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The bacterium Delftia sp. Cs1-4 produces novel extracellular structures (nanopods) in con-
junction with its growth on phenanthrene. While a full genome sequence is available
for strain Cs1-4, genetic tools that could be applied to study phenanthrene degrada-
tion/nanopod production have not been reported. Thus, the objectives of this study were
to establish such tools, and apply them for molecular analysis of nanopod formation or
phenanthrene degradation. Three types of tools were developed or validated. First, we
developed a new expression system based on a strong promoter controlling expression
of a surface layer protein (NpdA) from Delftia sp. Cs1-4, which was ca. 2,500-fold stronger
than the widely used lactose promoter. Second, the Cre-loxP system was validated for
generation of markerless, in-frame, gene deletions, and for in-frame gene insertions. The
gene deletion function was applied to examine potential roles in nanopod formation of three
genes (omp32, lasI, and hcp), while the gene insertion function was used for reporter gene
tagging of npdA. Lastly, pMiniHimar was modified to enhance gene recovery and mutant
analysis in genome-wide transposon mutagenesis. Application of the latter to strain Cs1-
4, revealed several new genes with potential roles in phenanthrene degradation or npdA
expression. Collectively, the availability of these tools has opened new avenues of investiga-
tion in Delftia sp. Cs1-4 and other related genera/species with importance in environmental
toxicology.
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INTRODUCTION
Bacteria of the genus Delftia mediate a diversity of processes
important in environmental toxicology, including xenobiotic
biodegradation and biotransformation of heavy metals (Vacca
et al., 2005; De Gusseme et al., 2010; Juarez-Jimenez et al., 2010;
Leibeling et al., 2010; Paulin et al., 2010; Zhang et al., 2010; Morel
et al., 2011; Yang et al., 2011). Additionally, Delftia spp. have
been identified as endobionts in a variety of organisms including
humans and, in the latter case, some are emerging as opportunis-
tic pathogens (Hail et al., 2011; Preiswerk et al., 2011). Genome
sequence data will be an essential resource for identification of
functions in Delftia spp. that are key to these activities, and one
recently completed genome is that of the phenanthrene degrader
Delftia sp. Cs1-4.

In addition to its abilities as a phenanthrene degrader, strain
Cs1-4 is noteworthy as the organism in which new extracellu-
lar structures, termed nanopods, were discovered (Shetty et al.,
2011). Nanopods are tubular elements that contain outer mem-
brane vesicles (OMV) within a sheath composed of a surface layer
protein (SLP). The latter was termed Nanopod protein A (NpdA),
and mutants lacking this protein were unable to form nanopods.
Proteomic analyses of nanopods revealed a variety of proteins
that were associated with these structures, two being outer mem-
brane protein 32 (Omp32) and hemolysin co-regulated protein
(Hcp). These proteins were of interest as we hypothesized that

they, along with NpdA, could have key roles in nanopod structure.
For Omp32, this hypothesis was based on its occurrence of OMV
in nanopods, and Omp32 being the major protein in the outer
membrane of strain Cs1-4 (Shetty et al., 2011). The protein Hcp,
which is part of the recently discovered type 6 secretion system
(T6SS), can self-assemble into ca. 10 nm diameter rings, which
subsequently stack into ca. 100 nm tubes (Mougous et al., 2006;
Ballister et al., 2008). The functions of such tubes are unknown,
but in the case of nanopods, we hypothesized that they could
have a structural role in nanopod formation, perhaps forming an
inner core. One other gene/protein of interest in nanopod for-
mation was lasI, which is involved in quorum sensing via the
acyl homoserine lactone (AHL) synthase it encodes. Its potential
connection to nanopod formation was based on two observa-
tions: (1) the increased abundance of nanopods in late-growth
phase of phenanthrene-grown cultures (Shetty et al., 2011), and
(2) the close association of the lone genomic copy of lasI with
the phenanthrene degradation gene cluster. Thus, we hypoth-
esized that nanopod production may be regulated by quorum
sensing.

Testing of the above-described hypotheses has been hindered
by a lack of genetic tools that have been developed for use in Delftia
spp. The objectives of this study were thus to develop such tools,
and apply them for molecular analysis of nanopod formation or
phenanthrene degradation. Three types of tools were developed
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and/or validated. First, a new expression system was developed
based on a strong promoter (controlling npdA expression) from
Delftia sp. Cs1-4. Second, the Cre-loxP gene deletion system was
validated for generation of markerless, in-frame, gene deletions.
Third, pMiniHimar was modified to enhance gene recovery and
mutant analysis in genome-wide transposon mutagenesis.

