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Burkholderia pseudomallei is a Gram-negative bacterium which is the causative agent of
melioidosis, a disease which carries a high mortality and morbidity rate in endemic areas
of South East Asia and Northern Australia. At present there is no available human vac-
cine that protects against B. pseudomallei, and with the current limitations of antibiotic
treatment, the development of new preventative and therapeutic interventions is crucial.
This review considers the multiple elements of melioidosis vaccine research including: (i)
the immune responses required for protective immunity, (ii) animal models available for
preclinical testing of potential candidates, (iii) the different experimental vaccine strategies
which are being pursued, and (iv) the obstacles and opportunities for eventual registration
of a licensed vaccine in humans.
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BURKHOLDERIA PSEUDOMALLEI AND MELIOIDOSIS
Burkholderia pseudomallei is a Gram-negative, facultative intra-
cellular bacterium which can infect humans and a wide variety of
animals (Cheng and Currie, 2005). Natural infection is thought
to be primarily via percutaneous inoculation following exposure
to muddy soils or surface water, such as in rice paddy fields, in
endemic areas (Currie, 2003). It is thought that under certain
environmental conditions, such as tropical storms, cyclones, and
typhoons, inhalation is the main mode of infection (Currie, 2008).
The incidence of melioidosis in endemic areas increases during the
monsoon season and is associated with severe infection, pneumo-
nia, and high mortality (Chaowagul et al., 1989; Currie and Jacups,
2003). This is analogous to the fulminant disease and high case
fatality rates seen when the bacteria causing anthrax, plague, or
tularemia are inhaled rather than inoculated (Inglesby et al., 2000,
2002; Dennis et al., 2001). This shift to more severe melioidosis
during the rainy season could be explained by increased expo-
sure to B. pseudomallei, possibly due to the heavy rain and winds
generating aerosols, causing repeated inhalation of contaminated
particles and a greater infection dose (Wiersinga et al., 2006). As
this bacterium can cause disease following inhalation and is diffi-
cult to treat with antibiotics, it is now considered as a bioterrorism
threat and as a potential agent for biological warfare it was added to
the list of category B agents by the US Centers for Disease Control
and Prevention.

Melioidosis is difficult to treat as B. pseudomallei is intrinsically
resistant to many antibiotics (Wiersinga et al., 2006). However,
this bacterium is susceptible to some newer β-lactam antibiotics
and especially ceftazidime (McEniry et al., 1988; Dance et al.,
1989; White, 2003). Despite the long course of treatment (typi-
cally 20 weeks), the mortality rate in endemic areas remains high
(40–50%) and recurrence is common, the overall risk being 10%

and rising to 30% if treatment lasts less than 8 weeks (Chaowagul
et al., 1993). Of those recurrent infections, 75% are due to bacteria
persisting from the original infection, and the remainder are due to
re-infection with a different strain (Limmathurotsakul et al., 2006,
2007). Approximately 25% of patients who experience a recur-
rence die (Chaowagul et al., 1993). At present there is no available
human vaccine that protects against B. pseudomallei, and with the
current limitations of antibiotic treatment, the development of
new therapeutic strategies is crucial.

HOST IMMUNE RESPONSES TO B. PSEUDOMALLEI
Development of new vaccines against melioidosis will benefit from
a thorough understanding of the pathogenesis of infection and the
characteristics of naturally occurring immune responses which
develop following environmental or experimental exposure to the
organism. In this section we review what is known about immune
responses generated against B. pseudomallei, based primarily on
data obtained from mouse models of experimental infection and
studies in humans living in the endemic regions of North Eastern
(NE) Thailand and Northern Australia.

INNATE IMMUNITY
An efficient host immune response is reliant on both fast acting
innate immunity, as well as the more specific but slower adaptive
immunity. Innate immunity is a universal and ancient form of
host defense, and is essentially the “front line” against infection
as it is these effector cells which first come into contact with and
respond to invading microorganisms (Janeway and Medzhitov,
2002).

A key element in the initiation of an effective innate immune
response and subsequent adaptive immunity is the recognition
of microbes by innate cells. Pathogen recognition is mediated
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by pattern recognition receptors (PRRs) located on or within
host cells, which bind to pathogen associated molecular patterns
(PAMPs) expressed by microorganisms (Akira et al., 2006). A large
family of well characterized PRRs are the toll-like receptors (TLRs;
Akira et al., 2006). B. pseudomallei expresses a number of potential
PAMPs including, lipopolysaccharide (LPS), lipid-A, peptidogly-
can, flagellin, type III secretion system (TTSS), and DNA, which
have the potential to be recognized by different TLRs (Wiersinga
and van der Poll, 2009). Mice lacking a key TLR adaptor signal-
ing protein (MyD88) are highly susceptible to B. pseudomallei
infection, partly due to reduced recruitment and activation of
neutrophils (Wiersinga et al., 2008). TLR4 is thought to be a key
molecule in protection against Gram-negative bacteria, given it is
the main receptor for LPS (Akira et al., 2006). However a rela-
tively recent study has shown TLR4 does not contribute to host
defense against melioidosis in vivo (Wiersinga et al., 2007b). The
LPS from B. pseudomallei differs from other Gram-negative bacte-
ria, and is much less inflammatory (Matsuura et al., 1996), which
may contribute to immune evasion. Surprisingly, evidence sug-
gests that B. pseudomallei LPS signals via TLR2 as opposed to
TLR4, and that this pathway can in fact exacerbate disease in
the host (Wiersinga et al., 2007b). However the mechanism by
which TLR2 signaling contributes to B. pseudomallei pathogenesis
remains to be determined. Furthermore, increased expression of
TLR2 and TLR4 can be seen in patients with septic melioidosis
(Wiersinga et al., 2007b). Together this data indicates a protective
role for TLR-mediated MyD88-dependent cell signaling, but high-
lights that dysregulation of TLR-mediated immune responses can
result in pathogenesis and contribute to the development of septic
melioidosis.

The IFNγ response, especially within the first 24 h of B. pseudo-
mallei infection, has proven essential for resistance in mice, as
demonstrated by the rapid death of IFNγ KO mice and mice
treated with neutralizing monoclonal antibodies (mAb) against
IFNγ (Santanirand et al., 1999; Haque et al., 2006a; Wiersinga et al.,
2007c). These studies also showed the IFNγ-inducing cytokines
IL-12, and to a lesser extent IL-18, are essential for resistance to
infection (Santanirand et al., 1999; Haque et al., 2006a). The cel-
lular source of IFNγ is primarily NK cells and bystander-activated
CD8+ T cells (Lertmemongkolchai et al., 2001), but these cells do
not appear to be crucial in early protection suggesting extensive
redundancy in the source of IFNγ (Haque et al., 2006a). In the
absence of NK cells and T cells, up to 5% of the IFNγ response
can still be detected and surprisingly this is still sufficient to ini-
tially control the infection. This compensation in IFNγ production
has been attributed to non-lymphoid cells such as macrophages
(Haque et al., 2006a).

IFNγ activated macrophages contribute to host defense by
phagocytosis and killing of microbes via production of reactive
oxygen intermediates (ROIs) and reactive nitrogen intermedi-
ates (RNIs), as well as cytokine and chemokine production, and
antigen-presentation to T cells (Taylor et al., 2005). In vivo studies
have provided evidence that macrophages are essential for early
control of B. pseudomallei in both BALB/c and C57BL/6 mice
(Breitbach et al., 2006). Although several immune evasion strate-
gies have been described including inhibition of iNOS and TNFα

production, upregulation of the suppressor of cytokine signaling 3

(SOCS3) and cytokine-inducible Src homology 2-containing pro-
tein (CIS), resulting in reduced IFNγ signaling (Utaisincharoen
et al., 2001; Ekchariyawat et al., 2005). Furthermore there may
be distinct roles for nitric oxide (NO) between mouse strains as
BALB/c mice were more susceptible to early infection when NO
was inhibited, whereas C57BL/6 iNOS−/− mice showed the same
disease progression as wild-type controls (Breitbach et al., 2006,
2011).

