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Green sulfur bacteria are obligate photolithoautotrophs that require highly reducing con-
ditions for growth and can utilize only a very limited number of carbon substrates. These
bacteria thus inhabit a very narrow ecologic niche. However, several green sulfur bac-
teria have overcome the limits of immobility by entering into a symbiosis with motile
Betaproteobacteria in a type of multicellular association termed phototrophic consortia.
One of these consortia, “Chlorochromatium aggregatum,” has recently been established
as the first culturable model system to elucidate the molecular basis of this symbiotic
interaction. It consists of 12–20 green sulfur bacteria epibionts surrounding a central,
chemoheterotrophic betaproteobacterium in a highly ordered fashion. Recent genomic,
transcriptomic, and proteomic studies of “C. aggregatum” and its epibiont provide insights
into the molecular basis and the origin of the stable association between the two very
distantly related bacteria. While numerous genes of central metabolic pathways are upreg-
ulated during the specific symbiosis and hence involved in the interaction, only a limited
number of unique putative symbiosis genes have been detected in the epibiont. Green
sulfur bacteria therefore are preadapted to a symbiotic lifestyle. The metabolic coupling
between the bacterial partners appears to involve amino acids and highly specific ultra-
structures at the contact sites between the cells. Similarly, the interaction in the equally
well studied archaeal consortia consisting of Nanoarchaeum equitans and its host Ignicoc-
cus hospitalis is based on the transfer of amino acids while lacking the highly specialized
contact sites observed in phototrophic consortia.
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INTRODUCTION
In their natural environment, planktonic bacteria reach total cell
numbers of 106 ml–1, whereas in sediments and soils, 109 and 1011

bacterial cells·cm–3, respectively, have been observed (Fægri et al.,
1977; Whitman et al., 1998). Assuming a homogenous distribu-
tion, distances between bacterial cells in these environments would
amount to 112 μm for planktonic, 10 μm for sediment envi-
ronments and about 1 μm for soil bacteria (Overmann, 2001b).
Taking into account the estimated number of bacterial species
in soil that range from 500,000 (Dykhuizen, 1998) to 8.3 × 106

(Gans et al., 2005), the closest neighbors of each cell statistically
should represent different species. A spatially close association of
different bacterial species can result in metabolic complementa-
tion or other synergisms. In this context, the most extensively
studied example is the conversion of cellulose to methane and
carbon dioxide in anoxic habitats. The degradation is only pos-
sible by a close cooperation of at least four different groups of
bacteria that encompass primary and secondary fermenting bac-
teria as well as two types of methanogens. Along this anaerobic
food chain, end products of one group are exploited by the mem-
bers downstream the flow of electrons. Although the bacteria
involved in the first steps of cellulose degradation do not obligately
depend on the accompanying bacteria for provision of growth

substrates, they profit energetically from the rapid consumption
of their excretion products. This renders their metabolism ener-
getically more favorable or makes some reactions even possible
(Bryant, 1979; Zehnder et al., 1982; McInerney, 1986; Schink,
1992). Recent studies of syntrophic communities in Lake Con-
stance profundal sediments yielded new and unexpected results.
The dominant sugar-degrading bacteria were not the typical fer-
menting bacteria that dominate in anaerobic sludge systems or
the rumen environment. They rather represented syntrophic bac-
teria most closely related to the genus Bacillus that could only be
grown anaerobically and in coculture with the hydrogen-using
methanogen Methanospirillum hungatei (Müller et al., 2008).
For efficient syntrophic substrate oxidation, close physical con-
tact of the partner organisms is indispensable. Monocultures of
Pelotomaculum thermopropionicum strain SI and Methanother-
mobacter thermautotrophicus show dispersed growth of the cells.
In contrast, cocultures of the two strains formed tight aggregates
when grown on propionate, for which the allowed distance for
syntrophic propionate oxidation was estimated to be approxi-
mately 2 μm (Ishii et al., 2005). Interestingly, the H2-consuming
partner in syntrophic relationships can be replaced by an H2-
purging culture vessel, allowing Syntrophothermus lipocalidus to
grow on butyrate and Aminobacterium colombiense on alanine in
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pure culture (Adams et al., 2006). Thus, the syntrophic associations
investigated to date are typically based on efficient H2-removal as
obligate basis for their interdependence. Additional types of bac-
terial interactions have been described more recently. Cultures of
Pseudomonas aeruginosa were shown to only grow on chitin if
in coculture with a chitin degrading bacterium like Aeromonas
hydrophila. In addition to simply growing on the degradation
products produced by the exoenzymes of the partner, P. aerugi-
nosa induced release of acetate in A. hydrophila by inhibiting its
aconitase employing pyocyanin. The resulting incomplete oxida-
tion of chitin to acetate by A. hydrophila is then exploited by P.
aeruginosa for its own growth (Jagmann et al., 2010).

Although these well-characterized associations certainly are of
major ecological relevance in their respective environments, they
were typically obtained using standard defined growth media.
As a result, presently available laboratory model systems were
selected based on their ability to grow readily and – under at
least some experimental conditions – on their own in pure cul-
ture. Obviously, this cultivation strategy counterselects against
bacterial associations of obligately or at least tight interdepen-
dence. While the significant advances in the development of
cultivation-independent techniques permit a partial analysis of
so-far-uncultured associations (Orphan et al., 2001; Blumenberg
et al., 2004; Pernthaler et al., 2008), laboratory grown model sys-
tems are still indispensable for in-depth studies of gene expression
and metabolism. One model system of prokaryotic associations
that meanwhile can be grown indefinitely in laboratory culture
is the phototrophic consortium “Chlorochromatium aggregatum.”
This consortium represents the most highly developed bacteria–
bacteria symbiosis known to date. In parallel, the archaea–archaea
association between Ignicoccus hospitalis and Nanoarchaeum equi-
tans has emerged as a second laboratory model over the past years
(Huber et al., 2003). A comparison between the two model systems
that represent two different domains of life provides first insights
into the general principles of tight interactions in the prokaryotic
world.