MATERIALS AND METHODS
BACTERIAL STRAINS, PLASMIDS, AND GROWTH CONDITIONS
Bacterial strains and plasmids used in this work are listed in
Table 1. E. coli JM109 was used for cloning. For conjugation,
donor strains were either E. coli BW19851 (λ pir) or E. coli S17 (λ
pir) and recipient strains were either E. coli TransforMax EC100+
(for propagation of constructs) or Delftia sp. Cs1-4. E. coli strains
were routinely grown in Luria-Bertani (LB) broth at 37˚C. Mineral
salt medium (MSM; Hickey and Focht, 1990) containing phenan-
threne as the sole carbon source (1 mg/mL) was routinely used for
Delftia sp. Cs1-4 culture. Liquid cultures were grown with shaking
(ca. 200 rpm) at either 25˚C (strain Cs1-4) or 37˚C (E. coli). For
solid LB media, Bacto-Agar (Difco, Detroit, MI, USA) was added
to a final concentration of 15 g/L. For E. coli, antibiotics were
added when required at 100 μg/mL (ampicillin, Ap), 50 μg/mL
(kanamycin, Km), or 10 μg/mL (tetracycline, Tc). Kanamycin and
tetracycline were used in some Delftia sp. Cs1-4 cultures, and in
these cases were added at 300 and 40 μg/mL, respectively.

DNA MANIPULATIONS
Genomic DNA was prepared using a genomic DNA extraction
kit (Promega, Madison, WI, USA), and plasmid DNA was purified
with the QIAprep spin miniprep kit (QIAGEN, Germantown, MD,
USA). Restriction and modification enzymes were purchased from
Promega (Madison, WI, USA) or New England Biolabs (Beverly,
MA, USA). Klenow fragment or T4 DNA polymerase (Promega)
was used to fill in recessed 3′ ends and to trim protruding 3′ ends of
incompatible restriction sites. All PCR amplifications were done
with the Failsafe PCR system (Epicenter Technology, Madison,
WI, USA). Amplicons were separated in 0.7–1.0% (w/v) agarose
gels, and DNA fragments were purified with the QIAquick gel
extraction system (QIAGEN). Ligation mixtures were transformed
into E. coli JM109 (Promega), and transformants were plated onto
LB plates with appropriate antibiotic selection. Resistant colonies
were isolated, and then screened for the acquisition of plasmids.
All constructs were sequenced to verify structure. For conjugal
transfer of plasmids from E. coli to Delftia sp. Cs1-4, LB-grown
cultures of both cells were harvested (mid-log phase) by centrifu-
gation, washed with LB and then equal amounts (ca. 1012 cells of
each strain) were mixed, and spotted onto LB plates containing
5 mM CaCl2. Following overnight incubation at 22˚C, cells were
then scraped off of the plates, diluted, and plated on LB plates
containing the appropriate antibiotics.

TRANSCRIPTION START SITE DETERMINATION
Total RNA was isolated from phenanthrene-grown strain Cs1-4
cells, and purified of genomic DNA by DNase I digestion. Analy-
sis by 5′-RACE was done using TaKaRa 5′-full RACE Core set
under conditions recommended by the supplier (TaKaRa). Reverse
transcription (RT) was done with a 5′-phosphorylated RT primer

(Delf1; Table 2). After RT, mRNA was digested with RNaseH, and
then cDNA was concatenated using T4 RNA ligase. The region
of interest was then amplified via nested PCR using two sets of
primers to regions of npdA. In the first PCR, RT products were
used as template, and amplified with primers Delf2 and Delf3
(Table 2). In the second PCR, template was a 10-fold dilution of
the round one PCR product, and amplification was done using
primers Delf4 and Delf5 (Table 2). The 5′-RACE products were
isolated, purified, ligated into pGEM-T easy and then sequenced.

The npdA fragment including the non-coding and partial struc-
tural gene regions was amplified with primers Delf6 and Delf7
(Table 2) using strain Cs1-4 genomic DNA as template. The Renilla
luciferase (rluc) gene was amplified from pRL-SV40 using primers
Delf8 and Delf9 (Table 2). These fragments were fused via over-
lap PCR. To analyze the structure of the putative npdA promoter,
deletion derivatives of non-coding fragments upstream of npdA
were amplified by employing the same PCR strategy as described
above, except using different N-terminal primers, namely Delf10,
Delf11, Delf12, Delf13, Delf14, and Delf15 (Table 2). The above
amplicons were inserted in pGEM-T easy, released from this vec-
tor by SacI and SacII digestion, and inserted into the same sites
of pBBR1MCS-3 to create the deletion series. The reporter vector
was then conjugated into strain Cs1-4.

CONSTRUCTION OF STRONG EXPRESSION SYSTEM AND
FLUORESCENT PROTEIN REPORTER VECTORS
Genes encoding green fluorescent protein and red fluorescent pro-
tein were amplified from pKEN2 and pmStrawberry using the
primers Delf16/Delf17 and Delf18/Delf19, respectively, and engi-
neered via PCR to contain an E. coli ribosome binding site on
the 5′-end (Table 2). The amplicons were cloned into pGEM-T
easy (pSCH374 and pSCH378, respectively), gfpmut3 was then
released by ApaI and SacII digestion, and inserted into the same
sites on pBBR1MCS3 (pSCH397). The mStrawberry gene was cut
from pSC378 by digestion with KpnI and SacII, and inserted into
KpnI/SacII sites on pBBR1MCS3 (pSCH395).

