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The complexity of microbiota inhabiting the intestine is increasingly apparent. Delicate bal-
ance of numerous bacterial species can affect development of the immune system, how
susceptible a host is to pathogenic organisms, and the auto-inflammatory state of the
host. In the last decade, with the increased use of germ-free mice, gnotobiotic mice, and
animal models in which a germ-free animal has been colonized with a foreign microbiota
such as humanized mice, it has been possible to delineate relationships that specific bac-
teria have with the host immune system and to show what role they may play in overall
host health. These models have not only allowed us to tease out the roles of individual
species, but have also allowed the discovery and characterization of functionally unknown
organisms. For example, segmented filamentous bacteria (SFB) have been shown to play
a vital role in expansion of IL-17 producing cells. Prior to linking their key role in immune
system development, little was known about these organisms. Bacteroides fragilis can
rescue some of the immune defects of gnotobiotic mice after mono-colonization and have
anti-inflammatory properties that can alleviate colitis and experimental allergic encephali-
tis in murine models. Additionally, Clostridium species have most recently been shown to
expand regulatoryT-cell populations leading to anti-inflammatory conditions.This review will
highlight and summarize some of the major findings within the last decade concerning the
role of select groups of bacteria including SFB, Clostridium, Bacteroides, Bifidobacterium,
and Lactobacillus, and their impact on host mucosal immune systems.
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INTRODUCTION
Humans play host to 500–1000 different species of bacteria in the
intestine and 100 times more bacterial cells than eukaryotic cells
(Whitman et al., 1998). Increased appreciation for the crucial role
that the intestinal microbiota plays in host health and immunity is
continually surfacing. While mammalian hosts provide a nutrient
rich niche for these bacteria, the bacteria provide the host with
much more including: aid in digestion, protection against patho-
genic enteric pathogens, and development of the immune system
(Hooper and Gordon, 2001; Macpherson and Harris, 2004; Sekirov
et al., 2008; Sekirov and Finlay, 2009). Indeed, a skewed microbiota
balance can affect health in numerous ways and can lead to condi-
tions that promote diseases such as obesity, diabetes, inflammatory
bowel disorders, and multiple sclerosis (Round and Mazmanian,
2009; Ochoa-Reparaz et al., 2010b). Additionally, a skewed micro-
biota can leave a host susceptible to infection (Manichanh et al.,
2006; Turnbaugh et al., 2006, 2009; Frank et al., 2007; Garrett et al.,
2007; Peterson et al., 2008; Wen et al., 2008). The complexity of
the mammalian intestinal microbiota has long been appreciated;
however, our knowledge of this area has greatly expanded in recent
years as more advanced sequencing methods have become avail-
able. Due to the harsh conditions of the intestine, many of the
organisms which dwell there are fastidious and cannot be cultured
in vitro. Modern sequencing techniques have enabled us to begin

cataloging in detail the microbial life that exists within the intestine
whether or not it can be cultured ex vivo (Turnbaugh et al., 2007).
The importance of commensal bacteria in host development and
health is most clearly demonstrated by germ-free mice, raised in
the absence of any bacteria. These mice exhibit numerous devel-
opmental defects, which can be compensated for by microbial
colonization (Macpherson and Harris, 2004).

Developmental problems and defects faced by germ-free mice
are, in part, centered around immune system development and
function (Smith et al., 2007). While not an exhaustive list, some
of the immunological defects seen in germ-free mice include
immature lymphoid follicles, an enlarged cecum, reduced plasma
cells and reduced production of mucosal immunolobulin A (IgA),
anti-microbial peptides, and adenosine tri-phosphate (ATP). The
number of CD8+ intestinal epithelial cells (IELs) and αβ T-cell
receptor (TCR) IELs is reduced as well as Thy1 expression and
cytolytic activity. IEL expression of major histocompatibility com-
plex (MHC) II, Toll-like receptor (TLR) 9, and interleukin (IL) 25
is also reduced. CD4+ T-cells in the lamina propria (LP), Foxp3+
regulatory cells in the colonic LP, and CD4+CD25+ T-cells in the
mesenteric lymph nodes (MLNs) are reduced. Immune structures
in germ-free animals are also compromised. The Peyer’s patches
are small compared to conventional animals, and the spleens
and MLNs have depletion of lymphocyte zones (Lefrancois and
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Goodman, 1989; Rothkotter and Pabst, 1989; Shroff et al., 1995;
Umesaki et al., 1995; Smith et al., 2007; Round and Mazman-
ian, 2009). Finally, germ-free mice have increased susceptibility to
infection from enteric pathogens. It has been shown that they have
less resistance than conventional mice to infection with: Shigella
flexneri, Listeria monocytogenes, Clostridium difficile, and Salmo-
nella enterica (Sprinz et al., 1961; Zachar and Savage, 1979; Nardi
et al., 1989). When germ-free mice are colonized with as little
as one commensal bacterial species, the susceptibility to infec-
tion is reduced. This feat is not accomplished by every intestinal
commensal organism, however, indicating that colonization resis-
tance (CR) ability is specific (Maier and Hentges, 1972; Round and
Mazmanian, 2009; Ivanov and Littman, 2010).