CHARACTERIZATION OF PHOTOTROPHIC CONSORTIA AND
ESTABLISHING “CHLOROCHROMATIUM AGGREGATUM ” AS
A MODEL SYSTEM FOR CLOSE BACTERIAL INTERACTIONS
Phototrophic consortia were already discovered in 1906 (Lauter-
born, 1906) and invariably encompass green or brown-colored
bacteria as epibionts that surround a central bacterium in a highly
ordered fashion. Several decades later, electron microscopic analy-
ses documented the presence of chlorosomes in the epibiont cells
and led to the conclusion that the phototrophic epibionts belong
to the green sulfur bacteria (Caldwell and Tiedje, 1975). This was
confirmed by the application of fluorescence in situ hybridiza-
tion employing a highly specific oligonucleotide probe against
green sulfur bacterial 16S rRNA (Tuschak et al., 1999). The other
partner bacterium of the symbiosis remained much less investi-
gated than its epibionts. First, it had even been overlooked due to
its low contrast in the light microscope. Over 90 years later, the
central bacterium was identified as a Betaproteobacterium (Fröstl
and Overmann, 2000) that exhibits a rod-shaped morphology
with tapered ends (Overmann et al., 1998). Electron microscopy
revealed the cells to be monopolarly monotrichously flagellated

(Glaeser and Overmann,2003b). Within the Betaproteobacteria the
central bacterium represents a so far isolated phylogenetic lineage
belonging to the family of the Comamonadaceae. The closest rel-
atives are Rhodoferax spp., Polaromonas vacuolata and Variovorax
paradoxus (Kanzler et al., 2005).

Based solely on their morphology, 10 different phototrophic
consortia can be distinguished to date (Overmann, 2001a; Over-
mann and Schubert, 2002). The majority of the morphotypes are
motile, motility being conferred by the central colorless bacterium.
The 13–69 epibiont cells are either green or brown-colored repre-
sentatives of the green sulfur bacteria. The smaller consortia like
“Chlorochromatium aggregatum” (harboring green epibionts) and
“Pelochromatium roseum” (brown epibionts), are barrel shaped
and consist of 12–20 epibiont cells (Overmann et al., 1998). Rather
globular in shape and consisting of ≥40 epibionts are the sig-
nificantly larger consortia “Chlorochromatium magnum” (green
epibionts; Fröstl and Overmann, 2000), “Pelochromatium latum”
(brown epibionts; Glaeser and Overmann, 2004) and “Pelochro-
matium roseo-viride” (Gorlenko and Kusnezow, 1972). The latter
consortium is the only one harboring two types of epibionts,
with brown cells forming an inner layer and green ones an outer
layer. “Chloroplana vacuolata” and “Cylindrogloea bactifera” can be
distinguished from the other consortia by their immotility and dif-
ferent cell arrangement. “Chloroplana vacuolata” consists of rows
of green sulfur bacteria alternating with colorless bacteria forming
a flat sheath (Dubinina and Kuznetsov, 1976), with both species
containing gas vacuoles. In “Cylindrogloea bactifera,” a slime layer
containing green sulfur bacteria is surrounding filamentous, col-
orless bacteria (Perfiliev, 1914; Skuja, 1956). Since they consist of
two different types of bacteria, the names of consortia are with-
out standing in nomenclature (Trüper and Pfennig, 1971) and,
accordingly, are given here in quotation marks.

When 16S rRNA gene sequences of green sulfur bacteria from
phototrophic consortia were investigated from a total of 14 dif-
ferent lakes in Europe and North America (Glaeser and Over-
mann, 2004), a total of 19 different types of epibionts could be
detected. Of those, only two types occurred on both, the Euro-
pean and North American continents. Although morphologically
identical consortia from one lake always contained just a single
epibiont phylotype, morphologically indistinguishable consortia
from different lakes frequently harbored phylogenetically different
epibionts. Phylogenetic analyses demonstrated that the epibiont
sequences do not constitute a monophyletic group within the radi-
ation of green sulfur bacteria. Therefore, it was concluded that the
ability to form symbiotic interactions was gained independently
by different ancestors of epibionts or, alternatively, was present in
the common ancestor of the green sulfur bacteria. In parallel, the
phylogeny of central bacteria of phototrophic consortia was inves-
tigated. This analysis exploited a rare tandem rrn operon arrange-
ment in these bacteria that involves an unusual short interoperon
spacer of 195 bp (Pfannes et al., 2007). Betaproteobacteria with this
genomic feature were exclusively encountered in chemocline envi-
ronments and form a novel, distinct and highly diverse subcluster
within the subphylum. Within this cluster, the sequences of central
bacteria of phototrophic consortia were found to be polyphyletic.
Thus, like in their green sulfur bacterial counterparts, the ability
to become a central bacterium may have evolved independently in
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several lineages of betaproteobacteria, or was already present in a
common ancestor of the different central bacteria. In the barrel-
shaped types of consortia, the green sulfur bacterial epibionts have
overcome their immotility. However, the existence of two differ-
ent types of non-motile consortia indicates that motility is not
the only advantage gained by green sulfur bacteria that form these
interspecies association with heterotrophic bacteria. As described
below (see Evidence for Metabolic Coupling), the exchange of
metabolites seems to play a major role in the symbiotic interac-
tion, and might therefore be the key selective factor of symbiosis
in immotile phototrophic consortia.

