

# Comparative and functional genomics of *Legionella* identified eukaryotic like proteins as key players in host–pathogen interactions

# Laura Gomez-Valero<sup>1,2</sup>, Christophe Rusniok<sup>1,2</sup>, Christel Cazalet<sup>1,2</sup> and Carmen Buchrieser<sup>1,2</sup>\*

<sup>1</sup> Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, Paris, France
 <sup>2</sup> CNRS URA 2171, 28, Rue du Dr Roux, 75724, Paris, France

#### Edited by:

Elizabeth L. Hartland, The University of Melbourne, Australia

#### Reviewed by:

Zhao-Qing Luo, Purdue University, USA Tonyia Eaves-Pyles, University of

Texas Medical Branch, USA Ombeline Rossier, Ludwig Maximilians University Munich, Germany

#### \*Correspondence:

Carmen Buchrieser, Unité de Biologie des Bactéries Intracellulaires, CNRS URA 2171, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.

e-mail: carmen.buchrieser@pasteur.fr

Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, Legionella pneumophila and Legionella longbeachae are two species of a large genus of bacteria that are ubiguitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of L. pneumophila and L. longbeachae isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different L. pneumophila and L. longbeachae strains. Emphasis is given on putative virulence and Legionella life cycle related functions, such as the identification of an extended array of eukaryotic like proteins, many of which have been shown to modulate host cell functions to the pathogen's advantage. Surprisingly, many of the eukaryotic domain proteins identified in L. pneumophila as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in Legionella are discussed.

Keywords: Legionella pneumophila, Legionella longbeachae, evolution, comparative genomics, eukaryotic like proteins, virulence

# **INTRODUCTION**

Genomics has the potential to provide an in depth understanding of the genetics, biochemistry, physiology, and pathogenesis of a microorganism. Furthermore comparative genomics, functional genomics, and related technologies, are helping to unravel the molecular basis of the pathogenesis, evolution, and phenotypic differences among different species, strains, or clones and to uncover potential virulence genes. Knowledge of the genomes provides the basis for the application of new powerful approaches for the understanding of the biology of the organisms studied.

Although *Legionella* are mainly environmental bacteria, several species are pathogenic to humans, in particular *Legionella pneumophila* (Fraser et al., 1977; Mcdade et al., 1977) and *Legionella longbeachae* (Mckinney et al., 1981). Legionnaires' disease has emerged in the second half of the twentieth century partly due to human alterations of the environment. The development of artificial water systems in the last decades like air conditioning systems, cooling towers, showers, and other aerosolizing devices has allowed *Legionella* to gain access to the human respiratory system. When inhaled in contaminated aerosols, pathogenic *Legionella* can reach the alveoli of the lung where they are subsequently engulfed by macrophages. In contrast to most bacteria, which are destroyed, some *Legionella* species can multiply within the phagosome and eventually kill the macrophage, resulting in a severe, often fatal

pneumonia called legionellosis or Legionnaires' disease (mortality rate of 5–20%; up to 50% in nosocomial infections; Steinert et al., 2002; Marrie, 2008; Whiley and Bentham, 2011). To replicate intracellularly *L. pneumophila* manipulates host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized type IV secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors implicated in controlling membrane transport in eukaryotic cells, which enables *L. pneumophila* to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells (for a review see Hubber and Roy, 2010).

An interesting epidemiological observation is, that among the over 50 *Legionella* species described today, strains belonging to the species *L. pneumophila* are responsible for over 90% of the legionellosis cases worldwide and strains belonging to the species *L. longbeachae* are responsible for about 5% of human legionellosis cases worldwide (Yu et al., 2002). Surprisingly, this distribution is very different in Australia and New Zealand where *L. pneumophila* accounts for "only" 45.7% of the cases but *L. longbeachae* is implicated in 30.4% of the human cases. Furthermore, among the strains causing Legionnaires' disease, *L. pneumophila* serogroup 1 (Sg1) alone is responsible for over 85% of cases (Yu et al., 2002; Doleans et al., 2004) despite the description of 15 different Sg within this species. In addition, the characterization of over 400

different L. pneumophila Sg1 strains has shown that only a minority among these is responsible for causing most of the human disease (Edelstein and Metlay, 2009). Some of these clones are distributed worldwide like L. pneumophila strain Paris (Cazalet et al., 2008) others have a more restricted geographical distribution, like the recently described endemic clone, prevalent in Ontario, Canada (Tijet et al., 2010). For the species L. longbeachae two serogroups are described to date (Bibb et al., 1981; Mckinney et al., 1981). L. longbeachae Sg1 is predominant in human disease as it causes up to 95% of the cases of legionellosis worldwide and most outbreaks and sporadic cases in Australia (Anonymous, 1997; Montanaro-Punzengruber et al., 1999). The two main human pathogenic Legionella species, L. pneumophila and L. longbeachae cause the same disease and symptoms in humans (Amodeo et al., 2009), however, there exist major differences between both species in niche adaptation and host susceptibility.

- (i) They are found in different environmental niches, as *L. pneumophila* is mainly found in natural and artificial water circuits and *L. longbeachae* is principally found in soil and therefore associated with gardening and use of potting compost (O'Connor et al., 2007). However, although less common, the isolation of *L. pneumophila* from potting soil in Europe has also been reported (Casati et al., 2009; Velonakis et al., 2009). Human infection due to *L. longbeachae* is particularly common in Australia but cases have been documented also in other countries like the USA, Japan, Spain, England, or Germany (MMWR, 2000; Garcia et al., 2004; Kubota et al., 2007; Kumpers et al., 2008; Pravinkumar et al., 2010).
- (ii) As described for other *Legionella* species, person to person transmission of *L. longbeachae* has not been documented, however, the primary transmission mode seems to be inhalation of dust from contaminated compost or soil that contains the organism (Steele et al., 1990; MMWR, 2000; O'Connor et al., 2007).
- (iii) Furthermore, for L. pneumophila a biphasic life cycle was observed in vitro and in vivo as exponential phase bacteria do not express virulence factors and are unable to replicate intracellularly. The ability of L. pneumophila to replicate intracellularly is triggered at the post-exponential phase by a complex regulatory cascade (Molofsky and Swanson, 2004; Sahr et al., 2009). In contrast, less is known on the L. longbeachae intracellular life cycle and its virulence factors. It was recently shown that unlike L. pneumophila the ability of L. longbeachae to replicate intracellularly is independent of the bacterial growth phase (Asare and Abu Kwaik, 2007) and that phagosome biogenesis is different. Like L. pneumophila, the L. longbeachae phagosome is surrounded by endoplasmic reticulum and does not mature to a phagolysosome; however it acquires early and late endosomal markers (Asare and Abu Kwaik, 2007).
- (iv) Another interesting difference between these two species is their ability to colonize the lungs of mice. While only A/J mice are permissive for replication of *L. pneumophila*, A/J, C57BL/6, and BALB/c mice are all permissive for replication of *L. longbeachae* (Asare et al., 2007; Gobin et al., 2009). Resistance of C57BL/6 and BALB/c mice to *L. pneumophila*

has been attributed to polymorphisms in Nod-like receptor apoptosis inhibitory protein 5 (*naip5*) allele that recognizes the C-terminus of flagellin (Wright et al., 2003; Molofsky et al., 2006; Ren et al., 2006; Lightfield et al., 2008). The current model is that *L. pneumophila* replication is restricted due to flagellin dependent caspase-1 activation through Naip5-Ipaf and early macrophage cell death by pyroptosis. However, although depletion or inhibition of caspase-1 activity leads to decreased targeting of bacteria to lysosomes, the mechanism of caspase-1-dependent restriction of *L. pneumophila* replication in macrophages and *in vivo* is not fully understood (Schuelein et al., 2011).

In the last years, six genomes of different *L. pneumophila* strains (Paris, Lens, Philadelphia, Corby, Alcoy, and 130b (Cazalet et al., 2004; Chien et al., 2004; Steinert et al., 2007; D'Auria et al., 2010; Schroeder et al., 2010) have been published. The genome sequences of all but strain 130b were completely finished. Furthermore, the sequencing and analysis of four genomes of *L. longbeachae* have been carried out recently (Cazalet et al., 2010). *L. long-beachae* strain NSW150 of Sg1 isolated in Australia from a patient was sequenced completely, and for the remaining three strains (ATCC33462, Sg1 isolated from a human lung, C-4E7 and 98072, both of Sg2 isolated from patients) a draft genome sequence was reported. A fifth *L. longbeachae* strain (D-4968 of Sg1, isolated in the US from a patient) was recently sequenced and the analysis of the genome sequences assembled into 89 contigs was reported (Kozak et al., 2010).

Here we will describe what we learned from the analysis and comparison of the sequenced *Legionella* strains. We will discuss their general characteristics and then highlight the specific features or common traits with respect to the different ecological niches and the differences in host susceptibility of these two *Legionella* species. Emphasis will be put on putative virulence and *Legionella* life cycle related functions. In the last part we will analyze and discuss the possible evolution of the identified virulence factors. Finally, future perspectives in *Legionella* genomics are presented.

# GENERAL FEATURES OF THE *L. PNEUMOPHILA* AND *L. LONGBEACHAE* GENOMES

*Legionella pneumophila* and *L. longbeachae* each have a single, circular chromosome with a size of 3.3-3.5 Mega bases (Mb) for *L. pneumophila* and 3.9-4.1 Mb for *L. longbeachae*. For both the average G + C content is 38% (**Tables 1A,B**). The *L. pneumophila* strains Paris and Lens each contain different plasmids, 131.9 kb and 59.8 kb in size, respectively. In strain Philadelphia-1, 130b, Alcoy, and Corby no plasmid was identified. The *L. longbeachae* strains NSW10 and D-4986 carry highly similar plasmids of about 70 kb and DNA identity of 99%, strains C-4E7 and 98072 also contain each a highly similar plasmid of 133.8 kb in size. Thus similar plasmids circulate among *L. longbeachae* strains, but they seem to be different from those found in *L. pneumophila*.

A total of ~3000 and 3500 protein-encoding genes are predicted in the *L. pneumophila* and *L. longbeachae* genomes, respectively. No function could be predicted for about 40% of these genes and about 20% are unique to the genus *Legionella*. Comparative analysis of the genome structure of the *L. pneumophila* genomes showed

#### Table 1 | General features of the sequenced Legionella genomes.

#### A. Complete and draft genomes of L. pneumophila obtained by classical or new generation sequencing

| L. pneumophila                           |                           |                            |                       |                     |          |                   |
|------------------------------------------|---------------------------|----------------------------|-----------------------|---------------------|----------|-------------------|
|                                          | Paris                     | Lens                       | Philadelphia          | Corby               | Alcoy    | 130b <sup>c</sup> |
| Chromosome size (kb) <sup>a</sup>        | 3504 (131.9) <sup>b</sup> | 3345 (59.8)                | 3397                  | 3576                | 3516     | 3490              |
| G+C content (%)                          | 38.3 (37.4)               | 38.4 (38)                  | 38.3                  | 38                  | 38.4     | 38.2              |
| No. of genes <sup>a</sup>                | 3123 (142)                | 2980 (60)                  | 3031                  | 3237                | 3197     | 3288              |
| No. of protein coding genes <sup>a</sup> | 3078 (140)                | 2921 (60)                  | 2999                  | 3193                | 3097     | 3141              |
| Percentage of CDS (%)                    | 87.9                      | 88.0                       | 90.2                  | 86.8                | 86.0     | 87.9              |
| No. of specific genes                    | 225                       | 181                        | 213                   | 144                 | 182      | 386 <sup>c</sup>  |
| No. of 16S/23S/5S                        | 03/03/03                  | 03/03/03                   | 03/03/03              | 03/03/03            | 03/03/03 | ND                |
| No. transfer RNA                         | 44                        | 43                         | 43                    | 43                  | 43       | 42                |
| Plasmids                                 | 1                         | 1                          | 0                     | 0                   | 0        | 0                 |
| B. Complete a                            | and draft genomes of      | f <i>L. longbeachae</i> ob | tained by classical o | r new generation se | quencing |                   |
| L. longbeachae                           |                           |                            |                       |                     |          |                   |
|                                          | NSW 150                   | D-4968                     | ATCC33462             | 98072               | C-48     | Ξ7                |
| Chromosome size (Kb)                     | 4077 (71)                 | 4016 (70)                  | 4096                  | 4018 (133.8)        | 3979 (1  | 33.8)             |
| G+C content (%)                          | 37.1 (38.2)               | 37.0                       | 37.0                  | 37.0 (37.8)         | 37 (3    | 7.8)              |
| No. of genes                             | 3660 (75)                 | 3557 (61)                  | -                     | -                   | -        |                   |
| No. of 16S/23S/5S                        | 04/04/04                  | 04/04/04                   | 04/04/04              | 04/04/04            | 04/04    | 1/04              |
| No. of contigs > 0.5–300 kb              | Complete                  | 13                         | 64                    | 65                  | 63       | }                 |
| N50 contig size*                         | Complete                  | -                          | 138 kb                | 129 kb              | 134      | kb                |
| Percentage of coverage**                 | 100%                      | 96.3                       | 96.3                  | 93.4                | 93.      | 1                 |
| Number of SNP with NSW150                | 0                         | 1900                       | 1611                  | 16 853              | 16 8     | 20                |
| Plasmids                                 | 1                         | 1                          | 0                     | 1                   | 1        |                   |

<sup>a</sup> Updated annotation; CDS, coding sequence; <sup>b</sup> data from plasmids in parenthesis; <sup>c</sup>The 130b sequence is not a manually corrected and finished assembly, thus the high number of specific genes might be due to not corrected sequencing errors; ND, not determined; \*N50 contig size, calculated by ordering all contig sizes and adding the lengths (starting from the longest contig) until the summed length exceeds 50% of the total length of all contigs (half of all bases reside in a contiguous sequence of the given size or more); SNP, single nucleotide polymorphism; \*\*for SNP detection; – not determined.

high colinearity, with only few translocations, duplications, deletions, or inversions (Figures 1A,B) and identified between 6 and 11% of genes as specific to each L. pneumophila strain. Principally, the genomes contain three large plasticity zones, where the synteny is disrupted: a 260-kb inversion in strain Lens with respect to strains Paris and Philadelphia-1, a 130-kb fragment which is inserted in a different genomic location in strains Paris and Philadelphia-1 and the about 50 kb chromosomal region carrving the Lvh type IV secretion system, previously described in strain Philadelphia-1 (Segal et al., 1999). Furthermore, deletions and insertions of several smaller regions were identified in each strain, as well as regions with variable gene content. In contrast, comparison of the completed chromosome sequences of L. pneumophila and L. longbeachae shows that the two Legionella species have a significantly different genome organization (Figure 1C). Moreover only about 65% of the L. longbeachae genes are orthologous to L. pneumophila genes, whereas about 34% of all genes are specific to L. longbeachae with respect to L. pneumophila Paris, Lens, Philadelphia, and Corby (defined by less than 30% amino acid identity over 80% of the length of the smallest protein).

Analysis of single nucleotide polymorphisms (SNP) revealed a very low SNP number of less than 0.4% among the four *L. longbeachae* genomes, which is significantly lower than the polymorphism of about 2% between *L. pneumophila* Sg1 strains Paris and Philadelphia (**Table 1B**). Comparison of the two *L. long-beachae* Sg1 genomes (NSW150, ATCC33462) identified 1611 SNPs of which 1426 are located in only seven chromosomal regions mainly encoding putative mobile elements, whereas the remaining 185 SNPs were evenly distributed around the chromosome. A similar number of about 1900 SNPs were identified when comparing strains NSW150 to strain D-4968 (**Table 1B**). In contrast, the SNP number between two strains of different Sg was higher, with about 16000 SNPs present between Sg1 and Sg2 strains (**Table 1B**). This low SNP number and relatively homogeneous distribution of the SNPs around the chromosome suggest recent expansion for the species *L. longbeachae* (Cazalet et al., 2010). The sequences and their analysis are accessible at http://genolist.pasteur.fr/LegioList/.

To investigate the phylogenetic relationship among the *L. pneu-mophila* and *L. longbeachae* strains we here used the nucleotide sequence of *recN* (recombination and repair protein-encoding gene) aligned based on the protein alignment. Based on an analysis of 32 protein-encoding genes widely distributed among bacterial genomes, RecN was described as the gene with the greatest potential for predicting genome relatedness at the genus or subgenus level (Zeigler, 2003). As depicted in **Figure 2**, the phylogenetic relationship among the four *L. pneumophila* strains is very high, and *L. longbeachae* is clearly more distant.





Indispensible for replication of L. pneumophila in the eukaryotic host cells is the Dot/Icm T4SS (Nagai and Kubori, 2011), which translocate a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for

Lens, Corby, and L. longbeachae NSW150. The plot was created using the mummer software package. (A) Synteny plot of the chromosomes of strains L. pneumophila Paris and Corby (B) and strains L. pneumophila Paris and Lens and (C) strains L. pneumophila Paris and L. longbeachae NSW150.



