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Francisella tularensis is a highly virulent intracellular human pathogen that is capable of rapid 
proliferation in the infected host. Mutants affected in intracellular survival and growth are highly 
attenuated which highlights the importance of the intracellular phase of the infection. Genomic 
analysis has revealed that Francisella encodes all genes required for expression of functional 
type IV pili (Tfp), and in this focused review we summarize recent findings regarding this 
system in the pathogenesis of tularemia. Tfp are dynamic adhesive structures that have been 
identified as major virulence determinants in several human pathogens, but it is not obvious 
what role these structures could have in an intracellular pathogen like Francisella. In the human 
pathogenic strains, genes required for secretion and assembly of Tfp and one pilin, PilA, have 
shown to be required for full virulence. Importantly, specific genetic differences have been 
identified between the different Francisella subspecies where in the most pathogenic type A 
variants all genes are intact while several Tfp genes are pseudogenes in the less pathogenic 
type B strains. This suggests that there has been a selection for expression of Tfp with different 
properties in the different subspecies. There is also a possibility that the genetic differences 
reflect adaptation to different environmental niches of the subspecies and plays a role in 
transmission of tularemia. This is also in line with recent findings where Tfp pilins are found to 
be glycosylated which could reflect a role for Tfp in the environment to promote survival and 
transmission. We are still far from understanding the role of Tfp in virulence and transmission 
of tularemia, but with the genomic information and genetic tools available we are in a good 
position to address these issues in the future.
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role of genes encoding the Tfp system in F. tularensis and the 
significance of the distinct differences seen for specific Tfp genes 
between different subspecies.

Type IV pIlI – dynamIc adhesIVe surface sTrucTures
Type IV pili are multifunctional, flexible filamentous appendages 
that have been assigned specific virulence traits in several important 
pathogens. These properties include adhesion, twitching motility, 
biofilm formation, and competence for DNA transformation and 
are important for host colonization and virulence in pathogens 
like Pseudomonas aeruginosa, Neisseria spp, Vibrio cholerae, and 
Moraxella catarrhalis (Mathis and Scocca, 1984; Bergström et al., 
1986; Taylor et al., 1987; Sato et al., 1988; Catlin, 1990; Marrs and 
Weir, 1990; O’Toole and Kolter, 1998). The nomenclature of the 
Tfp gene clusters have not been harmonized between systems and 
pathogens (Craig and Li, 2008), and also for F. tularensis different 
research groups use different nomenclature. Here we have cho-
sen to mainly use the nomenclature adapted for P. aeruginosa. In 
Table 1 the nomenclature used for the Tfp genes discussed in this 
review are listed.

Type IV pili biogenesis is a process whereby a single protein 
subunit, the so called major pilin, is processed and translo-
cated across the inner membrane where it forms a dynamic 
multimeric filament. Multiple proteins sharing structural 

InTroducTIon
Francisella tularensis, the causative agent of tularemia, has 
attracted significant attention over the years. A major reason 
is that the most pathogenic variant, subspecies tularensis also 
known as type A, causes severe infections that without rapid ther-
apeutic intervention shows high mortality rates. These strains 
have also been recognized to have potential for development 
of biological weapons. Type A strains are found exclusively in 
North America while the less pathogenic subspecies holarctica, 
also known as type B strains, is more broadly distributed in 
the Northern hemisphere (Petersen and Schriefer, 2005). Still, 
Francisella remained an understudied pathogen and this did 
not really change until the first genome sequence became avail-
able and genetic systems were developed (Golovliov et al., 2003; 
Larsson et al., 2005). When the first genome sequence became 
accessible it was somewhat of a disappointment to note that 
the number of genes with homology to known virulence deter-
minants in other pathogens were relatively few (Larsson et al., 
2005). One of the exceptions was the gene clusters predicted to 
encode a type IV pili (Tfp) system. Tfp have been identified as a 
major virulence determinant in many different pathogens even 
if it was not obvious what role a pilus adhesin could have for an 
intracellular pathogen like Francisella. In this focused review we 
summarize and discuss the main findings regarding the  biological 
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F. tularensis subspecIes show dIsTIncT geneTIc 
dIfferences In Tfp genes
The genomes of the different F. tularensis subspecies; tularensis (type 
A), holarctica (type B), and novicida, all encode Tfp clusters includ-
ing six putative pilin genes; pilA, pilE, pilV, FTT0861, FTT0230, and 
FTT1314 (Gil et al., 2004; Larsson et al., 2005; Forslund et al., 2006). 
Interestingly, there are some distinct differences in these pilin genes 
between the subspecies (Larsson et al., 2005). In virulent type B 
strains, pilE and pilV are non-functional due to non-sense mutations, 
and the type IVb pilin gene, FTT0861, harbors a mutation in the stop 
codon resulting in a longer gene. Furthermore, some type B strains 
harbor an additional frame-shift mutation in the FTT0861 gene 
resulting in an even longer open reading frame. The three remain-
ing pilin genes; pilA, FTT0230, and FTT1314, are essentially identical 
between type A and type B strains. In contrast, all six pilin genes are 
intact and functional in type A strains and F. novicida. Interestingly, 
the pilA gene in F. novicida differs in the 3′-end compared to pilA in 
type A and type B strains (Zogaj et al., 2008). The Tfp genes encoded 
by the different subspecies are listed in Table 1.