At present, “Chlorochromatium aggregatum” is the only pho-
totrophic consortium that can be successfully cultivated in the
laboratory (Fröstl and Overmann, 1998). From the stable enrich-
ment culture it was possible to isolate the epibiont of the consor-
tium in pure culture using deep agar dilution series supplemented
with optimized growth media (Vogl et al., 2006). On the basis of
16S rRNA sequence comparisons, the strain is distantly related
to other known green sulfur bacteria (≤94.6% sequence homol-
ogy) and therefore represents a novel species within the genus
Chlorobium, Chlorobium chlorochromatii strain CaD. However,
physiological and molecular analyses of the novel isolate did not
reveal any major differences to already described strains of the phy-
lum Chlorobi. Thus, C. chlorochromatii CaD is obligately anaerobic
and photolithoautotrophic, and photoassimilates acetate and pep-
tone in the presence of sulfide and hydrogen carbonate (Vogl et al.,
2006). As a difference to its free-living counterparts the epibiont
contains only a low cellular concentration of carotenoids and can-
not synthesize chlorobactene. A similar anomaly had also been
observed in the brown epibionts of the phototrophic consortium
“Pelochromatium roseum” that do not seem to form isorenieratene
(Glaeser et al., 2002; Glaeser and Overmann, 2003a). In contrast
to the epibiont of “Chlorochromatium aggregatum,” all efforts to
cultivate the central bacterium in the absence of its epibionts have
failed so far.

PREADAPTATION OF GREEN SULFUR BACTERIA TO
SYMBIOSIS
Green sulfur bacteria (Family Chlorobiaceae) constitute a phy-
logenetically distinct lineage within the phylum Chlorobi of the
domain Bacteria (Overmann, 2001a). Recently, the chemotrophic
Ignavibacterium album gen. nov. sp. nov., was described (Iino et al.,
2010), this novel isolate represents a deeply branching phyloge-
netic lineage and hence a new class within the phylum Chlorobi,
whereas all green sulfur bacteria sensu stricto that are known to date
represent strictly anaerobic photolithoautotrophs. Since a consid-
erable number of different 16S rRNA gene sequence types of green
sulfur bacteria engaged in a symbiotic association with the central
Betaproteobacteria (see section Characterization of Phototrophic
Consortia and Establishing “Chlorochromatium aggregatum” as a
Model System for Close Bacterial Interactions), green sulfur bac-
teria may be specifically preadapted to symbiosis and the advent of
symbiotic green sulfur bacterial epibionts during evolution may
have involved only limited genomic changes. Indeed, several of the
physiological characteristics of green sulfur bacteria are regarded
as preadaptive traits for interactions with other prokaryotes.

One feature of green sulfur bacteria which provides interac-
tion with other prokaryotes is their carbon metabolism. Green
sulfur bacteria autotrophically assimilate CO2 through the reduc-
tive tricarboxylic acid cycle. One instantaneous product of pho-
tosynthetic fixation of CO2 is 2-oxoglutarate, and 2-oxo acids
represent typical excretion products of photosynthesizing cells
(Sirevag and Ormerod, 1970). In natural environments, Chloro-
bium limicola excretes photosynthetically fixed carbon (Czeczuga
and Gradzki, 1973) and thus constitutes a potential electron donor
for associated bacteria. Excretion of organic carbon compounds
has also been demonstrated for C. chlorochromatii strain CaD,
the epibiont of the phototrophic consortium “Chlorochromatium
aggregatum” (Pfannes, 2007). Vice versa, green sulfur bacteria can
also take advantage of organic carbon compounds produced by
other, for example, fermenting, bacteria. During phototrophic
growth, they are capable of assimilating pyruvate as well as acetate
and propionate through reductive carboxylation in the presence
of CO2 (pyruvate:ferredoxin oxidoreductase; Uyeda and Rabi-
nowitz, 1971) or HCO−

3 − (phosphoenolpyruvate carboxylase;
Chollet et al., 1996). The assimilation of organic carbon com-
pounds reduces the amount of electrons required per unit cellular
carbon synthesized. This capability thus enhances photosynthetic
growth yield and results in a competitive advantage for green sulfur
bacteria.

In their natural environment, green sulfur bacteria are lim-
ited to habitats where light reaches anoxic bottom waters such as
in thermally stratified or meromictic lakes. Here, cells encounter
conditions favorable for growth exclusively in a rather nar-
row (typically cm to dm thick) zone of overlap between light
and sulfide. Compared to other phototrophs, green sulfur bac-
teria are extremely low-light adapted and capable of exploit-
ing minute light quantum fluxes by their extraordinarily large
photosynthetic antenna complexes, the chlorosomes. In contrast
to other photosynthetic antenna complexes, the bacteriochloro-
phyll c, d, or e molecules in chlorosomes are not attached to
a protein scaffold but rather form paracrystalline, tight aggre-
gates (Griebenow and Holzwarth, 1989; Blankenship et al., 1995).
Until recently, the heterogeneity of pigments complicated the
identification of the structural composition of chlorosomes.
When a Chlorobaculum tepidum triple mutant that almost exclu-
sively harbors BChl d was constructed, a syn-anti stacking of
monomers and self-assembly of bacteriochlorophylls into tubu-
lar elements could be demonstrated within the chlorosomes
(Ganapathy et al., 2009).