Given the number of bacterial species residing in the intestine,
it is hard to imagine teasing out specific contributions by indi-
vidual species. However, mono-colonization of germ-free mice
has allowed exactly this and we have gained important knowledge
by examining which components of the faulty germ-free mouse
immune system can be re-constituted with the addition of one
bacterial species. This review highlights several groups of bacte-
rial species that have been shown to play an important role in
immune development and homeostasis and were characterized in
this manner. While not an exhaustive description of enteric bac-
teria that affect host immune systems, the groups we have picked
form a representative sample of species that show varied impacts
on their hosts. Each of these groups has been historically well
studied; however, recent advances make them particularly relevant.

BACTEROIDES FRAGILIS
Although members of the Bacteroidales order are the most promi-
nent gram negative bacteria in the intestine, the colonic bacteria
Bacteroides fragilis make up only one percent of intestinal micro-
biota. While not numerically dominant amongst the Bacteroidetes
in the intestine, this species of Bacteroides has been shown to have
important effects on host health, both beneficial and detrimental
(Polk and Kasper, 1977; Troy and Kasper, 2010). Normally sym-
biotic when contained within the intestine, in the event of bowel
perforation, B. fragilis becomes pathogenic, inducing abscess for-
mation throughout the peritoneal cavity (Polk and Kasper, 1977).
B. fragilis is the most common clinically isolated anaerobic bacte-
rial species, but in recent years, has become more well-known for
the extent of positive effects it exerts on the immune system (Polk
and Kasper, 1977; Mazmanian et al., 2005, 2008; Lassmann et al.,
2007). B. fragilis and other Bacteroides have the genetic capabil-
ity to produce multiple capsular polysaccharides, with B. fragilis
producing eight. In B. fragilis these polysaccharides are important
for commensal colonization of the intestine (Krinos et al., 2001;
Coyne et al., 2008; Liu et al., 2008). At least two of these poly-
saccharides, polysaccharide A (PSA) and polysaccharide B (PSB)
contain both positive and negative charges, making them zwitteri-
onic (Tzianabos et al., 1993). Contrary to traditional characteriza-
tion of carbohydrates as T-cell independent (Gonzalez-Fernandez
et al., 2008), PSA and other zwitterionic carbohydrates evoke
both CD4+ T-cell dependent and T-cell independent immune
responses (Tzianabos et al., 2000; Cobb et al., 2004). Many charac-
terized zwitterionic carbohydrates from bacteria have been shown
to have immunomodulatory properties (Tzianabos et al., 1993,

2000, 2001; Cobb et al., 2004); however, PSA might be the most
well-characterized microbial factor involved in commensalism.
When germ-free mice are colonized with B. fragilis, many of the
defects seen in these mice are corrected almost to the level of
conventionally colonized mice (Mazmanian et al., 2005). Colo-
nization of germ-free mice with B. fragilis promotes expansion
of CD4+ T-cells, corrects depletion of splenic lymphocytic zones,
and corrects Th1/Th2 imbalances by reduced IL-4 production and
increased interferon (IFN)-γ production. Importantly, these res-
cue effects have been narrowed down to the activity of zwitterionic
PSA. When B. fragilis defective in production of PSA is used to col-
onize germ-free mice, no correction of Th1/Th2 imbalance is seen.
This was one of the first instances that showed correction of germ-
free immunological defects by not just a commensal organism,
but a specific surface molecule or symbiosis factor (Mazmanian
et al., 2005). B. fragilis’s immunomodulatory capabilities have been
shown to directly play a role in health and disease. Numerous
studies have shown that an imbalance of microbiota can lead to
intestinal inflammation due to lack of mucosal immune toler-
ance (Frank et al., 2007; Round and Mazmanian, 2009; Ivanov
and Littman, 2011). B. fragilis has been shown to be protective
against both immune (CD4+CD45Rb transfer with Helicobacter
hepaticus inoculation) and chemically (trinitrobenzene sulfonic
acid, TNBS) induced colitis (Mazmanian et al., 2008). In addition,
purified PSA itself is protective against chemically induced coli-
tis. This protection is dependent on CD4+ production of IL-10,
induced by PSA. In animals defective for IL-10 production, no
protective effect is seen by B. fragilis (Mazmanian et al., 2008).
B. fragilis has subsequently been shown to alleviate chemically
induced colitis in mice post colitis induction, showing that it can
have both a preventative and therapeutic role. IL-10 production
induced by B. fragilis results from increased numbers of Foxp3+
T-regulatory cells and mono-colonization of mice with B. frag-
ilis has shown that these bacteria alone are capable of mediating
the development of Foxp3+ T-regulatory cells from CD4+ T-cells
(Round and Mazmanian, 2010). The anti-inflammatory effects of
B. fragilis are not limited to a role in mouse models of models of
colitis, but also additional models of inflammatory disease. For
example, it was recently shown that B. fragilis is protective against
an experimental autoimmune encephomyelitis (EAE), a mouse
model mimicking human multiple sclerosis (Ochoa-Reparaz et al.,
2010b). In an initial study, Ochoa-Reparaz et al., showed that puri-
fied B. fragilis PSA given to mice orally could protect against EAE.
The administration of PSA to these mice enhanced a population
of dendritic cells which express CD103 and these cells were seen
accumulating in the cervical lymph nodes. Similar to the proposed
mechanism for PSA’s protection against colitis, in IL-10 deficient
mice, PSA offered no protection (Ochoa-Reparaz et al., 2010a).
In an exciting follow-up study, the same group showed that oral
colonization of mice with the entire organism, B. fragilis, could
also protect against EAE and when a PSA deficient strain of B.
fragilis was used, no protection was seen. Similar to purified PSA,
the addition of B. fragilis to these mice stimulated the numbers
of Foxp3+ T-regulatory cells accumulating in the cervical lymph
nodes (Ochoa-Reparaz et al., 2010a,b). These studies are partic-
ularly ground-breaking since they show one of the first examples
of systemic effects of B. fragilis’s immunomodulatory capabilities.