Neutrophils or polymorphonuclear leukocytes (PMNLs) are
the first cells to arrive at the site of infection and are potent effec-
tors of innate immune responses, both by direct antimicrobial
activity and through the induction of inflammatory responses via
immuno-regulatory cytokine and chemokine production (Scap-
ini et al., 2000; Segal, 2004; Martineau et al., 2007). Following
intravenous (i.v.) challenge with B. pseudomallei, upregulation
of the neutrophil chemokines CXCL1 (KC) and CXCL2 (MIP-
2) can be detected in mouse spleen and liver tissues, coinciding
with neutrophil infiltration to the site of infection (Barnes et al.,
2001). In vivo depletion of these cells using neutralizing mAb,
resulted in exacerbated disease mortality as mice were unable to
control bacterial burdens compared to untreated mice, suggesting
an essential role for neutrophils in early resistance to experimen-
tal pulmonary B. pseudomallei infection (Easton et al., 2007).
Neutrophils are a major source of ROIs, and this is the prin-
ciple microbicidal mechanism employed by these cells. There is
evidence to suggest ROIs may contribute to resistance as mice
lacking NADPH oxidase, an important enzyme in the genera-
tion of ROIs, were more susceptible to B. pseudomallei infection
(Breitbach et al., 2006). Conversely, in vitro studies have demon-
strated conflicting abilities of isolated human PMNLs to kill B.
pseudomallei (Egan and Gordon, 1996; Chanchamroen et al.,
2009).

Overall the literature involving neutrophils in human melioido-
sis is limited. Biopsies from melioidosis patients revealed necrotic
lesions with extensive neutrophil infiltration and higher numbers
of neutrophils have been detected in peripheral blood samples
from melioidosis patients compared to healthy controls (Piggott
and Hochholzer, 1970; Wong et al., 1995; Ramsay et al., 2002).
In accordance with this, expression of the human neutrophil
chemokine CXCL8 (IL-8) is induced following the infection of
human cells with B. pseudomallei and serum levels of IL-8 may be
an indicator of poor prognosis in human melioidosis (Friedland
et al., 1992; Utaisincharoen et al., 2004; Hii et al., 2008). Defective
neutrophil function has been linked to the increased susceptibility
seen in diabetic patients, a prominent risk factor of melioidosis,
highlighting the importance of these cells in resistance to disease
(Chanchamroen et al., 2009). Furthermore, melioidosis has been
reported in chronic granulomatous disease (CGD) patients, a con-
dition characterized by defective NADPH oxidase (Dorman et al.,
1998; Renella et al., 2006).

From these studies it is clear that early control of B. pseudo-
mallei infection is paramount for survival, however the underly-
ing mechanisms of innate protection remain unclear. Consider-
ing the important interactions between the innate and adaptive
immune systems, further understanding of innate resistance will
be beneficial to the development of therapeutic agents against B.
pseudomallei.
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T CELL-MEDIATED IMMUNITY
There is an extensive literature on the role of CD4+ and CD8+
T cells in immunity to other pathogenic bacteria (Coffman and
Carty, 1986; Mosmann et al., 1986; Edelson and Unanue, 2000;
Flynn and Chan, 2001), but to date such information in the context
of melioidosis is limited. Studies using mice have demonstrated
that T cell-mediated immunity (CMI) is necessary for protection
against disease. Following i.v. B. pseudomallei infection in mice,
delayed-type hypersensitivity (DTH) responses and lymphocyte
proliferation to B. pseudomallei were detected, indicating the gen-
eration of CMI and memory cells (Barnes and Ketheesan, 2007).
A study by Haque et al. found RAG−/− mice, which lack T and B
cells, succumbed to infection via the i.p. route more rapidly than
C57BL/6 wild-type mice. T cells isolated from infected C57BL/6
mice demonstrated Ag-specific IFNγ production in response to
restimulation in vitro, suggesting primary infection with B. pseudo-
mallei primes populations of memory CD4+ and CD8+ T cells.
Further analysis of the T cell compartment by depletion of CD4+
or CD8+ T cells before intraperitoneal (i.p.) challenge and for
50 days post infection, showed mice lacking CD4+ T cells died sig-
nificantly earlier than controls (Haque et al., 2006a). Mice depleted
of CD8+ T cells also had a shorter survival time compared to
controls, however the difference was not statistically significant
suggesting CD4+ T cells play a more important role in protection
against B. pseudomallei infection (Haque et al., 2006a). Despite
in vitro studies showing early CD8+ T cell-derived IFNγ pro-
duction due to bystander activation (Lertmemongkolchai et al.,
2001), the contribution of T cells to resistance is essential only
in the later stages of infection. This is demonstrated by the fact
that RAG−/− mice were able to control early bacterial growth as
efficiently as wild-type controls but still succumbed to infection
after 14 days, consistent with the time course of activation of the
adaptive immune response (Haque et al., 2006a).

There is increasing evidence of the induction of B. pseudo-
mallei-reactive T cells in humans. Lymphocytes from patients
who had recovered from clinical melioidosis and patients who
were seropositive but had no clinical history of disease, were able
to proliferate in vitro in response to B. pseudomallei (Ketheesan
et al., 2002; Barnes et al., 2004; Govan and Ketheesan, 2004). The
proliferative response was significantly higher in these patients
when compared to seronegative healthy controls. Further analy-
sis of these lymphocytes showed the CD4+ and CD8+ T cells
were activated and capable of producing antigenic-specific IFNγ

(Ketheesan et al., 2002; Barnes et al., 2004). The percentage of
each T cell subtype and IFNγ production was significantly higher
in recovered patients compared to controls suggesting the presence
of B. pseudomallei-reactive memory T cells (Ketheesan et al., 2002;
Barnes et al., 2004). In contrast patients with acute melioidosis are
known to be lymphocytopenic with low numbers of circulating
CD4+ and CD8+ T cells, possibly compromising the development
of specific immunity (Tanphaichitra and Srimuang, 1984; Ramsay
et al., 2002).

A recent study on Thai patients who had recovered from melioi-
dosis, identified IFNγ-producing CD4+ and CD8+ T cells which
recognized LolC, OppA, and PotF, which are members of the B.
pseudomallei ATP-binding cassette (ABC) transporter family and
are known T cell immunogens in mice (Tippayawat et al., 2009).

These antigen-specific T cells were responsible for the majority of
the total IFNγ generated in the culture, as T cell depletion signifi-
cantly reduced the IFNγ ELISPOT response. A strong correlation
between IFNγ and granzyme B was also observed by ELISPOT,
indicating cytotoxic CD8+ T cells are primed in response to B.
pseudomallei (Tippayawat et al., 2009). Further characterization
of these memory T cells revealed the majority were terminally
differentiated T effector memory cells (Tippayawat et al., 2009).
These data suggest memory T cells are capable of recognizing
and rapidly responding to B. pseudomallei antigens, but do not
prove this response is protective. However, seropositive individu-
als with no clinical history of disease showed a higher proliferative
and IFNγ response than those who had recovered from clinical
melioidosis (Barnes et al., 2004). Together these studies indicate
that a strong T cell response may be essential for resolution of clini-
cal melioidosis and protection against disease progression (Barnes
et al., 2004).