FIGURE 2 | Phylogenetic tree showing the relationship of the sequenced L. pneumophila and L. longbeachae strains based on the recN sequence. The tree was constructed using the recN sequences of each genome and the Neighbor joining method in MEGA. L. longbeachae is indicated without strain designation, as the RecN sequence of all sequenced strains is identical and thus only one representative strain is indicated on the tree. Numbers at branching nodes are percentages of 1000 bootstrap replicates

#### **DIVERSITY IN SECRETION SYSTEMS AND THEIR** SUBSTRATES MAY CONTRIBUTE TO DIFFERENCES IN INTRACELLULAR TRAFFICKING AND NICHE ADAPTATION

The capacity of pathogens like Legionella to infect eukaryotic cells is intimately linked to the ability to manipulate host cell functions to establish an intracellular niche for their replication. Essential for the ability of Legionella to subvert host functions are its different secretion systems. The two major ones, known to be involved in virulence of L. pneumophila are the Dot/Icm type IV secretion system (T4BSS) and the Lsp type II secretion system (T2SS; Marra et al., 1992; Berger and Isberg, 1993; Rossier and Cianciotto, 2001).

#### Table 2 | Distribution of type II secretion-dependent proteins of L. pneumophila in L. longbeachae.

| L. pneumophila |         |         |         |          | L. long  | beachae | Name    | Product |                                                     |  |
|----------------|---------|---------|---------|----------|----------|---------|---------|---------|-----------------------------------------------------|--|
| Phila          | Paris   | Lens    | Corby   | Alcoy    | 130b*    | NSW     | D-4968  |         |                                                     |  |
| lpg0467        | lpp0532 | lp10508 | lpc2877 | lpa00713 | lpw05741 | llo2721 | llb2607 | proA    | Zinc metalloprotease, promotes amebal infection     |  |
| lpg1119        | lpp1120 | lpl1124 | lpc0577 | lpa01742 | -        | llo1016 | llb0700 | map     | Tartrate-sensitive acid phosphatase                 |  |
| lpg2343        | lpp2291 | lpl2264 | lpc1811 | lpa03353 | lpw25361 | llo2819 | llb2504 | plaA    | Lysophospholipase A                                 |  |
| lpg2837        | lpp2894 | lpl2749 | lpc3121 | lpa04118 | lpw30971 | llo0210 | llb1661 | plaC    | Glycerophospholipid:cholestrol transferase          |  |
| lpg0502        | lpp0565 | lpl0541 | lpc2843 | lpa00759 | lpw05821 | -       | -       | plcA    | Phospholipase C                                     |  |
| lpg0745        | lpp0810 | lpl0781 | lpc2548 | lpa01148 | lpw08251 | llo2076 | llb3335 | lipA    | Mono- and triacylglycerol lipase                    |  |
| lpg1157        | lpp1159 | lpl1164 | lpc0620 | lpa01801 | lpw12111 | llo2433 | llb2928 | lipB    | Triacylglycerol lipase                              |  |
| lpg2848        | lpp2906 | lpl2760 | lpc3133 | lpa04141 | lpw31111 | llo0201 | llb1671 | srnA    | Type 2 ribonuclease, promotes amebal infection      |  |
| lpg1116        | lpp1117 | lpl1121 | lpc0574 | lpa01738 | lpw11641 | -       | -       | chiA    | Chitinase, promotes lung infection                  |  |
| lpg2814        | lpp2866 | lpl2729 | lpc3100 | lpa04088 | lpw30701 | llo0255 | llb1611 | lapA    | Leucine, phenylalanine, and tyrosine aminopeptidase |  |
| lpg0032        | lpp0031 | lpl0032 | lpc0032 | lpa00041 | lpw00321 | -       | -       | lapB    | Lysine and arginine aminopeptidase                  |  |
| lpg0264        | lpp0335 | lpl0316 | lpc0340 | lpa00461 | lpw03521 | llo3103 | llb2271 |         | Weakly similar to bacterial amidase                 |  |
| lpg2622        | lpp2675 | lpl2547 | lpc0519 | lpa03836 | lpw28341 | -       | -       |         | Weakly similar to bacterial cysteine protease       |  |
| lpg1918        | lpp1893 | lpl1882 | lpc1372 | lpa02774 | lpw19571 | llo3308 | llb2032 | celA    | Endoglucanase                                       |  |
| lpg2999        | lpp3071 | lpl2927 | lpc3315 | lpa04395 | lpw32851 | -       | -       |         | Predicted astacin-like zink endopeptidase           |  |
| lpg2644        | lpp2697 | lpl2569 | lpc0495 | lpa03870 | -        | -       | -       |         | Some similarity to collagen like protein            |  |
| lpg1809        | lpp1772 | lpl1773 | lpc1253 | lpa02614 | lpw18401 | llo1104 | llb0603 |         | Unknown                                             |  |
| lpg1385        | lpp1340 | lpl1336 | lpc0801 | lpa02037 | lpw13951 | llo1474 | llb0177 |         | Unknown                                             |  |
| lpg0873        | lpp0936 | lp10906 | lpc2419 | lpa01320 | lpw09571 | llo2475 | llb2883 |         | Unknown                                             |  |
| lpg0189        | lpp0250 | lpl0249 | lpc0269 | lpa00360 | lpw02811 | -       | -       |         | Unknown                                             |  |
| lpg0956        | lpp1018 | lpl0958 | lpc2331 | lpa01443 | lpw10421 | llo1935 | llb3498 |         | Unknown                                             |  |
| lpg2689        | lpp2743 | lpl2616 | lpc0447 | lpa03925 | lpw29431 | llo0361 | llb1497 | icmX    | Linked to Dot/Icm type IV secretion genes           |  |
| lpg1244        | lpp0181 | lpl0163 | -       | -        | lpw01541 | -       | -       | IvrE    | Linked to Lvh type IV secretion genes               |  |
| lpg1832        | lpp1795 | lpl1796 | lpc1276 | lpa02647 | lpw18641 | llo1152 | llb0546 |         | Weakly similar to VirK                              |  |
| lpg1962        | lpp1946 | lpl1936 | lpc1440 | lpa02861 | lpw20131 | -       | -       |         | Putative peptidyl-prolyl cis-trans isomerase        |  |
| lpg0422        | lpp0489 | lpl0465 | lpc2921 | lpa0657  | lpw05041 | llo2801 | llb2523 | gamA    | Glucoamylase                                        |  |

Substrates in this list are according to Cianciotto (2009); \*strain 130b is not a finished sequence and not manually curated. Thus absence of a substrate can also be due to gaps in the sequence; – means not present; NSW means L. longbeachae NSW150.

intracellular bacterial replication (Shin and Roy, 2008; Cianciotto, 2009). The Dot/Icm system is conserved in L. longbeachae with a similar gene organization and protein identities of 47-92% with respect to L. pneumophila (Figure 3). This is similar to what has been reported previously for other Legionella species (Morozova et al., 2004). The only major differences identified are that in L. longbeachae the icmR gene is replaced by the ligB gene, however, the encoded proteins have been shown to perform similar functions (Feldman and Segal, 2004; Feldman et al., 2005) and that the DotG/IcmE protein of L. longbeachae (1525 aa) is 477 amino acids larger than that of L. pneumophila (1048 aa; Cazalet et al., 2010). DotG of L. pneumophila is part of the core transmembrane complex of the secretion system and is composed of three domains: a transmembrane N-terminal domain, a central region composed of 42 repeats of 10 amino acid and a C-terminal region homologous to VirB10. In contrast, the central region of L. longbeachae DotG is composed of approximately 90 repeats. Among the many VirB10 homologs present in bacteria, the Coxiella DotG and the Helicobacter pylori Cag7 are the only ones, which also have multiple repeats of 10 aa (Segal et al., 2005). It will be challenging to understand the impact of this modification on the function of the type IV secretion system. A L. longbeachae T4SS mutant obtained by deleting the *dotA* gene is strongly attenuated for intracellular growth in *Acanthamoeba castellanii* and human macrophages (Cazalet et al., 2010, and unpublished data), is outcompeted by the wild type strain 24 and 72 h after infection of lungs of A/J mice and is also dramatically attenuated for replication in lungs of A/J mice upon single infections (Cazalet et al., 2010). Thus, similar to what is seen for *L. pneumophila*, the Dot/Icm T4SS of *L. longbeachae* is also central for its pathogenesis and the capacity to replicate in eukaryotic host cells.

This T4SS is crucial for intracellular replication for *Legionella* as it secretes an exceptionally large number of proteins into the host cell. Using different methods, 275 substrates have been shown to be translocated in the host cell in a Dot/Icm T4SS dependent manner (Campodonico et al., 2005; De Felipe et al., 2005, 2008; Shohdy et al., 2005; Burstein et al., 2009; Heidtman et al., 2009; Zhu et al., 2011). **Table 3** shows the distribution of the 275 Dot/Icm substrates identified in *L. pneumophila* strain Philadelphia and their distribution in the six *L. pneumophila* and five *L. long-beachae* genomes sequenced. Their conservation among different *L. pneumophila* strains is very high, as over 80% of the substrates are present in all *L. pneumophila* strains analyzed here. In contrast, the search for homologs of these *L. pneumophila* Dot/Icm



substrates in L. longbeachae showed that even more pronounced differences are present than in the repertoire of type II secreted substrates. Only 98 of these 275 L. pneumophila Dot/Icm substrates have homologs in the L. longbeachae genomes (Table 3). However, the repertoire of L. longbeachae substrates seems also to be quite large, as a search for proteins that encode eukaryotic like domains and contain the secretion signal described by Nagai et al. (2005) and the additional criteria defined by Kubori et al. (2008) predicted 51 putative Dot/Icm substrates specific for L. longbeachae NSW150 (Cazalet et al., 2010) indicating that at least over 140 proteins might be secreted by the Dot/Icm T4SS of L. longbeachae. A similar number of L. longbeachae specific putative eukaryotic like proteins and effectors was predicted for strain D-4968 (Kozak et al., 2010). Examples of effector proteins conserved between the two species are RalF, VipA, VipF, SidC, SidE, SidJ, YlfA LepA, and LepB, which contribute to trafficking or recruitment and retention of vesicles to L. pneumophila (Nagai et al., 2002; Chen et al., 2004; Luo and Isberg, 2004; Campodonico et al., 2005; Shohdy et al., 2005; Liu and Luo, 2007). It is interesting to note that homologs of SidM/DrrA and SidD are absent from L. longbeachae but a homolog of LepB is present. For L. pneumophila it was shown that SidM/DrrA, SidD, and LepB act in cooperation to manipulate Rab1 activity in the host cell. DrrA/SidM possesses three domains, an N-terminal AMPtransfer domain (AT), a nucleotide exchange factor (GEF) domain in the central part and a phosphatidylinositol-4-Phosphate binding domain (P4M) in its C-terminal part. After association of DrrA/SidM with the membrane of the Legionella-containing vacuole (LCV) via P4M (Brombacher et al., 2009), it recruits Rab1 via the GEF domain and catalyzes the GDP-GTP exchange (Ingmundson et al., 2007; Machner and Isberg, 2007). Rab1 is then adenylated by the AT domain leading to inhibition of GAP-catalyzed Rab1deactivation (Müller et al., 2010). LepB cannot bind AMPylated Rab1 (Ingmundson et al., 2007). Recently it was shown that SidD deAMPylates Rab1 and enables LepB to bind Rab1 to promote

its GTP–GDP exchange (Neunuebel et al., 2011; Tan and Luo, 2011). One might assume that other proteins of *L. longbeachae* not yet identified may perform the functions of DrrA/SidM and SidD. Another interesting observation is, that all except four of the effector proteins of *L. pneumophila* that are conserved in *L. longbeachae* are also conserved in all sequenced *L. pneumophila* genomes (**Table 3**).

Taken together the T2SS Lsp and the T4SS Dot/Icm are highly conserved between *L. pneumophila* and *L. longbeachae*. However, more than a third of the known *L. pneumophila* type II- and over 70% of type IV-dependent substrates differ between both species. These species specific, secreted effectors might be implicated in the different niche adaptations and host susceptibilities. Most interestingly, of the 98 *L. pneumophila* substrates conserved in *L. longbeachae* 87 are also present in all *L. pneumophila* strains sequenced to date. Thus, these 87 Dot/Icm substrates might be essential for intracellular replication of *Legionella* and represent a minimal toolkit for intracellular replication that has been acquired before the divergence of the two species.

## MOLECULAR MIMICRY IS A MAJOR VIRULENCE STRATEGY OF *L. PNEUMOPHILA* AND *L. LONGBEACHAE*

The *L. pneumophila* genome sequence analysis has revealed that many of the predicted or experimentally verified Dot/Icm secreted substrates are proteins similar to eukaryotic proteins or contain motifs mainly or only found in eukaryotic proteins (Cazalet et al., 2004; De Felipe et al., 2005). Thus comparative genomics suggested that *L. pneumophila* encodes specific virulence factors that have evolved during its evolution with eukaryotic host cells such as fresh-water ameba (Cazalet et al., 2004). The protein-motifs predominantly found in eukaryotes, which were identified in the *L. pneumophila* genomes are ankyrin repeats, SEL1 (TPR), Set domain, Sec7, serine threonine kinase domains (STPK), U-box, and F-box motifs. Examples for eukaryotic like proteins of *L. pneumophila* are two secreted apyrases, a

# Table 3 | Distribution of 275 Dot/Icm substrates identified in strain *L. pneumophila* Philadelphia in the 5 sequenced *L. pneumophila* and 5 sequenced *L. longbeachae* strains.