Frontiers in Microbiology | Cellular and Infection Microbiology July 2011 | Volume 2 | Article 148 | 2

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Reading and Kasper Microbial players in intestinal health

B. fragilis and PSA’s anti-inflammatory properties are currently
being tested in other models of inflammation to determine how
universal their effects are.

SEGMENTED FILAMENTOUS BACTERIA
Segmented filamentous bacteria (SFB) or Candidatus Arthromitus
(Snel et al., 1995) were originally observed and morphologically
characterized over three decades ago in the small intestine of rats,
mice, and chickens. These segmented organisms uniquely attach
to the apical epithelium of primarily the small intestine through
an attachment point in which the host cell epithelium and apical
cytoplasm is modified (Hampton and Rosario, 1965; Savage, 1969;
Fuller and Turvey, 1971; Davis and Savage, 1974). The biology of
these organisms is intriguing as they appear in numerous verte-
brates after birth and disappear shortly after adulthood (Davis
and Savage, 1974). Early reports indicate many influences over
the colonization of SFB within a host organism including age,
sex, and immune status (Davis and Savage, 1974; Jiang et al.,
2001). The timing of the appearance of these organisms in their
vegetative state has led to numerous studies as well as specula-
tion about the environmental signal that induces sporulation or
overall disappearance of SFB from their host. It is possible that
this could be related to the establishment of microbial coloniza-
tion in young vertebrates or possibly it is related to nutritional
changes once mammals are weaned from their mothers. Micro-
scopically, SFB have been observed in numerous laboratory and
non-laboratory vertebrates, including chickens, dogs, cats, pigs,
fowl, macaque, and humans (Klaasen et al., 1993); however, they
have also been shown to be extremely species specific. Tannock
et al. (1984) showed that when ileal homogenates containing SFB
from mice were given to germ-free rats, the SFB failed to attach
to the epithelium. Likewise, when ileal homogenates containing
SFB from rats were given to germ-free mice, the SFB also failed to
adhere to the epithelium, whereas when source SFB were given to
the same species, they were able to adhere to the epithelium (Tan-
nock et al., 1984). This indicates a co-evolutionary relationship
between SFB and their hosts. Although SFB were visualized by light
microscopy to be part of the human microbiota, definitive genetic
identification of these microbes in humans has not been reported
(Klaasen et al., 1993). Many of the aforementioned characteristics
of SFB led researchers to believe they had an important role in the
immunology of their hosts; however, the un-culturability of SFB
has made many studies of this organism’s unique features impossi-
ble. A break-through came with the ability to mono-colonize mice
with SFB. Several groups were able to take fecal homogenates and
limit them to only spore-forming bacteria using chloroform and
ethanol washes (Klaasen et al., 1990). These mixes of SFB and some
Clostridium species could be diluted to only contain SFB and were
illeo-inoculated into mice establishing a mono-colonized species
(Klaasen et al., 1991). The study of mice mono-colonized with
SFB in combination with high powered sequencing methods has
allowed many groups to observe the profound effects that SFB
have on their host’s immunity (Klaasen et al., 1991; Umesaki et al.,
1995; Ivanov et al., 2008, 2009; Gaboriau-Routhiau et al., 2009).

Mono-colonization of mice with SFB leads to many immuno-
logical changes to germ-free mice particularly within the small
intestine. In the small intestine, there is an induction of MHCII

molecules on IECs as well as fucosylation of GM1 glyco-lipids
(Umesaki et al., 1995). Significant changes are also seen on IELs
such as an expansion of IELs bearing both αβ and γδ TCRs,
increased CD8+ T-cells, increased cytolytic activity, and increased
Thy1 expression. Crypt cell proliferation is induced as well as pro-
duction of columnar cells. Upon mono-colonization, germinal
center reactions in the Peyer’s patches are stimulated and CD4+
and CD45RBlow T-cells increase until they reach levels of con-
ventional mice (Umesaki et al., 1995; Talham et al., 1999). IgA is
also produced in significant amounts after SFB colonization of
germ-free mice (Umesaki et al., 1995; Suzuki et al., 2004). While
these changes are substantial, the levels of αβ TCRS do not fully
come up to conventional levels nor are many of the morphological
characteristics of germ-free mice such as an enlarged cecum nor-
malized (Umesaki et al., 1995; Talham et al., 1999). Interestingly,
in mice deficient in IgA, a prominent and persistent expansion
of SFB is seen that returns to normal when the mice are com-
pensated with IgA (Suzuki et al., 2004). IgA is seen as a major
mechanism for maintaining intestinal homeostasis among com-
mensal organisms (Duerkop et al., 2009), and its absence in these
mice is compensated for by large amounts of IgM and normal
expression of defensins and angiogenins (Suzuki et al., 2004). This
reaffirms the paradigm in which an IgA feedback loop is a method
of keeping commensal organisms near the epithelial surface in
check (Hooper, 2009).