The importance of CD4+ T cells in other pulmonary infec-
tions is highlighted by the human immuno-deficiency virus (HIV)
epidemic. HIV patients are more susceptible to infection from
opportunistic lung pathogens such as M. tuberculosis, Pneumocys-
tis carinii, and Streptococcus pneumoniae, and this increased risk is
inversely proportional to the circulating CD4+ T cell count (Phair
et al., 1990; Hoover et al., 1993; Gilks et al., 1996; Dworkin et al.,
2001; Sharma et al., 2005). Surprisingly, the loss of CD4+ T cells
during HIV infection does not appear to be a risk factor for melioi-
dosis (Chierakul et al., 2005), questioning the importance of these
cells in protection in human disease despite the clear evidence of
their presence in exposed individuals and their role in protection
in mouse models. It should also be noted that whilst current lit-
erature indicates a role for the Th1 arm of the adaptive immune
response, at present the function of other T cell subsets such as T
reg and Th17 cells during B. pseudomallei infection are unknown.

ANTIBODY-MEDIATED IMMUNITY
In endemic areas a large proportion of the population are seropos-
itive for antibodies against B. pseudomallei, though the functions
of these antibodies and their roles in protection are unclear (Cheng
et al., 2008). High levels of B. pseudomallei-specific IgG, IgM,
and IgA antibodies have been detected in sera from melioidosis
patients, which remained elevated for the duration of infection.
Further analysis of the IgG isotype revealed IgG1 to be the pre-
dominant subclass produced, indicative of a Th1 response. Yet
eradication of B. pseudomallei was not evident in these patients as
relapse occurred (Vasu et al., 2003). This apparent lack of protec-
tive humoral responses during primary infection is also reflected
in studies where μMT mice lacking B cells were as susceptible to
B. pseudomallei infection as wild-type mice (Haque et al., 2006a).
Given that B. pseudomallei is a facultative intracellular pathogen
which can spread from cell-to-cell, it may be that the bacteria is
protected from antibody killing by remaining inside host cells. The
elevated antibody responses observed in melioidosis patients could
be directed against extracellular bacteria before they are taken up
into host cells. Therefore the generation of these antibodies is
ineffective at preventing disease.

In contrast to the suggestions that antibodies play no role
in protection, IgG antibodies to B. pseudomallei LPS were
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significantly higher in patients who survived melioidosis com-
pared to those who died, and also higher in patients with non-
septic melioidosis compared to septic patients (Charuchaimontri
et al., 1999). This indicates that antibodies against LPS may be pro-
tective against disease. In addition, a number of in vivo studies in
mice have demonstrated a protective humoral immune response
by passive transfer of antibodies to B. pseudomallei components,
such as LPS, capsular polysaccharide (CPS), and flagellin (Brett
and Woods, 1996; Ho et al., 1997; Jones et al., 2002; Nelson et al.,
2004). In these studies, protection was incomplete and mice even-
tually succumbed to infection (Jones et al., 2002). Antibodies
against LPS appear to be protective by promoting opsonization-
induced phagocytic killing of bacteria in vitro (Ho et al., 1997). It
is also possible that B cells are required for other functions. For
example, it is well known that B cells are efficient at presenting
soluble antigens via MHC class II, resulting in the further acti-
vation of CD4+ T cells (Janeway et al., 2008). There is evidence
that B cells can amplify the IFNγ response by T cells via a TNFα-
mediated mechanism during infection (Menard et al., 2007). This
could be important in B. pseudomallei infection as both these
cytokines are required for protection (Santanirand et al., 1997,
1999). Furthermore, B cell-deficient mice infected with lympho-
cytic choriomeningitis virus (LCMV) experienced a loss of CD4+
T cell memory and were subsequently unable to resolve the chronic
infection (Thomsen et al., 1996). At present the interactions of B
and T cells during B. pseudomallei infection are not known, and
it is possible that these cells could contribute to vaccine-mediated
immunity or modulation of chronic infections in addition to anti-
body production. Hence there is conflicting evidence surrounding
the role of B cells and antibodies in resistance to primary B. pseudo-
mallei infection, and further studies are necessary to resolve this
debate.

IS A VACCINE AGAINST B. PSEUDOMALLEI POSSIBLE?
Observations of the epidemiology of human melioidosis can pro-
vide important clues to guide vaccination strategies and flag some
of the potential obstacles that may arise in development of an
effective product. In endemic rural areas a large proportion of
the population may be exposed to B. pseudomallei and will test
seropositive for antibodies against the bacteria. For example in NE
Thailand, 80% of the population have seroconverted by the age of
4 years (Kanaphun et al., 1993). Yet in spite of constant exposure,
only a relatively small fraction of the population develops active
disease, mostly if they have underlying risk factors which com-
promise their immune system, the most prominent of these being
diabetes mellitus (Chaowagul et al., 1989; Suputtamongkol et al.,
1999; Currie et al., 2000, 2004; Chrispal et al., 2010). A study of
individuals with no history of disease from an endemic region of
Thailand found a significant correlation between increasing anti-
body titer and specific IFNγ production by T cells (Tippayawat
et al., 2009). Together these factors suggest that those exposed to
B. pseudomallei and do not develop disease have acquired some
form of protective immunity, and this provides grounding for the
theory that vaccination against melioidosis is feasible. In further
support of this, is the observation that specific IgG antibodies
to B. pseudomallei LPS were found to be significantly higher in
patients who survived melioidosis compared to those who died

from disease, and also in patients with non-septic melioidosis
compared to septic patients (Charuchaimontri et al., 1999).

On the other hand, there is data to be considered which imply
the development of a vaccine against B. pseudomallei may be
intrinsically difficult. Whilst in Thailand the seroconversion rate
is very high, the percentages of seropositive individuals can vary
greatly between regions and subpopulations in other endemic
areas (Cheng et al., 2008; Adler et al., 2009). For example in North-
ern Australia just 5% of the population are seropositive and there
is no correlation between antibody and IFNγ production as there
is in Thailand (Ashdown and Guard, 1984; Lazzaroni et al., 2008).
Furthermore,whilst high levels of specific antibody can be detected
in sera from melioidosis patients, it is important to note that recov-
ered melioidosis patients are not protected against further episodes
of disease (Kanaphun et al., 1993; Vasu et al., 2003; White, 2003;
Maharjan et al., 2005). This implies that an effective vaccine will
need to work more efficiently and/or in a different manner than
the naturally occurring immune response observed in these indi-
viduals. However, whilst development of sterilizing immunity by
vaccination is the ultimate goal, even a partially effective vaccine
may provide clinical benefit if used in combination with other
types of intervention to control disease. We have recently shown
that combining prophylactic vaccination plus a generic immunos-
timulant around the time of exposure decreases the risk of sepsis
and delays mortality (Easton et al., 2011). It might also be pos-
sible to use vaccines in combination with antibiotics. The risk of
death in acute melioidosis is strongly related to the presence or
absence of bacteremia upon presentation. Furthermore, 50% of
patient mortality occurs within 48 h of presentation in a hospi-
tal and many individuals die before antibiotic therapy can start.
Therefore development of a vaccine which delays the onset of
bacteremia and acute disease could extend the window of oppor-
tunity for antibiotic treatment and still be of significant clinical
benefit.