A strong expression system controlled by PnpdA was con-
structed as follows. The PnpdA region (genome position 5862152–
5862685) was amplified from strain Cs1-4 genomic DNA using
primers Delf20 and Delf21 (Table 2). The amplicon was then
cloned into pGEM-T easy (pSCH426), released by digestion with
ApaI and SmaI, and inserted into the same sites on pBBR1MCS3
(pSCH442). Green fluorescent protein (GFP, gfpmut3) and red flu-
orescent protein (RFP, mStrawberry) marker genes were released
from pSCH374 and pSCH378 by digestion with SacII, cloned
into pSCH442 and transformed into E. coli JM109. Colonies with
strong green (pSCH476) and red (pSCH473) fluorescence were
recovered, and orientation of reporter genes was confirmed by
sequencing. These plasmids were next conjugated into Delftia
sp. Cs1-4, leading to strains SCH481 (pSCH476) and SCH482
(pSCH473).

CONSTRUCTION OF GFP REPORTER VECTOR FOR CHROMOSAOMAL
TAGGING OF NPDA
To transcriptionally tag npdA, gfp was inserted immediately down-
stream of npdA using the Cre-loxP recombination method of
Denef et al. (2005). An npdA fragment with the stop codon
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Table 1 | Bacterial strains and plasmids used in this study.

Strain or plasmid Relevant characteristics and/or plasmid construction Source

BACTERIA

E. coli

BW19851 (λ pir ) RP4-2tet ::Mu-1kan::Tn7 integrant; ΔuidA::pir+recA1 hsdR17 creB510 endA1 zbf-5 thi Metcalf et al. (1994)

TransforMax EC100+ F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU

galK λ- rpsL (StrR) nupG

Epicenter

S17-1 hsdR17 (rK- mK-) recA RP4-2 (Tcr::Mu-Kmr::Tn7 Strr) Simon et al. (1983)

JM109 F’ [traD36 proAB+ lacIq lacZΔM15 ]/recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi-1 mcrA ((lac-proAB) Promega

Delftia sp. Cs1-4 Vacca et al. (2005)

Wild type Growth on phenanthrene, nanopod production Shetty et al. (2011)

SCH482 Wild type carrying expression cassette PnpdA + mStrawberry This study

SCH481 Wild type carrying expression cassette PnpdA + gfpmut3 This study

SCH369 ΔlasI::Km This study

SCH340 Δhcp::Km This study

SCH411 Δomp32 This study

SCH456 npdA:gfp on the chromosome This study

SCH514 npdA:gfp; (omp32::Km This study

PLASMIDS

pGEM-T easy Cloning vector; Ampr Promega

pRL-SV40 Renilla luciferase gene (rluc) Promega

pKEN2 Source of gfpmut3; Apr Comack et al. (1996)

pmStrawberry mStrawberry gene template; Apr Shaner et al. (2004)

pBBR1MCS3 Broad-host-range plasmid; Tcr Kovach et al. (1994)

pJK100 Allelic exchange vector; Tcr and Kmr Denef et al. (2006)

pCM157 Cre expression vector; Tcr Denef et al. (2006)

pHimarEm1 Plasmid carrying mini-Himar RB1; Kmr Braun et al. (2005)

pSCH29 Derivative of pMiniHimar RB1; Kmr This study

pSCH160 gfpmut3 on pSCH29; Kmr This study

pSCH402 mStrawberry on pSCH29; Kmr This study

pSCH375 Gfpmut3 on pGEM-T easy; Apr This study

pSCH378 mStrawberry on pGEM-T easy; Apr This study

pSCH394 mStrawberry on pBBR1MCS3; Tcr This study

pSCH397 Gfpmut3 on pBBR1MCS3; Tcr This study

pSCH426 PnpdA on pGEM-T easy; Apr This study

pSCH442 PnpdA on pBBR1MCS3; Tcr This study

pSCH473 mStrawberry reporter under PnpdA on pSCH442; Tcr This study

pSCH476 gfpmut3 reporter under PnpdA on pSCH442; Tcr This study

pSCH447 npd gene fragment on pGEM-T easy; Apr This study

pSCH430 Downstream npdA gene fragment on pGEM-T easy; Apr This study

pSCH431 Insert from pSCH430 cloned into pJK100; Tcr This study

pSCH485 Insert from pSCH447 cloned into pSCH431; Tcr This study

pSCH451 gfpmut3 from pSCH375 was inserted into pSCH485; Tcr This study

pSCH487 Upstream fragment of hcp on pGEM-T easy; Apr This study

pSCH486 Downstream fragment of hcp on pGEM-T easy; Apr This study

pSCH339 hcp knock out plasmid; Tcr and Kmr This study

pSCH490 Upstream fragment of omp32 on pGEM-T easy; Apr This study

pSCH418 Downstream fragment of omp32 on pGEM-T easy; Apr This study

pSCH371 omp32 knock out plasmid; Tcr and Kmr This study

pSCH356 Downstream fragment of lasI on pGEM-T easy; Apr This study

pSCH488 Upstream fragment of lasI on pGEM-T easy; Apr This study

pSCH363 lasI knock out plasmid; Tcr and Kmr This study
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Table 2 | Primers used in this study.