Most recently, several studies have pinpointed dramatic effects
of SFB colonization based on their presence in some host species
and not in others. A major indication of SFB’s role in the induc-
tion of pro-inflammatory factors came with the report that mice
from differing sources (Taconic Farms versus Jackson Labora-
tory) had differing levels of IL-17 producing cells and animals
that had decreased Th17 cells had increased Foxp3+ regulatory
cells (Ivanov et al., 2008). In a subsequent report, the authors
were able to show, using 16S rRNA phylochip analysis, that SFB
which were present in mice from some sources and not others
accounted for the difference seen in Th17 cells. When the authors
mono-colonized germ-free mice with SFB, they saw induction of
Th17 cells that produce IL-17 and IL-22 in the lamina propria as
well as up-regulation of genes associated with inflammation and
anti-microbial defenses (Ivanov et al., 2009). In a similar deductive
study, Gaboriau-Routhiau et al. noticed that they were able to con-
ventionalize the transcriptome of germ-free mice with a murine
microbiota, but not with a human fecal microbiota or cultured
murine microbiota. This led them to believe an un-culturable
organism must be the missing link to reconstituting conventional
level gene responses in their germ-free mice. They deduced that
SFB may be the missing link and upon mono-colonizing mice
with these organisms, they saw expression of many mucosal genes
equal to those of conventional mice including: RegIIIγ, IFNγ,
IL-1β, IL-10, IL-17, inducible nitric oxide synthase (iNOS), and
IL-12p40. They also saw local induction of IFNγ, IL-10, and IL-
17. SFB increased production of IFNγ by CD4+ T-cells, IL-17
production by CD4+ T-cells and increased the total number of
CD4+CD25+Foxp3+ T-regulatory cells in the lamina propria of
the small intestine and colon (Gaboriau-Routhiau et al., 2009).
This induction of both pro-inflammatory and anti-inflammatory
factors is extremely interesting; however, in general, SFB have
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been more frequently associated with pro-inflammatory Th17 cells
(Ivanov et al., 2008, 2009; Wu et al., 2010). Importantly, while SFB
were initially suspected to be a sole factor needed to convention-
alize mice, none of these factors were increased to conventional
levels, indicating that SFB works in concert with other commensal
organisms (Gaboriau-Routhiau et al., 2009). Due to their stim-
ulation of the immune system and immediate proximity to the
host epithelium, many groups have hypothesized that SFB are
involved in CR to host enteric pathogens. Several studies have
already shown that in the presence of SFB, hosts are immune to
organisms they might otherwise by susceptible to. For example,
Heczko et al. (2000) showed that rabbits colonized with SFB were
less likely to be infected by rabbit enteropathogenic Escherichia
coli (REPEC) and conversely, all rabbits who did not have SFB
were colonized by REPEC. SFB has also been shown to have pro-
tective effects against Salmonella enteritidis in rats and Citrobacter
rodentium in mice (Garland et al., 1982; Ivanov et al., 2009). The
culmination of these studies and the observation that SFB are
present at a young age strongly supports a role for SFB in CR,
possibly selective, during the establishment of a host’s intestinal
microbiota.

It is well-known that the composition of the microbiota can
have strong impacts on health and any imbalance can cause either
susceptibility to infection or on the other side can lead to auto-
inflammatory conditions. Although SFB have been designated as
commensal organisms due to their generally non-pathogenic char-
acteristics, it is possible that this classification may be pre-emptive
as we learn more about the effects they exert on their hosts. Given
SFB’s strong pro-inflammatory capabilities, when not reined in by
other regulatory factors, their effects could lead to diseased states.
For example, recently it was shown that in a mouse model of
autoimmune arthritis, for germ-free mice, arthritis is attenuated.
Arthritis is quickly re-induced; however, with the addition of solely
SFB (Wu et al., 2010). Similar phenomenon have been observed
with SFB in EAE (Lee et al., 2011). Alternatively, SFB may exhibit
pathogenic qualities in the presence of other bacteria. Work by
Stepankova et al. indicates that SFB may require additional micro-
biota to exert its pro-inflammatory effects. This group showed
that SFB could trigger chronic inflammation in SCID mice, which
received CD45RBhigh CD4+ T-cells. However, colitis was only trig-
gered in germ-free SCID mice which received a cocktail of specific
pathogen free (SPF) microbiota as well as SFB and not in the mice
which received either SPF microbiota or SFB alone (Stepankova
et al., 2007).