ANIMAL MODELS OF MELIOIDOSIS FOR VACCINE RESEARCH
Animal models of infection are an essential component of any
vaccine development pipeline and are used for defining immune
responses that mediate protection, preclinical testing of potential
vaccine candidates and generating immune correlates of protec-
tion which can then be applied to Phase I and later studies in
humans. B. pseudomallei is not host specific and can infect a broad
range of animal species such as cattle, horses, rodents, sheep, pigs,
cats, dogs, goats, camels, dolphins, kangaroos, koalas, deer, and
water buffalo (Titball et al., 2008). Due to issues of cost, logistics,
and availability of immunological reagents, experimental melioi-
dosis has been primarily studied in rodents, and to date three
models of infection have been characterized. Syrian hamsters are
highly susceptible to B. pseudomallei infection with an LD50 (dose
required for 50% mortality) of <10 CFU via the i.p route (Jones
et al., 1997). This is an extremely acute disease model with most
deaths occurring within 48 h post challenge. Another acute model
of infection has been developed in diabetic rats. Only infant dia-
betic rats up to 4 weeks old are susceptible to B. pseudomallei, with
LD50 doses reported to be <2 × 104 CFU via the i.p. route. How-
ever, the mouse model of infection with B. pseudomallei is the
most extensively studied and best characterized, and has proved
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invaluable to our understanding of the immunopathogenesis of
melioidosis.

Currently, there is a highly susceptible model established in the
BALB/c mouse representing acute human melioidosis, and a more
resistant C57BL/6 mouse model which mimics a chronic human
infection (Leakey et al., 1998; Liu et al., 2002). In both cases the
intranasal (i.n.) or inhalation (aerosol) route is the most suscep-
tible compared to i.p. or subcutaneous (s.c.), with a typical LD50

dose of 5–100 CFU required for acute disease in BALB/c mice (Tit-
ball et al., 2008; Lever et al., 2009). C57BL/6 mice consistently show
10- to 100-fold greater resistance to B. pseudomallei compared to
BALB/c mice, regardless of the route of infection (Leakey et al.,
1998; Hoppe et al., 1999; Liu et al., 2002; Tan et al., 2008; Tit-
ball et al., 2008). Infection with B. pseudomallei in BALB/c mice
is characterized by rapid, highly elevated IFNγ, TNFα, IL-1β, and
IL-6 production, accompanied by high bacterial burdens in the
spleen, lungs, and liver and development of overwhelming bac-
teremia within 96 h of infection (Leakey et al., 1998; Hoppe et al.,
1999; Ulett et al., 2000a; Liu et al., 2002). In contrast C57BL/6
mice demonstrate a slower pro-inflammatory cytokine response
of lower magnitude with IFNγ production persisting through-
out the infection (Ulett et al., 2000a,b). These mice have very low
organ burdens and no detectable bacteria in the blood at 3 days
post infection, though still eventually succumb to infection after
2–6 weeks (Leakey et al., 1998). Thus it has been suggested the
control and regulation of IFNγ production, and the early down-
regulation of other pro-inflammatory cytokines allow C57BL/6
mice to balance the protective cell-mediated immune response
conferring resistance, with the development of immunopathology
(Ulett et al., 2000a,b; Liu et al., 2002). However the precise genetic
differences which control resistance to B. pseudomallei in these
two mouse strains have not been determined.

Patients with melioidosis have elevated serum TNFα, IL-1β, and
IL-6 levels, and increasing concentrations of these cytokines cor-
relate with disease severity and the onset of fatal sepsis (Friedland
et al., 1992; Suputtamongkol et al., 1992; Wiersinga et al., 2007a).
In addition, patients with severe bacteremic melioidosis have very
high serum levels of IFNγ, along with elevated levels of the IFNγ-
inducing cytokines IL-12, IL-18, and IL-15 (Brown et al., 1991;
Lauw et al., 1999), this further demonstrates the parallels between
human melioidosis and mouse models. High serum levels of IL-
10 are detected in melioidosis patients, which in conjunction with
IL-6 is considered a prognostic indicator of mortality (Simpson
et al., 2000; Wiersinga et al., 2007a). Therefore, in some respects,
the mouse is a good model of acute melioidosis in humans, and
therefore will hopefully predict vaccine efficacy in non-human
primates and humans.

Large animal models of experimental melioidosis are rare, yet
there are studies which have assessed the susceptibility of vari-
ous non-human primate species to naturally occurring infection
(Trakulsomboon et al., 1994; Sprague and Neubauer, 2004). Many
of the symptoms observed during infection in these animals are
also prominent in human disease, and the further development of
such models may be central to the development of vaccines in the
future (Sprague and Neubauer, 2004; Titball et al., 2008).

Finally, recent studies have considered infection models which
avoid the use of mammals. Both phagocytic ameba (Dictyostelium

discoideum) and wax moth larvae (Galleria mellonella) models
have demonstrated the ability to discriminate between differ-
ent isolates and genetic mutants of B. pseudomallei depending
on their virulence (Hasselbring et al., 2011; Wand et al., 2011).
Although such models cannot be used to directly assess the pro-
tective efficacy of defined experimental vaccines, they do provide
novel and inexpensive, high-throughput screening systems with
which to determine future virulence factors and thus potential
vaccine candidates.

CURRENT VACCINE STRATEGIES
LIVE ATTENUATED VACCINES
Live attenuated (LA) vaccines, such as BCG, measles, mumps, and
rubella vaccines, induce strong immunity in the host and often
only one immunizing dose is required to elicit protective long-
lasting protective immunity. Since LA vaccines replicate in vivo
before being cleared by the host, this type of vaccine can strongly
stimulate both the humoral and cell-mediated arms of the immune
system, making them some of the most effective vaccines against
human pathogens (Pirofski and Casadevall, 1998; Liljeqvist and
Ståhl, 1999; Titball, 2008). Yet there are safety concerns about the
development of LA vaccines, involving the possibility of reversion
to virulent wild-type strains which can cause disease or whether
they are safe for immunocompromised patients, a growing popula-
tion in society today (Pirofski and Casadevall, 1998). For example
the measles vaccine is currently not given to children with defects
in CMI (with the exception of asymptomatic HIV patients) and
there have been several reported cases of disseminated infection
following vaccination in the past (Mitus et al., 1962; Monafo et al.,
1994; Pirofski and Casadevall, 1998). Reports have also demon-
strated similar results following BCG vaccination, and hence this
vaccine is not recommended for use in patients with impaired
immunity (Pirofski and Casadevall, 1998). For example, with the
now acknowledged risks of giving BCG to HIV infected children,
new LA TB vaccines will need to show significantly less virulence
than BCG in immunocompromised mice before being accepted
into Phase I trials.

In the case of B. pseudomallei, a number of naturally attenu-
ated or genetically altered bacteria have been tested for protective
efficacy, starting with pioneering studies by Dannenberg and Scott
(1958a,b, 1960). More recently, Stevens et al. (2004) used an atten-
uated B. pseudomallei bip D mutant, which has a dysfunctional
TTSS, to immunize mice. Partial protection was seen in vaccinated
mice after challenge with virulent wild-type B. pseudomallei, but
immunization with the purified Bip D protein was not protective
(Stevens et al., 2004; Druar et al., 2008). An attenuated acapsular
mutant of B. pseudomallei was considered a potential vaccination
candidate, however i.p. immunization did not protect mice against
subsequent challenge with virulent B. pseudomallei (Atkins et al.,
2002b). B. pseudomallei purN − and purM− mutants, which have
defects in the purine biosynthesis pathway, important for RNA
and DNA synthesis and consequently bacterial replication have
also been tested (Pilatz et al., 2006; Breitbach et al., 2008). These
were able to protect BALB/c mice against acute challenge with vir-
ulent B. pseudomallei, however immunization could not prevent
the chronic stages of melioidosis (Breitbach et al., 2008). Protec-
tion was incomplete and when any surviving mice were examined,
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abscesses were observed and bacteria could be isolated from mul-
tiple organs (Breitbach et al., 2008). It should be noted that at
present there is no vaccine model which has shown protection
against chronic melioidosis.

