or yet undefined antimicrobial mechanisms – leads to release 
of bacterial DNA and activation of the AIM2 inflammasome (Sauer 
et al., 2010; Warren et al., 2010). Listeria DNA colocalized with AIM2 
and ASC specks in the host cytosol (Warren et al., 2010; Wu et al., 
2010). The AIM2 inflammasome together with other inflammasomes 
trigger IL-1β production as well as a weak pyroptotic cell death. 
L. monocytogenes mutants showing a higher amount of autolysis 
or Listeria treated with bactericidal antibiotics triggered a stronger 
AIM2-dependent cell death and IL-1β production (Sauer et al., 2010). 
Together, these data show that AIM2 is activated by Listeria DNA 
which triggers caspase-1 activation, cell death, and secretion of IL-1 
family cytokines. Considering that AIM2 is an IFN-stimulated gene, 
the findings of AIM2 involvement in Listeria-mediated inflamma-
some activation fit well to the previous observation that type I IFN 
signaling was required for strong L. monocytogenes-stimulated IL-1β 
and IL-18 secretion (Henry et al., 2007).

infected with L. monocytogenes deficient for the toxin listeriolysin 
O (LLO) did not secrete IL-1β and IL-18 (Mariathasan et al., 2006; 
Ozoren et al., 2006; Hara et al., 2008). Similarly, NLRP3, ASC, and 
LLO were required for IL-1β production in human peripheral 
blood mononuclear cells (PBMCs; Meixenberger et al., 2010). The 
LLO-mediated phagosomal rupture and release of cathepsin B into 
the cytosol might be involved in NLRP3 activation in human and 
murine cells (Meixenberger et al., 2010). However, several papers 
showed that L. monocytogenes activates caspase-1 through addi-
tional inflammasomes besides the NLRP3 complex.

NLRC4 has been shown to be required for caspase-1 activation 
in infections with different bacteria expressing flagellin (Franchi 
et al., 2006; Miao et al., 2006), and some studies showed a par-
tial impairment of caspase-1 activation and IL-1β production in 
NLRC4-deficient cells infected with L. monocytogenes (Warren 
et al., 2008; Wu et al., 2010). Other papers, however, found no evi-
dence for a critical role of NLRC4 in Listeria-mediated caspase-1 
activation (Kim et al., 2010; Meixenberger et al., 2010). It is known 
that the expression of flagellin is strictly inhibited at 37°C in some 
L. monocytogenes strains (Grundling et al., 2004; Way et al., 2004) 
and these differences in flagellin expression among bacterial strains 
are most likely responsible for the different results regarding NLRC4 
involvement in L. monocytogenes infection.

In addition, several recent studies argue for a critical role of AIM2 
in the recognition of L. monocytogenes in mouse macrophages via 
sensing Listeria DNA in the cytosol (Kim et al., 2010; Rathinam 

FIgure 1 | NLrP3, NLrC4, and AIM2 inflammasomes. Inflammasomes are 
assembled by self-oligomerizing proteins. The NLRP3 inflammasome consists 
of NLRP3, ASC, and caspase-1. NLRC4 can directly interact with procaspase-1 
but maximal NLRC4 inflammasome activation might require ASC. The AIM2 
inflammasome is composed of AIM2, ASC, and caspase-1. The PYD domain 

of AIM2 interacts with the PYD of ASC via homotypic PYD–PYD interactions, 
so that the ASC CARD domain can recruit procaspase to the complex. 
Domains: CARD, caspase-recruitment domain; HIN-200 domain; LRR, 
leucine-rich repeat; NACHT, nucleotide-binding, and oligomerization domain; 
PYD, pyrin domain.
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signals stimulated by LLO leading to IL-1β/IL-18 production, 
 activation of the IL-1/IL-18 receptors and of MyD88-dependent sig-
naling have been shown to compensate for lack of TLR2 in Listeria 
infection in mice (Gekara et al., 2009). IL-18 is crucial for IFN-γ 
induction, which is essential for the innate intracellular defense 
against L. monocytogenes as well as for the T cell-mediated acquired 
immunity (Tsuji et al., 2004). The significance of IL-1 in Listeria 
infections has been demonstrated by several groups. It has been 
shown that the blockade of IL-1 receptor exacerbates the disease 
and mice lacking caspase-1 or the IL-1β receptor are significantly 
more susceptible to infections with L. monocytogenes (Havell et al., 
1992; Labow et al., 1997; Tsuji et al., 2004). Moreover, IL-1 recep-
tor antagonist (IL-1Ra)-deficient mice and IL-1Ra-overproducing 
mice are less or more susceptible, respectively, to Listeriosis (Hirsch 
et al., 1996).

concluSion
The interaction of L. monocytogenes with host cells is complex 
and involves entry of the bacterium to different cellular com-
partments as well as a multilayered host-cell surveillance system 
capable of detecting infection. NLR and AIM2 inflammasomes 
are key players of this innate immune surveillance system. They 

Thus, multiple inflammasomes are involved in sensing 
L.  monocytogenes infection. Warren et al. (2010) recently showed 
that NLRP3 most likely is temporally activated first, probably 
detecting vacuolar rupture. NLRC4 and AIM2 get activated at 
a later time point as flagellin monomers and bacterial DNA are 
released into the cytosol. Some studies, however, differ to some 
extent in conclusions regarding functional importance of the 
three different inflammasomes in L. monocytogenes infection 
(Franchi et al., 2007; Warren et al., 2008, 2010; Kim et al., 2010; 
Meixenberger et al., 2010; Rathinam et al., 2010; Sauer et al., 2010; 
Wu et al., 2010). This is likely attributed to the use of different 
Listeria strains that might vary in the expression and extent of 
release of the agonists of NLRP3, NLRC4, and AIM2. Moreover, 
some studies used LPS-primed macrophages in their experiments 
to induce strong pro-IL-1β and NLRP3 expression, whereas others 
performed infections in unprimed cells.

Inflammasomes can be seen as major sentinels of the innate 
immune defense against L. monocytogenes. They contribute to 
pathogen sensing and control post-translational processing of the 
inflammatory cytokines IL-1β and IL-18. IL-1β and IL-18 activate 
via the IL-1 and IL-18 receptors a MyD88-dependent signaling and 
subsequent NF-κB- and MAPK-regulated gene expression. Indeed, 

FIgure 2 | Model of inflammasome activation by Listeria monocytogenes. 
Activation of the extracellular TLR2 pathway via listerial lipoprotein and intracellular 
detection of bacterial peptidoglycans by NOD1/2 lead to upregulation of pro-IL-1β 
transcription (1). After bacterial internalization within a membrane-bound vacuole, 
listeriolysin O (LLO) leads to phagosomal rupture followed by escape of Listeria 
into the cytosol as well as cathepsin B release. Lysosomal damage and cathepsin 

B release (and perhaps other signals such as ROS) probably activate the NLRP3 
inflammasome (2). Flagellin expression by L. monocytogenes or monomeric 
flagellin in the cytosol is detected by the NLRC4 inflammasome (3). Listerial DNA 
in the cytosol is sensed by the AIM2 inflammasome (4). Upon inflammasome 
activation, caspase-1 is autoactivated and mediates processing and secretion of 
the proinflammatory cytokines IL-1β and IL-18 (5; IL-18 is not depicted).
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