Primer Sequence (5′–3′) Modificationa

Delf1 (P) ctttgagcaacgttc

Delf2 Ccgcctgaaccccaagctgtc None

Delf3 Cgtgttgtcagctgcagcagagc None

Delf4 Cacaactcgtctggcgttgcagc None

Delf5 Gccacgctggcgaagcccag None

Delf6 GCGAGCTCGgggcagtggtggctgtacatggag SacI

Delf7 gactggcttaggtcgtctcttacgacgggtgtagcggtggggcc None

Delf8 aagagacgacctaagccagtcatgacttcgaaagtt

tatgatccagaacaaagg

None

Delf9 GCCGCGGCttattgttcatttttgagaactcgctcaacgaacg SacII

Delf10 GCGAGCTCGctgtacatggagtaagttcctctacacctg SacI

Delf11 GCGAGCTCGgtaagttcctctacacctgtgtgcaaatgtc SacI

Delf12 GCGAGCTCGtgtgcaaatgtctgggataattcgccgtc SacI

Delf13 GCGAGCTCGtctgggataattcgccgtccctgtac SacI

Delf14 GCGAGCTCGacgattccccggcgatcaatcgtgg SacI

Delf15 GCGAGCTCGcgatcaatcgtggtggttgcaactacc SacI

Delf16 GGTACCGGATCCtttaagaaAGGAGAtatacatatg

agtaaaggagaagaagaac

KpnI–BamHI

Delf17 CCGCGGgaattcttatttgtatagttcatccatgcc

atgtgtaatccc

SacII

Delf18 GGTACCGGATCCtttaagaAGGAGAtatacatatgg

tgagcaagggcgag

KpnI–BamHI

Delf19 CCGCGGttacttgtacagctcgtccatg SacII

Delf20 GGGCCCagggcagtggtggctgtacatggag ApaI

Delf21 CCCGGGaggtcgtcagagttggcagcgcc SmaI

Delf22 AGATCTcgtgcactggcagttgacag Bgl II

Delf23 GGTACCcaaattaacgacgggtgtagcg KpnI

Delf24 CCGCGGactgctaccgcgaacggcgctg SacII

Delf25 GAGCTCgcctgtgtcttggcttcggggg SacI

Delf26 AGATCTgctcgtttggagcgacggtgtgttc Bgl II

Delf27 CATATGtcgacgatctccaattcggcctccag NdeI

Delf28 GTTAACacgccatgggaacacgcgtgagcgg HpaI

Delf29 GAGCTCcacccggcagcgaacaggctgagc SacI

Delf30 AGATCTgagctttgccgcccggccagg Bgl II

Delf31 CATATGggctgggtagcaccccaggtg NdeI

Delf32 GGGCCCggcaagggcgccgagagccag ApaI

Delf33 GAGCTCgccaggacccggctcaaggcag SacI

Delf34 AGATCTtcgtcatccttcatgcgggccaccacg Bgl II

Delf35 CATATGTattgcaccagaccaccgctgcccatgc NdeI

Delf36 CCGCGGggacgcgttcccggcggcaaccgcagg SacII

Delf37 GAGCTCgcccgtggtgcccaggccctcatggatc SacI

Delf38 CGCGGATCCGCGTCCCCGCGGggacccttaattaac

cccgaaaagtgccacctgacg

BamHI–SacII

Delf39 CGCGGATCCGCGCGGGGTACCccggacgcgtcgaat

taattccgctagc

BamHI–KpnI

aDelf1 introduces 5′-phosphorylation. Nucelotide sequences in uppercase were

used to introduce the indicated modifications in PCR products. The engineered

E.coli RBS sequences were capitalized and underlined.

(genome position 5860670–5861289) was amplified using primers
Delf22 and Delf23 (Table 2). The downstream fragment of
npdA (genome positions 5860066–5860809) was amplified using

primers Delf24 and Delf25 (Table 2). These fragments were
then cloned into pGEM-T easy (pSCH447 and pSCH430). The
downstream fragment from pSCH430 was released by digestion
with SacII and SacI and inserted into the same sites on pJK100
(pSCH431). The npdA fragment from pSCH447 was released by
NdeI and KpnI digestion, and then inserted into the same sites
on pSCH431 (pSCH485). The gfpmut3 gene was released from
pSCH375 by KpnI and Not I digestion, and assembled into the
same sites on pSCH485 (pSCH451). Conjugation of pSCH451
into strain Cs1-4 gave Kmr/Tcs colonies, which were recovered
for further analysis. The Cre-expressing vector, pCM157, was
next introduced into a selected colony (SCH483) in order to
remove K m resistance, leading to strain SCH484 (Kms/Tcr). Cur-
ing of pCM157 from SCH484 was done by serial transfers in LB
medium. A selected colony (Kms/Tcs) with green fluorescence was
then confirmed for the correct construct by PCR and sequencing
(SCH456).