Atkins et al. (2002a) identified a B. pseudomallei ilvI mutant,
termed 2D2. The ilvI gene encodes part of an enzyme required
for the biosynthesis of branched chain amino acids (leucine,
isoleucine, and valine), and interruption in this gene renders the
bacteria auxotrophic for these essential amino acids. Hence, B.
pseudomallei 2D2 was highly attenuated in mice and effectively
cleared from multiple organs after 30 days (Atkins et al., 2002a).
Immunization via the i.p. route protected susceptible BALB/c
mice from subsequent challenge with virulent B. pseudomallei
strain 576, with a significant reduction in bacterial loads in the
spleen compared to unvaccinated controls (Atkins et al., 2002a;
Haque et al., 2006b). However protection was incomplete and
mice eventually succumbed to infection around day 50 post chal-
lenge (Haque et al., 2006b). Vaccinated mice were also protected
against challenge with the heterologous strain B. pseudomallei BRI,
yet protection was specific to B. pseudomallei as when challenged
with the facultative intracellular human pathogen F. tularensis no
protection was seen (Atkins et al., 2002a). In vitro stimulation of
splenocytes from 2D2-immunized mice showed increased T cell
proliferation and IFNγ production in response to irradiated B.
pseudomallei 576 and TTSS antigens Bop E and Bip D, compared
to controls, indicating 2D2 can efficiently prime T cells (Haque
et al., 2006b). Adoptive transfer of T cells from 2D2-immunized
mice into severe combined immune deficient (SCID) mice, which
have no T or B cells, was able to protect these highly susceptible
mice against B. pseudomallei infection (Haque et al., 2006b). The
addition of immune sera to T cell transfer further enhanced the
protection, indicating that 2D2 elicits a humoral and cell-mediated
immune response (Haque, unpublished observation). Antibody
depletion experiments in 2D2-immunized mice demonstrated the
importance of CD4+ T cells, rather than CD8+ T cells, in con-
ferring the protection seen in this mouse model (Haque et al.,
2006b).

The concerns over safety of LA vaccines and potential latency
associated with this bacterium make it unlikely the B. pseudo-
mallei mutants discussed above will progress further in vaccine
development. However there is evidence to suggest LA M. tuber-
culosis vaccines, such as MTBVAC01 which has disruptions in the
associated-virulence regulator gene phoP, will enter clinical trials
in the next few years (Verreck et al., 2009; Kaufmann et al., 2010).
Thus there may be hope for LA B. pseudomallei vaccine develop-
ment in the future if additional mutations were introduced which
limit the potential of the bacterium to persist in the host. Nonethe-
less, an alternative and more feasible approach is the development
of a vaccine using dead B. pseudomallei, otherwise known as killed
whole cell (KWC) vaccines.

KILLED WHOLE CELL VACCINES
Killed whole cell vaccines cannot replicate and are therefore non-
infectious, and this type of vaccine has been licensed for human
use against bacteria such as Bacillus anthracis, Vibrio cholerae,
Bordetella pertussis, and Yersinia pestis (Pirofski and Casadevall,
1998). However, whilst this type of vaccine is undoubtedly safer

compared to live vaccines, the protective immunity induced is
weaker, possibly due to lack of CMI responses or the destruction
of antigens during the killing process (Ivanoff et al., 1994; Grif-
fin et al., 2007; Titball, 2008). On the other hand, KWC vaccines
can induce strong antibody-specific responses which can mediate
protection: for example the pertussis vaccines generate neutraliz-
ing antibodies against the pertussis toxin and this is a key element
in their protective efficacy (Hewlett, 1997). Hence KWC vaccines
are generally more protective against extracellular compared to
intracellular bacteria.

There are concerns associated with KWC vaccines as well. In
most cases protection requires multiple immunization doses, and
there are clear risks of reactogenicity and adverse effects in the
recipient. This has been observed with the current KWC Y. pestis
vaccine, as well as a B. pertussis vaccine (Pw) which has now been
replaced with a safer but less immunogenic acellular vaccine (Pa;
Higgins et al., 2006; Williamson, 2009). Interestingly the route
of vaccination can influence the reactogenicity of KWC vaccines.
Parenteral immunization with a KWC vaccine against cholera or
typhoid induces adverse reactions in the recipient, however if these
vaccines are delivered orally they are well tolerated and much less
reactogenic (Ivanoff et al., 1994; Hill et al., 2006).

The few studies which have evaluated this type of vaccine reg-
imen against experimental melioidosis demonstrate conflicting
results. Following vaccination of BALB/c mice with multiple low
doses of heat-killed B. pseudomallei (HkBps) via the s.c. route,
significant increases in serum IgG2a and IgG1 were seen com-
pared to control mice, yet only a low level of proliferation was
detected following stimulation of splenocytes with antigen (Barnes
and Ketheesan, 2007). In accordance with this observation, barely
detectable amounts of IFNγ were detected via ELISPOT analy-
sis although significantly enhanced levels of IL-10 were observed
in HkBps vaccinated mice compared to controls (Barnes and
Ketheesan, 2007). When challenged via the i.v. route with virulent
B. pseudomallei, vaccinated mice were not protected compared
to control mice, showing similar bacterial loads in the spleen and
100% mortality before day 5 post challenge (Barnes and Ketheesan,
2007). On the contrary to this data, one of the first melioido-
sis vaccine studies demonstrated complete protection for 7 days
post challenge using HkBps and partially purified toxic material
to vaccinate mice (Razak et al., 1986). Another publication used
high doses of HkBps (more consistent with that of other killed
vaccines such as plague and typhoid) to vaccinate BALB/c mice
via the i.p. route and demonstrated significant protection against
subsequent i.p. challenge with homologous and heterologous vir-
ulent B. pseudomallei strains, with 80–100% of mice alive after
3 weeks post challenge (Sarkar-Tyson et al., 2009). Due to the
threat of infection via inhalation in both a natural and biolog-
ical warfare situation, protection against aerosol challenge was
also evaluated. Vaccinated mice were protected against aerosol
challenge, as evidenced by a delayed time to death compared to
control mice, but the window of protection was greatly reduced
compared to i.p. challenge. Therefore the protection was only par-
tial and surviving mice all had heavy bacterial loads detected in
the spleen. More recently, Henderson et al. (2011) vaccinated mice
i.n. with HkBps in combination with cationic liposomes com-
plexed with non-coding plasmid DNA (CLDC) as an adjuvant,
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and demonstrated significant protection against pulmonary chal-
lenge up to day 40 post challenge. Whilst there was no evaluation
of the immune response in vaccinated mice in these publications,
these data clearly demonstrate that vaccination with HkBps can
be protective though the route of immunization and challenge
can affect the outcome.

Dendritic cells (DCs) play a key role in the generation of adap-
tive immune responses during infection via antigen-presentation
and activation of T cells. Depending on the nature of the micro-
bial stimulus DCs can direct the development of polarized T cell
responses to either a Th1 or Th2 phenotype (Janeway et al., 2008).
Accordingly these cells have been utilized as a vaccine-delivery vec-
tor to generate CMI responses to B. pseudomallei (Healey et al.,
2005; Elvin et al., 2006). Healey et al. employed a “prime–boost”
vaccination regimen, the concept of which is to prime with an anti-
gen delivered by one method and then boost with the same antigen
given via a different vector/adjuvant, and in doing so induce high
quality immune responses by different T cell subsets (Liljeqvist and
Ståhl, 1999; Lu, 2009). This has become a common approach for
vaccine development against the most challenging diseases such as
HIV, malaria, and tuberculosis (Cai et al., 2006; Magalhaes et al.,
2008; Lu, 2009; Sander et al., 2009; Kaufmann et al., 2010). In this
case, BALB/c mice were primed with purified DCs pulsed with
HkBps and then after 28 days, mice were boosted with HkBps
administered with adjuvant. Following vaccination, small but sig-
nificant increases in antigen-specific IgG antibodies were detected
in the serum. However, strong CMI responses were induced as
determined by proliferation and IFNγ production by splenocytes
from immunized mice in response to restimulation with HkBps.
Vaccinated mice were protected against challenge with virulent

B. pseudomallei with 60% survival at day 35, however bacteria
were detected in tissues of surviving mice suggesting that ster-
ilizing immunity was not achieved (Healey et al., 2005). Whilst
this vaccination regimen enhanced CMI responses, it induced rel-
atively low antibody production. A further study however, found
adding CpG ODN to the DC culture conditions increased anti-
body production and correlated with a significant increase in
survival after challenge (Elvin et al., 2006). This data highlights
the need for vaccines to incorporate targets of both humoral and
CMI responses.