Genomic analysis early revealed the presence of several regions 
of difference (RDs), flanked with direct repeat sequences that could 
mediate deletions of certain genes or regions (Broekhuijsen et al., 
2003; Svensson et al., 2005). One of these regions, RD19, encodes the 
pilin gene pilA. Interestingly, several attenuated type B strains, like the  
live vaccine strain (LVS) and an isolate from a hare, have lost the pilA 
gene due to homologous recombination involving the direct repeats 
(Svensson et al., 2005; Forslund et al., 2006; Salomonsson et al., 2009b). 
Another distinct difference between the subspecies is that there is a 
unique, single non-sense mutation that truncates the pilT gene in type 
B strains (Gil et al., 2004). Taken together, all these distinct genetic 
differences indicate that the biological properties of Tfp expressed by 
the different subspecies could be significantly different.

Tfp genes are requIred for VIrulence of F. tularensis
Among the different pilin genes only pilA has been found to be 
required for virulence in both type A and type B strains. The above-
mentioned hare type B isolate possessing the spontaneous pilA 

 similarities with this major pilin subunit, known as minor 
pilins, are also required for proper Tfp function and/or assem-
bly, but their exact role is not completely understood (Alm and 
Mattick, 1996; Winther-Larsen et al., 2005; Helaine et al., 2007). 
Tfp are further divided into two subclasses, type IVa and type 
IVb pilins, based on the presence of specific conserved motifs 
(Strom and Lory, 1993; Kachlany et al., 2001; Craig et al., 2004). 
Type IVb pili are commonly found in pathogens colonizing the 
human intestine like V. cholerae, Salmonella typhi, and enter-
opathogenic Escherichia coli (EPEC) (Faast et al., 1989; Girón 
et al., 1991; Zhang et al., 2000).

The major pilin, PilA, is processed by a specific peptidase, PilD, 
and thereafter translocated across the inner membrane, followed 
by assembly into a multimeric pilus fiber on the periplasmic side 
of the inner membrane. The pilus fiber is then secreted across the 
outer membrane via the secretin pore PilQ (Figure 1; Strom and 
Lory, 1993; Drake and Koomey, 1995). The assembly and exten-
sion of Tfp is facilitated by the PilB ATPase and pilB mutants are 
negative for Tfp (Turner et al., 1993). In several of the bacteria 
expressing Tfp a second ATPase PilT promotes disassembly and 
retraction of Tfp and in this case pilT mutants are hyperpili-
ated (Wolfgang et al., 2000). PilT is also required for motility on 
solid surfaces – a phenomenon denoted twitching motility seen 
in several bacteria expressing PilT (Whitchurch et al., 1991; Maier 
et al., 2004). Another key component of the Tfp biogenesis is PilC, 
an inner membrane protein of unknown function (Nunn et al., 
1990). Several F. tularensis Tfp related genes also show homology 
to genes involved in type II secretion system (T2SS) (Peabody 
et al., 2003). These include the inner membrane associated pro-
teins PilB and PilC, the secretin PilQ, and the pilin peptidase PilD 
(Nunn and Lory, 1991). In addition, Tfp pilins show homology to 
T2SS pseudopilins (Peabody et al., 2003). It has been shown that 
the Tfp subunit PilA of P. aeruginosa is also required for efficient 
secretion of T2S substrates (Lu et al., 1997). In addition, there is 
evidence that Tfp in some cases can promote protein secretion 
by a mechanism similar to T2SS (Kennan et al., 2001; Kirn et al., 
2003; Han et al., 2007).

Table 1 | Nomenclature and presence of functional Tfp genes in different strains.