No studies thus far have looked at the long-term effects of
mono-colonization of mice with SFB. We are just uncovering the
surface in characterization of these organisms and their mecha-
nisms. While they have been identified in humans through light
microscopy (Klaasen et al., 1993), they have not been identified
in humans using 16S rRNA sequencing. Understanding the true
niche of this organism will help elucidate their role in host biol-
ogy. Current work is underway to sequence the genome of these
species from fecal DNA isolation. In addition, numerous efforts
to culture this organism in vitro are underway in multiple labs.
Armed with the genome sequence and a way to grow these organ-
isms to high numbers in culture, there is potential to understand
the molecular mechanisms behind the fascinating SFB interaction

with mammalian epithelial cells and the mechanisms responsible
for their effects.

CLOSTRIDIUM
While SFB, located primarily in the small intestine of their hosts,
induce effector T-cell function and pro-inflammatory conditions,
a recent report shows that members of the genus Clostridium,
most commonly located in the large intestine, do the exact oppo-
site (Atarashi et al., 2011). This is may indicate that the commensal
microbiota of the small and large intestine have compartmental-
ized effects on the resident T-cells. The effect of mixed Clostridium
species on germ-free mice has been examined previously. In earlier,
less controlled studies, the effect of colonizing germ-free mice with
chloroform treated or, Clostridium rich feces from conventional
mice was examined. Under these conditions, normalization of the
enlarged germ-free cecum was seen and the mix of 46 Clostrid-
ium species was defined (Itoh and Mitsuoka, 1980, 1985). These
studies were some of the original work to show that Clostrid-
ium species alone can have a big impact on the intestinal status
of a mouse and were part of the initial efforts to tease apart the
roles of individual genuses in the intestine. More recent studies
build upon those initial efforts by examining specific parame-
ters induced by this defined mix of Clostridium species. In the
recent study by Atarashi et al., a combination of 46 spore-forming
Clostridium species mainly composed of clusters IV (leptum) and
XIVa (coccoides) induced a strong anti-inflammatory response in
the intestine through expansion of Foxp3+ regulatory T-cells.
This effect was partially mediated by the release of TGF-β from
IELs. The group showed that pattern recognition receptors such
as Myd88, Rip2, and Card9 were not involved. A similar regula-
tory T-cell accumulation was seen when the Clostridium mix was
enhanced in normal mice with a healthy immune system and these
mice were also more resistant to animal models of inflammation
(Atarashi et al., 2011). This response invites the use of Clostrid-
ium as an anti-inflammatory probiotic. In future studies, it will be
interesting to see how individual species of Clostridium have an
effect on mucosal immunology especially considering the oppo-
site effect exerted by very closely related SFB. Compartmentalized
effects of Clostridium species and SFB species have been illus-
trated by the mono-colonization of germ-free mice with SFB or
the aforementioned 46 species of Clostridium or dual colonized
with both. In the SFB mice, αβ IELs and MHC II were increased
only in the small intestine while in the Clostridium mice, CD8+ T-
cells and αβ IELs were increased only in the large intestine. In the
co-colonized mice, the mice more closely resembled conventional
mice indicating a distinct balance and localization of the effects of
each group of species (Umesaki et al., 1999).