SUBUNIT VACCINES
The focus of new vaccine development in recent years has largely
been directed toward the use of discrete bacterial components
known as subunits. Indeed there are several subunit vaccines avail-
able for human use, such as toxoid vaccines (inactivated bacterial
toxins) against diphtheria and tetanus, and CPS vaccines against
meningococcal or pneumococcal diseases (Pirofski and Casade-
vall, 1998; Fry et al., 2002). In accordance with this, a number of
subunit vaccine candidates have been evaluated for use against B.
pseudomallei and are summarized in Table 1. The subunits puri-
fied from pathogenic organisms are generally safe to use providing
the extraction procedure or detoxifying method can separate them
from potentially reactogenic material (Liljeqvist and Ståhl, 1999).
However, the production of such vaccines often requires the cul-
tivation of pathogenic organisms on a large scale which can be
costly and hazardous (Liljeqvist and Ståhl, 1999). An alternative to
this method is the generation of recombinant subunits, in which
the gene encoding the subunit is isolated from the host organism
and transferred into a different organism which is non-pathogenic,

Table 1 | Subunit vaccine candidates tested to date.

Antigen Composition Protection References

LPS Lipopolysaccharide 80% Survival at day 14 after 4,300 MLD challenge Nelson et al. (2004)

CPS Polysaccharide 40% Survival at day 14 after 4,300 MLD challenge Nelson et al. (2004)

Flagellin Naked DNA 80–90% Survival at day 14 after up to 100 LD50 challenge Chen et al. (2006a,b), Brett et al. (1994)

Flagellin Protein 50% Survival at day 7 after up to 100 LD50 challenge Chen et al. (2006a), Brett et al. (1994)

Flagellin-O-

antigen

conjugate

Protein–

polysaccharide

Passive transfer of sera protected 40% of diabetic rats

from 400 LD50 challenge at day 8

Brett and Woods (1996)

BipB, BipC, BipD Protein None at day 5 after 30 LD50 challenge Druar et al. (2008)

Omp85 Protein 70% Survival at day 15 after 10 × LD50 challenge Su et al. (2010)

EF-TU Protein Reduced colonization after aerosol challenge with

1 × LD50 B. thailandensis

Nieves et al. (2010)

BPSL2522

(Omp3)

Protein 50% Survival at day 14 after 10 × LD50 challenge Hara et al. (2009)

BPSL2765

(Omp7)

Protein 75% Survival at day 14 after 10 × LD50 challenge Hara et al. (2009)

LolC Protein 80% Survival at day 14 after 153 MLD challenge i.p. Harland et al. (2007b)

The antigens listed were purified from B. pseudomallei (LPS and CPS), or produced as recombinant proteins in E. coli and then purified. The ability of these antigens

to induce protective immunity in mice toward an intraperitoneal (i.p.) challenge (aerosol challenge for EF-Tu) with B. pseudomallei (B. thailandensis for EF-Tu) is

summarized as the proportion of surviving mice on the day indicated post challenge. Protection studies with the flagellin-O-antigen conjugate were carried out after

the passive transfer of sera into diabetic rats which were then challenged with B. pseudomallei. Lethal dose 50% (LD50) and median lethal dose (MLD) are broadly

equivalent.
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such as E. coli. The recombinant subunit is then produced by the
heterologous host and can be designed to be delivered as a puri-
fied immunogen, or as purified DNA encoding the immunogen
(Liljeqvist and Ståhl, 1999).

Purified CPS have been investigated as subunit vaccines and
have demonstrated protection against several pathogens, how-
ever this approach does have some limitations. CPS are type II
antigens, meaning they stimulate antibody production by B cells
independently of MHC Class II-restricted T cell help, hence a
predominantly IgM antibody response is induced with subop-
timal memory (Pirofski and Casadevall, 1998). In the case of
licensed CPS vaccines, booster immunizations are often required
to maintain antibody titers (Jones, 2005). Conjugation of CPS to
immunogenic proteins (such as tetanus toxoid) overcomes these
problems by providing potent T cell help and has revolutionized
the prevention of Haemophilus influenza type B, pneumococ-
cal and meningococcal infections among others (Danzig, 2004;
Bernatoniene and Finn, 2005; Eskola, 2010).

Administration of purified LPS has also been explored as a
vaccine. In an experimental model of K. pneumonia infection,
vaccination with purified LPS protected mice against subsequent
challenge (Clements et al., 2008). This has also been seen with
Brucella melitensis and P. aeruginosa (Preston et al., 1997; Bhat-
tacharjee et al., 2006). However, as with CPS vaccines, lack of CMI
induction by LPS vaccines can result in limited protection against
intracellular bacteria such as Francisella tularensis (Fulop et al.,
2001).

Following the discovery that antibodies to B. pseudomallei LPS
were more prominent in patients who survived melioidosis com-
pared to those who died (Charuchaimontri et al., 1999), the use of
monoclonal antibodies against LPS and CPS as potential vaccines
were evaluated in BALB/c mice (Jones et al., 2002). Following pas-
sive immunization via the i.v. route, mice showed a significantly
delayed time to death yet still succumbed to infection, demonstrat-
ing incomplete protection against the subsequent i.p. challenge
with virulent B. pseudomallei (Jones et al., 2002). Another study by
Nelson et al. (2004) evaluated these two surface polysaccharides as
subunit vaccines and conducted active immunization experiments
in BALB/c mice. Mice vaccinated i.p. with LPS developed strong
IgM and IgG3 antibody responses, whilst CPS induced a pre-
dominately IgG2b antibody response and minimal IgM and IgG3
responses (Nelson et al., 2004). Protection against B. pseudoma-
llei challenge was demonstrated following vaccination with both
antigens, however this was only the case against i.p. challenge as
when mice were challenged via the aerosol route no protection was
observed (Nelson et al., 2004). The addition of adjuvant enhanced
the protection seen with CPS but this was not the case with LPS
(Nelson et al., 2004). As with passive immunization, the protection
afforded by this method was again only partial and mice eventu-
ally succumbed to infection (Nelson et al., 2004). A recent study
used HkBps mutants which had disruptions in the type I O-PS
(capsule), type II O-PS (LPS), type III O-PS, and type IV O-PS
surface polysaccharide gene clusters (Sarkar-Tyson et al., 2007).
Immunization of BALB/c mice with all four HkBps mutant strains
resulted in delayed time to death compared to naive controls when
challenged i.p. with virulent B. pseudomallei, however the pro-
tection afforded by each strain varied, possibly highlighting the

importance of each polysaccharide in protection (Sarkar-Tyson
et al., 2007).