Gene name Alternative gene Putative function Type A/F. novicida Type B strains Type B LVS 

 name  strains

pilA, FTT0890 pilE, pilE1 Type IVa pilus subunit +1 + −
pilE, FTT0889 pilE2 Type IVa pilus subunit + − −
pilV, FTT0888 pilE3 Type IVa pilus subunit + − −
FTT0861 pilE4 Type IVb pilus subunit +2 +2 +2

FTT0230 pilE5 Type IVa pilus subunit + + +
FTT1314  Type IVa pilus subunit + + +
pilD  Peptidase + + +
pilQ  Secretin + + +
pilB pilF ATPase, pilus extension + + +
pilT  ATPase, pilus retraction + −3 −3

pilC pilG Transmembrane protein + + +

1pilA differs in the 3 ′-end in F. novicida.
2FTT0861 encodes a mutation in the stop codon resulting in a longer gene in F. novicida and type B strains.
3pilT is truncated due to a non-sense mutation.
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found in enteropathogens like EPEC and V. cholerae. Our lab has 
not found a link to virulence for any of the other pilin genes in 
type B strains but we have data suggesting that the pseudopilins/
minor pilins encoded by FTT1621 and/or FTT1622 are required 
for full virulence of type B strains (Näslund Salomonsson et al., 
unpublished).

Several genes are involved in secretion and assembly of Tfp and 
there are evidence supporting that some of these genes are also associ-
ated with virulence of F. tularensis. The Tfp biogenesis genes pilC and 
pilQ both contribute to virulence in the highly virulent type A strain 
SCHU S4 (Forslund et al., 2010). These proteins are of fundamental 
importance for biogenesis and function of Tfp in other pathogens 

deletion showed reduced virulence at levels comparable to that 
of the LVS strain, which also lacks pilA and several pilus assembly 
genes (Table 1; Forslund et al., 2006; Salomonsson et al., 2009b). 
Furthermore, pilA has been demonstrated to be important for full 
virulence in the pathogenic type B strain FSC200 and the highly 
virulent type A strain SCHU S4 (Forslund et al., 2010; Näslund 
Salomonsson et al., unpublished results). When we compared the 
importance of pilA for virulence in different strains and subspecies, 
we found that pilA had less impact on virulence in the more viru-
lent strains (Table 2). As seen in column 3 of Table 2, the infection 
dose is very low in virulent type A and type B strains, making it 
problematic to measure small differences in attenuation of strains. 
Hence, the infection dose experiments are not sensitive enough 
for the highly virulent strains. Therefore, when using strains that 
are highly virulent to mice we performed competitive infection 
experiments where mice were simultaneously infected with the pilA 
mutant and the isogenic wildtype in order to be able to verify small 
differences in virulence. The competitive index (CI) was calculated 
by dividing the ratio of mutant/wt after infection with the mutant/
wt ratio before infection. The low CI value, 0.004, for the infection 
with the type B strain FSC200, is consistent with the result from the 
single infection experiment where the infection dose was 40-fold 
higher for mice infected with the pilA negative strain. When study-
ing the highly virulent type A strain and the influence of pilA in 
virulence, we were unable to measure any difference regarding the 
infection dose in the single infection study, but the relatively low 
CI value verifies that pilA is also needed for full virulence in the 
most pathogenic subspecies (Table 2).

Regarding F. novicida, the Tfp encoding genes are, overall very 
similar to type A strains and therefore it is interesting to note that 
virulence data between these subspecies are so diverse. There are 
also conflicting results between different F. novicida studies. In one 
study a F. novicida pilA mutant was found to be even more virulent 
than the wildtype strain (Hager et al., 2006), while Zogaj et al. 
(2008) found that pilA mutants were attenuated compared to the 
wildtype. Hager and colleagues suggested the enhanced virulence 
to be a result of abolished secretion of the protein PepO, a protease 
involved in vasoconstriction which limits the spread of F. novic-
ida. Since pepO is non-functional or lacking in type A and type B 
strains, it is not possible to directly compare the different subspe-
cies regarding these defects. In addition, there are genetic findings 
indicating that F. novicida displays Tfp-mediated secretion, similar 
to the type IV toxin coregulated pilus-dependent secretion of TcpF 
in V. cholerae, rather than a T2SS mediated secretion (Kirn et al., 
2003; Hager et al., 2006). In conclusion, there is convincing evidence 
for a role of a functional Tfp in virulence where most data so far 
support a role for PilA as well as some of the assembly/secretion 
factors. The evidence for Tfp-mediated secretion in F. novicida is 
convincing, while it is somewhat less clear if secretion is common 
to all subspecies or what the role of functional Tfp-mediated secre-
tion could play in virulence.