|                    | L. pneumophila |              |              |                    |                      |         |              | gbead | Name  | Product |                 |                                              |
|--------------------|----------------|--------------|--------------|--------------------|----------------------|---------|--------------|-------|-------|---------|-----------------|----------------------------------------------|
| Phila              | Paris          | Lens         | Corby        | Alcoy              | 130b                 | NSW 150 | D-4968       | AT    | 98072 | C-4E7   |                 |                                              |
| lpg0008            | lpp0008        | lp10008      | lpc0009      | lpa0011            | lpw00071             | _       | _            | _     | _     | _       | ravA            | Unknown                                      |
| lpg0012            | lpp0012        | lpl0012      | lpc0013      | lpa0016            | lpw00111             | -       | -            | -     | -     | -       | cegC1           | Ankyrin                                      |
| lpg0021            | lpp0021        | lpl0022      | lpc0022      | lpa0030            | lpw00221             | llo0047 | llb1841      | +     | +     | +       | -               | Unknown                                      |
| lpg0030            | lpp0030        | lpl0031      | lpc0031      | lpa0040            | lpw00311             | -       | -            | -     | _     | _       | ravB            | Unknown                                      |
| lpg0038            | lpp0037        | lpl0038      | lpc0039      | lpa0049            | lpw00381             | -       | -            | -     | _     | -       | ankQ/<br>legA10 | Ankyrin repeat                               |
| lpg0041            | -              | -            | lpc0042      | lpa0056            | _                    | _       | _            | -     | -     | -       | _               | Putative<br>metalloprotease                  |
| lpg0045            | lpp0046        | lpl0044      | lpc0047      | lpa0060            | lpw00441             | -       | _            | _     | _     | _       | _               | Unknown                                      |
| lpa0046            | 7400aal        | ,<br>lpl0045 | ,<br>lpc0048 | ,<br>lpa0062       | ,<br>lpw00451        | _       | _            | _     | _     | _       | _               | Unknown                                      |
| Ina0059            | Inn0062        | IpI0061      | Ipc0068      | Ipa0085            | Ipw00621             | _       | _            | _     | _     | _       | cea2            | Unknown                                      |
| Ina0080            | Inn0094        | _            | -            | Ina3018            | Inw00781             | _       | _            | _     | _     | _       | cea3            | Unknown                                      |
| lpg0000            | Ipp0001        | _            | _            | _                  | Ipw00791             | _       | _            | _     | _     | _       | -               | Unknown                                      |
| Ipg0001            | Ipp0000        | -<br>In10080 | <br>Inc0100  | -<br>Ina0122       | Ipw00731             | _       | _            | _     | _     | _       | lom1            | Unknown                                      |
| 1pg0030            | Ipp0104        | 100000       | Ipc0103      | Ipa0132            | Ipw00061             | -       | -<br>1160247 | _     | _     | _       | 0004            | Unknown                                      |
| 1pg0096            | 100110         | Ip10096      | Ipc0115      | 1pa0145            | Ipw00961             | 1101322 | 1100347      | +     | +     | +       | ceg4            | Unknown<br>N tearriacheastul                 |
| ipg0103            | ιρρυτι 7       | 1010103      | IpcU122      | IpaU152            | IPW01031             | 1103312 | IID2028      | +     | +     | +       | VIPF            | N-terminal acetyi-<br>transferase, GNAT      |
| lpg0126            | lpp0140        | lpl0125      | lpc0146      | lpa0185            | lpw01261             | -       | -            | -     | -     | -       | cegC2           | Ninein                                       |
| lpg0130            | lpp0145        | lpl0130      | lpc0151      | lpa0194            | lpw01311             | llo3270 | llb2073      | +     | +     | +       | -               | Unknown                                      |
| lpg0135            | lpp0150        | lpl0135      | lpc0156      | lpa0204            | lpw01361             | llo2439 | llb2921      | +     | +     | +       | sdhB            | Unknown                                      |
| lpg0160            | lpp0224        | lpl0224      | lpc0242      | lpa0322            | lpw02541             | -       | -            | -     | _     | -       | ravD            | Unknown                                      |
| lpg0170            | lpp0232        | lpl0233      | lpc0251      | lpa0335            | lpw02641             | llo1378 | llb0280      | +     | +     | +       | ravC            | Unknown                                      |
| lpg0171            | lpp0233        | lpl0234      | _            | -                  | lpw02651             | -       | _            | -     | _     | -       | legU1           | F-box motif                                  |
| lpg0172            | lpp0234        | -            | lpc0253      | lpa0339            | lpw02661             | -       | -            | _     | _     | _       | -               | Unknown                                      |
| lpg0181            | lpp0245        | lpl0244      | lpc0265      | lpa0388            | lpw02761             | llo2453 | llb2907      | +     | +     | +       | -               | Unknown                                      |
| lpg0191            | lpp0251        | _            | -            | -                  | lpw02821             | -       | -            | -     | _     | -       | ceg5            | Unknown                                      |
| lpg0195            | lpp0253        | lpl0251      | lpc0272      | lpa0339            | lpw02851             | -       | -            | _     | _     | _       | ravE            | Unknown                                      |
| lpg0196            | lpp0254        | lpl0252      | -            | _                  | lpw02861             | llo2549 | llb2798      | +     | +     | +       | ravF            | Unknown                                      |
| lpg0210            | lpp0269        | lpl0264      | lpc0285      | lpa0388            | lpw02981             | -       | _            | _     | _     | _       | ravG            | Unknown                                      |
| lpq0227            | lpp0286        | ,<br>Ipl0281 | lpc0303      | lpa0412            | lpw03151             | llo2491 | llb2864      | +     | +     | +       | ceq7            | Unknown                                      |
| Ipa0234            | lpp0304        | Ipl0288      | lpc0309      | lpa0419            | lpw03221             | 1100425 | llb1431      | +     | +     | +       | sidE/laiD       | Unknown                                      |
| Ina()24()          | Ipp0310        | Ipl0294      | Ipc0316      | Ipa0428            | Ipw03291             | llo1601 | IIb0040      | +     | +     | +       | cea8            | Unknown                                      |
| Ina0246            | Inn0316        | IpI0:201     | Inc0323      | Ina0436            | Inw03361             | _       | _            | _     | _     | _       | cea9            | Unknown                                      |
| lpg0257            | lpp0327        | lp10310      | lpc0334      | lpa0450            | lpw03461             | llo2362 | llb3009      | +     | +     | +       | sdeA            | Multidrug resistance                         |
| lpg0260            | Inn()222       | 1010212      | Inc0337      | 1020456            | 104/02/101           |         |              |       |       |         |                 | Unknown                                      |
| lpg0200<br>lpg0275 | lpp0332        | lpl0313      | lpc0351/     | lpa0430<br>lpa0477 | lpw03431<br>lpw03641 | _       | _            | _     | _     | _       | sdbA            | Unknown                                      |
| 1 0070             | 1 0050         | 1 10000      | 3529         | 1 0 170            | 1 00051              |         |              |       |       | _       | 1 00            | <b>.</b> .                                   |
| lpg0276            | lpp0350        | lp10328      | lpc0353      | lpa0479            | lpw03651             | 1100327 | llb1533      | +     | +     | +       | legG2           | Ras guanine<br>nucleotide exchange<br>factor |
| lpg0284            | lpp0360        | lp10336      | lpc0361      | lpa0490            | lpw03741             | -       | -            | _     | _     | -       | ceg10           | Unknown                                      |
| lpg0285            | lpp0361        | lpl0337      | lpc0362      | lpa0492            | lpw03751             | -       | _            | _     | _     | _       | lem2            | Unknown                                      |
| lpq0294            | lpp0372        | lp10347      | lpc0373      | lpa0508            | lpw03861             | 1100464 | llb1386      | +     | +     | +       | -               | Unknown                                      |
| lpg0364            | lpn0429        | lp 0405      | lpc2980      | lpa0578            | lpw044.31            | _       | _            | _     | _     | _       | _               | Unknown                                      |
| Ing0365            | Ipp0/20        | In/0406      | Inc2979      | Ina0580            | IDW/04441            | 1100525 | llb1334      | +     | +     | +       | _               | Unknown                                      |
| Ina()375           | Inn()//?       | InI0/12      | Inc 2968     | Ina0596            | _                    | _       |              | _     | _     | -       | _               | Unknown                                      |
| Ina()276           | Ipp0442        | InI0410      | Inc2067      | Ina0500            | Inw04501             | 1100518 | IIh1207      |       | _     | _       | sdhA            | GRIP coiled coil                             |
| lpg0370            | Ipp0443        | Ipi0413      | Inc2054      | Ipa0612            | IDW04331             | 1100040 | 101307       | -     | T     | Ŧ       | vinA            |                                              |
| 1pg0330            | Ipp0437        | Ipi0433      | Ipc2904      | Ipa0013            | IDV/04/21            | -       | -<br>1162762 | _     | _     | _       | log A 7/202     |                                              |
| 1090401            | 1pp0408        | 1010444      | ipc2942      | ipa0629            | 10004031             | 1102302 | 1102703      | +     | +     | +       | legA7/ceg       | UTIKITOWIT                                   |

| L. pneumophila     |                    |                    |                    |                    |                      |         | L. long   | beac | hae   | Name  | Product              |                                              |
|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------|-----------|------|-------|-------|----------------------|----------------------------------------------|
| Phila              | Paris              | Lens               | Corby              | Alcoy              | 130b                 | NSW 150 | D-4968    | AT   | 98072 | C-4E7 |                      |                                              |
| lpg0402            | _                  | _                  | _                  | _                  | _                    | _       | _         | _    | _     | _     | ankY/legA9           | Ankyrin, STPK                                |
| lpg0403            | lpp0469            | lpl0445            | lpc2941            | lpa0630            | lpw04841             | -       | -         | _    | _     | _     | ankG/ankZ/legA7      | Ankyrin                                      |
| lpg0405            | lpp0471            | lp10447            | lpc2939            | lpa0633            | lpw04861             | llo2845 | llb2472   | +    | +     | +     | -                    | Spectrin domain                              |
| lpg0422            | lpp0489            | lpl0465            | lpc2921            | lpa0657            | lpw05041             | llo2801 | llb2523   | +    | +     | +     | legY                 | Putative Glucan<br>1,4-alpha-<br>glucosidase |
| lpg0436<br>lpg0437 | lpp0503<br>lpp0504 | lpl0479<br>lpl0480 | lpc2906<br>lpc2905 | lpa0673<br>lpa0674 | lpw05181<br>lpw05191 | -       | -         | _    | _     | _     | ankJ/legA11<br>ceg14 | Ankyrin<br>Unknown                           |
| lpg0439            | lpp0505            | lpl0481            | lpc2904            | lpa0678            | lpw05201             | llo2983 | llb2392   | +    | +     | +     | ceg15                | Unknown                                      |
| lpg0483            | lpp0547            | lpl0523            | lpc2861            | lpa0739            | lpw05631             | llo2705 | llb2623   | +    | +     | +     | ankC/legA12          | Ankyrin                                      |
| lpg0515            | lpp0578            | lp10554            | lpc2829            | lpa0776            | lpw05951             | llo3224 | llb2129   | +    | +     | +     | legD2                | Phytanoyl-CoA<br>dioxygenase<br>domain       |
| lpg0518            | lpp0581            | lpl0557            | lpc2826            | lpa0781            | lpw05981             | -       | -         | -    | -     | -     | -                    | Unknown                                      |
| lpg0519            | -                  | -                  | -                  | -                  | -                    | -       | -         | -    | -     | -     | ceg17                | Unknown                                      |
| lpg0621            | lpp0675            | lpl0658            | lpc2673            | lpa0975            | lpw06951             | -       | -         | -    | -     | -     | sidA                 | Unknown                                      |
| lpg0634            | lpp0688            | lpl0671            | lpc2660            | lpa0996            | lpw07081             | llo2574 | llb2771   | +    | +     | +     | -                    | Unknown                                      |
| lpg0642            | lpp0696/9          | 97lpl0679          | lpc2651            | lpa1005            | lpw07161             | -       | -         | _    | -     | -     | wipB                 | Unknown                                      |
| lpg0695            | lpp0750            | lpl0732            | lpc2599            | lpa1082            | lpw07721             | -       | -         | -    | -     | -     | ankN/ankX legA8      | Ankyrin                                      |
| lpg0696            | lpp0751            | lpl0733            | lpc2598            | lpa1084            | lpw07731             | -       | -         | _    | -     | -     | lem3                 | Unknown                                      |
| lpg0716            | lpp0782            | lpl0753            | lpc2577            | lpa1108            | lpw07931             | -       | -         | _    | +     | +     | -                    | Unknown                                      |
| lpg0733            | lpp0799            | lp10770            | lpc2559            | lpa1135            | lpw08111             | llo0831 | llb0892   | +    | +     | +     | ravH                 | Unknown                                      |
| lpg0796            | lpp0859            | -                  | -                  | -                  | -                    | -       | -         | _    | -     | -     | -                    | Unknown                                      |
| lpg0898            | lpp0959            | lpl0929            | lpc2395            | lpa1360            | lpw09801             | -       | -         | _    | _     | -     | ceg18                | Unknown                                      |
| lpg0926            | lpp0988            | lpl0957            | lpc2365            | lpa1397            | lpw10111             | -       | -         | _    | _     | -     | ravl                 | Unknown                                      |
| lpg0940            | lpp1002            | lpl0971            | lpc2349            | lpa1415            | lpw10251             | -       | -         | _    | -     | -     | lidA                 | Unknown                                      |
| lpg0944            | lpp1006            | -                  | lpc2345            | lpa1421            | -                    | -       | -         | _    | _     | -     | ravJ                 | Unknown                                      |
| lpg0945            | lpp1007            | lpl1579            | lpc2344            | lpa1423            | lpw10311             | -       | -         | -    | _     | -     | legL1                | LLR                                          |
| lpg0963            | lpp1025            | lp10992            | lpc2324            | lpa1453            | lpw10491             | llo0934 | llb0782   | +    | +     | +     | -                    | Unknown                                      |
| lpg0967            | lpp1029            | -                  | lpc2320            | lpa1459            | lpw10531             | -       | -         | _    | _     | -     | -                    | Unknown                                      |
| lpg0968            | lpp1030            | lp10997            | lpc2319            | lpa1460            | lpw10541             | -       | -         | -    | -     | -     | sidK                 | Unknown                                      |
| lpg0969            | lpp1031            | lp10998            | lpc2318            | lpa1461            | lpw10551             | llo3265 | llb2078   | +    | +     | +     | ravK                 | Unknown                                      |
| lpg1083            | -                  | -                  | -                  | -                  | -                    | -       | -         | -    | -     | -     | -                    | Unknown                                      |
| lpg1101            | lpp1101            | lpl1100            | lpc2154*           | lpa1709            | lpw11451             | -       | -         | -    | _     | -     | lem4                 | Unknown                                      |
| lpg1106            | lpp1105            | lpl1105            | lpc2149            | lpa1719            | lpw11501             | llo1414 | llb0239/4 | +    | +     | +     | -                    | Unknown                                      |
| lpg1108            | lpp1108            | lpl1108            | lpc2146            | lpa1724            | lpw11531             | 1103030 | llb2350   | +    | +     | +     | ravL                 | Unknown                                      |
| lpg1109            | lpp1109            | -                  | lpc2145            | lpa1725            | -                    | -       | -         | -    | -     | -     | ravM                 | Unknown                                      |
| lpg1110            | lpp1111            | lp11114            | lpc2142            | lpa1728            | lpw11571             | -       | -         | -    | _     | -     | lem5                 | Unknown                                      |
| lpg1111            | lpp1112            | lpl1115            | lpc2141            | lpa1730            | lpw11581             | llo3126 | llb2244   | +    | +     | +     | ravN                 | Unknown                                      |
| lpg1120            | -                  | -                  | -                  | -                  | lpw11681             | -       | -         | -    | -     | -     | lem6                 | Unknown                                      |
| lpg1121            | lpp1121            | lpl1126            | lpc0578            | lpa1743            | lpw11691             | llo1321 | llb0348   | +    | +     | +     | ceg19                | Unknown                                      |
| lpg1124            | lpp1125            | lpl1129            | lpc0582            | lpa1748            | lpw11741             | llo3206 | llb2150   | +    | +     | +     | -                    | Unknown                                      |
| lpg1129            | lpp1130            | -                  | -                  | -                  | lpw11801             | -       | -         | -    | _     | -     | ravO                 | Unknown                                      |
| lpg1137            | lpp1139            | lpl1144            | lpc0601            | lpa1776            | lpw11901             | llo2404 | llb2962   | +    | +     | +     | -                    | Unknown                                      |
| lpg1144            | lpp1146            | lpl1150            | lpc0607            | lpa1785            | lpw11971             | -       | -         | -    | -     | -     | cegC3                | Unknown                                      |
| lpg1145            | lpp1147            | lpl1151            | lpc0608            | lpa1787            | lpw11981             | -       | -         | -    | _     | -     | lem7                 | Unknown                                      |
| lpg1147            | lpp1149            | lpl1153            | lpc0610            | lpa1789            | lpw12001             | -       | -         | _    | -     | -     | -                    | GCN5-related <i>N</i> -acetyltransferase     |
| lpg1148            | lpp1150            | lpl1154            | lpc0611            | lpa1790            | lpw12011             | -       | -         | -    | _     | _     | -                    | Unknown                                      |
| lpg1152            | lpp1154            | lp 1159            | lpc0615            | lpa1795            | lpw12061             | -       | -         | _    | -     | _     | ravP                 | Unknown                                      |