Since they minimize the energetically costly protein synthesis,
chlorosomes represent the most effective light harvesting system
known. Up to 215,000 ± 80,000 bacteriochlorophyll molecules (in
Chlorobaculum tepidum; Montano et al., 2003) can constitute a
single chlorosome, that is anchored to 5–10 reaction centers in
the cytoplasmic membrane (Amesz, 1991). This ratio of chloro-
phyll to reaction center is orders of magnitudes higher compared
with other photosynthetic antenna structures. In the phycobili-
somes of cyanobacteria the ratio is 220:1 (Clement-Metral et al.,
1985), 100–140:1 in light harvesting complex II of anoxygenic
phototrophic proteobacteria (Van Grondelle et al., 1983) and 28:1
in the light harvesting complex I (Melkozernov et al., 2006). The
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enormous size of the photosynthetic antenna of green sulfur bac-
teria enables them to colonize extreme low-light habitats up to
depths of 100 m in the Black Sea (Overmann et al., 1992; Marschall
et al., 2010) or below layers of other phototrophic organisms like
purple sulfur bacteria (Pfennig, 1978). Commensurate with their
adaptation to extreme light limitation, green sulfur bacteria also
exhibit a significantly reduced maintenance energy requirement
compared to other bacteria (Veldhuis and van Gemerden, 1986;
Overmann et al., 1992). Chlorobium phylotype BS-1 isolated from
the Black Sea maintained a constant level of cellular ATP over
52 days, if exposed to low-light intensities of 0.01 mmol quanta
m–2 s–1 (Marschall et al., 2010). The high efficiency of green sulfur
bacteria allows them to colonize habitats in which other photosyn-
thetic bacteria are unable to grow. A chemotrophic bacterium that
associates with green sulfur bacteria and is capable of exploiting
part of their fixed carbon thus would gain a selective advantage
during evolution.

SELECTIVE ADVANTAGE OF CONSORTIA FORMATION
Free-living representatives of green sulfur bacteria are immotile
and only species able to produce gas vacuoles can regulate their
vertical position. However, changes in buoyant density mediated
by gas vesicle production occur only over time periods of several
days (Overmann et al., 1991). Due to the motility that is conferred
by the flagellated central bacterium, the consortium can orien-
tate itself much faster in light and sulfide gradients and reaches
locations with optimal conditions for photosynthesis in a shorter
period of time. In fact, “C. aggregatum” has been found to vary
its position rapidly across the chemocline in two Tasmanian lakes
(Croome and Tyler, 1984). A scotophobic response, that is swim-
ming away from darkness toward light, has been demonstrated
for intact consortia in the laboratory (Fröstl and Overmann, 1998;
Glaeser and Overmann, 2003a) and leads to a rapid accumulation
of consortia in (dim)light. In addition, laboratory cultures as well
as natural populations of phototrophic consortia exhibit a strong
chemotaxis toward sulfide (Fröstl and Overmann, 1998; Glaeser
and Overmann, 2003b).

In contrast to light, the spatial distribution of sulfide does not
necessarily occur in a strictly vertical gradient in the natural habi-
tat. In analogy to the presence of point sources of organic carbon
substrates (Azam and Malfatti, 2007) that attract chemotrophic
aquatic bacteria in zones extending tens to hundred microme-
ter around the sources (Krembs et al., 1998), organic particles
sinking into anoxic water layers may develop into hot spots of
sulfate reduction. Due to the motility of phototrophic consor-
tia, the otherwise immotile green sulfur bacteria epibionts would
gain rapid access and thus a highly competitive advantage over
their free-living relatives especially in laterally inhomogeneous
environments. If photosynthetically fixed carbon is indeed trans-
ferred to the central bacterium, however, the net balance of the
increased availability of sulfide and the loss of electrons to the
central bacterial partner must still be positive for the green sulfur
bacterium.

The tight packing of epibiont cells in the phototrophic con-
sortium raises the question whether dissolved compounds can
actually diffuse into the consortium and reach the central bac-
terium or if the epibionts represent a diffusion barrier around

the central bacterium. This question was addressed by adding
carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) to
intact consortia and following fluorescence in epibionts and cen-
tral bacteria over time (Bayer, 2007). CFDA-SE enters cells by
diffusion and, after cleavage by intracellular esterase enzymes,
confers fluorescence to the bacterial cell. Central bacteria were
already detectable after 2 min of exposure (Figure 1A), whereas
epibionts in the same sample could only be detected after 12 min
of incubation with CFDA-SE and developed only weak fluores-
cence (Figure 2). The fluorescence activity of the central rod
remained strong throughout the experiment which is indicative
of a higher esterase activity than in the epibiont. Since the cen-
tral bacterium is presumably heterotrophic, it is likely to express
esterases such as lipases at a higher number or intracellular con-
centration. These results indicate that, even in intact phototrophic
consortia, diffusion of small water-soluble molecules toward the
central bacterium is not significantly impeded by the surrounding
layer of epibionts. Therefore, sensing of sulfide by the central bac-
terium itself, eliciting the sulfide chemotactic response observed
for the consortia is feasible. However, in analogy to the proposal
that heterotrophic bacteria colonizing the heterocysts of cyanobac-
teria may shield them from high ambient O2 concentrations (Paerl
and Kellar, 1978), one could speculate that the consumption of
sulfide by the epibionts might decrease the concentration of sul-
fide reaching the central bacterium. Thus, if sensing of sulfide is
carried out by the central bacterium, the photosynthetic activity
of the epibiont could have a regulatory function regarding the
chemotaxis of the consortium toward sulfide.

The orientation of the consortium toward light and sul-
fide is of special interest since probably neither of these
attractants is used in the metabolism of the motile central

FIGURE 1 | CFDA-SE stained phototrophic consortia. CR, central rod;
EB, epibiont. (A,B) 2 (A) and 5 min (B) of staining; only the central
bacterium is visible. (C) 12 min of staining; epibionts become visible. (D)

15-min staining; whole consortium stained.
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FIGURE 2 |Time course of fluorescence intensities of CFDA-SE stained

central bacteria and epibiont cells.

bacterium. From the perspective of the epibiont, relying on a
non-photosynthetic partner for transportation would pose the
risk of being carried into dark, and/or sulfide-free unfavor-
able deeper water layers. Consortia formation thus would either
require the expression of a suitable chemotactic response (i.e.,
toward sulfide) and of a suitable photosensor in the central bac-
terium or effective means of interspecific communication. Acqui-
sition of these traits must have been a critical stage and hap-
pened early during the coevolution of the bacterial partners in
phototrophic consortia.