So far, FTT0861 is the only pilin besides PilA that has been 
reported to be virulence associated. Zogaj et al. (2008) showed 
that FTT0861 was required for full virulence in mice infected with 
F. novicida via the intradermal route, while the pilin had no influ-
ence on intracellular survival and growth in macrophages. Of par-
ticular interest is that this pilin belongs to the type IVb pilin family 

FIGure 1 | Schematic overview of the type IV pili system. The pilus fiber 
is mainly composed of the major pilin subunit (denoted PilA in P. aeruginosa), 
which is expressed as a prepilin that upon cleavage by the prepilin peptidase 
PilD allows for proper pilus assembly and function (Strom et al., 1993). The 
major pilin is translocated across the inner membrane where it forms a 
dynamic multimeric filament that is secreted via the pore-forming secretin 
PilQ to the bacterial surface (Marceau et al., 1998). PilC is a transmembrane 
protein found in the inner membrane (Nunn et al., 1990). The two ATPases, 
PilB and PilT, mediates extension and retraction respectively of the pilus 
(Whitchurch et al., 1991; Maier et al., 2004).

Table 2 | Comparison in infection doses and CI values for pilA positive 

and pilA negative strains.

Strain pilA CFu lethal doses –  CI 

  single infection

Type B LVS cis-complemented pilA+ 5 × 103 

Type B LVS (wt) pilA− 1 × 106 

Type B FSC200 (wt) pilA+ <5 

Type B FSC200 ∆pilA pilA− 1.8 × 102 0.004*

Type A SCHU S4 (wt) pilA+  <10 

Type A SCHU S4 ∆pilA pilA− <10 0.14*

*Competitive index (CI) is the ratio between the pilA mutant and the isogenic 
wildtype strain for bacteria isolated from spleens of mice simultaneously 
infected with the two strains.
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cells, arguing that both proteins are involved in pilus assembly 
(Chakraborty et al., 2008). The pilB results are in agreement with 
other Tfp expressing pathogens while the pilT results were some-
what unexpected as in other pathogens, like Neisseria spp, deletion 
of pilT results in a hyperpiliated phenotype (Wolfgang et al., 2000). 
Interestingly, in Clostridium spp., the only known Gram-positive 
that harbors Tfp genes, it has been shown that a pilT mutant can 
still produce pilins, but are unable to assemble the pili on the sur-
face of the cell (Varga et al., 2006). The reason for this unexpected 
phenotype of the pilT mutant suggests that PilT may have a different 
role than retraction for Tfp in Francisella. However, the F. tularensis 
PilT results were even more surprising due to the fact that the pilT 
gene is only intact in type A strains while it is non-functional in all 
type B strains (Gil et al., 2004; Näslund Salomonsson et al., unpub-
lished). Overall, the role of PilT in Tfp biogenesis and virulence in 
different subspecies is still unclear.

In a different study, F. novicida was also confirmed to assemble 
filamentous structures on the bacterial surface (Zogaj et al., 2008). 
In this case, a mutation in the secretin-encoding gene pilQ resulted 
in decreased but not complete lack of pili. Furthermore, a pilC 
mutant had no impact on piliation. This is again surprising, since 
both PilQ and PilC are expected to be essential for secretion and 
assembly of Tfp (Tønjum et al., 1995; Helm et al., 2007). Similar to 
what was found in LVS, pilB and pilT mutants were totally deficient 
for Tfp-like structures in F. novicida, indicating that PilB and PilT 
are required for Tfp assembly. Interestingly, Zogaj et al. (2008) 
suggested the type IVb pilin FTT0861 to be the major Tfp subunit 
in F. novicida, as they showed that a FTT0861 mutant lack surface 
fibers, which was not seen for any of the other pilin mutants. Still, 
some of the other pilin mutants expressed significantly fewer sur-
face fibers indicating that the mutated genes could encode minor 
pilins that somehow influence the assembly and expression of the 
pilus. PilA, on the other hand, was shown to be required for secre-
tion in F. novicida but had no impact on pili expression.