|         |           | L. pneun    | nophila  |         |          |         | L. long | gbeacl |       | Name  | Product    |                   |
|---------|-----------|-------------|----------|---------|----------|---------|---------|--------|-------|-------|------------|-------------------|
| Phila   | Paris     | Lens        | Corby    | Alcoy   | 130b     | NSW 150 | D-4968  | AT     | 98072 | C-4E7 |            |                   |
| lpg1154 | lpp1156   | lpl1161     | lpc0617  | lpa1797 | lpw12081 | llo2487 | llb2868 | +      | +     | +     | ravQ       | Unknown           |
| lpg1158 | lpp1160   | lpl1165*    | lpc0621  | lpa1802 | lpw12121 | -       | _       | -      | -     | -     | -          | Unknown           |
| lpg1166 | lpp1168   | lpl1174     | lpc0631  | lpa1819 | lpw12211 | llo1034 | llb0680 | +      | +     | +     | ravR       | Unknown           |
| lpg1171 | lpp1173   | lpl1179     | lpc0637  | lpa1826 | _        | -       | -       | -      | -     | -     | _          | Spectrin domain   |
| lpg1183 | lpp1186   | lpl1192     | lpc0650  | lpa1839 | lpw12401 | llo2390 | llb2978 | +      | +     | +     | ravS       | Unknown           |
| lpg1227 | lpp1235   | lpl1235     | lpc0696  | lpa1899 | lpw12861 | -       | _       | -      | _     | _     | vpdB       | Unknown           |
| lpg1273 | lpp1236   | lpl1236     | lpc0698  | lpa1901 | lpw12871 | -       | -       | _      | _     | _     | -          | Unknown           |
| lpg1290 | lpp1253   | -           | -        | -       | -        | -       | -       | _      | _     | _     | lem8       | Unknown           |
| lpg1312 | -         | -           | -        | -       | lpw13261 | -       | -       | _      | _     | _     | legC1      | Unknown           |
| lpg1316 | -         | -           | -        | -       | -        | llo1389 | llb0269 | +      | +     | +     | ravT       | Unknown           |
| lpg1317 | -         | -           | -        | -       | -        | -       | -       | _      | _     | _     | ravW       | Unknown           |
| lpg1328 | lpp1283   | lpl1282     | lpc0743  | lpa1958 | -        | -       | -       | _      | _     | _     | legT       | Thaumatin         |
|         |           |             |          |         |          |         |         |        |       |       |            | domain            |
| lpg1355 | lpp1309   | -           | -        | -       | -        | -       | -       | _      | _     | _     | sidG       | Coiled-coil       |
| lpg1426 | lpp1381   | lpl1377     | lpc0842  | lpa2090 | lpw14431 | llo1791 | llb3606 | +      | +     | +     | vpdC       | Patatin domain    |
| lpg1449 | lpp1404   | -           | -        | _       | lpw14671 | -       | _       | -      | _     | _     | -          | Unknown           |
| lpg1453 | lpp1409   | lpl1591     | lpc0868  | lpa2119 | lpw14711 | -       | -       | _      | _     | _     | -          | Unknown           |
| lpg1483 | lpp1439   | lpl1545     | lpc0898  | lpa2161 | lpw15031 | llo1682 | llb3727 | +      | +     | +     | legK1      | STPK              |
| lpg1484 | lpp1440   | lpl1544     | lpc0899  | lpa2162 | lpw15041 | -       | _       | -      | _     | _     | -          | Unknown           |
| lpg1488 | lpp1444   | lpl1540     | lpc0903* | lpa2168 | lpw15081 | -       | -       | _      | _     | _     | lgt3/legc5 | Coiled-coil       |
| lpg1489 | lpp1445   | lpl1539     | lpc0905  | lpa2169 | lpw15091 | -       | -       | _      | _     | _     | ravX       | Unknown           |
| lpg1491 | lpp1447   | -           | -        | -       | -        | -       | -       | _      | _     | _     | lem9       | Unknown           |
| lpg1496 | lpp1453   | lpl1530     | lpc0915  | lpa2185 | lpw15181 | -       | -       | _      | _     | _     | lem10      | Unknown           |
| lpg1551 | lpp1508   | lpl1475     | lpc0972  | lpa2253 | -        | -       | -       | -      | -     | -     | ravY       | Unknown           |
| lpg1578 | lpp4178   | lpl4143     | lpc1002  | lpa2292 | lpw16011 | llo1503 | llb0148 | +      | +     | +     | -          | Unknown           |
| lpg1588 | lpp1546   | lpl1437     | lpc1013  | lpa2305 | lpw16131 | -       | -       | _      | -     | -     | legC6      | Coiled-coil       |
| lpg1598 | lpp1556   | lpl1427     | lpc1025  | lpa2317 | lpw16231 | -       | -       | _      | _     | _     | lem11      | Unknown           |
| lpg1602 | lpp1567   | lpl1423/26* | lpc1028  | lpa2318 | lpw16241 | -       | -       | -      | -     | -     | legL2      | LRR               |
| lpg1621 | lpp1591   | lpl1402     | lpc1048  | lpa2346 | lpw16461 | llo1014 | llb0702 | +      | +     | +     | ceg23      | Unknown           |
| lpg1625 | lpp1595   | lpl1398     | lpc1052  | lpa2350 | lpw16511 | llo0719 | llb1016 | +      | +     | +     | lem23      | Unknown           |
| lpg1639 | lpp1609   | lpl1387     | lpc1068  | lpa2367 | lpw16651 | -       | -       | _      | _     | _     | -          | Unknown           |
| lpg1642 | lpp1612a/ | b lpl1384   | lpc1071  | lpa2371 | lpw16681 | -       | -       | -      | -     | -     | sidB       | Putative          |
|         |           |             |          |         |          |         |         |        |       |       |            | hydrolase         |
| lpg1654 | lpp1625   | -           | lpc1084  | lpa2390 | -        | llo0791 | llb0935 | +      | +     | +     | -          | Unknown           |
| lpg1660 | lpp1631   | lpl1625     | lpc1090  | lpa2398 | lpw16861 | -       | -       | -      | _     | _     | legL3      | LRR               |
| lpg1661 | lpp1632   | lpl1626     | lpc1091  | lpa2399 | lpw16871 | llo1691 | llb3715 | +      | +     | +     | -          | Putative N-acetyl |
|         |           |             |          |         |          |         |         |        |       |       |            | transferase       |
| lpg1666 | lpp1637   | lpl1631     | lpc1096  | lpa2408 | lpw16921 | -       | -       | -      | -     | -     | -          | Unknown           |
| lpg1667 | lpp1638   | lpl1632     | lpc1097  | lpa2409 | lpw16931 | -       | -       | -      | _     | —     | -          | Unknown           |
| lpg1670 | lpp1642   | lpl1635     | lpc1101  | lpa2413 | lpw16971 | -       | -       | -      | _     | —     | -          | Unknown           |
| lpg1683 | -         | -           | lpc1114  | lpa2431 | -        | llo2508 | llb2843 | +      | +     | +     | ravZ       | Unknown           |
| lpg1684 | -         | -           | lpc1115  | lpa2432 | -        | llo2267 | llb3113 | +      | +     | +     | -          | Unknown           |
| lpg1685 | -         | -           | lpc1116  | lpa2433 | -        | llo3208 | llb2147 | +      | +     | +     | -          | Unknown           |
| lpg1687 | lpp1656   | lpl1650     | lpc1118  | lpa2437 | lpw17121 | -       | -       | -      | _     | -     | mavA       | Unknown           |
| lpg1689 | lpp1658   | lpl1652     | lpc1120  | lpa2439 | lpw17141 | llo1697 | llb3708 | +      | +     | +     | -          | Unknown           |
| lpg1692 | -         | -           | lpc1123  | lpa2442 | -        | -       | -       | -      | _     | _     | -          | Unknown           |
| lpg1701 | lpp1666   | lpl1660     | lpc1130  | lpa2455 | lpw17231 | -       | -       | -      | -     | -     | ppeA/legC3 | Coiled-coil       |
| lpg1702 | lpp1667   | lpl1661     | lpc1131  | lpa2456 | lpw17241 | -       | -       | -      | -     | -     | рреВ       | Unknown           |
| lpg1716 | lpp1681   | lpl1675     | lpc1146  | lpa2474 | lpw17391 | -       | -       | -      | -     | -     | -          | Unknown           |
| lpg1717 | lpp1682   | -           | -        | -       | lpw17401 | -       | -       | _      | _     | _     | -          | Unknown           |

|           | L. pneumophila |              |           |              |                |         | L. long  | beac | hae   |       | Name        | Product                                   |
|-----------|----------------|--------------|-----------|--------------|----------------|---------|----------|------|-------|-------|-------------|-------------------------------------------|
| Phila     | Paris          | Lens         | Corby     | Alcoy        | 130b           | NSW 150 | D-4968   | AT   | 98072 | C-4E7 |             |                                           |
| lpg1718   | lpp1683        | lpl1682      | lpc1152   | lpa2484      | lpw17411       | _       | -        | _    | _     | _     | ankl/legAS4 | Ankyrin                                   |
| lpg1751   | lpp1715        | lpl1715      | lpc1191   | lpa2538      | lpw17761       | llo2314 | llb3061  | +    | +     | +     | -           | Unknown                                   |
| lpg1752   | lpp1716        | lpl1716      | lpc1192   | lpa2539      | lpw17771       | llo2315 | Ilb3060  | +    | +     | +     | -           | Unknown                                   |
| lpg1776   | lpp1740        | lpl1740      | lpc1217   | lpa2570      | lpw18031       | llo1437 | llb0214* | +    | +     | +     | -           | Unknown                                   |
| lpg1797   | -              | -            | lpc1239   | lpa2599      | lpw32931       | -       | _        | -    | _     | -     | rvfA        | Unknown                                   |
| lpg1798   | lpp1761        | lpl1761      | lpc1241   | lpa2600      | lpw18281       | llo0991 | llb0731  | +    | +     | +     | marB        | Unknown                                   |
| lpg1803   | lpp1766        | lpl1766      | lpc1246   | lpa2606      | lpw18331       | llo2611 | llb2729  | +    | +     | +     | -           | Unknown                                   |
| lpg1836   | lpp1799        | lpl1800      | lpc1280   | lpa2652      | lpw18691       | -       | -        | -    | _     | _     | ceg25       | Unknown                                   |
| lpg1851   | lpp1818        | lpl1817      | lpc1296   | lpa2675      | lpw18871       | llo1047 | llb0666  | +    | +     | +     | lem14       | Unknown                                   |
| lpg1884   | lpp1848        | lpl1845      | lpc1331   | lpa2714      | lpw19161       | -       | -        | -    | -     | -     | ylfB/legC2  | Coiled-coil                               |
| lpg1888   | lpp1855        | lpl1850      | lpc1336   | lpa2723      | lpw19211       | -       | -        | -    | _     | _     | -           | Unknown                                   |
| lpg1890   | -              | lpl1852      | lpc1338   | lpa2726      | lpw19231       | -       | -        | -    | _     | _     | legLC8      | LRR, coiled-coil                          |
| lpg1907   | lpp1882        | lpl1871      | lpc1361   | lpa2762      | lpw19461       | llo1240 | llb0452  | +    | +     | +     | -           | Unknown                                   |
| lpg1924   | lpp1899        | lpl1888      | lpc1378   | lpa2783      | lpw19631       | -       | -        | -    | _     | _     | -           | Unknown                                   |
| lpg1933   | lpp1914        | lpl1903      | lpc1406   | lpa2811      | lpw19721       | -       | -        | -    | _     | _     | lem15       | Unknown                                   |
| lpg1947   | lpp1930        | lpl1917*     | -         | lpa2835      | lpw19951       | -       | -        | -    | _     | _     | lem16       | Spectrin domain                           |
| lpg1948   | -              | -            | -         | -            | -              | -       | -        | -    | _     | _     | legLC4      | LRR, coiled-coil                          |
| lpg1949   | lpp1931        | lpl1918      | lpc1422   | lpa2837      | lpw19961       | -       | -        | _    | _     | _     | lem17       | Unknown                                   |
| lpg1950   | lpp1932        | lpl1919      | lpc1423   | lpa2838      | lpw19971       | llo1397 | llb0259  | +    | +     | +     | ralF        | Sec7 domain                               |
| lpg1953   | lpp1935        | lpl1922      | lpc1426   | lpa2842      | lpw20041       | -       | -        | -    | _     | _     | legC4       | Coiled-coil                               |
| lpg1958   | lpp1940        | -            | -         | -            | -              | -       | -        | —    | -     | -     | legL5       | LRR                                       |
| lpg1959   | lpp1941        | -            | -         | lpa2857      | lpw20101       | -       | -        | -    | _     | _     | -           | Unknown                                   |
| lpg1960   | lpp1942        | lpl1934*     | lpc1437   | lpa2859      | lpw20111       | llo0565 | llb1288  | +    | +     | +     | lirA        | Unknown                                   |
| lpg1962   | lpp1946        | lpl1936      | lpc1440   | lpa2861      | lpw20131       | -       | -        | -    | -     | -     | lirB        | Rotamase                                  |
| lpg1963   | -              | -            | lpc1441/4 | 2lpa2863     | -              | -       | -        | -    | _     | _     | pieA/lirC   | Unknown                                   |
| lpg1964   | -              | -            | -         | -            | -              | -       | -        | -    | -     | -     | pieB/lirD   | Unknown                                   |
| lpg1965   | -              | -            | lpc1443/4 | 15lpa2865    | lpw20141       | -       | -        | -    | -     | -     | pieC/lirE   | Unknown                                   |
| lpg1966   | lpp1947        | -            | lpc1446   | lpa2867      | lpw20151       | -       | -        | -    | -     | -     | pieD/lirF   | Unknown                                   |
| lpg1969   | lpp1952        | lpl1941      | lpc1452   | lpa2874      | lpw20201       | llo3131 | llb2239  | +    | +     | +     | pieE        | Unknown                                   |
| lpg1972   | lpp1955        | lpl1950      | lpc1459   | lpa2884      | lpw20291       | -       | -        | -    | -     | -     | pieF        | Unknown                                   |
| lpg1975   | lpp1959        | lpl1953      | lpc1462   | lpa2889(1)   | ) lpw20351     | -       | -        | -    | _     | -     | -           | Unknown                                   |
| lpg1976   | lpp1959        | lpl1953      | lpc1462   | lpa2889(2,   | ) lpw20351     | -       | -        | -    | -     | -     | pieG/legG1  | Regulator of chromo-<br>some condensation |
| lpg1978   | lpp1961        | lpl1955      | lpc1464   | lpa2892      | lpw20371       | -       | -        | -    | -     | _     | setA        | Putative Glyosyltrans-<br>ferase          |
| lpa1986   | 7967aal        | 1961 al      | lpc1469   | lpa2898      | lpw20431       | _       | _        | _    | _     | _     | _           | Unknown                                   |
| lpa2050   | 1002033        | lpl2028      | lpc1536   | lpa2992      | lpw21141       | _       | _        | _    | _     | _     | _           | Unknown                                   |
| lpg2131   | _              | _            | _         | _            | _              | -       | _        | _    | _     | _     | legA6       | Unknown                                   |
| lpa2137   | 0702qql        | lpl2066      | lpc1586   | lpa3060      | lpw23101       | _       | _        | _    | _     | _     | leaK2       | STPK                                      |
| lpa2144   | 2802aal        | lpl2072      | lpc1593   | lpa3071      | lpw23181       | _       | _        | _    | _     | _     | ankB/leg    | Ankvrin, F-box                            |
| In a 2147 | 1002006        | ,<br>In1207E | 1001506   | '<br>Inc2076 | '<br>In v22211 |         |          |      |       |       | AU13/ceg27  |                                           |
| 1pg2147   | 1002000        | 1p12075      | Ipc 1590  | 1pa3076      | IPW23211       | -       | _        | _    | -     | _     | mave        |                                           |
| 1pg2148   | 1pp2087        | IpI2076      | Ipc 1597  | Ipa3077      | IPW23221       | -       | -        | _    | _     | _     | -           | Unknown                                   |
| 1pg2149   | 1pp2088        | IpI2077      | IPC 1598  | Ipa3078      | Ipw23231       | -       | -        | _    | _     | _     | -           | Unknown                                   |
| ipg2153   | Ipp2092        | ipi2081      | Ipc1602   | Ipa3083      | ipw23271       | -       | -        | -    | -     | _     | saec        | Unknown                                   |
| 1pg2154   | 1pp2093        | Ipi2082      | Ipc1603   | Ipa3086      | Ipw23281       | 1103097 | 1102278  | +    | +     | +     | saec        | Unknown                                   |
| 1pg2155   | 1pp2094        | Ipi2083      | Ipc1604   | Ipa3087      | ipw23291       | 1103096 | 1162279  | +    | +     | +     | sidJ        | Unknown                                   |
| ipg2156   | Ipp2095        | ipi2084      | Ipc1605   | Ipa3088      | ipw23301       | 1103095 | 1102280  | +    | +     | +?    | saeB        | Unknown                                   |
| ipg2157   | ipp2096        | ipi2085      | IPC1618   | ipa3037      | ipw23331       | -       | -        | -    | -     | -     | saec        | UNKNOWN                                   |
| 1pg2166   | lpp2104        | lp12093      | lpc1626   | lpa3107      | Ipw23451       | 1102398 | 11b2969  | +    | +     | +     | lem19       | Unknown                                   |