In recent ultrastructural studies of the central bacterium of
“C. aggregatum,” conspicuous 35-nm-thick and up to 1-μm-long
zipper-like crystalline structures were found that resemble the
chemotaxis receptor Tsr of Escherichia coli (Wanner et al., 2008).
In a comparative ultrastructural study of 13 distantly related
organisms harboring chemoreceptor arrays from all seven major
signaling domain classes, receptors were found to possess an
universal structure which has presumably been conserved over
long evolutionary distances (Briegel et al., 2009). The prominent
ultrastructure discovered in the central bacterium exhibits sev-
eral similarities to the chemoreceptors reported and provides a
first indication that a chemotaxis receptor is present in the central
bacterium.

One characteristic feature of green sulfur bacteria that pro-
vides a basis for interaction with other bacteria is the extracellular
deposition of sulfur globules (zero valence sulfur), the initial prod-
uct of sulfide oxidation during anoxygenic photosynthesis. This
sulfur is further oxidized to sulfate only after depletion of sul-
fide. The extracellular deposition renders the sulfur available to
other bacteria such as, for example, sulfur reducers. Therefore, it
had initially been proposed that the central bacterium of pho-
totrophic consortia is a sulfate- or sulfur-reducing bacterium.
In that case, extracellular sulfur produced by the green sulfur
bacteria could be utilized by the central bacterium to establish
a close sulfur cycle within the phototrophic consortium (Pfen-
nig, 1980). Such a sulfur cycle has been established in defined

syntrophic cocultures of Chlorobium phaeovibrioides and Desul-
furomonas acetoxidans. In these cocultures, acetate is oxidized
by Desulfuromonas acetoxidans with sulfur as electron acceptor,
which leads to a recycling of the sulfide that can then be used
again for anoxygenic photosynthesis by Chl. phaeovibrioides. Only
minute amounts of sulfide (10 μM) are required to keep this sulfur
cycle running (Warthmann et al., 1992). Similarly, sulfate reduc-
ers are able to grow syntrophically with green sulfur bacteria with
only low equilibrium concentrations of sulfide (Biebl and Pfennig,
1978). In addition, such interactions may also encompass trans-
fer of organic carbon compounds between the partners. In mixed
cultures of Desulfovibrio desulfuricans or D. gigas with Chloro-
bium limicola strain 9330, ethanol is oxidized to acetate with
sulfate as electron acceptor and the acetate formed is incorpo-
rated by Chl. limicola such that ethanol is completely converted to
cell material.

However, the hypothesis of a sulfur cycling within pho-
totrophic consortia became less likely by the discovery that the
central bacterium belongs to the Betaproteobacteria, whereas
only the Deltaproteobacteria or Firmicutes encompass typi-
cal sulfur- or sulfate-reducers (Fröstl and Overmann, 2000).
As shown above, the exchange of sulfur compounds has
been established across a physiologically and phylogenetically
diverse range of prokaryotes. But those symbiotic interactions
were not accompanied by consortia formation. It is thereby
concluded, that sulfur cycling does not appear to be suffi-
ciently selective to explain the advent of phototrophic consortia
during evolution.

MOLECULAR BASIS OF THE SYMBIOTIC INTERACTION IN
PHOTOTROPHIC CONSORTIA
FEATURES OF THE EPIBIONT GENOME THAT RELATE TO SYMBIOSIS
In order to make a first assessment of the imprint of symbiotic
lifestyle on the genome of the epibiont, the genome features of C.
chlorochromatii CaD can be compared to those of Nanoarchaeum
equitans and Ignicoccus hospitalis in the archaeal consortia.

Nanoarchaeum equitans is the representative of a new archaeal
phylum Nanoarchaeota and most likely represents a parasitic
epibiont of Ignicoccus. The N. equitans genome comprises only
491 kb and encodes 552 genes, rendering it the smallest genome
for an exosymbiont known to date (Waters et al., 2003). Genome
reduction includes almost all genes required for the de novo
biosynthesis of amino acids, nucleotides, cofactors, and lipids as
well as many known pathways for carbon assimilation. Commen-
surate with this findings, the Nanoarchaeum equitans epibiont
appears to acquire its lipids from its host (Waters et al., 2003). Yet,
the N. equitans genome harbors only few pseudogenes or regions
of non-coding DNA compared with genomes of obligate bacterial
symbionts that undergo reductive evolution, and thus is genom-
ically significantly more stable than other obligate parasites. This
has been interpreted as evidence for a very ancient relationship
between N. equitans and Ignicoccus (Brochier et al., 2005). The
recent bioinformatic analysis also suggest that N. equitans repre-
sents a derived, fast-evolving euryarchaeal lineage rather than the
representative of a deep-branching basal phylum (Brochier et al.,
2005). With a size of 1.30 Mbp and 1494 predicted open reading
frames (ORFs), the genome of I. hospitalis shows a pronounced
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genome reduction that has been attributed to the reduced meta-
bolic complexity of its anaerobic and autotrophic lifestyle and an
highly efficient adaptation to the low energy yield of its metabolism
(Podar et al., 2008).

Similar to I. hospitalis, the genome size of Pelagibacter ubique
(1.31 Mbp and 1354 ORFs) so far marks the lower limit of free-
living organisms. It exhibits hallmarks of genome streamlining
such as the lack of pseudogenes, introns, transposons, extrachro-
mosomal elements, only few paralogs, and the shortest intergenic
spacers yet observed for any cell (Giovannoni et al., 2005). This
likely reduces the costs of cellular replication (Mira et al., 2001).
As a second feature, the genome of P. ubique has a G:C content
of 29.7% that may decrease its cellular requirements for fixed
nitrogen (Dufresne et al., 2005).