Indeed, even if Tfp-like structures have been identified on the 
surface of LVS and F. novicida, these structures have still not been 
verified to be composed of one of the Tfp pilins. In one of our 
studies the PilA protein was FLAG-tagged in the C-terminus and 
analyzed with electron microscopy in order to facilitate detection on 
the surface of type B strains (Forslund et al., 2006). However, in that 
study no filamentous structures were detected, but the finding that 
PilA is exported to the bacterial surface was confirmed (Figure 3), 
though we could not correlate pilA to adhesion to epithelial cells 
(Forslund et al., 2006). In a further study we used a different strategy 
to verify if any of the F. tularensis pilin genes could form pili struc-
tures. Here a trans-species complementation assay was used where 
F. tularensis pilins were expressed in N. gonorrhoeae (Salomonsson 
et al., 2009a). Interestingly, out of all pilins tested only PilA was 
able to complement Tfp related functions in the heterologous 
system. Both PilA derived from the type A strain SCHU S4 and 
from F. novicida promoted assembly of Tfp-like structures in the 
N. gonorrhoeae background (Figure 4; Salomonsson et al., 2009a). 
Further support for the ability of these two PilA proteins to form 
pilus-like multimers was their capacity to restore competence for 
DNA uptake in a N. gonorrhoeae pilin mutant strain. According 
to these findings, PilA seems to be the only F. tularensis pilin able 
to form functional filaments. The type II secretion pseudopilins 

and provide indirect evidence suggesting that Francisella expresses 
functional Tfp. Furthermore, PilT has previously been shown to be 
of importance of virulence in other pathogens, e.g., P. aeruginosa 
and Dichelobacter nodosus (Comolli et al., 1999; Han et al., 2008). 
Chakraborty et al. (2008) demonstrated that mutations in either pilB 
or pilT in LVS resulted in attenuation in a mouse infection model. 
These results are somewhat puzzling as pilT is a pseudogene in type 
B strains where there is a missense mutation that would be expected 
to result in a truncated protein of only one-third in size compared 
to the full length protein. In an attempt to verify this hypothesis we 
introduced a FLAG-tag at the 3′-end of both an intact pilT and pilT 
that harbors the stop codon, and looked for a read-through. The 
FLAG-tag was expressed from the intact pilT gene but not from the 
gene carrying the stop codon, suggesting that suppression of this non-
sense mutation does not occur and pilT is therefore non-functional 
in type B strains (Näslund Salomonsson et al., unpublished). The 
influence of pilT in virulence has also been studied in the type A strain 
SCHU S4 where pilT is intact, but in this case pilT was found not to 
be involved in mouse virulence (Forslund et al., 2010).

Even if it has been established that pilA contributes to virulence 
in F. tularensis, the overall picture is that the pilin is not required 
for intracellular survival or replication in type A or type B strains 
(Forslund et al., 2006), with the exception of F. novicida where 
it was found that pilA mutants were impaired for intracellular 
growth (Zogaj et al., 2008). The mechanism whereby PilA pro-
motes infection has not been elucidated, but there is evidence sug-
gesting that PilA is required for optimal spread of the bacterium 
from the initial peripheral site of infection to cause a systemic 
infection (Forslund et al., 2006). This suggests that PilA mediates 
specific interactions with host cells/tissue that facilitates spread 
of the infection.

physIcal eVIdence for Tfp
In a study published by Gil et al. (2004), LVS was demonstrated to 
express Tfp-like structures on the surface (Figure 2). In a following 
study, mutations in either the pilB gene, involved in pilus exten-
sion, or the pilT gene, involved in pilus retraction, resulted in loss 
of surface fibers as well as a defect in adherence to host  epithelial 

FIGure 2 | The live vaccine strain was demonstrated to express Tfp-like 
structures on the bacterial surface with negative stained electron 
microscopy (Gil et al., 2004). Reprinted with permission. Copyright 2004, 
ASM press.
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different Francisella subspecies also are posttranslationally modi-
fied by a modification that requires the same glycosyltransferase 
(Näslund Salomonsson et al., unpublished). Recently published 
results indicate that glycosylation of proteins in Francisella is not 
limited to Tfp related proteins, but includes other surface proteins 
(Balonova et al., 2010). Genome information, as well as our own 
preliminary data, suggests that glycosylation of pilins is common 
to all subspecies (Brotcke et al., 2006; Weiss et al., 2007; Näslund 
Salomonsson et al., unpublished). It is also possible that the degree 
of modification at specific glycosylation sites may vary depend-
ing on growth conditions which are reflected in the ladder like 
appearance of PilA in Western blot analysis (Forslund et al., 2006). 
Posttranslational modification of Tfp has been shown to affect 
twitching motility and properties of the pilus by rendering the pilus 
fiber less hydrophobic and more stable (Smedley et al., 2005). For P. 
aeruginosa there is also a strong correlation between glycosylation 
of Tfp and clinical isolates, and Tfp glycosylation has been found to 
provide a competitive advantage in macrophage and lung infection 
models (Smedley et al., 2005). This opens up the exciting possibil-
ity that glycosylation of Tfp may also be of relevance for tularemia 
either at the level of infection or at the level of transmission.