| <table-container>          Parta         <t< th=""><th></th><th></th><th></th><th></th><th>L. long</th><th>beac</th><th>hae</th><th></th><th>Name</th><th>Product</th></t<></table-container>                                                                                                                                                                         |         |                    |          |         | L. long  | beac      | hae     |                | Name | Product |       |                      |                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|----------|---------|----------|-----------|---------|----------------|------|---------|-------|----------------------|------------------------------------------------|
| pg2190         pg2100         pg2190         pg2100         pg2190         pg2100         pg2190         pg2100                                                                                                                                                                                                                                                                                                                      | Phila   | Paris              | Lens     | Corby   | Alcoy    | 130b      | NSW 150 | D-4968         | AT   | 98072   | C-4E7 |                      |                                                |
| gp2179     gp218     gp118     gp118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lpg2160 | lpp2099            | lpl2088  | lpc1621 | lpa3100  | lpw23361  | llo2645 | llb2690        | +    | +       | +     | -                    | Unknown                                        |
| lpg2190         μp2190         μp2190         μp2190         μp2190         μp3190         μp319                                                                                                                                                                                                                                                                                                                      | lpg2176 | lpp2128            | lpl2102  | lpc1635 | lpa3118  | lpw23561  | _       | -              | -    | -       | -     | legS2                | Sphingosine-<br>1-phosphate<br>Iyase           |
| μg2210         μg2150         μg2124         μg1246         μg2164         μg2164         μg2164         μg2164         μg2164         μg2167         μg2164         μg2167         μg2174         μg2167         μg2175         μg2174         μg2167         μg2176         μg2177         μg2373         μg2373         μg2177         μg2373         μg2373         μg2177         μg2373         μg2373         μg2277         μg2274                                                                                                                                                                                                                                                                                                                      | lpg2199 | lpp2149            | lpl2123  | lpc1663 | lpa3157  | lpw23811  | -       | -              | -    | -       | -     | cegC4                | Unknown                                        |
| μg2216         μg218         <                                                                                                                                                                                                                                                                                                                                                      | lpg2200 | lpp2150            | lpl2124  | lpc1664 | lpa3158  | lpw23821  | -       | -              | -    | -       | -     | cegC4                | Unknown                                        |
| jpg2216         (pj2174         (pj2147         (pj2187         (pj2217         (pj2227         (pj2227         (pj2227         (pj2277         (pj2277         (pj2177         (pj2187         (pj2187 <t< td=""><td>lpg2215</td><td>lpp2166</td><td>lpl2140</td><td>lpc1680</td><td>lpa3179</td><td>lpw24011</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>legA2</td><td>Ankyrin</td></t<>                                                                                                | lpg2215 | lpp2166            | lpl2140  | lpc1680 | lpa3179  | lpw24011  | -       | -              | -    | -       | -     | legA2                | Ankyrin                                        |
| jpg2222         kp2171         kp12147         kpc1889         kpa3191         kpw24081         kp1431         kb2208         +         +         kpnE         Putative beta-<br>lettmasses (SEL1<br>domain)           jpg2230         ipp2175         ip12195         ipc1195         ipc1195         ipc3196         ipw24091         -         -         -         -         -         Unknown           ipp2239         ipp2192         -         -         -         -         -         -         -         -         Unknown           ipp2239         ipp2192         -         -         -         -         -         -         -         Unknown           ipp2239         ipp2236         ipp1717         ipp1717         ipp3237         ipw24371         ipp2210         ib2721         ipp2720         ipp1717         ipp3238         ipw2481         ib10170         ib3696         +         +         +         -         Unknown           ipp2230         ipp2230         ipp2230         ipp1720         ipp1747         ipp3338         ipw24811         ib10594         +         +         +         ankk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/makk1/                                                                                                                                                                                                                                                                                                                            | lpg2216 | lpp2167            | lpl2141  | lpc1681 | lpa3180  | lpw24021  | -       | -              | -    | -       | -     | lem20                | Unknown                                        |
| ipg2222         ipg2175         ipf2149*         ipg218         ipg218         ipg219         ipg219         ipg218         ipg218         ipg218         ipg218         ipg218         ipg218         ipg218         ipg218         ipg218         ipg219         ipg218         ipg219         ipg219         ipg2114         ipg2171         ipg228         ipg218         ipg2202         ipg1197         ipg179         ipg218         ipg228         ipg228         ipg228         ipg129         ipg228         ipg238         ipg238 <th< td=""><td>lpg2222</td><td>lpp2174</td><td>lpl2147</td><td>lpc1689</td><td>lpa3191</td><td>lpw24081</td><td>llo1443</td><td>llb0208</td><td>+</td><td>+</td><td>+</td><td>lpnE</td><td>Putative beta-<br/>lactamase (SEL1<br/>domain)</td></th<>                                                                        | lpg2222 | lpp2174            | lpl2147  | lpc1689 | lpa3191  | lpw24081  | llo1443 | llb0208        | +    | +       | +     | lpnE                 | Putative beta-<br>lactamase (SEL1<br>domain)   |
| bp2224         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>lpg2223</td> <td>lpp2175</td> <td>lpl2149*</td> <td>lpc1691</td> <td>lpa3196</td> <td>lpw24091</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>Unknown</td>                                                                                                                                                                                                                                                                                                                                   | lpg2223 | lpp2175            | lpl2149* | lpc1691 | lpa3196  | lpw24091  | -       | -              | -    | -       | -     | -                    | Unknown                                        |
| jpp2239         jpp2192         -         -         -         jpp2448         jpp2244         jpp2244         jpp2244         jpp2244         jpp2244         jpp2247         jpp2247         jpp2248         jpp2371         jpp2321         jpp2371         jpp2371         jpp2371         jpp2372         jpp2372         jpp2374         jpp2374         jpp2374         jpp2374         jpp2374         jpp2374         jpp2374         jpp2374         jpp2376         jpp3009         jpp3076                                                                                                                                                                                                                                                                                                   | lpg2224 | _                  | _        | -       | _        | -         | _       | _              | _    | -       | -     | ppgA                 | Regulator of chro-<br>mosome conden-<br>sation |
| Lip 2248         Lip 2271         Lip 2171         Lip 2171         Lip 2373         Lip 2374         Lip 2375         Lip 2375         Lip 2375         Lip 2375         Lip 2377         Lip 2378                                                                                                                                                                                                                                                                   | lpg2239 | lpp2192            | -        | -       | -        | lpw24261  | -       | -              | -    | -       | -     | -                    | Unknown                                        |
| ipp2221       ipp2224       ipp2214       ipp2147       ipp2140       ipp2141       ipp2238       ipp2244       ipp2141       ipp2248       ipp2244       ipp2247       ipp2141       ipp2141       ipp2300       ipp2244       ipp2244       ipp2247       ipp2141       ipp2141       ipp2300       ipp2244       ipp22444       ipp2244       ipp2244                                                                                                                                                                                                                                                                                                                                                              | lpg2248 | lpp2202            | lpl2174  | lpc1717 | lpa3237  | lpw24371  | -       | -              | -    | -       | -     | lem21                | Unknown                                        |
| ipg2288       ipg2248       ipf2217       ipc1763       ipa3296       ipw2481       lio1707       lib3896       +       +       +       ylfA/legC7       Colled-coll         ipg2300       ipp2248       ipl2219       ipc1765       ipa3298       ipw24871       lio0584       lib1266       +       +       +       ankH/       Ankyrin,         lpg2311       ipp2259       ipl2270       ipl2242       ipc17765       ipa3328       ipw24911       -       -       -       ceg28       Unknown         ipg3222       ipp2275       ipl2244       ipc1795       ipa3336       ipw25191       -       -       -       -       maxF       Unknown         ipg2344       ipp2202       ipl2248       ipo1795       ipa3376       ipw25611       -       -       -       maxF       Unknown         ipg2341       ipp2300       ipl2273       ipl2218       ipl3236       ipw2561       ipw2561       ib2466       +       +       +       maxF       Unknown         ipg2332       ipp2308       ipl2218       ipl2182       ipp3039       ipl2208       ipl2244       ipl2302       ipl2444       ipl2302       ipl2444       ipl2407       ipla416       ipw26011                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lpg2271 | lpp2225            | lpl2197  | lpc1740 | lpa3268  | lpw24611  | llo2530 | llb2821        | +    | +       | +     | -                    | Unknown                                        |
| Ipg2300       Ipp2248       Ipp2249       Ipp2219       Ipp2176       Ipp2312       Ipp2312       Ipp2312       Ipp2322       Ipp2322       Ipp2270       Ipp2322       Ipp2270       Ipp2322       Ipp2270       Ipp2322       Ipp2276       Ipp2322       Ipp2322       Ipp2322       Ipp2322       Ipp2322       Ipp2322       Ipp2322       Ipp2242       Ipc1789       Ipp3328       Ipw25181       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lpg2298 | lpp2246            | lpl2217  | lpc1763 | lpa3296  | lpw24841  | llo1707 | llb3696        | +    | +       | +     | ylfA/legC7           | Coiled-coil                                    |
| lpg2311         lpg2259         lpf2270         lpf2770         lpf2370         lpf2370         lpf2770         lpf2370         lpf2371         lpf2370         lpf316         lpf2370         lpf316         lpf2370         lpf316         lpf2470         lpf2471         lpf2370         lpf2371         lpf2470         lpf2471         lpf2372 <thlpf2371< th=""> <thlpf237< th=""> <thlpf23< td=""><td>lpg2300</td><td>lpp2248</td><td>lpl2219</td><td>lpc1765</td><td>lpa3298</td><td>lpw24871</td><td>llo0584</td><td>llb1266</td><td>+</td><td>+</td><td>+</td><td>ankH/<br/>legA3, ankW</td><td>Ankyrin,<br/>NfkappaB<br/>inhibitor</td></thlpf23<></thlpf237<></thlpf2371<> | lpg2300 | lpp2248            | lpl2219  | lpc1765 | lpa3298  | lpw24871  | llo0584 | llb1266        | +    | +       | +     | ankH/<br>legA3, ankW | Ankyrin,<br>NfkappaB<br>inhibitor              |
| lpg2322       lpg2270       lpl2242       lpc1789       lpa3328       lpw25121       llo0570       llb1282       +       +       +       ankK/legA5       Ankyrin         lpg2332       lpp2276       lpl2248       lpc1795       lpa3336       lpw25191       -       -       -       -       -       -       Unknown         lpg2344       lpp2276       lpl2265       lpc1812       lpa3355       lpw25371       -       -       -       -       mavF       Unknown         lpg3341       lpp2300       lpl2208       lpl2284       lpc1828       lpa3376       lpw25561       llo2850       llb2466       +       +       +       -       Unknown         lpg3350       lpp2308       lpl2281       lpc1828       lpa3376       lpw2561       llo2856       llb2460       +       +       +       -       Unknown         lpg3352       lpp2444       lpl2300       lpc2188       lpa4300       -       -       -       -       Unknown         lpg3352       lpp24458       lpl2316       lpc2384       lpa4300       pw26921       -       -       -       -       Unknown         lpg3362       lpp2458       lpl2316       lpcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lpg2311 | lpp2259            | lpl2230  | lpc1776 | lpa3312  | lpw24981  | -       | -              | -    | -       | -     | ceg28                | Unknown                                        |
| lpg2327         lpg2275         lpf2247         lpc1794         lpa3335         lpw25181         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lpg2322 | lpp2270            | lpl2242  | lpc1789 | lpa3328  | lpw25121  | llo0570 | llb1282        | +    | +       | +     | ankK/legA5           | Ankyrin                                        |
| lpg2328       lpg2276       lpl2278       lpl2278       lpl2278       lpl2278       lpl2278       lpl2278       lpl2281       lpl2361       lpl2281       lpl2281       lpl2381       lpl3381       lpl2481       lpl3387       lpl2481       lpl3381       lpl3381       lpl3381       lpl3481       lpl2481       lpl3381       lpl3481       lpl2481       lpl3381       lpl3481       lpl2481       lpl3481       lpl3481       ll1576       lbl071       +       +       +       -       Unknown         lpg2392       lpp2448       lpl2316       lpc2086       lpa3485       lpw26021       -       -       -       -       -       -       degL6       LRR         lpg2406       lpp24459       lpl2316       lpc2086       lpa3507       -       -       -       -       legL6       LRR         lpg2401       lpp2472                                                                                                                                                                                                                                                                                                                                                                                                                             | lpg2327 | lpp2275            | lpl2247  | lpc1794 | lpa3335  | lpw25181  | -       | -              | -    | -       | -     | -                    | Unknown                                        |
| lpg2344       lpp2292       lpl2265       lpc1812       lpa3365       lpw25371       -       -       -       -       -       mavE       Unknown         lpg2351       lpp2308       lpl2273       lpc1820       lpa3367       lpw25661       llo2850       llb2466       +       +       +       mavE       Unknown         lpg2350       lpp2308       lpl2281       lpc1828       lpa3376       lpw25561       llo2850       llb2466       +       +       +       mavE       Unknown         lpg2370       -       -       -       -       -       -       -       -       -       Unknown         lpg2371       lpp2444       lpl2300       lpc2108       lpa3466       lpw25841       lio1576       lb0071       +       +       +       -       Unknown         lpg2302       lpp2459       lpl215       lpc2060       lpa3486       lpw26021       -       -       -       -       db16       LRR         lpg2406       lpp2472       lpl2332       lpc2070       lpa3506       lpw2611       -       -       -       -       db16       LRR         lpg2400       lpp2474       -       lpc2065       lpa3513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lpg2328 | lpp2276            | lpl2248  | lpc1795 | lpa3336  | lpw25191  | -       | -              | -    | _       | _     | lem22                | Unknown                                        |
| lpg2351       lpp2300       lpl2173       lpc1820       lpa3367       lpw2561       llo2850       llb2466       +       +       +       mavF       Unknown         lpg2359       lpp2300       lp1281       lpc1888       lpa3376       lpw2561       lo2856       llb2460       +       +       +       -       Unknown         lpg2372       lpp3009       -       -       -       -       -       -       -       -       -       Unknown         lpg2382       lpp2444       lpl2300       lpc2108       lpa3446       lpw25811       llo1576       lb0071       +       +       +       -       Unknown         lpg2392       lpp2459       lpl2316       lpc2086       lpa3486       lpw26021       -       -       -       -       lpa466       LRR         lpg2400       -       lpl2323       lp22472       lpl2332       lpc2070       lpa3506       lpw26191       llo2172       lb3225       +       +       +       legL6       LRR         lpg2400       lpp2476       lpl2332       lpc2067       lpa3507       -       -       -       -       -       -       Unknown         lpg2410       lpp2476<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lpg2344 | lpp2292            | lpl2265  | lpc1812 | lpa3355  | lpw25371  | -       | -              | -    | -       | -     | mavE                 | Unknown                                        |
| Ipg2359       Ipp2308       Ipl2281       Ipc1828       Ipa376       Ipw2561       Ilo2856       Ilb2460       +       +       +       -       Unknown         Ipg3370       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>lpg2351</td><td>lpp2300</td><td>lpl2273</td><td>lpc1820</td><td>lpa3367</td><td>lpw25461</td><td>llo2850</td><td>llb2466</td><td>+</td><td>+</td><td>+</td><td>mavF</td><td>Unknown</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                    | lpg2351 | lpp2300            | lpl2273  | lpc1820 | lpa3367  | lpw25461  | llo2850 | llb2466        | +    | +       | +     | mavF                 | Unknown                                        |
| <i>lpg2370</i> -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lpg2359 | lpp2308            | lpl2281  | lpc1828 | lpa3376  | lpw25561  | llo2856 | llb2460        | +    | +       | +     | -                    | Unknown                                        |
| lpg2372       lpp3009       -       lpc3248       lpa300       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>lpg2370</td> <td>-</td> <td>HipA fragment</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lpg2370 | -                  | -        | -       | -        | -         | -       | -              | -    | -       | -     | -                    | HipA fragment                                  |
| Ipg2382       Ipp2444       Ipl2300       Ipc2108       Ipa3446       Ipw25841       Ilo1576       Ilb071       +       +       +       -       Unknown         Ipg2391       Ipp2458       Ipl2315       Ipc2086       Ipa3485       Ipw26021       -       -       -       -       -       -       sdbC       Unknown         Ipg2400       -       Ipl2323       -       -       Ipw26121       -       -       -       -       IggL6       LRR         Ipg2400       -       Ipl2323       -       -       Ipw26121       -       -       -       -       IggL6       LRR         Ipg2400       Ipp2472       Ipl2323       Ipc2070       Ipa3506       Ipw26211       Ibs225       +       +       +       IegL6       LRR         Ipg2406       Ipp2477       Ipl2332       Ipc2069       Ipa3507       -       -       -       -       -       -       Unknown         Ipg2410       Ipp2479       Ipl2334       Ipc2065       Ipa3513       Ipw26261       -       -       -       -       -       -       P       P       Pademontalina         Ipg2411       Ipp2480       Ipl2333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lpg2372 | lpp3009            | -        | lpc3248 | lpa4300  | -         | -       | -              | -    | -       | -     | -                    | Unknown                                        |
| lpg2391       lpp2458       lpl2315       lpc2086       lpa3485       lpw26021       -       -       -       -       -       sdbC       Unknown         lpg2392       lpp2459       lpl2316       lpc2085       lpa3486       lpw26011       -       -       -       -       legL6       LRR         lpg2400       -       lpl2323       -       -       lpw26121       -       -       -       legL6       LRR         lpg2406       lpp2472       lpl2329       lpc2070       lpa3506       lpw26121       -       -       -       -       legL6       LRR         lpg2407       lpp2474       -       lpc2069       lpa3507       -       -       -       -       -       -       Unknown         lpg2409       lpp2476       lpl2332       lpc2067       lpa3511       lpw2621       -       -       -       -       -       P       P       P       P       P       P       Patatin domain       P         lpg2410       lpp2480       lpl2331       lpc2067       lpa3515       lpw2621       -       -       -       P       P       P       P       P       P       P       P       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lpg2382 | lpp2444            | lpl2300  | lpc2108 | lpa3446  | lpw25841  | llo1576 | llb0071        | +    | +       | +     | -                    | Unknown                                        |
| lpg2392       lpp2459       lpl2316       lpc2085       lpa3486       lpw26041       -       -       -       legL6       LRR         lpg2400       -       lpl2323       -       -       lpw26121       -       -       -       legL6       LRR         lpg2406       lpp2472       lpl2329       lpc2070       lpa3506       lpw26191       llo2172       llb3225       +       +       +       legL6       LRR         lpg2406       lpp2477       lpl2329       lpc2069       lpa3507       -       -       -       -       -       -       Unknown         lpg2409       lpp2476       lpl2332       lpc2067       lpa3511       lpw26261       -       -       -       -       cg299       Unknown         lpg2410       lpp2479       lpl2334       lpc2065       lpa3513       lpw26261       -       -       -       -       vpdA       Patatin domain         lpg2410       lpp2480       lpl2335       lpc2064       lpa3515       lpw26281       lo2227       lb3158       +       +       +       lem24       Unknown         lpg2411       lpp2480       lpl2333       lpc2057       lpa3527       lpw26391 <td< td=""><td>lpg2391</td><td>lpp2458</td><td>lpl2315</td><td>lpc2086</td><td>lpa3485</td><td>lpw26021</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>sdbC</td><td>Unknown</td></td<>                                                                                                                                                                                                                                                                                                              | lpg2391 | lpp2458            | lpl2315  | lpc2086 | lpa3485  | lpw26021  | -       | -              | -    | -       | -     | sdbC                 | Unknown                                        |
| lpg2400       -       lpl2323       -       -       lpw26121       -       -       -       -       legL6       LRR         lpg2406       lpp2472       lpl2329       lpc2070       lpa3506       lpw26191       llo2172       llb3225       +       +       +       lem23       Unknown         lpg2407       lpp2474       -       lpc2069       lpa3507       -       -       -       -       -       -       Unknown         lpg2409       lpp2476       lpl2332       lpc2067       lpa3511       lpw26241       -       -       -       -       -       ceg29       Unknown         lpg2410       lpp2479       lpl2334       lpc2065       lpa3513       lpw26261       -       -       -       -       -       -       Patatin domain         lpg2410       lpp2486       lp2335       lpc2064       lpa3515       lpw26281       llo2227       llb3158       +       +       +       lem24       Unknown         -       lpp2486       -       -       -       -       -       -       -       Fbox         lpg2410       -       lpl2343       lpc2057       lpa3527       lpw26391       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lpg2392 | lpp2459            | lpl2316  | lpc2085 | lpa3486  | lpw26041  | -       | -              | -    | -       | -     | legL6                | LRR                                            |
| Ipg2406       Ipp2472       Ipl2329       Ipc2070       Ipa3b06       Ipw26191       IIo2172       IIb3225       +       +       +       Iem23       Unknown         Ipg2407       Ipp2474       -       Ipc2069       Ipa3507       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lpg2400 | -                  | lpl2323  | -       | -        | lpw26121  | -       | -              | -    | -       | -     | legL6                | LRR                                            |
| Ipg2407       Ipp2474       -       Ipc2069       Ipa3507       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lpg2406 | Ipp2472            | Ip12329  | Ipc2070 | Ipa3506  | lpw26191  | 1102172 | 1163225        | +    | +       | +     | lem23                | Unknown                                        |
| Ipg2409       Ipp2476       IpI2332       Ipc2067       Ipa3511       Ipw26241       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>lpg2407</td> <td>lpp24/4</td> <td>-</td> <td>lpc2069</td> <td>Ipa3507</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>Unknown</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lpg2407 | lpp24/4            | -        | lpc2069 | Ipa3507  | -         | -       | -              | _    | -       | -     | -                    | Unknown                                        |
| Ipg2410       Ipp2349       IpI2334       Ip22055       Ipa3513       IpW26261       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>Ipg2409</td> <td>Ipp2476</td> <td>Ipi2332</td> <td>Ipc2067</td> <td>Ipa3511</td> <td>IPW26241</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>_</td> <td>ceg29</td> <td>Unknown</td>                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ipg2409 | Ipp2476            | Ipi2332  | Ipc2067 | Ipa3511  | IPW26241  | -       | -              | _    | -       | _     | ceg29                | Unknown                                        |
| Ipg2411       Ipp2480       Ipl2335       Ipl2064       Ipa3515       Ipw26281       IID2227       IID3158       +       +       +       Ieff24       Offknown         -       Ipp2486       -       -       -       -       -       -       -       Fbox         Ipg2416       -       Ipl2339       Ipc2057       Ipa3527       Ipw26351       -       -       -       -       IegA1       Unknown         Ipg2420       -       Ipl2343       Ipc2056       Ipa3529       Ipw26391       -       -       -       -       -       Unknown         Ipg2422       Ipp2487       Ipl2345       Ipc2055       Ipa3530       Ipw26401       Ilo1650       Ilb3763/6 <sup>2</sup> +       +       +       Iem25       Unknown         Ipg2424       Ipp2489       Ipl2347       Ipc2053       Ipa3537       Ipw26421       -       -       -       -       mavG       Unknown         Ipg2433       Ipp2500       Ipl2348       Ipc2051       Ipa3537       Ipw26431       -       -       -       -       mavH       Unknown         Ipg2433       Ipp2500       Ipl2353       Ipc2043       Ipa3550       Ipw26531       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1pg2410 | Ipp2479            | IpI2334  | Ipc2065 | Ipa3513  | IPW26261  | -       | -              | -    | -       | _     | VpaA                 | Patatin domain                                 |
| -       ipp2480       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>1pg2411</td> <td>Ipp2480</td> <td>IPI2335</td> <td>Ipc2064</td> <td>Ipa3515</td> <td>IPW26281</td> <td>1102227</td> <td>1103 158</td> <td>+</td> <td>+</td> <td>+</td> <td>Iem24</td> <td>Unknown</td>                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1pg2411 | Ipp2480            | IPI2335  | Ipc2064 | Ipa3515  | IPW26281  | 1102227 | 1103 158       | +    | +       | +     | Iem24                | Unknown                                        |
| Ipg2416       -       IpI2339       IpI2057       IpI3327       IpW26351       -       -       -       -       -       -       IegA17       Unknown         Ipg2420       -       IpI2343       Ipc2056       Ipa3529       IpW26391       -       -       -       -       -       -       Unknown         Ipg2422       Ipp2487       IpI2345       Ipc2055       Ipa3530       Ipw26431       Io1650       IIb3763/6       +       +       +       Iem255       Unknown         Ipg2424       Ipp2489       IpI2348       Ipc2051       Ipa3537       Ipw26421       -       -       -       -       mavG       Unknown         Ipg2425       Ipp2491       IpI2348       Ipc2051       Ipa3537       Ipw26431       -       -       -       -       mavH       Unknown         Ipg2433       Ipp2500       IpI2353       Ipc2043       Ipa3548       Ipw26521       -       -       -       -       mavH       Unknown         Ipg2434       Ipp2501       IpI2355       Ipc2042       Ipa3550       Ipw26531       -       -       -       -       -       -       Unknown         Ipg2443       Ipp2510       Ip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -       | Ipp2486            | -        | -       | -        | -         |         |                |      | -       | _     | -                    | F-DOX                                          |
| Ip22420       -       Ip22433       Ip22435       Ip22056       Ip33529       Ip33529       Ip33529       Ip33529       Ip35329       Ip326421       -       -       -       -       mavG       Unknown         Ipg24431       Ipp2500       Ip12353       Ipc2043       Ipa3548       Ipw26521       -       -       -       -       -       mavH       Unknown       Unknown       Ipg2434       Ipp2501       Ip12355       Ipc2042       Ipa3550       Ipw26531       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1pg2410 | -                  | IPI2339  | 1pc2057 | 1pa3527  | IPW26351  | -       | -              | _    | _       | _     | legAl                | Unknown                                        |
| Ip22422       Ip122437       Ip122437       Ip122437       Ip122437       Ip22053       Ip23530       Ip220401       In570570       +       +       +       In1257       Offkriowin         Ipg2424       Ip22489       Ip12347       Ipc2053       Ipa3532       Ipw26421       -       -       -       -       -       mavG       Unknown         Ipg2425       Ipp2491       Ip12348       Ipc2051       Ipa3537       Ipw26431       -       -       -       -       mavH       Unknown         Ipg2433       Ipp2500       Ip12353       Ipc2043       Ipa3548       Ipw26521       -       -       -       -       ceg30       Unknown         Ipg2434       Ipp2501       Ip12355       Ipc2042       Ipa3550       Ipw26531       -       -       -       -       -       Unknown         Ipg2443       Ipp2510       Ip12363       Ipc2033       Ipa3562       -       -       -       -       -       -       Unknown         Ipg2444       Ipp2511       Ipl2364       Ipc2032       Ipa3563       Ipw26641       -       -       -       -       -       mavI       Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1pg2420 | -<br>Inn2107       | 1p12343  | Ipc2056 | Ipa3529  | Ipw26391  | -       | -<br>1162762/6 | _    | _       | _     | -<br>lom25           | Unknown                                        |
| Ipg2424       Ipp2435       Ipl2455       Ipl22457       Ip                                                                                                                                                                                                                                                                                                                             | 1pg2422 | 1pp2407            | Ip12343  | Ipc2055 | Ipa3530  | Ipw26421  | 1101050 | 1103703/02     | +    | +       | +     | nerrizo<br>mayG      | Unknown                                        |
| Ipg2425       Ipp2491       Ipl2491       Ipl2501       Ipl2501       Ipl2502       Ipla3550       Ipw26531       -       -       -       -       -       Unknown         Ipg2443       Ipp2510       Ipl2363       Ipc2032       Ipa3562       -       -       -       -       -       Unknown         Ipg2444       Ipp2511       Ipl2364       Ipc2032       Ipa3563       Ipw26641       -       -       -       -       mav/       Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lpg2424 | 1pp2403            | 1p12347  | lpc2055 | Ipa3532  | Ipw20421  | -       | -              | _    | -       | -     | mavU<br>mavH         | Unknown                                        |
| Ipg2434       Ipp2501       Ipl2002       Ipa3550       Ipw26021       -       -       -       -       -       Cegoto       Offkilowit         Ipg2434       Ipp2501       Ipl2355       Ipc2042       Ipa3550       Ipw26531       -       -       -       -       -       Unknown         Ipg2443       Ipp2510       Ipl2363       Ipc2032       Ipa3562       -       -       -       -       -       Unknown         Ipg2444       Ipp2511       Ipl2364       Ipc2032       Ipa3563       Ipw26641       -       -       -       -       mav/       Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1pg2420 | 1002431<br>1002500 | In/2340  | Inc2001 | Ina25/19 | Inw/26521 | _       | _              | _    | _       | _     | cea30                | Unknown                                        |
| lpg2443 lpp2510 lpl2363 lpc2032 lpa3562 Unknown<br>lpg2444 lpp2511 lpl2364 lpc2032 lpa3563 lpw26641 mavl Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ina2434 | Inn2501            | In/2355  | Inc2042 | Ina:3550 | Inw26531  | _       | _              | _    | _       | _     | _                    | Unknown                                        |
| lpg2444 lpp2511 lpl2364 lpc2032 lpa3563 lpw26641 – – – – – mavl Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ina2443 | Inn2510            | Inl2363  | Inc2033 | Ina3562  | -         | _       | _              | _    | _       | _     | _                    | Unknown                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lpg2444 | lpp2511            | lpl2364  | lpc2032 | lpa3563  | lpw26641  | _       | -              | _    | _       | _     | mavl                 | Unknown                                        |