MUTANT CONSTRUCTION
To knock out lasI, its upstream (strain Cs1-4 genome positions
1950815–1951882) and downstream (strain Cs1-4 genome posi-
tions 1952504–1953573) fragments were amplified with primers
Delf26/Delf27 and Delf28/Delf29, respectively (Table 2). The
amplicons were gel purified and cloned into pGEM-T easy
(pSCH488 and pSCH356). The upstream fragments were released
by BglII/NdeI digestion, and downstream fragments were released
by ApaI/SacI from pGEM-T easy and then sequentially assem-
bled on the same sites on pJK100 (pSCH363). To knock out hcp,
upstream (strain Cs1-4 genome position 3366999–3367911) and
downstream fragments (strain Cs1-4 genome position 3368229–
3369041) were amplified using PCR primers Delf30/Delf31 and
Delf32/Delf33, respectively (Table 2). The amplicons were gel puri-
fied and cloned into pGEM-T easy (pSCH487 and pSCH486).
These fragments were sequentially assembled on the same sites on
pJK100 (pSCH339) using the same strategy as described above. To
knock out omp32, upstream (Cs1-4 genome positions 1041477–
1042202) and downstream (Cs1-4 genome position 1044310–
1045032) fragments were amplified with primers Delf34/Delf35
and Delf36/Delf37 (Table 2). The amplicons were gel purified
and cloned into pGEM-T easy vector (pSCH490 and pSCH418).
These fragments were sequentially assembled on the same sites
on pJK100 (pSCH371). Each of the three constructs (pSCH363,
pSCH339, pSCH371) was introduced into strain Cs1-4 by con-
jugation, and Tcs/Kmr transconjugants were selected, leading to
strains SCH369, SCH340, and SCH389, respectively.

GENOME-WIDE TRANSPOSON MUTAGENESIS
Modification of pHimarEm1 was done to introduce additional
unique KpnI–BamHI–SacII restriction sites, to remove the ery-
thromycin resistance gene and to insert genes encoding GFP and
RFP. To do so, PCR was done with pHimarEm1 DNA as tem-
plate, and using forward primer Delf38 and reverse primer Delf39
(Table 2). The amplicon was digested with BamHI, self-ligated
and transformed into E. coli S17 λpir. The gfpmut3 fragment was
digested with KpnI and SacII from pSCH375 and inserted into
pSC29 at the same restriction sites (pSCH160). The promoterless
mStrawberry fragment was then released from pSCH378 by KpnI

Frontiers in Microbiology | Microbiotechnoloy, Ecotoxicology and Bioremediation October 2011 | Volume 2 | Article 187 | 4

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiotechnoloy,_Ecotoxicology_and_Bioremediation
http://www.frontiersin.org/Microbiotechnoloy,_Ecotoxicology_and_Bioremediation/archive


Chen and Hickey Genetic manipulation of Delftia sp. Cs1-4

and SacII digestion, inserted into pSCH29 at the same restriction
sites (pSCH402), and then introduced into strain SCH456 by con-
jugation. The Km-resistant colonies were randomly picked and
replicated in 96-well plates containing MSM with either pyruvate
and or phenanthrene as the carbon source. After incubation with
shaking (24 h), the OD600 and GFP fluorescence were determined
(see below).

REPORTER ASSAYS
Renilla luciferase assays were done as described in our prior work
(Chen et al., 2009) using a commercially available kit (Promega)
according to the manufacturer’s protocol. Quantitative analysis of
fluorescent protein production was done using a Synergy 2 plate
reader with the following conditions (all 0.2-s interval, 22˚C):
GFP, excitation at 485 nm, emission 510 nm; RFP, excitation at
574 nm, emission at 596 nm. All measurements were corrected for
background with wild type (WT) Delftia sp. Cs1-4 cells.

DNA SEQUENCE AND SEQUENCE ANALYSIS
The complete genome sequence of Delftia sp. Cs1-4 was deposited
in Genbank as accession NC(015563.1. All constructs were
sequenced by the dideoxy termination method using an Applied
Biosystems (Foster City, CA, USA) 3730 × l DNA Analyzer avail-
able at the University of Wisconsin-Madison, Biotechnology Cen-
ter. GenBank database searches were carried out using the National
Center for Biotechnology Information BLAST-N web server.

RESULTS
ANALYSIS OF NPDA PROMOTERS IN DELFTIA SP. CS1-4 AND
DEVELOPMENT OF STRONG EXPRESSION SYSTEM
Three TSS were identified for npdA, and were located at
(nucleotide) −34-bp (A), −56-bp(G), and −172-bp (A), respec-
tively upstream of the npdA start codon (Figure 1A). Three
putative promoter motifs, PnpdA1 (TCCTCT-N15-TGTCTG),
PnpdA2 (TAGGGG-N15-TACGAT), and PnpdA3 (TACGAT-N17-
TGGTGG) situated at −38, −61, and −180-bp, respectively were
identified (Figure 1A). Serial deletion of non-coding regions
upstream of npdA was done to establish involvement in npdA reg-
ulation of one or more of the three putative promoters. There was
no significant difference in levels of gene expression between the
WT and D1 (npdA −220 bp; Figure 1B). However, further deletion
of an 11-bp fragment from D1 (D2, npdA −209 bp) yielded a ca.
20% decrease in Rluc activity relative to the WT (Figure 1B). Since
the D2 construct carried the putative −35 motif in PnpdA1, we
inferred the fragment (−220 to −209 bp) was also important for
npdA expression. Deletion of the −35 region of PnpdA1 (D3, npdA
−190 bp) decreased Rluc activity by >40% compared to the WT.
Construct D4 (npdA −180 bp) had only ca. 20% Rluc activity. The
latter contained a deletion that originated at −180 bp, and thus had
the entire PnpdA1 region disrupted, indicating that PnpdA1 was
the most important promoter for driving npdA expression. A fur-
ther deletion (D5, npdA −67 bp) that removed the –35 bp motif in
PnpdA2 retained ca. 5% of WT level. Removing the PnpdA2 region
(D6, npdA −54) reduced Rluc activity to background levels.