The related bacterium B. thailandensis which is considered to
be avirulent in humans can often be isolated from soil in endemic
areas of Thailand (Smith et al., 1997). Studies have shown the LPS
structure of this organism to be similar to that of B. pseudomallei,
yet it elicits stronger immune responses from human and murine
macrophage cell lines in vitro compared to its virulent counter-
part (Anuntagool et al., 1998; Brett et al., 2003; Qazi et al., 2008;
Novem et al., 2009; Ngugi et al., 2010). Recently LPS isolated from
B. thailandensis was evaluated as a potential vaccine candidate.
Immunized mice were protected from subsequent challenge with
B. pseudomallei with 50% survival at day 35, however bacteria
could be detected in the tissues of these surviving mice suggest-
ing sterilizing immunity was not achieved and the infection would
ultimately prove fatal (Ngugi et al., 2010). The use of B. thailanden-
sis as a vaccine against melioidosis has not been widely explored
to date but there are reports of live and heat-killed B. thailan-
densis also providing protection against B. pseudomallei infection
(Iliukhin et al., 2002; Sarkar-Tyson et al., 2009). Considering the
financial and safety benefits of working with a Containment Level
2 organism this is an area of melioidosis vaccine research which
should continue to be explored.

Antibodies against other known B. pseudomallei virulence fac-
tors such as flagella have also been investigated as vaccine can-
didates. Anti-flagellin antibodies are known to reduce bacterial
motility and have shown some passive protection against infec-
tion in diabetic rats (Brett et al., 1994). A subsequent publication
by the same authors attempted to enhance the immunological
repertoire of the vaccine recipient by conjugating flagellin pro-
teins to the O-PS moiety of LPS isolated from the same strain,
thereby developing the first conjugate vaccine for this infection
(Brett and Woods, 1996). Passive immunization with the flagellin-
polysaccharide conjugate still only provided partial protection in
diabetic rats (Brett and Woods, 1996). To date conjugate vaccines
against B. pseudomallei using better defined protein carriers such
as those found in pneumococcal vaccines have not been reported.

The limited success of these vaccine studies, which universally
resulted in only partial protection, is thought to be due to the
lack of T cell stimulation afforded by these strategies. Thus, some
attempts to resolve these problems have involved the evaluation of
DNA vaccines. These consist of small circular bacterial DNA (plas-
mid) expression vectors, which encode candidate vaccine antigens
under the control of strong viral promoters which are recognized
by the host (Liljeqvist and Ståhl, 1999). Following plasmid DNA
vaccination, the antigen is expressed by the host cells and delivered
to antigen-presenting cells, resulting in strong T CMI (Plotkin,
2009). A significant potential advantage of DNA vaccines is the
ability to induce CD8+ T cell responses via MHC class I presenta-
tion, which is important for protection against other intracellular
pathogens (Kaufmann et al., 2010). Parenteral vaccinations via
injection or gene gun delivery are the most common modes of
DNA vaccine delivery. However this is less advantageous in target-
ing the mucosal surfaces. Furthermore, whilst DNA vaccines have
achieved success in most animal models, only modest immuno-
genicity has been observed in higher primates and human clinical
trials posing an ongoing challenge of formulating DNA vaccines
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for use in humans (Coban et al., 2008). In attempts to improve the
efficacy of DNA vaccines the genetic manipulation of live vectors,
primarily bacteria or viruses, expressing pathogen-specific DNA
has also been investigated. A prime example of this technique can
be seen in M. tuberculosis vaccines, where a number of candidates
have been generated using recombinant, replication-deficient vac-
cinia virus or adenoviruses which express the mycobacterial Ag85A
(termed MVA85A and AdAg85A respectively; McShane et al., 2004;
Santosuosso et al., 2006; Radosevic et al., 2007; Sander et al.,
2009). These can induce strong Th1 immunity, including CD8+
T cell responses, and are being evaluated in clinical trials for fur-
ther development (Kaufmann et al., 2010). A limitation of these
vaccines however, is reduced efficacy following previous exposure
to the vector, such as previous vaccination with vaccinia or nat-
ural exposure to cross-reacting strains of adenovirus (reviewed in
Bangari and Mittal, 2006).

DNA vaccines have also been investigated to a limited degree
in melioidosis. Chen et al. evaluated a DNA vaccine encoding
the fliC gene and demonstrated protection against B. pseudo-
mallei infection in BALB/c mice. Intramuscular (i.m.) vaccina-
tion with this construct elicited both humoral and cell-mediated
immune responses, demonstrated by increased IgG production
and enhanced proliferation of splenocytes in response to B.
pseudomallei flagellin (Chen et al., 2006b). IgG2a was the dom-
inant antibody subclass detected, and a higher number of IFNγ-
secreting cells were found in the spleens of immunized mice,
indicating the induction of a Th1 phenotype (Chen et al., 2006b).
Immunized mice showed better control of bacterial burden in
organs and increased survival after i.v. challenge compared to
controls (Chen et al., 2006b). Addition of the immunoadjuvant,
cytosine preceding a guanosine motif oligodeoxynucleotide (CpG
ODN), to the plasmid DNA encoding flagellin further enhanced
the protective effects elicited by this vaccination strategy (Chen
et al., 2006a).

Purified proteins have had some success as potential vaccine
candidates against other bioterrorism agents. For example,Y. pestis
secretes a number of virulence factors which include Fraction
1 (F1) and V (virulence) proteins. These have been formulated
together in recombinant subunit vaccines, and can induce pro-
tective immunity against plague (Williamson, 2009). However
the use of single proteins or peptides as vaccines has had lim-
ited success due to restricted immunogenicity within the host,
and often must be delivered with adjuvants to elicit protection.
Furthermore, this approach requires the identification of viru-
lence determinants or immunogenic epitopes as potential vaccine
candidates, which in the case of intracellular bacteria can prove
challenging (Titball, 2008). Nonetheless, in an attempt to identify
novel vaccine antigens for B. pseudomallei, Harland et al. (2007b)
evaluated proteins of the ABC systems. ABC systems are wide-
spread among living organisms and are thought to have roles
in nutrient uptake and survival, as well as drug resistance and
virulence (Garmory and Titball, 2004). Comprising one of the
largest protein families in prokaryotes, ABC systems are charac-
terized by a highly conserved ATPase domain which binds ATP
and provides energy for the conserved ABC proteins to import
and export a wide variety of substrates across the membrane
(Garmory and Titball, 2004). Given the location of the ABC

transporters it is possible that some protein components of the sys-
tem are exposed to the immune system during infection, making
them attractive as potential vaccine candidates. Three B. pseudo-
mallei ABC transporter proteins, namely LolC, PotF, and OppA,
were selected as candidate vaccine antigens following annotation
of the reference strain B. pseudomallei K96423 (Harland et al.,
2007a,b). Immunization of BALB/c mice with each protein mixed
with adjuvant generated protein-specific IgG responses which
were biased toward the IgG2a isotype and therefore a Th1 phe-
notype (Harland et al., 2007b). In addition, restimulation assays
using T cells from spleens of immunized mice, detected protein-
specific IFNγ production in culture supernatants (Harland et al.,
2007b).

This work indicated that all three proteins were capable of
inducing both antigen-specific humoral and CMI responses.
When mice were challenged i.p. with virulent B. pseudomallei
K96423, PotF, and LolC vaccinated mice were significantly pro-
tected compared to naive mice, whilst vaccination with OppA
showed no protection (Harland et al., 2007b). LolC was the most
protective protein and when combined with immune stimulat-
ing complexes (ISCOMS) adjuvant in a complex with CpG ODN,
the protection afforded by this vaccine was enhanced (Harland
et al., 2007b). Mice immunized with LolC were also signifi-
cantly protected against challenge with the heterologous strain
B. pseudomallei 576 (Harland et al., 2007b). However despite
the relative success of this candidate vaccine, protection against
melioidosis was still incomplete as mice eventually succumbed to
infection.