By comparison, a much larger genome size of 2.57 Mbp has
been determined for C. chlorochromatii CaD. This size represents
the average value of the 11 other publicly available genomes of
green sulfur bacteria (Table 1). Thus, a reduction in genome
size that is characteristic for bacterial endosymbionts (Anders-
son and Kurland, 1998; Moran et al., 2002, 2008) and for the
archaeal consortium (Podar et al., 2008) did not occur during
the evolution of the epibiont of “C. aggregatum.” This suggests
(i) a shorter period of coevolution of the two partner bacteria in
phototrophic consortia, (ii) a significantly slower rate of evolu-
tion of their genomes, or (iii) that the genome of C. chlorochro-
matii is not undergoing a streamlining process as observed in
other symbiotic associations. The latter suggestion would indi-
cate a lack of selective advantage for “Chl. aggregatum” from
genome streamlining.

Wet-lab and in silico analyses of the epibiont genome revealed
the presence of several putative symbiosis genes. An initial com-
bination of suppression subtractive hybridization with bioinfor-
matics approaches identified four ORFs as candidates. Two of
the ORFs (Cag0614 and 0616) exhibit similarities to putative
filamentous hemagglutinins that harbor RGD (arginine–glycine–
aspartate) tripeptides. In pathogenic bacteria, hemagglutinins
with these motifs are involved in the attachment to mammalian
cells (Vogl et al., 2008). Most notably, a comparative study of
580 sequenced prokaryotic genomes revealed that Cag 0614 and
0616 represent the largest genes detected in prokaryotes so far.
In fact, Cag 0616 is only surpassed in length by the exons
of the human titin gene (Reva and Tümmler, 2008). The two
other genes detected (Cag1919 and 1920) resembles repeats in
toxin (RTX)-like proteins and hemolysins, respectively. All four
genes have in common that they are unique in C. chlorochro-
matii CaD and that certain domains of their inferred products
are only known from bacterial virulence factors. If the four
genes were not misassigned, they are potentially involved in
the symbiotic interaction between the two partner bacteria in
phototrophic consortia.

To identify additional symbiosis genes, in silico subtractive
hybridization between the genome sequence of C. chlorochro-
matii CaD and the other 11 sequences of green sulfur bac-
terial genomes was performed. This yielded 186 ORFs unique
to the epibiont (Wenter et al., 2010), 99 of which encode for
hypothetical proteins of yet unknown function. Although this

provides a large number of putative symbiosis genes, the num-
bers are rather low compared to the unique and unknown ORFs
in the other green sulfur bacteria (Table 1). Even if it is assumed
that all of these unknown genes encode for proteins involved
in symbiosis, this number is still rather small compared to the
1387 genes encoding niche-specific functions in enterohemor-
rhagic E. coli O157:H7 (Perna et al., 2001). Low numbers of
niche-specific genes have been reported for Salmonella enterica
or Bacillus anthracis and have been interpreted as indication for
preadaptation of the non-pathogenic ancestor. This supports the
hypothesis of a preadaptation of green sulfur bacteria to sym-
biosis. From a broader perspective, the discovery of putative
symbiosis genes in the epibiont genome that resemble typical
bacterial virulence factors suggest that modules thought to be
limited to bacterial pathogens are employed in a much wider
biological context.

THE REGULATORY RESPONSE EVOKED BY SYMBIOSIS INVOLVES
GENES OF THE NITROGEN METABOLISM
When the proteome of C. chlorochromatii CaD in the free-
living state was compared to that of the symbiotic state by 2-D
differential gel electrophoresis (2-D DIGE), it became appar-
ent that symbiosis-specific regulation involves genes of central
metabolic pathways rather than symbiosis-specific genes (Wen-
ter et al., 2010). In the soluble proteome, 54 proteins were
expressed exclusively in consortia. Among them were a consid-
erable number of proteins involved in amino acid metabolism.
These included glutamate synthase, 2-isopropylmalate synthase,
and the nitrogen regulatory protein P-II. The latter showed
the highest overall upregulation that amounted to a 189-fold
increase in transcript abundance as determined by subsequent
RT-qPCR. It is thereby concluded that the amino acid require-
ment in the consortium is higher than in the epibiont in
pure culture.

Parallel investigations of the membrane proteome revealed that
a branched chain amino acid ABC-transporter binding protein
was expressed only in the associated state of the epibiont. Inter-
estingly, the expression of the ABC-transporter binding protein
could also be induced in the free-living state by addition of sterile
filtered supernatant of the consortia culture, but not with peptone
or branched chain amino acids themselves. This is an evidence for
a signal exchange between the two symbiotic partners mediated
through the surrounding medium.

The results of the proteome analysis were supplemented by
transcriptomic studies of the epibiont in the associated and the
free-living state (Wenter et al., 2010). Of the 328 differentially
expressed genes, 19 genes were found to be up-regulated and are
involved in amino acid synthesis while six genes of the amino
acid pathways were down-regulated. The conclusion that nitrogen
metabolism of the epibiont is stimulated in the symbiotic state is
commensurate with the simultaneous up-regulation of the nifH,
nifE, and nifB genes and with the prominent expression of the P-II
nitrogen regulatory protein.

The results of the proteome analyses indicates that (i) a signal
exchange occurs between the central bacterium and the epibiont
that controls the expression of symbiosis relevant genes and (ii)
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Table 1 | Comparison of green sulfur bacterial genomes against each other.