To test the utility of the PnpdA expression system, the genes
encoding a GFP and RFP were inserted downstream of the PnpdA
cassette, which contained the 220-bp fragment described above.

Transformants appeared green or red under ambient light, indi-
cating strong expression of gfp and mstrawberry, respectively. The
apparent high-level expression of these proteins was non-toxic to
Delftia sp. Cs1-4, as growth of cultures expressing GFP or RFP
was not distinguishable from that of the WT (Figure 2A). Pro-
duction of GFP and RFP followed similar patterns, with levels
increasing with culture growth, achieving stable accumulations
upon reaching stationary phase (Figure 2B). In the absence of
antibiotic selection, the expression vector was stable in Delftia sp.
Cs1-4 for at least 56 generations (Figure 2C).

GENE DELETION AND GENOME-WIDE MUTAGENESIS
For generation of gene knockouts, the vector was used to target
omp32, hcp, and lasI. Deletion of all three genes was successful, and
confirmed by PCR and/or Southern hybridization. However, none
of the gene deletions resulted in a loss of nanopod production, and
only the Δomp32 mutant exhibited phenotypes different from that
of the WT. In whole cell protein profiles, the latter mutant showed
a loss of the predominant band corresponding to Omp32 (Shetty
et al., 2011) and appearance of two other proteins, also identified
as porins (Figure 3A). The Δomp32 mutant had an irregular cell
shape (Figure 3B), and its growth was impaired on both pyruvate
and phenanthrene, but the impact of Omp32 loss appeared to be
greater with the latter substrate (Figures 3C,D).

Following conjugal delivery to Delftia sp. Cs1-4, the transpo-
sition frequency of pMiniHimar was ca. 2 × 10−5 to 5 × 10−6

per recipient, a frequency comparable to those reported for She-
wanella oneidensis, Geobacter sulfurreducens, and B. pseudomallei
(Choi et al., 2008; Rollefson et al., 2009). From the 13,000 colonies
screened, seven mutants were recovered that were impaired in
either growth on phenanthrene (Mutants 1–6; Table 3) or in npdA
expression (Mutant 7; Table 3). For the former, three mutants had
insertions in the gene cluster encoding the phenanthrene catabolic
pathway. Of these, Mutant 3 was intriguing as the gene bearing the
insertion was predicted to encode an Ycf48 homolog. For Mutants
5 and 7, insertions were in genes outside of the phenanthene
degradation cluster, and were predicted to encode a SpoT/RelA-
type (p)ppGpp synthetase, and a HylD Family, type I secretion
membrane fusion protein, respectively.

DISCUSSION
Promoters proceeding SLP genes are among the most potent
in many bacteria. For example, in Lactobacillus acidophilus, the
strength of the SLP gene promoter is roughly twice that control-
ling the lactate dehydrogenase gene (Boot et al., 1996). Strong
promoters may be needed for genes encoding SLP, as SLP are typ-
ically among the most abundant cellular proteins, as is the case
with NpdA in strain Cs1-4 (Shetty et al., 2011). Thus, to develop a
strong expression system, we focused on identification of the npdA
promoter.

Collectively, the serial deletion analyses indicated that at least
220 bp upstream of npdA were required for maximal, log phase
expression of npdA in strain Cs1-4 growing on phenanthrene.
The presence within this region of multiple putative promoters
is a feature that appears to be common for genes encoding SLP.
For example, the SLP-encoding genes of Lactobacillus brevis ATCC
8287 (Hynönen et al., 2010), Aeromonas salmonicida (Chu et al.,
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FIGURE 1 | Analysis of npdA promoter regions. (A) Putative −10- and
−35-bp motifs are indicated with P1, P2 and P3. Transcription start points are
capitalized and underlined. Arrows indicate positions of deletions (D1-7).

(B) Effect of serial deletion on rluc expression. Results were normalized to
Rluc activity of the wild-type. Reactions were done in triplicate, and standard
deviations are indicated by error bars.

1993), and Bacillus stearothermophilus ATCC 12980 (Jarosch et al.,
2000) had at least two promoters, while in Bacillus brevis three
promoters were arranged tandemly upstream of the cwp operon
(Adachi et al., 1989). The reason(s) why SLP genes have multi-
ple promoters are unknown. Possibly, these could be needed to
respond to a variety of stimuli that could affect the expression of
SLP genes (Sleytr and Messner, 1983; Adachi et al., 1989; Soual-
Hoebeke et al., 1999). As yet, specific functions for the S-layer in
Delftia sp. strain Cs1-4 are unknown, however, some involvement
in phenanthrene degradation is a possibility as mutants lacking
NpdA (and consequently the S-layer) are impaired in their ability
to grow on this compound (unpublished data).