LACTOBACILLUS AND BIFIDOBACTERIUM
The beneficial health effects of the endogenous intestinal bacter-
ial genera Lactobacillus and Bifidobacterium are reflected through
their frequent use as probiotics. Species within these bacterial
genera have anti-inflammatory properties as well as many other
health benefits for hosts such as a contribution toward CR against
pathogens, and aid in improved digestion, nutrient adsorption,
and increased availability of nutrients in the intestine (Sanchez
et al., 2010; Turpin et al., 2010). The genomes of Bifidobacterium
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species reflect a large propensity for carbohydrate uptake and
metabolism as well as the presence of many enzymes for the
break-down of complex carbohydrates. These traits are thought
to give Bifidobacterium species a competitive advantage within the
intestine (Schell et al., 2002; Ryan et al., 2005; Kim et al., 2009).
Meanwhile, Lactobacillus species encode numerous transporters
and have a large capacity for sugar internalization and break-
down as well as numerous mucus binding cell surface proteins
(Kleerebezem et al., 2003; Boekhorst et al., 2006a,b; Siezen et al.,
2006). Bifidobacterium were originally isolated from human baby
feces and were identified as a substantial portion of the normal
microbiota of humans. Their positive effects were seen through
bottle fed babies that lacked Bifidobacterium and subsequently
suffered from more diarrhea (Kleerebezem and Vaughan, 2009).
Both Bifidobacterium and Lactobacillus species are among the first
subsets of bacteria to colonize the human colon after birth and
decrease in number into adulthood (Favier et al., 2003; Vaughan
et al., 2005). Much of the characterization of Bifidobacterium and
Lactobacillus and their effects on the mammalian host has come
through the mono and co-colonization of germ-free mice and
observation of immune and physiological responses from the
host as well as bacterial transcriptome changes as they adapted
to different niches within a host (Sonnenburg et al., 2006; Denou
et al., 2007, 2008; Menard et al., 2008; Kleerebezem and Vaughan,
2009) and also through their probiotic effects on humans (Ouwe-
hand, 2007; Kleerebezem and Vaughan, 2009). Among the many
positive effects these groups of bacteria have on hosts is the abil-
ity to reduce inflammation. Skewed levels of microbiota are one
important factor in inflammatory bowel disease as well as other
inflammatory conditions like rheumatoid arthritis (Frank et al.,
2007; Gueimonde et al., 2007; Round and Mazmanian, 2009). In
mouse models of colitis, under germ-free conditions or after treat-
ment of mice with antibiotics, intestinal inflammation cannot be
readily induced (Bamias et al., 2002; Strober et al., 2002). Bifi-
dobacterium and Lactobacillus are both important in the natural
balance of the intestinal community and in cases of inflammatory
bowel disease (IBD), both groups of bacteria are seen at decreased
levels in fecal samples as opposed to Enterococcus and Bacteroides,
which are seen elevated in the mucosa of patients (Frank et al.,
2007). Both Bifidobacterium lactis and Bifidobacterium infantis
have been shown to be protective against inflammation caused
by chemically and Salmonella induced colitis respectively (Round
and Mazmanian, 2009). Both species of bacteria can suppress the
transcription of the inflammatory factors: IL-1β, tumor necrosis
factor (TNF)-α, NFκB and translation of IL-1β and IL-6 (Turpin
et al., 2010). Treatment of colitic mice with Bifidobacterium infan-
tis induces the production of CD4+CD25+ regulatory T-cells and
these cells can be adoptively transferred to another mouse and pre-
vent activation of inflammatory factors (O’Mahony et al., 2008).
Additionally, numerous species of Lactobacillus have exerted pro-
tective effects against chemically and IL-10−/− induced models
of colitis (Round and Mazmanian, 2009). It has been suggested
that Lactobacillus rhamnosus can also induce regulatory T-cell
activity. Bone marrow dendritic cells (BMDCs) incubated with
Lactobacillus rhamnosus offer protection from induction of intesti-
nal inflammation in a CD4+CD25+ regulatory T-cells dependent
fashion (Foligne et al., 2007).

In addition to their anti-inflammatory properties, Bifidobac-
terium and Lactobacillus species have been shown to play a role
in exclusion of enteric pathogens. For example, the inflamma-
tory effects of disease seen after infection of mice with Salmonella
serotype Typhimurium can be countered by treating the mice
with Bifidobacterium infantis through the induction of Foxp3+
T-regulatory cells (O’Mahony et al., 2008).

While the precise mechanisms behind the beneficial effects of
Lactobacillus and Bifidobacterium are largely unknown, a signif-
icant amount of their activity can be attributed to cell surface
associated structures and extracellular protein interaction with
mucosal immune cells (Kleerebezem et al., 2010). Such cell sur-
face structures include but are not limited to: exopolysaccharides,
bacteriocins, lipoteichoic acid, and extracellular proteins (Sanchez
et al., 2010). Many of these proteins from both Bifidobacterium
and Lactobacillus are primarily identified using bioinformatics
and most have yet to be fully characterized. For example, Lac-
tobacillus plantarum are capable of adhering to mannosyl moi-
eties on human mucosa and in doing so prevent ETEC infection
(Adlerberth et al., 1996); however, the responsible mannose spe-
cific adhesion (Msa), a sortase dependent cell surface protein was
only recently discovered thanks to bioinformatics (Pretzer et al.,
2005). Informatics searches for potential adhesions, mucin bind-
ing domains, and secretory sequences have been very successful
(Buck et al., 2005; Boekhorst et al., 2006a; Sanchez et al., 2008;
Barinov et al., 2009). Secreted surface molecules have been shown
to play a role in Bifidobacterium and Lactobacillus CR through the
enhancement of the mucosal barrier and tight junctions, induc-
tion of anti-microbial peptides, and some secreted proteins are
thought to interact directly with host epithelial cells possibly block-
ing niches for pathogenic bacteria (Sanchez et al., 2010). Schlee
et al. (2008) showed that numerous species of Lactobacillus are
able to induce anti-microbial peptide production, which in turn
contributes to CR of pathogens. Pre-conditioned media from Lac-
tobacillus rhamnosus GG contains peptides with anti-microbial
activity against: E. coli EAEC, Salmonella typhi and Staphylococ-
cus aereus (Lu et al., 2009). Anti-microbial peptide production by
Lactobacillus salivarius can protect mice from Listeria monocyto-
genes while non-bacteriocin producing Lactobacillus salivarius do
not confer protection (Corr et al., 2007). The Lactobacillus crispa-
tus S-layer protein (SlpA) interacts directly with collagen on host
epithelial cells (Antikainen et al., 2002) and has been shown to
block the binding of pathogens such as Escherichia coli O157:H7
and Salmonella typhimurium (Chen et al., 2007), indicating that
the CR ability of some probiotics may be directly mediated by
adhesion molecules. As well as playing a role in CR, SlpA was
shown by Konstantinov et al. to play a role in the induction of
host immune responses. They showed that SlpA interacts directly
with the non-integrin DC-SIGN, inducing IL-10 production and
low IL-12p70 and that in an slpA mutant strain, which over-
expresses slpB, the immune reaction is skewed toward a more
pro-inflammatory response (Konstantinov et al., 2008). Another
extracellular protein immune modulator is the serine protease
inhibitor (Serpin) present in many species of Bifidobacterium.
Ivanov et al. (2006) showed through a series of in vitro studies that
serpin could inhibit pancreatic neutrophil elastases, thereby mod-
ulating host inflammatory responses. Bifidobacterium can play a
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role in mucosal health partially through strengthening of tight
junctions. Ewaschuck et al. have shown that Bifidobacterium infan-
tis pre-conditioned media (BiCM) can increase production of
epithelial cell tight junction proteins and increase transepithelial
resistance (TER). This BiCm also had drastic effects in vivo, atten-
uating inflammation and colonic permeability in IL-10 deficient
mice in part mediated through the Mapk pathway (Ewaschuk et al.,
2008). Extracellular proteins secreted by Lactobacillus species also
play a role in mucosal barrier maintenance through MapKs. Two
of the better characterized Lactobacillus extracellular proteins are
p40 (a hypothetical cell surface antigen) and p75 (a hypotheti-
cal cell wall-associated hydrolase). These proteins, when purified,
promoted growth in human and murine colonic epithelial cells
through activating protein kinase (akt) and were able to reduce
TNF-α induced colonic injury in tissue explants (Yan et al., 2007;
Seth et al., 2008).