prospecTs
The F. tularensis subspecies show great diversity with respect to 
virulence in humans from the highly pathogenic subsp. tularensis 
(type A) to the essentially non-pathogenic subspecies novicida. This 
is intriguing as the genome sequences have revealed that they are 
highly homologous with >97% identity at DNA level between the 
most and least virulent subspecies (Larsson et al., 2009). When it 
comes to the gene clusters encoding Tfp there are specific differ-
ences at genetic level, where type A strains and F. novicida only 
show significant differences in one gene, pilA, while type B strains 
have acquired non-sense mutations in several Tfp genes. These 
mutations are remarkably conserved in the strains analyzed so far, 
suggesting that loss of function of these genes has occurred in order 
to adapt to a specific environmental and/or host niche.

One interesting functional difference between the subspe-
cies is that Tfp can promote secretion of a subset of proteins in 
F. novicida (Hager et al., 2006; Zogaj et al., 2008), but so far there 
is no evidence for Tfp-mediated secretion of proteins in vitro 
in the human pathogenic subspecies. While it remains a pos-
sibility that the in vitro conditions that promotes secretion may 
differ, it is still a possibility that evolution of the highly virulent 
subspecies included loss of Tfp-mediated secretion and that the 
key molecule in this development is the differences seen in the 
C-terminal part of PilA between F. novicida and the pathogenic 
subspecies.

When it comes to functional analysis and virulence, PilA has 
been found to be required for virulence in the human pathogenic 
subspecies (Forslund et al., 2006, 2010; Salomonsson et al., 2009b). 
In addition PilA has been shown to function as a pilin subunit 
when expressed in a heterologous Tfp expressing system in N. gon-
orrhoeae, both with respect to forming a Tfp filament but also in 
the Tfp-mediated DNA uptake assay (Salomonsson et al., 2009a). 
Several other pilin proteins that were evaluated in this assay were 
also expressed in N. gonorrhoeae but did not promote formation 
of filaments or DNA uptake.

have also been demonstrated to form pilus-like structures when 
overexpressed in the T2S pathway (Sauvonnet et al., 2000). Hence, 
the Tfp-like structures seen in N. gonorrhoeae could be built up 
by pseudopilins. Importantly, the Francisella specific appendages 
in N. gonorrhoeae were dependent on Tfp biogenesis factors and 
pseudopilins does not to support genetic transformation which 
provides further support for the idea that PilA indeed functions 
as a Tfp pilin (Salomonsson et al., 2009a).

In conclusion, there are physical evidence for Tfp-like structures 
in Francisella, still, conclusive evidence as to which protein consti-
tutes the major structural subunit has yet to be presented.

posTTranslaTIonal modIfIcaTIon of Tfp
In our first study of Tfp in Francisella, where we showed that loss 
of pilA also resulted in virulence attenuation, we also presented 
evidence for posttranslational modification of PilA (Forslund 
et al., 2006). PilA expressed by Francisella displayed significantly 
lower mobility in SDS-PAGE compared to PilA expressed by a non-
 glycosylating strain of P. aeruginosa. Recently we have shown that a 
gene encoding a glycosyltransferase with homology to transferases 
known to be required for glycosylation of Tfp in other pathogens 
(Aas et al., 2007; Faridmoayer et al., 2007; Qutyan et al., 2007), is 
required for glycosylation of PilA (unpublished results). In addition 
we have preliminary evidence that other pilins expressed by the 

FIGure 4 | Piliation of a gonococcal strain expressing F. novicida derived 
PilA visualized by immunogold electron microscopy (Salomonsson et al., 
2009a). Reprinted with permission. Copyright 2009, Society for General 
Microbiology.

FIGure 3 | expression of FLAG-tagged PilA on the bacterial surface of a 
type B strain visualized by immunogold electron microscopy (Forslund 
et al., 2006). Reprinted with permission. Copyright 2006, Blackwell publishing 
ltd.
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