Expression systems based on well-characterized promoters
such as Plac or Ptac are widely used (Dykxhoorn et al., 1996), but
have had limited success in the Burkholderiales (Lefebre and Val-
vano, 2002). Likewise, for strain Cs1-4, Rluc was weakly expressed
under control of Plac, as Rluc activity was ca. 2,500-fold lower
than that from PnpdA:rluc. An alternative approach is to use pro-
moters that originate from the Burkholderiales, and one example
is the promoter regulating expression of small ribosomal pro-
tein S12 (Prsp). The latter promoter has been successfully utilized
in Burkholderia xenovorans LB400 (Yu and Tsang, 2006) and in
B. cepacia (Lefebre and Valvano, 2002). However, in strain Cs1-
4, gene expression under Prsp was poor, and not significantly
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FIGURE 2 | Growth and fluorescence characteristics of the GFP and

RFP reporter strains. (A) SCH481 (PnpdA:gfp, circle), SCH482
(PnpdA:mStrawberry, diamond), and WT (square) were adjusted to the
same cell density and cultured for 30 h. (B) Fluorescence determination for
GFP (circle) and RFP (diamond) reporter strains. Values in (A) and (B) are
means of measurements made from triplicate cultures, and error bars
indicate standard deviation) (C) Stability test of the expression vector
(pSCH477, PnpdA:gfp) in Delftia sp. Cs1-4. The strain SCH481 (PnpdA:gfp)
was serially transferred in LB medium and the CFU were determined at
generations of 16, 36 and 56. The blank bar is without tetracycline addition
and the black one is supplemented with tetracycline.

different from that of Plac (data not shown). Thus, demonstration
of PnpdA as a strong promoter functional in Delftia sp. Cs1-4 has
provided a much-needed tool for genetic analyses of this organism,
and potentially other related bacteria.

The Δomp32 mutant had an irregular cell shape (Figure 3B),
suggesting that Omp32 may have a key role in establishment of cell
envelope structure, as shown for other outer membrane proteins
(Lazar and Kolter, 1996; Watts and Hunstad, 2008). Analysis of
the Δhcp mutant demonstrated that, as opposed to our hypothe-
sis, Hcp did not have a structural function essential for nanopod
formation. However, Western blot data indicated that Hcp was
associated in some manner with nanopods as the majority of this
protein accumulated in the >50-nm diameter fraction along with
nanopods (data not shown). It is possible that Hcp was secreted
separately from nanopods, and formed extracellular structures
that were co-purified with nanopods. If so, such structures were
not discernable in samples imaged by transmission electron micro-
scope. Alternatively, Hcp may be associated with nanopods as
cargo carried by OMV. In this case,Hcp may function as a virulence
factor that may be employed by strain Cs1-4 in interactions with
competing bacteria, as has been shown for T6SS in other bacteria
(Schwarz et al., 2010; Leung et al., 2011; Records, 2011). Lastly, for
the ΔlasI mutant, the absence of any detectable change in the for-
mation of nanopods suggested that the process was not affected by
quorum sensing, at least in the sense that it was regulated by AHL
produced by a canonical AHL synthetase. This finding is notewor-
thy as it helps to narrow the spectrum of possible mechanisms that
may control nanopod production.

Efficient targeting for gene inactivation is critical for func-
tional genomic studies and, in bacteria, two widely used systems
for generating in-frame, unmarked deletions are those based on
sacB counter selection (Jäger et al., 1995; Chen et al., 2010), and
Cre-loxP system (Denef et al., 2006; Choi et al., 2008). For strain
Cs1-4, the sacB system proved unsuccessful; merodiploids (first
recombination) were recovered at a high frequency, but these
were not effectively resolved as Delftia sp. Cs1-4 grew in YT agar
medium containing 5–15% (wt/vol) sucrose (data not shown).
Similar observations have been reported for Streptomyces lividans
and some Burkholderia strains, which carry an intrinsic sacBC
operon. Alternatively, Cre-loxP system was successfully adapted
for gene deletion or insertion, and was an efficient way for recy-
cling antibiotic markers in Delftia sp. Cs1-4. To our knowledge,
this is the first report of the Cre-loxP system being used for gene
deletion analysis in Delftia spp.

Of the mutants recovered from genome-wide mutagenesis,
three were of particular interest as they may encode new functions
associated with nanopod production and/or phenanthrene degra-
dation. One of these putatively encoded an Ycf48-like protein. In
phototrophs, Ycf48 functions in the assembly and repair of Photo-
system II (Komenda et al., 2008; Rengstl et al., 2011). Activities of
an Ycf48-like protein that may be related to phenanthrene degra-
dation are unknown, but, given the significant reduction (ca. 64%)
in nanopod produced by this mutant, it’s interesting to speculate
that it may have a role in the assembly of these structures. The
putative spoT /relA mutant, had an insertion in a (p)ppGpp syn-
thetase. The alarmone (p)ppGpp primarily governs the stringent
response to amino acid starvation (Martinez-Costa et al., 1998;
Åberg et al., 2006; Gomez-Escribano et al., 2008; Abranches et al.,
2009) and, since growth of the spoT /relA mutant on pyruvate
was not impaired, the effect of the mutation appeared related
to use of phenanthrene as a carbon source. The third gene of
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FIGURE 3 | Characterization of the Delftia sp. Cs1-4 Δomp32 mutant.