While many Lactobacillus and Bifidobacterium species are con-
sidered culturable, there are still many uncultured species of each
within the intestine indicating that we still have much to discover
about Bifidobacterium and Lactobacillus mechanisms of action and
surface molecules (Heilig et al., 2002; Ben-Amor et al., 2005). Also,
while many extracellular and secreted proteins from Bifidobac-
terium and Lactobacillus have been characterized in vitro, their
roles have yet to be confirmed in vivo (Kleerebezem et al., 2010).
Full characterization of secreted and surface proteins from these
groups of bacteria could further advance therapeutics in intestinal
diseases and our knowledge of immune regulation by commensal
bacteria.

DISCUSSION
In this review, we have highlighted several bacterial groups and
specific species that have an immunomodulatory impact on their
hosts (summarized in Figure 1). There are an incredible 1014 bac-
teria in the intestine and the mammalian immune system must
be able to sustain these constant visitors without eliciting a strong
reaction, yet at the same time, be primed to react to incoming and
invading pathogens. We have described several different instances
in which intestinal bacteria prime responses that mirror and
enhance this vital balance by either promoting inflammatory (SFB
and Th17 cells) or anti-inflammatory conditions (Clostridium,
Bacteroides fragilis, Bifidobacterium, and Lactobacillus).

It is interesting that closely related groups of bacteria such as
Clostridium and SFB can exert such different effects. This is also
seen in the case of the pathogen Clostridium difficile. These dif-
fering effects could possibly be due to uncharacterized effector
molecules present on the surface of SFB species versus Clostrid-
ium. The effects of B. fragilis on host immunology are clearly
shown to be mediated through the symbiosis factor PSA, which
has been well-characterized over the last two decades. Not as
much is known about the active molecules from many other
symbiotic bacteria. Discovery and characterization of these mole-
cules will be extremely important for fully understanding immune
system–bacterial cell interactions. In the case of SFB, the potential
molecules that allow its association with epithelial cells and pos-
sible effector proteins or carbohydrates that elicit host immune
responses from SFB are tantalizing. One of the proposed mecha-
nisms of homeostasis within the intestine that allows residence
of bacteria without a hyper-activated immune response is the

FIGURE 1 | Snapshot of bacterial–host activity in the intestine. This
extremely simplistic view of intestinal activity highlights some of the major
roles of different bacteria within the intestine. SFB attach to epithelial cells,
induce pro-inflammatory responses, and expand TH17 cells (Davis and
Savage, 1974; Gaboriau-Routhiau et al., 2009; Ivanov and Littman, 2010).
Bacteroides fragilis and many Clostridium species induce IL-10 production
and the expansion of T-regulatory cells (Mazmanian et al., 2005,2008;
Atarashi et al., 2011). In B. fragilis, this is mediated through the surface
polysaccharide, PSA (Mazmanian et al., 2008). Both Lactobacillus and
Bifidobacterium can induce anti-inflammatory cytokine production,
anti-microbial peptide, and mucin production, and may adhere to epithelial
cells (Adlerberth et al., 1996; Pretzer et al., 2005; Kleerebezem et al., 2010;
Sanchez et al., 2010; Turpin et al., 2010). The secreted proteins, p40 and p75
from many Lactobacillus species promote cell growth through a PI-3K and
AKT pathway, inhibit apoptosis by causing decreased TNFα levels, and
increase transepithelial resistance (TER) through increased tight junction
protein production (Yan et al., 2007; Seth et al., 2008). Lactobacillus S-layer
protein A (SlpA) binds to DC-SIGN which leads to increased IL-10
production. SlpA can bind directly to epithelial cells, which may play a role in
colonization resistance (CR) against pathogenic bacteria (Antikainen et al.,
2002; Chen et al., 2007). The Bifidobacterium serine protease inhibitor
Serpin inhibits neutrophil elastase, thereby modulating acute inflammation
in the intestine (Ivanov et al., 2006). Finally, undefined secreted proteins
from Bifidobacterium species cause an increase in tight junction protein
production and thereby TER, contributing to CR (Sanchez et al., 2010).