Green sulfur bacterium Genome

size (Mbp)

ORFs-in

genome

Unique

ORFs

Genome

(%)

Unknown

unique ORFs

G + C

(%)

Chlorobium chlorochromatii CaD3 2.57 2002 186 9.3 99 44.3

Chlorobaculum parvum NCIB 8327 2.29 2078 139 6.7 81 55.8

Chlorobaculum tepidum TLS 2.15 2252 396 17.6 366 56.5

Chlorobium ferrooxidans DSM 13031 2.54 2158 181 8.4 84 50.1

Chlorobium limicola DSM 245 2.76 2522 204 8.1 149 51.3

Chlorobium phaeobacteroides BS1 2.74 2559 331 12.3 211 48.9

Chlorobium phaeobacteroides DSM 266 3.13 2743 266 9.7 164 48.4

Chlorobium phaeovibrioides DSM 265 1.97 1773 56 3.2 33 53.0

Chloroherpeton thalassium ATCC 35110 3.29 2731 971 35.6 396 45.0

Pelodictyon phaeoclathratiforme BU-1 3.02 2911 550 18.9 394 48.1

Chlorobium luteolum DSM 273 2.36 2083 100 4.8 49 57.3

Prosthecochloris aestuarii SK413, DSM 271 2.58 2402 409 17.0 215 50.1

Average 2.61 2351.2 315.8 12.6 186.8 50.1.

In silico subtractive hybridization was conducted with the Phylogenetic Profiler available at the DOE Joint genome Institute website (http://img.jgi.doe.gov).

metabolic coupling between C. chlorochromatii and the central
Betaproteobacterium may involve amino acids. Metabolic coupling
has also been detected in the two-membered microbial consortium
consisting of Anabaena sp. strain SSM-00 and Rhizobium sp.
strain WH2K. Between the two species, nanoscale secondary ion
mass spectrometry (nanoSIMS) analyses indicated an exchange
of metabolites containing 13C and 15N fixed by the heterocysts
of the filamentous cyanobacteria to the attached epibiont cells
(Behrens et al., 2008).

EVIDENCE FOR METABOLIC COUPLING
The proteomic and transcriptomic evidence described in the
preceding paragraphs point toward an exchange of metabolites
between the two symbiotic partners of “C. aggregatum.” Mean-
while, more direct evidence for a transfer of carbon between the
bacterial partners of phototrophic consortia has been obtained.
In a series of labeling experiments with 14C, a rapid exchange
of labeled carbon from the epibiont to the central bacterium
was observed (Johannes Müller and Jörg Overmann, unpublished
observations). External addition of several amino acids as well
as 2-oxoglutarate to the growth medium inhibited this carbon
exchange. Together with the observed excretion of photosyntheti-
cally fixed carbon by C. chlorochromatii CaD, these results suggest
a transfer of newly synthesized small molecular weight organic
matter to the central bacterium. Such a transfer may provide the
central bacterium with a selective advantage in illuminated sul-
fidic environments where degradation of organic matter proceeds
mainly through the anaerobic food chain and involves competition
of chemoheterotrophs for organic carbon compounds. By trans-
ferring amino acids, the epibiont may not only support growth of
the central bacterium with respect to carbon, but also to nitrogen
and even sulfur.

To date it has remained unclear whether the association in pho-
totrophic consortia also offers an additional advantage for the
green sulfur bacterial epibiont apart from the gain of motility and
the resulting potential increase in sulfide supply. Extensive sub-
strate utilization assays with C. chlorochromatii CaD revealed that

only the addition of acetate and peptone stimulated the growth of
the epibiont of “C. aggregatum” (Vogl et al., 2006). It remains
to be tested whether transfer of organic carbon in this form
occurs in the opposite direction from the central bacterium to
the epibiont.

Stable isotope signatures (13C) of I. hospitalis and N. equitans
were analyzed to investigate a possible carbon transfer between the
two archaeal partners. Labeling patterns of Ignicoccus amino acids
grown in the coculture as well as in pure culture were compared to
those in the Nanoarchaeum amino acids. Therefore, amino acids
were separated by chromatography and incorporation of 13C at
specific carbon positions was identified by NMR spectroscopy.
The labeling patterns from all three cultures were exactly iden-
tical. In addition, genes involved in the de novo biosynthesis of
amino acids are missing in the Nanoarchaeum genome. Based on
this combined evidence, it was concluded that amino acids are
transferred from the I. hospitalis host to the N. equitans cells
(Jahn et al., 2008). In addition, cellular macromolecules seem
to be exchanged between the partners in the archaeal consor-
tia. In the latter, LC–MS analyses of membrane lipids in their
intact polar forms showed very similar chemical patterns in both
organisms with archaeol and caldarchaeol constituting the main
core lipids. Furthermore, stable isotope labeling (13C) yielded
nearly identical results for the hydrocarbons derived from N.
equitans and I. hospitalis. Those results, combined with a lack
of genes for lipid biosynthesis in the genome of N. equitans led
to the conclusion that lipids in the archaeal consortium are syn-
thesized in I. hospitalis and transported to its partner organism
(Jahn et al., 2004).

Amino acids also seem to be of central importance for other
symbioses. The deep sea tube worm Riftia pachyptila is depen-
dent on arginine supplied by its bacterial endosymbionts (Minic
and Hervé, 2003), whereas in legume-root nodules, amino acids
are used as both an ammonium and a carbon shuttle (Lod-
wig et al., 2003). Interestingly, Rhizobia become symbiotic aux-
otrophs for branched chain amino acids after infecting the host
plant due to a downregulation of the respective biosynthetic
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pathways, making them dependent on the supply by the plant
(Prell et al., 2009).