|         | L. pneumophila  |         |                 |         |          |         | L. long | beac | hae   | Name  | Product               |                           |
|---------|-----------------|---------|-----------------|---------|----------|---------|---------|------|-------|-------|-----------------------|---------------------------|
| Phila   | Paris           | Lens    | Corby           | Alcoy   | 130b     | NSW 150 | D-4968  | AT   | 98072 | C-4E7 |                       |                           |
| lpg2452 | lpp2517         | lpl2370 | lpc2026         | lpa3574 | lpw26701 | -       | -       | _    | -     | -     | ankF/leg<br>A14/ceg31 | Ankyrin                   |
| lpg2456 | lpp2522         | lpl2375 | lpc2020         | lpa3583 | lpw26751 | llo0365 | llb1493 | +    | +     | +     | ankD/legA15           | Ankyrin                   |
| lpg2461 | lpp2527         | lpl2380 | lpc2015         | lpa3589 | lpw26801 | llo1991 | llb3433 | +    | +     | +     | -                     | Unknown                   |
| lpg2464 | -               | lpl2384 | -               | _       | lpw26851 | -       | -       | -    | -     | _     | sidM/drrA             | Unknown                   |
| lpg2465 | -               | lpl2385 | -               | -       | lpw26861 | -       | -       | -    | _     | _     | sidD                  | Unknown                   |
| lpg2490 | lpp2555         | lpl2411 | lpc1987         | lpa3628 | lpw27131 | -       | -       | -    | _     | _     | lepB                  | Coiled-coil, Rab1 GAP     |
| lpg2482 | lpp2546         | lpl2402 | lpc1996         | lpa3615 | lpw27041 | -       | -       | -    | -     | -     | sdbB                  | Unknown                   |
| lpg2498 | lpp2566         | lpl2420 | lpc1975         | lpa3646 | lpw27241 | -       | -       | -    | -     | -     | mavJ                  | Unknown                   |
| lpg2504 | lpp2572         | lpl2426 | lpc1967         | lpa3658 | lpw27301 | llo2525 | llb2826 | +    | +     | +     | sidl/ceg32            | Unknown                   |
| lpg2505 | lpp2573         | lpl2427 | lpc1966         | lpa3659 | lpw27311 | llo2526 | llb2825 | +    | +     | +     | -                     | Unknown                   |
| lpg2508 | lpp2576         | lpl2430 | lpc1962/<br>63* | lpa3666 | lpw27341 | -       | -       | -    | _     | -     | sdjA                  | Unknown                   |
| lpg2509 | lpp2577         | lpl2431 | lpc1961         | lpa3667 | lpw27351 | llo3097 | llb2278 | +    | +     | +     | sdeD                  | Unknown                   |
| lpg2510 | lpp2578         | Ipl2432 | lpc1960         | lpa3668 | -        | 1103098 | llb2276 | +    | +     | +     | sdcA                  | Unknown                   |
| lpg2511 | lpp2579         | lpl2433 | lpc1959         | lpa3669 | lpw27371 | -       | -       | -    | -     | _     | sidC                  | PI(4)P binding domain     |
| lpg2523 | _               | _       | _               | _       | lpw27501 | _       | _       | _    | _     | _     | lem26                 | Unknown                   |
| lpg2525 | _               | _       | _               | _       | _        | _       | _       | _    | _     | _     | mavK                  | Unknown                   |
| lpg2526 | lpp2591         | lpl2446 | lpc1946         | lpa3687 | lpw27521 | _       | _       | _    | _     | _     | mavL                  | Unknown                   |
| lpg2527 | lpp2592         | lpl2447 | lpc1944         | lpa3688 | lpw27531 | llo3335 | llb2002 | +    | +     | +     | -                     | Unknown                   |
| lpg2529 | lpp2594         | lpl2449 | lpc1942         | lpa3692 | lpw27551 | llo2238 | llb3146 | +    | +     | +     | lem27                 | Unknown                   |
| lpg2538 | lpp2604         | lpl2459 | lpc1930         | lpa3706 | lpw27671 | -       | -       | -    | -     | _     | -                     | Unknown                   |
| lpg2539 | lpp2605         | lpl2460 | lpc1929         | lpa3707 | lpw27681 | llo1348 | llb0317 | +    | +     | +     | -                     | Unknown                   |
| lpg2541 | lpp2607         | lpl2462 | lpc1927         | lpa3710 | lpw27701 | -       | -       | -    | -     | -     | -                     | Unknown                   |
| lpg2546 | lpp2615         | _       | lpc1919         | lpa3727 | lpw27791 | _       | _       | _    | _     | _     | _                     | Unknown                   |
| lpg2552 | lpp2622         | lpl2473 | lpc1911         | lpa3738 | lpw27871 | llo1062 | llb0648 | +    | +     | +     | -                     | Unknown                   |
| lpg2555 | lpp2625         | lpl2480 | lpc1908         | lpa3743 | lpw27901 | llo2220 | llb3170 | +    | +     | +     | -                     | Unknown                   |
| lpg2556 | lpp2626         | lpl2481 | lpc1906         | lpa3745 | lpw27911 | llo2218 | llb3172 | +    | +     | +     | legK3                 | STPK                      |
| lpg2577 | lpp2629         | lpl2499 | lpc0570         | lpa3768 | lpw28241 | -       | -       | -    | -     | -     | mavM                  | Unknown                   |
| lpg2584 | lpp2637         | lpl2507 | lpc0561         | lpa3779 | lpw28321 | -       | -       | _    | _     | -     | sidF                  | Unknown                   |
| lpg2588 | lpp2641         | lpl2511 | lpc0557         | lpa3784 | lpw28361 | llo2622 | llb2718 | +    | +     | +     | legS1                 | Unknown                   |
| lpg2591 | lpp2644         | lpl2514 | lpc0551         | lpa3790 | lpw28391 | llo0626 | llb1219 | +    | +     | +     | ceg33                 | Unknown                   |
| lpg2603 | lpp2656         | lpl2526 | lpc0539         | lpa3807 | lpw28521 | -       | -       | -    | -     | -     | lem28                 | Unknown                   |
| lpg2628 | lpp2681         | lpl2553 | lpc0513         | lpa3846 | lpw28781 | -       | -       | -    | _     | _     | -                     | Unknown                   |
| lpg2637 | lpp2690         | lpl2562 | lpc0503         | lpa3859 | lpw28871 | -       | -       | -    | -     | _     | -                     | Unknown                   |
| lpg2638 | lpp2691         | lpl2563 | lpc0502         | lpa3861 | lpw28891 | llo2645 | llb2690 | +    | +     | +     | mavV                  | Unknown                   |
| lpg2692 | lpp2746         | lpl2619 | lpc0444         | lpa3929 | lpw29461 | -       | -       | -    | -     | _     | -                     | Unknown                   |
| lpg2694 | lpp2748         | lpl2621 | lpc0442         | lpa3931 | lpw29481 | -       | -       | -    | -     | -     | legD1                 | Phyhd1 protein            |
| lpg2718 | lpp2775         | lpl2646 | lpc0415         | lpa3966 | lpw29771 | -       | -       | -    | -     | _     | wipA                  | Unknown                   |
| lpg2720 | lpp2777         | lpl2648 | lpc0413         | lpa3968 | lpw29791 | -       | -       | -    | -     | -     | legN                  | cAMP-binding protein      |
| lpg2744 | lpp2800         | lpl2669 | lpc0386         | lpa4004 | lpw30031 | _       | -       | -    | -     | _     | _                     | Unknown                   |
| lpg2745 | lpp2801         | lpl2670 | lpc0385         | lpa4005 | lpw30041 | 1100308 | llb1553 | +    | +     | +     | -                     | Unknown                   |
| lpg2793 | lpp2839         | lpl2708 | lpc3079         | lpa4063 | lpw30471 | -       | -       | -    | -     | _     | lepA                  | Effector protein A        |
| lpg2804 | lpp2850         | lpl2719 | lpc3090         | lpa4076 | lpw30591 | llo0267 | llb1598 | +    | +     | +     | lem29                 | Unknown                   |
| lpg2815 | lpp2867         | lpl2730 | lpc3101         | lpa4089 | lpw30711 | llo0254 | llb1612 | +    | +     | +     | mavN                  | Unknown                   |
| lpg2826 | -               | lpl2741 | lpc3113         | lpa4104 | lpw30831 | _       | -       | -    | -     | -     | ceg34                 | Unknown                   |
| lpg2828 | lpp2882         | lpl2743 | lpc3115         | lpa4109 | lpw30851 | llo0783 | llb0944 | +    | +     | +     | -                     | Unknown                   |
| lpg2829 | lpp2883/<br>86* | -       | -               | -       | lpw30861 | -       | -       | -    | -     | -     | sidH                  | Unknown                   |
| lpg2830 | lpp2887         | -       | -               | -       | lpw30881 | -       | -       | _    | _     | _     | lubX/legU2            | U-box motif               |
| lpg2831 | lpp2888         | -       | -               | -       | lpw30891 | -       | -       | -    | -     | -     | VipD                  | Patatin-like phopholipase |