sequestration of commensal bacteria in the mucus layer of epithe-
lial cells and in the intestinal lumen (Hooper, 2009). SFB clearly
break this rule. Actin accumulation by eukaryotic epithelial cells
has been seen underneath the attachment points (Jepson et al.,
1993) of SFB to eukaryotic cells. This is highly reminiscent of
the manner in which many enteric pathogens such as enterohe-
morrhagic E. coli attach to host cells. These pathogens contain
a secretion system that enable them to “inject” effector proteins
into host cells (Coburn et al., 2007). Is it possible that SFB may
have a similar system of their own? This also begs the question as
to whether SFB truly are commensal, non-pathogenic organisms.
The ability to grow these organisms in vitro as well as obtaining
the genome sequence of these organisms will allow for studies that
will begin to answer these questions.

While we have merely scratched the surface and new roles
of different species are continually being discovered, the stud-
ies highlighted here give us an idea of how powerful the effects
of single bacterial species can be within the intestinal frame-
work. Given an environment of over 500 species, it is remarkable
that individual species could have such strong effects. Although
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mono-colonization of germ-free mice is an excellent way to
observe species specific immune modulation, it is also an extremely
simplified view of an extremely complex ecosystem and as addi-
tional roles of individual species are discovered, investigating how
bacteria interact with each other within the intestine will be the
next direction. Taken from the simple environment of mono-
colonization, it is hard to believe that the roles of bacteria would
remain the same once placed in a melting pot of hundreds of
species all competing for nutrients and space. However in many
cases, such as with Clostridium, Bifidobacterium, Lactobacillus, SFB,
and Bacteroides, the effects of these bacteria can be seen when
their populations are increased within a conventional animal, not
solely within a mono-colonized animal (Dasgupta et al., unpub-
lished data) (Sonnenburg et al., 2005, 2006; Mazmanian et al.,
2005, 2008; Stepankova et al., 2007; Kleerebezem and Vaughan,
2009; Round and Mazmanian, 2010). In some cases, such as SFB,
immunomodulatory effects are seen more readily in the context
of a complete microbiota rather than a mono-colonized animal
(Stepankova et al., 2007). With such great success at teasing apart
the individual contributions of many resident intestinal bacteria
through mono-colonization experiments, another body of infor-
mation will come from determining dynamic interactions between
multiple groups of a host’s natural inhabitants and trying to deter-
mine how they use symbiosis factors to communicate with not only
their host tissues, but also each other. Already, many groups have
looked at the effects of colonizing mice with a select microbiota
that represents many of the abundant species normally present in
the mammalian intestine (Hooper et al., 2001; Macpherson and
Harris, 2004; Sonnenburg et al., 2006; Round and Mazmanian,
2009; Stecher and Hardt, 2011).

As described earlier, SFB from a rat cannot attach to the epithe-
lium of mouse and vice versa (Tannock et al., 1984; Hooper et al.,
2001; Macpherson and Harris, 2004; Sonnenburg et al., 2006).
This is one example illustrating that colonization of germ-free
animals by any bacteria is not always sufficient to conventional-
ize the animal. Rather, specific bacterial colonization is necessary.
This implies a co-evolutionary relationship between a host and
its microbiota. The study of humanized mice (germ-free mice

colonized with human fecal samples) is one tool that has been
utilized to answer whether hosts require a host-specific micro-
biota. While humanized mice have a “complete” microbiota, it is
foreign. At least two studies have shown that humanized mice may
more closely resemble germ-free mice in many immunological
traits than conventionalized mice and that colonizing mice with a
foreign microbiota cannot completely restore immune defects seen
in germ-free mice, nor can it restore many other germ-free defects
such as metabolism (Chung et al. submitted; Gaboriau-Routhiau
et al., 2009). When comparing the composition of microbiota from
mice colonized with human fecal matter and mice colonized with
mouse cecal matter, the two groups of microbiota had a high
degree of resemblance through the genus level. The majority of
differences were seen on the species level (Chung et al. submitted)
again emphasizing the dramatic effects on the host carried out by
individual species.

The interest in the dynamics of microbes in the intestine has
existed for decades, but has gained and lost momentum as new
technology comes and goes. As we are starting to see definite
trends in the composition of the intestine, gain knowledge through
sequencing,and identify the diversity of intestinal bacteria through
the Microbiome project, we are in a position to understand the
gut like we never have before. This knowledge will expand our
understanding of bacterial symbiosis factors, host regulation of the
commensal microbiota, and likewise bacteria–host communica-
tion and bacterial–bacterial communication within the intestine.
This will lead to a better understanding of and characterization of
intestinal bacterial imbalances that lead to diseased states, giving
us a better grasp of this previously mysterious world and the tools
to greatly impact intestinal health in the future.
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