(A) Protein profiles of the wild type (WT) and mutant. Boxed area indicates
the region of the Omp32 band in the WT. In the mutant, arrows indicate two
bands identified as different porins, which were not detected in the WT.

(B) Transmission electron micrographs of strain Cs1-4 biofilm cells grown on
phenanthrene illustrating the mutant’s cellular deformities. (C) and (D)

Growth of the WT (diamonds) and mutant (circles) on the indicated
substrate.

Table 3 | Mutants recovered from miniHimar transposon mutagenesis.

Mutant Insertion locusa OD600
b Nanopod productionc GFPd Gene product

1 1741 N/A N/A N/A Phenanthrene dioxygenase component;

Ferredoxin-NAD(+) reductase (PhnAa)

2 1742 and 1743 0.09 ± 0.01 0.18 ± 0.02 0.59 ± 0.02 Non-coding region between phnB (cis-2,3-

dihydrobiphenyl-2,3-diol dehydrogenase) and phnAc

(phenanthrene 1,2-dioxygenase, large subunit)

3 1760 0.13 ± 0.01 0.32 ± 0.16 0.31 ± 0.05 2-Carboxybenzaldehyde dehydrogenase (PhnI)

4 3891 0.15 ± 0.01 0.81 ± 0.01 0.74 ± 0.03 (p)ppGpp synthetase (SpoT/RelA)

5 4612 0.15 ± 0.01 0.99 ± 0.09 0.93 ± 0.03 Type I secretion membrane fusion protein, HlyD

family

6 1758 0.20 ± 0.02 0.36 ± 0.04 0.74 ± 0.03 Ycf48-like protein

7 3984 0.24 ± 0.02 0.84 ± 0.05 0.68 ± 0.11 Heavy metal translocating P-type ATPase

Wild type N/A 0.23 ± 0.01 1.00 1.00 N/A

aLocus in Delftia sp. Cs1-4 genome, all locus numbers are proceeded by “DelCs14(”
bOptical density measured after 7 d incubation in MSM supplemented with phenathrene. Values are averages (±SD) of single measures from triplicate cultures.
cDetermined as described by Shetty et al. (2011). Values are averages (±SD) of single measures from triplicate cultures, and are normalized to those of WT.
dGFP Fluorescence. Values are averages (±SD) of single measures from triplicate cultures, and are normalized to those of WT.
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interest, encoding an HlyD-like protein, was clustered with other
genes predicted to encode pili formation. But, it remains to be
determined how amino acid starvation and pili formation may
be connected to phenanthrene degradation. Mutant 7 was not
impaired in growth on phenanthrene, but did show decreased
expression of npdA, and a depressed level of nanopod production.
The protein predicted for the locus bearing the insertion contained
a heavy-metal-associated domain that is also found in a number
of proteins that transport or detoxify heavy metals; the relation
of such a protein to npdA expression and nanopod formation
remains to be determined.

Minitransposons are widely used for genome-wide mutagen-
esis in Gram-negative and Gram-positive bacteria (Lampe et al.,
1999; Youderian et al., 2003; Maier et al., 2006; Choi et al., 2008)
and, compared to other minitransposons, pMiniHimar is advanta-
geous as it does not require host-specific factors for transposition,
it lacks site specificity and the transposase is not introduced into
the chromosome, thus enhancing insertion stability. The trans-
position frequency of pMiniHimar was sufficient (>5 × 10−6 per
recipient) for saturation mutagenesis of the strain Cs1-4 genome.
In the present study, pMiniHimar RB1 was modified by adding
unique restriction sites for insertion of additional genetic ele-
ments. In our tests, these elements were promoterless gfpmut3 and
mStrawberry, and the resultant vectors can be utilized for random
generation of genomic transcriptional fusions. Such vectors can
provide a convenient way to conduct genome-wide investigations

of gene expression levels under selected conditions (de Lorenzo
et al., 1990; Hahn et al., 1991; Boyle-Vavra and Seifert, 1995;
Velayudhan et al., 2007).

CONCLUSION
The present report outlined the development of tools needed for
genetic manipulation of Delftia sp. Cs1-4. These tools included
a new expression cassette (PnpdA-based) that can be used for
tagging of chromosomal genes as well as for complementation
of knockout mutants, and a pMiniHimar transposon modified
to enhance gene recovery and mutant analysis. The effectiveness
in Delftia sp. of the Cre-loxP for gene deletion was also demon-
strated. These tools were developed and validated for manipu-
lation of Delftia sp. Cs1-4, but could also be applied to other
related genera and species with importance in environmental
toxicology.
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