MECHANISMS OF METABOLITE EXCHANGE
The very structure of the phototrophic consortium in itself facil-
itates the putative transfer of compounds from one partner to
the other since the direct cell–cell contact prevents a diffusion
of compounds over larger distance and hence minimizes transfer
time. Theoretically, the metabolic coupling of the two partners of
the consortium “C. aggregatum” may be based on an unspecific
excretion of substrates by the epibiont followed by the uptake via
the central bacterium, or involve specific molecular structures and
mechanisms of substrate exchange. Several observations indicate
that the latter is the case in “C. aggregatum.”

The ultrastructure of the contact sites in “C. aggregatum”
and in the archaeal consortia have been studied in detail using
different electron microscopy approaches (Junglas et al., 2008;
Wanner et al., 2008). In free-living epibionts, as well as in all
other known green sulfur bacteria, chlorosomes are distributed
evenly among the inner face of the cytoplasmic membrane.
However, in the associated state, chlorosomes are absent in the
green sulfur bacterial epibionts at the site of attachment to the
central bacterium. Replacing the antenna structures, a 17 nm-
thick layered structure of yet unknown function has been dis-
covered (Vogl et al., 2006; Wanner et al., 2008). Interestingly,
treatment of the epibionts with the extracellular cross-linkers
DTSSP and BS3 revealed the branched chain amino acid ABC-
transporter binding protein (compare The Regulatory Response
Evoked by Symbiosis Involves Genes of the Nitrogen Metabo-
lism) to be cross-linking with other proteins, indicating that it
is localized at the cell surface or in the periplasm (Wenter et al.,
2010).

In contrast to the epibionts of the phototrophic consortium
“Chlorochromatium aggregatum” that maintain a permanent cell–
cell contact to the central bacterium, Nanoarchaeum equitans has
been observed in different states of attachment to Ignicoccus hos-
pitalis. The surface structures of the two organisms may either be
in direct contact or, alternatively, in close vicinity to each other. In
the latter case, fibers bridging the gap between the cells are clearly
visible. In “C. aggregatum,” connections between the two part-
ner bacteria stretching out from the central bacterium are more
prominent than in the archaeal consortium. Periplasmic tubules
(PT) are formed by the outer membrane and are in linear contact
with the epibionts (Figure 3A). The PT are distributed over the
entire cell surface (Figure 3B) and reach 200 nm in length at the
poles of the central bacterium.

It had been speculated that the periplasmic tubules repre-
sent connections of a shared periplasmic space (Wanner et al.,
2008). However, this could not be confirmed by fluorescence
recovery after photobleaching (FRAP)-analyses (Johannes Müller
and Jörg Overmann, unpublished observations). After stain-
ing of the consortia with calcein acetoxymethylester (calcein
AM), only the epibionts but not the central bacterium could
be detected by fluorescence microscopy (Figure 4A). Obvi-
ously, the central bacterium (arrows in Figure 4A) is lacking
an esterase specific for cleaving calcein AM. This result in itself
already contradicts the hypothesis of a combined periplasm

because the highly fluorescent dye calcein should have dif-
fused after its formation from the epibiont cells into the central
bacterium. Furthermore, after subsequent bleaching of one of
the epibiont cells (arrowheads in Figures 4B,C) using confocal
microscopy, a recovery of fluorescence could not be detected in
the bleached cell, which excludes the possibility of free diffu-
sion between the epibiont cells through the interconnecting pili
(Figures 4B,C).

A similar experiment has been conducted with the filamen-
tous cyanobacterium Anabaena cylindrica which is considered to
be a truly multicellular prokaryote. Single calcein stained cells
within an Anabaena filament fully recovered calcein fluores-
cence 12 s after bleaching. This effect was ascribed to intercellular
channels allowing free diffusion of molecules from cytoplasm
to cytoplasm (Mullineaux et al., 2008). Such a rather unspecific
transfer is unlikely to occur across the contact site of the pho-
totrophic consortium “C. aggregatum” where it must be much
more substrate-specific.

CONCLUSIONS
While the different types of symbioses and syntrophic associa-
tions discussed in the preceding sections all provide an energetic
advantage to one or both partners, only few of these associations
reached the level of organizational complexity of the highly struc-
tured, permanent consortia. Thus, a permanent cell–cell contact is
not mandatory in the case of syntrophic cultures in which deple-
tion of substrates can lead to disaggregation of the associations
(Peduzzi et al., 2003). The highly developed and obligate inter-
action in phototrophic consortia is likely to be related to the
pronounced energy limitation in the low-light habitats and to
the efficient and regulated exchange of metabolites. Phototrophic

FIGURE 3 | (A) Scanning electron photomicrographs of a partially
disaggregated consortium, E, epibiont, CB, central bacterium, arrows
pointing toward periplasmic tubules (PT). (B) Transmission electron
photomicrographs of ultra-thin sections showing elongated PT at the tip of
the central bacterium. Modified after Wanner et al. (2008).

FIGURE 4 | “Chlorochromatium aggregatum” consortia after calcein

AM staining. (A) Arrows pointing toward unstained central bacteria. (B,C)

Consortium before and after photo-bleaching; arrows pointing toward
bleached epibiont cell.
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consortia harboring other prokaryotes than green sulfur bacteria
have not been found so far, emphasizing the role of preadaptation
of the green sulfur bacterial partner for the development of the
symbiosis that was augmented by the gain of specific functions
such as genes similar to virulence genes, periplasmic tubules
for cell–cell contact or the intracellular sorting of chlorosomes
in the epibionts. The gain of motility by the epibiont seems
to constitute a selective advantage that led to the coevolution
with a motile betaproteobacterium. The recent completion of
the central bacterial genome sequence for “C. aggregatum” should

help to determine whether and which additional preadaptations
of the betaproteobacterium were essential for establishing
this symbiosis.
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