|         |         | L. pnei | umophila |         |          |         | L. long | beac | hae   |       | Name       | Product             |
|---------|---------|---------|----------|---------|----------|---------|---------|------|-------|-------|------------|---------------------|
| Phila   | Paris   | Lens    | Corby    | Alcoy   | 130b     | NSW 150 | D-4968  | AT   | 98072 | C-4E7 |            |                     |
| lpg2832 | lpp2889 | lpl2744 | lpc3116  | lpa4110 | lpw30921 | llo0214 | llb1656 | +    | +     | +     | -          | Putative hydrolase  |
| lpg2844 | lpp2903 | lpl2756 | lpc3128  | lpa4133 | -        | -       | -       | -    | _     | -     | _          | Unknown             |
| lpg2862 | -       | -       | -        | -       | -        | -       | -       | _    | _     | _     | Lgt2/legC8 | Coiled-coil         |
| lpg2874 | lpp2933 | lpl2787 | lpc3160  | lpa4176 | lpw31411 | -       | -       | -    | -     | -     | -          | Unknown             |
| lpg2879 | lpp2938 | lpl2792 | lpc3165  | lpa4186 | lpw31471 | llo0192 | llb1681 | +    | +     | +     | -          | Unknown             |
| lpg2884 | lpp2943 | lpl2797 | lpc3170  | lpa4193 | lpw31531 | llo0197 | llb1676 | +    | +     | +     | -          | Unknown             |
| lpg2885 | lpp2944 | lpl2798 | lpc3171  | -       | lpw31541 | _       | -       | -    | _     | -     | _          | Unknown             |
| lpg2888 | lpp2947 | lpl2801 | lpc3174  | lpa4199 | lpw31571 | 1100200 | llb1672 | +    | +     | +     | -          | Unknown             |
| lpg2912 | lpp2980 | lpl2830 | lpc3214  | lpa4255 | lpw31931 | -       | -       | -    | _     | -     | _          | Unknown             |
| lpg2936 | lpp3004 | lpl2865 | lpc3243  | lpa4293 | lpw32251 | llo0081 | llb1804 | +    | +     | +     | -          | rRNA small subunit  |
|         |         |         |          |         |          |         |         |      |       |       |            | methyltransferase E |
| lpg2975 | lpp3047 | lpl2904 | lpc3290  | lpa4358 | -?       | llo3405 | llb1930 | +    | +     | +     | -          | Unknown             |
| lpg2999 | lpp3071 | lpl2927 | lpc3315  | lpa4395 | lpw32851 | _       | -       | _    | _     | _     | legP       | Astacin protease    |
| lpg3000 | lpp3072 | lpl2928 | lpc3316  | lpa4397 | lpw32861 | llo3444 | llb1887 | +    | +     | +     | -          | Unknown             |

List of substrates is based on Isberg et al. (2009), De Felipe et al. (2008), Ninio et al. (2009), Zhu et al. (2011); AT = ATCC33462; \*pseudogene, +? or -? strains 130b, C-4E7 and 98072 are not a finished sequence and not manually curated. Thus absence of a substrate can also be due to gaps in the sequence; shaded in gray, substrates conserved in all L. pneumophila and L. longbeachae genomes.

sphingosine-1-phosphate lyase and sphingosine kinase, eukaryotic like glycoamylase, cytokinin oxidase, zinc metalloprotease, or an RNA binding precursor (Cazalet et al., 2004; De Felipe et al., 2005; Bruggemann et al., 2006). Function prediction based on similarity searches suggested that many of these proteins are implicated in modulating host cell functions to the pathogens advantage (Cazalet et al., 2004). Recent functional studies confirm these predictions.

As a first example, it was shown that L. pneumophila is able to interfere with the host ubiquitination pathway. The L. pneumophila U-box containing protein LubX was shown to be a secreted effector of the Dot/Icm secretion system that mediates polyubiquitination of a host kinase Clk1 (Kubori et al., 2008). Recently, LubX was described as the first example of an effector protein, which targets and regulates another effector within host cells, as it functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of co-evolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein (Kubori et al., 2010; Luo, 2011). Furthermore, AnkB/Lpp2028, one of the three F-box proteins of L. pneumophila, was shown to be a T4SS effector that is implicated in virulence of L. pneumophila and in recruiting ubiquitinated proteins to the LCV (Al-Khodor et al., 2008; Price et al., 2009; Habyarimana et al., 2010; Lomma et al., 2010).

A second example is the apyrases (Lpg1905 and Lpg0971) encoded in the *L. pneumophila* genomes. Indeed, both are secreted enzymes important for intracellular replication of *L. pneumophila*. Lpg1905 is a novel prokaryotic ecto-NTPDase, similar to CD39/NTPDase1, which is characterized by the presence of

five apyrase-conserved regions and enhances the replication of L. pneumophila in eukaryotic cells (Sansom et al., 2007). Apart from ATP and ADP, Lpg1905 also cleaves GTP and GDP with similar efficiency to ATP and ADP, respectively (Sansom et al., 2008). A third example is a L. pneumophila homolog of the highly conserved eukaryotic enzyme sphingosine-1-phosphate lyase (Spl). In eukaryotes, SPL is an enzyme that catalyzes the irreversible cleavage of sphingosine-1-phosphate (S1P). S1P is implicated in various physiological processes like cell survival, apoptosis, proliferation, migration, differentiation, platelet aggregation, angiogenesis, lymphocyte trafficking and development. Despite the fact that the function of the L. pneumophila Spl remains actually unknown, the hypothesis is that it plays a role in autophagy and/or apoptosis (Cazalet et al., 2004; Bruggemann et al., 2006). Recently it has been shown that the L. pneumophila Spl is a secreted effector of the Dot/Icm T4SS, that it is able to complement the sphingosine-sensitive phenotype of Saccharomyces cerevisiae. Moreover, L. pneumophila Spl co-localizes to the host cell mitochondria (Degtyar et al., 2009).

Taken together, the many different functional studies undertaken based on the results of the genome sequence analyses deciphering the roles of the eukaryotic like proteins have clearly established that they are secreted virulence factors that are involved in host cell adhesion, formation of the LCV, modulation of host cell functions, induction of apoptosis and egress of *Legionella* (Nora et al., 2009; Hubber and Roy, 2010). Most of these effector proteins are expressed at different stages of the intracellular life cycle of *L. pneumophila* (Bruggemann et al., 2006) and are delivered to the host cell by the Dot/Icm T4SS. Thus molecular mimicry of eukaryotic proteins is a major virulence strategy of *L. pneumophila*.

As expected, eukaryotic like proteins and proteins encoding domains mainly found in eukaryotic proteins are also present in the *L. longbeachae* genomes. However, between the two species a

considerable diversity in the repertoire of these proteins exists. For example Spl, LubX, the three *L. pneumophila* F-box proteins, and the homolog of one (Lpg1905) of the two apyrases are missing in all sequenced *L. longbeachae* genomes. In contrast a glycoamylase (Herrmann et al., 2011) and an uridine kinase homolog are present also in *L. longbeachae* (Cazalet et al., 2010; Kozak et al., 2010; **Table 3**). However, other proteins encoded by the *L. longbeachae* genome contain U-box and F-box domains and might therefore fulfill similar functions. Thus, although the specific proteins may not be conserved, the eukaryotic like protein–protein interaction domains found in *L. pneumophila* are also present in *L. longbeachae*.

The differences in trafficking between L. longbeachae and L. pneumophila mentioned above might be related to specific effectors encoded by L. longbeachae. A search for such specific putative effectors of L. longbeachae identified several proteins that might contribute to these differences like a family of Ras-related small GTPases (Cazalet et al., 2010; Kozak et al., 2010). These proteins may be involved in vesicular trafficking and thus may account at least partly for the specificities of the L. longbeachae life cycle. L. pneumophila is also known to exploit monophosphorylated host phosphoinositides (PI) to anchor the effector proteins SidC, SidM/DrrA, LpnE, and LidA to the membrane of the replication vacuole (Machner and Isberg, 2006; Murata et al., 2006; Weber et al., 2006, 2009; Newton et al., 2007; Brombacher et al., 2009). L. longbeachae may employ an additional strategy to interfere with the host PI as a homolog of the mammalian PI metabolizing enzyme phosphatidylinositol-4-phosphate 5-kinase was identified in its genome. One could speculate that this protein allows direct modulation of the host cell PI levels.

Interestingly, although 23 of the 29 ankyrin proteins identified in the *L. pneumophila* strains are absent from the *L. longbeachae* genome, *L. longbeachae* encodes a total of 23 specific ankyrin repeat proteins (**Table 3**). For example, *L. pneumophila* AnkX/AnkN that was shown to interfere with microtubuledependent vesicular transport is missing in *L. longbeachae* (Pan et al., 2008). However, *L. longbeachae* encodes a putative tubulintyrosine ligase (TTL). TTL catalyzes the ATP-dependent posttranslational addition of a tyrosine to the carboxy terminal end of detyrosinated alpha-tubulin. Although the exact physiological function of alpha-tubulin has so far not been established, it has been linked to altered microtubule structure and function (Eiserich et al., 1999). Thus this protein might take over this function in *L. longbeachae*.

*Legionella longbeachae* is the first bacterial genome encoding a protein containing an Src Homology 2 (SH2) domain. SH2 domains, in eukaryotes, have regulatory functions in various intracellular signaling cascades. Furthermore, *L. longbeachae* encodes two proteins with pentatricopeptide repeat (PPR) domains. This family seems to be greatly expanded in plants, where they appear to play essential roles in organellar RNA metabolism (Lurin et al., 2004; Nakamura et al., 2004; Schmitz-Linneweber and Small, 2008). Only 12 bacterial PPR domain proteins have been identified to date, all encoded by two species, the plant pathogens *Ralstonia solanacearum* and the facultative photosynthetic bacterium *Rhodobacter sphaeroides*. Thus, genome analysis revealed a particular feature of the *Legionella* genomes, the presence of many eukaryotic like proteins and protein domains, some of which are common to the two *Legionella* species, others which are specific and may thus account for the species specific features in intracellular trafficking and niche adaptation in the environment.

# SURFACE STRUCTURES – A CLUE TO MOUSE SUSCEPTIBILITY TO INFECTION WITH *LEGIONELLA*

Despite the presence of many different species of Legionella in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely L. pneumophila Sg1, which is responsible for about 84% of all cases worldwide (Yu et al., 2002). Similar results are obtained for L. longbeachae. Two serogroups are described, but L. longbeachae Sg1 is predominant in human disease. Lipopolysaccharide (LPS) is the basis for the classification of serogroups but it is also a major immunodominant antigen of L. pneumophila and L. longbeachae. Interestingly, it has also been shown that membrane vesicles shed by virulent L. pneumophila containing LPS are sufficient to inhibit phagosome-lysosome fusion (Fernandez-Moreira et al., 2006). Results obtained from large-scale genome comparisons of L. pneumophila suggested that LPS of Sg1 itself might be implicated in the predominance of Sg1 strains in human disease compared to other serogroups of L. pneumophila and other Legionella species (Cazalet et al., 2008). A comparative search for LPS coding regions in the genome of L. longbeachae NSW 150 identified two gene clusters encoding proteins that could be involved in production of lipopolysaccharide (LPS) and/or capsule. Neither shared homology with the L. pneumophila LPS biosynthesis gene cluster suggesting considerable differences in this major immunodominant antigen between the two Legionella species. However, homologs of L. pneumophila lipidA biosynthesis genes (LpxA, LpxB, LpxD, and WaaM) are present. Electron microscopy also demonstrated that, in contrast to L. pneumophila, L. longbeachae produces a capsulelike structure, suggesting that one of the aforementioned gene cluster encodes LPS and the other the capsule (Cazalet et al., 2010).

As mentioned in the introduction, only A/J mice are permissive for replication of L. pneumophila, in contrast A/J, C57BL/6, and BALB/c mice are all permissive for replication of L. longbeachae. In C57BL/6 mice cytosolic flagellin of L. pneumophila triggers Naip5dependent caspase-1 activation and subsequent proinflammatory cell death by pyroptosis rendering them resistant to infection (Diez et al., 2003; Wright et al., 2003; Molofsky et al., 2006; Ren et al., 2006; Zamboni et al., 2006; Lamkanfi et al., 2007; Lightfield et al., 2008). Genome analysis shed light on the reasons for these differences. L. longbeachae does not carry any flagellar biosynthesis genes except the sigma factor FliA, the regulator FleN, the twocomponent system FleR/FleS and the flagellar basal body rod modification protein FlgD (Cazalet et al., 2010; Kozak et al., 2010). Analysis of the genome sequences of strains L. longbeachae D-4968, ATCC33642, 98072, and C-4E7 as well as a PCR-based screening of 50 L. longbeachae isolates belonging to both serogroups by Kozak et al. (2010) and of 15 additional isolates by Cazalet et al. (2010) did not detect flagellar genes in any isolate confirming that L. longbeachae, in contrast to L. pneumophila does not synthesize flagella. Interestingly, all genes bordering flagellar gene clusters are conserved between L. longbeachae and L. pneumophila, suggesting deletion of these regions from the L. longbeachae genome. This



result suggests, that *L. longbeachae* fails to activate caspase-1 due to the lack of flagellin, which may also partly explain the differences in mouse susceptibility to *L. pneumophila* and *L. longbeachae* infection. The putative *L. longbeachae* capsule may also contribute to this difference.

Quite interestingly, although L. longbeachae does not encode flagella, it encodes a putative chemotaxis system. Chemotaxis enables bacteria to find favorable conditions by migrating toward higher concentrations of attractants. In many bacteria, the chemotactic response is mediated by a two-component signal transduction pathway, comprising a histidine kinase CheA and a response regulator CheY. Homologs of this regulatory system are present in the L. longbeachae genomes sequenced (Cazalet et al., 2010; Kozak et al., 2010). Furthermore, two homologs of the "adaptor" protein CheW that associate with CheA or cytoplasmic chemosensory receptors are present. Ligand-binding to receptors regulates the autophosphorylation activity of CheA in these complexes. The CheA phosphoryl group is subsequently transferred to CheY, which then diffuses away to the flagellum where it modulates motor rotation. Adaptation to continuous stimulation is mediated by a methyltransferase CheR. Together, these proteins represent an evolutionarily conserved core of the chemotaxis pathway, common to many bacteria and archea (Kentner and Sourjik, 2006; Hazelbauer et al., 2008). Homologs of all these proteins are present in the L. longbeachae genomes (Cazalet et al., 2010; Kozak et al., 2010) and a similar chemotaxis system is present in Legionella drancourtii LLAP12 (La Scola et al., 2004) but it is absent from L. pneumophila. The flanking genomic regions are highly conserved

among *L. longbeachae* and all *L. pneumophila* strains sequenced, suggesting that *L. pneumophila*, although it encodes flagella has lost the chemotaxis system encoding genes by deletion events.

Thus these two species differ markedly in their surface structures. *L. longbeachae* encodes a capsule-like structure, synthesizes a very different LPS, does not synthesize flagella but encodes a chemotaxis system. These differences in surface structures seem to be due to deletion events leading to the loss of flagella in *L. longbeachae* and the loss of chemotaxis in *L. pneumophila* leading in part to the adaptation to their different main niches, soil, and water.

#### EVOLUTION OF EUKARYOTIC EFFECTORS – ACQUISITION BY HORIZONTAL GENE TRANSFER FROM EUKARYOTES?

Human to human transmission of *Legionella* has never been reported. Thus humans have been inconsequential in the evolution of these bacteria. However, *Legionella* have co-evolved with freshwater protozoa allowing the adaptation to eukaryotic cells. The idea that protozoa are training grounds for intracellular pathogens was born with the finding by Rowbotham (1980) that *Legionella* has the ability to multiply intracellularly. This lead to a new percept in microbiology: bacteria parasitize protozoa and can utilize the same process to infect humans. Indeed, the long co-evolution of *Legionella* with protozoa is reflected in its genome by the presence of eukaryotic like genes, many of which are clearly virulence factors used by *L. pneumophila* to subvert host functions. These genes may have been acquired either through horizontal gene transfer (HGT) from the host cells (e.g., aquatic protozoa) or from bacteria or may have evolved by convergent evolution. Recently it has



been reported that L. drancourtii a relative of L. pneumophila has acquired a sterol reductase gene from the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in ameba (Moliner et al., 2009). Thus, the acquisition of some of the eukaryotic like genes of L. pneumophila by HGT from protozoa is plausible. ralF was the first gene suggested to have been acquired by L. pneumophila from eukaryotes by HGT, as RalF carries a eukaryotic Sec 7 domain (Nagai et al., 2002). In order to study the evolutionary origin of eukaryotic L. pneumophila genes, we have undertaken a phylogenetic analysis of the eukaryote-like sphingosine-1-phosphate lyase of L. pneumophila that is encoded by lpp2128 described earlier. The phylogenetic analyses shown in Figure 4 revealed that it was most likely acquired from a eukaryotic organism early during Legionella evolution (Degtyar et al., 2009; Nora et al., 2009) as the Lpp2128 protein sequence of L. pneumophila clearly falls into the eukaryotic clade of SPL sequences.