A recent study highlighted the B. pseudomallei outer mem-
brane protein A family (OmpA) as being immunogenic in mice
as well as melioidosis patients (Hara et al., 2009). Evaluation of
the B. pseudomallei whole genome sequence identified 12 OmpA
domains. Following annotation of the relevant open reading
frames (ORFs) two of these OmpAs, namely Omp3 and Omp7,
were successfully expressed as soluble protein and subsequently
purified. Immunization of BALB/c mice with either Omp3 or
Omp7 administered with adjuvant, significantly enhanced sur-
vival time following subsequent challenge with B. pseudomallei.
Another study considered the Omp85 protein family as poten-
tial vaccine candidates (Su et al., 2010). As with the OmpAs,
BALB/c mice immunized with recombinant Omp85 demonstrated
increased survival as well as reduced bacterial burdens in tissues
compared to unvaccinated controls (Su et al., 2010). Thus pilot
experiments with Omp family proteins have demonstrated pro-
tective efficacy in animal models of melioidosis and studies with
these proteins continue (Hara et al., 2009; Su et al., 2010). How-
ever it should be noted that the protection afforded was no greater
than that observed previously with other strategies. Another abun-
dant protein family which could be considered for vaccine research
are the autotransporter proteins. These outer membrane/secreted
proteins facilitate transport across the bacterial cell membrane and
to the cell surface, and have been implicated in virulence of some
Gram-negative bacteria (Henderson et al., 2004; Wells et al., 2007).
Investigation of this system in B. pseudomallei could provide more
candidate proteins for vaccine development against melioidosis.
Thus, the search for novel vaccine antigens against B. pseudomallei
is continuing.
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In summary it is clear that a number of different strategies are
under investigation for the development of new vaccines against
melioidosis. However better understanding of specific pathogen–
host interactions in vivo, as well as identification of key virulence
determinants and correlates of protection, are needed to enhance
vaccine research and development in the future.

DISCUSSION
A subunit vaccine based on a combination of protein and polysac-
charide seems the most promising candidate melioidosis vaccine.
Although there are some studies from the 1990s which demon-
strate the feasibility of such a vaccine, there is no material currently
available for testing, and no robust and reliable process for pro-
ducing such a vaccine. The further development of a vaccine
is also likely to depend on the nature of the population to be
protected. For example, in South East (SE) Asia most of the indi-
viduals who develop melioidosis have an underlying condition
that increases their susceptibility to disease. Thus individuals are
effectively imunosuppressed, meaning that vaccines may be less
effective in this group. The current assumption is that many of
these individuals contract the disease via cuts and abrasions but
it is possible that some cases are the consequence of the ingestion
or inhalation of bacteria. In contrast a biodefense vaccine would
need to protect the general population against an airborne chal-
lenge and would need to protect healthy individuals in addition
to those with an underlying condition which pre-disposes them
to disease. Ideally, a vaccine would be able to protect both of these
groups and this linkage has several clear potential benefits. Firstly,
it seems unlikely that a melioidosis vaccine for use in endemic
areas in SE Asia would be economically viable without the ability
to also use this vaccine for biodefense purposes. Secondly, the abil-
ity to identify at-risk groups in Thailand, or indeed other parts of
SE Asia, would allow meaningful clinical trials to be carried out.

There is still considerable debate over the most appropriate
animal model for testing vaccine candidates. Many of the studies
carried out to date are in highly susceptible BALB/c mice and this
model is more suitable to the study of acute melioidosis. In contrast
C57BL/6 mice develop either acute or chronic disease depending
on the challenge dose. The characteristic clinical features of human
melioidosis such as acute versus chronic disease, pneumonia, and
abscess formation in the liver and spleen are therefore mirrored
in the C57BL/6 model. In studies we have carried out, the degree
of protection offered by various immunogens has been greater in
C57BL/6 than in BALB/c mice. Whilst a large proportion of an
endemic population is exposed to B. pseudomallei only relatively
few develop clinical disease, suggesting the majority of people have
some form of resistance against melioidosis. Alternatively given
the risk factors associated with melioidosis, the organism may
only be capable of causing disease in an immunocompromised
host. Nonetheless the immune responses elicited by patients who
develop clinical infection are likely to be different to those who
remain asymptomatic, so identifying immune responses under
conditions of the strongest vaccine protection in resistant mice
may provide insights into what is required from future vaccine
designs. Our laboratories have addressed this problem and prelim-
inary data demonstrated that following i.n. vaccination with 2D2,

C57BL/6 mice were significantly protected against i.n. challenge
with B. pseudomallei 576 with 60% of mice still alive 250 days
post challenge (A. Easton, unpublished data). To determine if the
surviving mice had completely cleared the infection, they were
treated with dexamethasone which suppresses the immune sys-
tem and consequently reactivation of acute infection can occur
due to the presence of persistent bacteria. However all mice sur-
vived the dexamethasone treatment and no bacteria were detected
in the spleen, lung, or liver indicating that these mice had in fact
achieved sterilizing immunity following 2D2 vaccination (A. Eas-
ton,unpublished data). This vaccine strategy thus provides the best
protection against experimental melioidosis to date, and further
investigation using the resistant C57BL/6 model in vaccination
studies is ongoing.

Whilst the i.p. route is commonly used in experimental ani-
mal models, the s.c. or i.n. route of infection could be considered
more physiologically relevant model for melioidosis. In human
B. pseudomallei infection, inhalation is an important route of
exposure in both endemic regions and in a potential bioterror-
ism situation. Involvement of the lung is often associated with
severe disease with pneumonia being the most prominent clinical
presentation of melioidosis in all studies (Howe et al., 1971; Guard
et al., 1984; Chaowagul et al., 1989; Puthucheary et al., 1992; Simp-
son et al., 1999; Currie et al., 2000; Chrispal et al., 2010). Despite
the importance of pulmonary B. pseudomallei infection, very few
studies have investigated vaccine-mediated protection against res-
piratory challenge. Studies of other respiratory infections such
as influenza, tuberculosis, and tularemia, have demonstrated that
to effectively generate protective mucosal immune responses, the
vaccine should be delivered directly to the target mucosa rather
than systemically (Hornick and Eigelsbach, 1966; Conlan et al.,
2005; Santosuosso et al., 2006; Perrone et al., 2009). Consequently
our laboratory has developed an i.n. model of vaccination in
BALB/c mice using the B. pseudomallei mutant 2D2. Vaccinated
mice were protected against subsequent i.n. challenge, as deter-
mined by enhanced survival and reduced bacterial burdens in the
spleen and lung (Easton et al., 2011). Of note is the observation
that protection against pulmonary B. pseudomallei challenge was
significantly greater following i.n. vaccination as opposed to i.p.
vaccination (Easton et al., 2011). This phenomenon was also seen
in experiments by Breitbach et al. (2008) in which vaccination
with attenuated B. pseudomallei purine mutants was most effec-
tive against pulmonary challenge when administered via the i.n.
route. Furthermore a recent study demonstrated i.n. vaccination
with HkBps administered with a potent mucosal adjuvant, was
significantly more protective against i.n. challenge compared to
HkBps alone (Henderson et al., 2011). Together these data high-
light the need to consider the efficacy of pulmonary vaccination
and mucosal targeting in the future of melioidosis vaccine design
and development.

Finally, since it may be possible to carry our clinical trials with a
candidate melioidosis vaccine, there may be a less urgent need for
non-human primate models of disease than is the case for other
infections caused by bioterrorism agents. Nevertheless, it would
be highly desirable to have also tested such a candidate in a suit-
able non-human primate model. To our knowledge, marmoset,
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rhesus macaque, and African Green monkey models of melioido-
sis are currently being evaluated and we await the results of these
studies.
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