We then tested the hypothesis that L. longbeachae might have acquired genes also from plants, which is conceivable as it is found in soil. We thus undertook here a phylogenetic analysis similar to that described above for the L. longbeachae protein Llo2643 that contains PPR repeats, a protein family typically present in plants. A Blast search in the database revealed that homologs of Llo2643 are only found in eukaryotes, in particular in plants and algae. The only prokaryotes encoding this protein are the cyanobacteria Microcoelus vaginatus and Cylindrospermopsis rasiborskii. This rare presence in bacteria is suggestive of a horizontal transfer event from eukaryotes to these bacteria. Figure 5 shows the phylogenetic tree we obtained. The fact that the bacterial proteins group together may also be due to a phenomenon of long branch attraction. Thus, the Llo2643 protein of L. longbeachae appears closer to plant proteins than prokaryotic ones. Once more plant proteins, perhaps from algae, will be in the database, it might become possible to evaluate whether L. longbeachae indeed acquired genes from plants.

Legionella is not the only prokaryote whose genome shows an enrichment of proteins with eukaryotic domains. Another example is the genome of "Ca. Amoebophilus asiaticus" a Gramnegative, obligate intracellular ameba symbiont belonging to the Bacteroidetes, which has been discovered within an ameba isolated from lake sediment (Schmitz-Esser et al., 2008) has been reported (Schmitz-Esser et al., 2010). In a recent report Schmitz-Esser et al. (2010) show that the genome of this organism also encodes an arsenal of proteins with eukaryotic domains. To further investigate the distribution of these protein domains in other bacteria the authors have undertaken an enrichment analysis comparing the fraction of all functional protein domains among 514 bacterial proteomes (Schmitz-Esser et al., 2010). This showed that the genomes of bacteria for which the replication in ameba has been demonstrated were enriched in protein domains that are predominantly found in eukaryotic proteins. Interestingly, the domains potentially involved in host cell interaction described above, such as ANK repeats, LRR, SEL1 repeats, and F- and U-box domains, are among the most highly enriched domains in proteomes of amebaassociated bacteria. Bacteria that can exploit amebae as hosts thus share a set of eukaryotic domains important for host cell interaction despite their different lifestyles and their large phylogenetic diversity. This suggests that bacteria thriving within ameba use similar mechanisms for host cell interaction to facilitate survival in the host cell. Due to the phylogenetic diversity of these bacteria, it is most likely that these traits were acquired independently during evolutionary early interaction with ancient protozoa.

#### CONCLUSION

Legionella pneumophila and L. longbeachae are two human pathogens that are able to modulate, manipulate, and subvert many eukaryotic host cell functions to their advantage, in order to enter, replicate, and evade protozoa or human alveolar macrophages during disease. In the last years genome analyses, as well as comparative and functional genomics have demonstrated that genome plasticity plays a major role in differences in host cell exploitation and niche adaptation of Legionella. The genomes of these environmental pathogens are shaped by HGT between eukaryotes and prokaryotes, allowing them to mimic host cell functions and to exploit host cell pathways. Genome plasticity and HGT lead in each strain and species to a different repertoire of secreted effectors that may allow subtle adaptations to, e.g., different protozoan hosts. Plasmids can be exchanged among strains and phages and deletions of surface structures like flagella or chemotaxis systems has taken place. Thus genome plasticity is major mechanism by which *Legionella* may adapt to different niches and hosts.

Access to genomic data has revealed many potential virulence factors of *L. pneumophila* and *L. longbeachae* as well as metabolic capacities of these bacteria. The increasing information in the genomic database will allow a better identification of the origin and similarity of eukaryotic like proteins or eukaryotic protein domains and other virulence factors. New eukaryotic genomes like that of the natural host of *Legionella*, *A. castellanii* are in progress. These additional data will allow studying possible transfer events of genes from the eukaryotic host to *Legionella* more in depth. Taken together, the progressive increase of information on *Legionella* as well as on protozoa will allow more complete

#### REFERENCES

- Al-Khodor, S., Price, C. T., Habyarimana, F., Kalia, A., and Abu Kwaik, Y. (2008). A Dot/Icm-translocated ankyrin protein of *Legionella pneumophila* is required for intracellular proliferation within human macrophages and protozoa. *Mol. Microbiol.* 70, 908–923.
- Amodeo, M. R., Murdoch, D. R., and Pithie, A. D. (2009). Legionnaires' disease caused by Legionella longbeachae and Legionella pneumophila: comparison of clinical features, host-related risk factors, and outcomes. Clin. Microbiol. Infect. 16, 1405–1407.
- Anonymous. (1997). Legionellosis. Commun. Dis. Intell. 21, 137.
- Asare, R., and Abu Kwaik, Y. (2007). Early trafficking and intracellular replication of *Legionella longbeachaea* within an ER-derived late endosome-like phagosome. *Cell. Microbiol.* 9, 1571–1587.
- Asare, R., Santic, M., Gobin, I., Doric, M., Suttles, J., Graham, J. E., Price, C. D., and Abu Kwaik, Y. (2007). Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for Legionella longbeachae and L. pneumophila. Infect. Immun. 75, 1933–1945.
- Berger, K. H., and Isberg, R. R. (1993). Two distinct defects in intracellular growth complemented by a single genetic locus in *Legionella pneumophila*. *Mol. Microbiol*. 7, 7–19.
- Bibb, W. F., Sorg, R. J., Thomason, B. M., Hicklin, M. D., Steigerwalt, A.

- G., Brenner, D. J., and Wulf, M. R. (1981). Recognition of a second serogroup of *Legionella longbeachae*. *J. Clin. Microbiol.* 14, 674–677.
- Brombacher, E., Urwyler, S., Ragaz, C., Weber, S. S., Kami, K., Overduin, M., and Hilbi, H. (2009). Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856.
- Bruggemann, H., Cazalet, C., and Buchrieser, C. (2006). Adaptation of *Legionella pneumophila* to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. *Curr. Opin. Microbiol.* 9, 86–94.
- Burstein, D., Zusman, T., Degtyar, E., Viner, R., Segal, G., and Pupko, T. (2009). Genome-scale identification of *Legionella pneumophila* effectors using a machine learning approach. *PLoS Pathog.* 5, e1000508. doi:10.1371/journal.ppat.1000508
- Campodonico, E. M., Chesnel, L., and Roy, C. R. (2005). A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the *Legionella pneumophila* Dot/Icm system. *Mol. Microbiol.* 56, 918–933.
- Casati, S., Gioria-Martinoni, A., and Gaia, V. (2009). Commercial potting soils as an alternative infection source of *Legionella pneumophila* and other *Legionella species in* Switzerland. *Clin. Microbiol. Infect.* 15, 571–575.

comparative and phylogenetic studies to shed light on the evolution of virulence in *Legionella*. However, much work remains to be done to translate the basic findings from genomics research into improved understanding of the biology of this organism. As data are accumulating, new fields of investigation will emerge. Without doubt the investigation and characterization of regulatory ncRNAs will be one such field. Manipulation of host-epigenetic information and investigating host susceptibility to disease will be another. In particular development of high throughput techniques for comparative and functional genomics as well as more and more powerful imaging techniques will accelerate the pace of knowledge acquisition.

#### **ACKNOWLEDGMENTS**

We would like to thank many of our colleagues who have contributed in different ways to this research. This work received financial support from the Institut Pasteur, the Centre National de la Recherche (CNRS) and the Institut Carnot. Laura Gomez-Valero is holder of a FRM (Fondation pour la Recherché Médicale) postdoctoral research fellowship.

- Cazalet, C., Gomez-Valero, L., Rusniok, C., Lomma, M., Dervins-Ravault, D., Newton, H. J., Sansom, F. M., Jarraud, S., Zidane, N., Ma, L., Bouchier, C., Etienne, J., Hartland, E. L., and Buchrieser, C. (2010). Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet. 6, e1000851. doi:10.1371/journal.pgen. 1000851
- Cazalet, C., Jarraud, S., Ghavi-Helm, Y., Kunst, F., Glaser, P., Etienne, J., and Buchrieser, C. (2008). Multigenome analysis identifies a worldwide distributed epidemic *Legionella pneumophila* clone that emerged within a highly diverse species. *Genome Res.* 18, 431–441.
- Cazalet, C., Rusniok, C., Bruggemann, H., Zidane, N., Magnier, A., Ma, L., Tichit, M., Jarraud, S., Bouchier, C., Vandenesch, F., Kunst, F., Etienne, J., Glaser, P., and Buchrieser, C. (2004). Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet. 36, 1165–1173.
- Chen, J., De Felipe, K. S., Clarke, M., Lu, H., Anderson, O. R., Segal, G., and Shuman, H. A. (2004). *Legionella* effectors that promote nonlytic release from protozoa. *Science* 303, 1358–1361.
- Chien, M., Morozova, I., Shi, S., Sheng, H., Chen, J., Gomez, S. M., Asamani, G., Hill, K., Nuara, J., Feder, M., Rineer, J., Greenberg, J. J., Steshenko,

- V., Park, S. H., Zhao, B., Teplitskaya, E., Edwards, J. R., Pampou, S., Georghiou, A., Chou, I. C., Iannuccilli, W., Ulz, M. E., Kim, D. H., Geringer-Sameth, A., Goldsberry, C., Morozov, P., Fischer, S. G., Segal, G., Qu, X., Rzhetsky, A., Zhang, P., Cayanis, E., De Jong, P. J., Ju, J., Kalachikov, S., Shuman, H. A., and Russo, J. J. (2004). The genomic sequence of the accidental pathogen *Legionella pneumophila. Science* 305, 1966–1968.
- Cianciotto, N. P. (2009). Many substrates and functions of type II secretion: lessons learned from *Legionella pneumophila*. *Future Microbiol.* 4, 797–805.
- D'Auria, G., Jimenez-Hernandez, N., Peris-Bondia, F., Moya, A., and Latorre, A. (2010). Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC Genomics 11, 181. doi:10.1186/1471-2164-11-181
- De Felipe, K. S., Glover, R. T., Charpentier, X., Anderson, O. R., Reyes, M., Pericone, C. D., and Shuman, H. A. (2008). *Legionella* eukaryoticlike type IV substrates interfere with organelle trafficking. *PLoS Pathog.* 4, e1000117. doi:10.1371/journal.ppat. 1000117
- De Felipe, K. S., Pampou, S., Jovanovic, O. S., Pericone, C. D., Ye, S. F., Kalachikov, S., and Shuman, H. A. (2005). Evidence for acquisition of *Legionella* type IV secretion substrates via interdomain horizontal gene transfer. *J. Bacteriol.* 187, 7716–7726.

- Debroy, S., Dao, J., Soderberg, M., Rossier, O., and Cianciotto, N. P. (2006). Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc. Natl. Acad. Sci. U.S.A. 103, 19146–19151.
- Degtyar, E., Zusman, T., Ehrlich, M., and Segal, G. (2009). A *Legionella* effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. *Cell. Microbiol.* 11, 1219–1235.
- Diez, E., Lee, S. H., Gauthier, S., Yaraghi, Z., Tremblay, M., Vidal, S., and Gros, P. (2003). Birc1e is the gene within the Lgn1 locus associated with resistance to *Legionella pneumophila. Nat. Genet.* 33, 55–60.
- Doleans, A., Aurell, H., Reyrolle, M., Lina, G., Freney, J., Vandenesch, F., Etienne, J., and Jarraud, S. (2004). Clinical and environmental distributions of *Legionella* strains in France are different. *J. Clin. Microbiol.* 42, 458–460.
- Edelstein, P. H., and Metlay, J. P. (2009). Legionella pneumophila goes clonal – Paris and Lorraine strain-specific risk factors. *Clin. Infect. Dis.* 49, 192–194.
- Eiserich, J. P., Estévez, A. G., Bamberg, T. V., Ye, Y. Z., Chumley, P. H., Beckman, J. S., and Freeman, B. A. (1999). Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxidedependent mechanism of cellular injury. *Proc. Natl. Acad. Sci. U.S.A.* 96, 6365–6370.
- Feldman, M., and Segal, G. (2004). A specific genomic location within the *icm/dot* pathogenesis region of different *Legionella* species encodes functionally similar but nonhomologous virulence proteins. *Infect. Immun.* 72, 4503–4511.
- Feldman, M., Zusman, T., Hagag, S., and Segal, G. (2005). Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the *Legionella* pathogenesis system. *Proc. Natl. Acad. Sci. U.S.A.* 102, 12206–12211.
- Fernandez-Moreira, E., Helbig, J. H., and Swanson, M. S. (2006). Membrane vesicles shed by *Legionella pneumophila* inhibit fusion of phagosomes with lysosomes. *Infect. Immun.* 74, 3285–3295.
- Fraser, D. W., Tsai, T. R., Orenstein, W., Parkin, W. E., Beecham, H. J., Sharrar, R. G., Harris, J., Mallison, G. F., Martin, S. M., Mcdade, J. E., Shepard, C. C., and Brachman, P. S. (1977). Legionnaires' disease: description of

an epidemic of pneumonia. *N. Engl. J. Med.* 297, 1189–1197.

- Garcia, C., Ugalde, E., Campo, A. B., Minambres, E., and Kovacs, N. (2004). Fatal case of communityacquired pneumonia caused by *Legionella longbeachae* in a patient with systemic lupus erythematosus. *Eur. J. Clin. Microbiol. Infect. Dis.* 23, 116–118.
- Gobin, I., Susa, M., Begic, G., Hartland, E. L., and Doric, M. (2009). Experimental *Legionella longbeachae* infection in intratracheally inoculated mice. *J. Med. Microbiol.* 58, 723–730.
- Habyarimana, F., Price, C. T., Santic, M., Al-Khodor, S., and Kwaik, Y. A. (2010). Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of *Legionella pneumophila*. *Infect. Immun.* 78, 1123–1134.
- Hazelbauer, G. L., Falke, J. J., and Parkinson, J. S. (2008). Bacterial chemoreceptors: high-performance signaling in networked arrays. *Trends Biochem. Sci.* 33, 9–19.
- Heidtman, M., Chen, E. J., Moy, M. Y., and Isberg, R. R. (2009). Large-scale identification of *Legionella pneumophila* Dot/Icm substrates that modulate host cell vesicle trafficking pathways. *Cell. Microbiol.* 11, 230–248.
- Herrmann, V., Eidner, A., Rydzewski, K., Bladel, I., Jules, M., Buchrieser, C., Eisenreich, W., and Heuner, K. (2011). GamA is a eukaryoticlike glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int. J. Med. Microbiol. 301, 133–139.
- Hubber, A., and Roy, C. R. (2010). Modulation of host cell function by *Legionella pneumophila* type IV effectors. *Annu. Rev. Cell Dev. Biol.* 26, 261–283.
- Ingmundson, A., Delprato, A., Lambright, D. G., and Roy, C. R. (2007). *Legionella pneumophila* proteins that regulate Rab1 membrane cycling. *Nature* 450, 365–369.
- Isberg, R. R., O'connor, T. J., and Heidtman, M. (2009). The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7, 13–24.
- Kentner, D., and Sourjik, V. (2006). Spatial organization of the bacterial chemotaxis system. *Curr. Opin. Microbiol.* 9, 619–624.
- Kozak, N. A., Buss, M., Lucas, C. E., Frace, M., Govil, D., Travis, T., Olsen-Rasmussen, M., Benson, R. F., and Fields, B. S. (2010). Virulence factors encoded by *Legionella longbeachae* identified on the basis of the

genome sequence analysis of clinical isolate D-4968. *J. Bacteriol.* 192, 1030–1044.

- Kubori, T., Hyakutake, A., and Nagai, H. (2008). Legionella translocates an E3 ubiquitin ligase that has multiple Uboxes with distinct functions. Mol. Microbiol. 67, 1307–1319.
- Kubori, T., Shinzawa, N., Kanuka, H., and Nagai, H. (2010). Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog. 6, e1001216. doi:10.1371/journal.ppat.1001216
- Kubota, M., Tomii, K., Tachikawa, R., Harada, Y., Seo, R., Kaji, R., Takeshima, Y., Hayashi, M., Nishimura, T., and Ishihara, K. (2007). Legionella longbeachae pneumonia infection from home garden soil. Nihon Kokyuki Gakkai Zasshi 45, 698–703.
- Kumpers, P., Tiede, A., Kirschner, P., Girke, J., Ganser, A., and Peest, D. (2008). Legionnaires' disease in immunocompromised patients: a case report of *Legionella longbeachae* pneumonia and review of the literature. *J. Med. Microbiol.* 57, 384–387.
- La Scola, B., Birtles, R. J., Greub, G., Harrison, T. J., Ratcliff, R. M., and Raoult, D. (2004). *Legionella drancourtii* sp. nov., a strictly intracellular amoebal pathogen. *Int. J. Syst. Evol. Microbiol.* 54, 699–703.
- Lamkanfi, M., Amer, A., Kanneganti, T. D., Munoz-Planillo, R., Chen, G., Vandenabeele, P., Fortier, A., Gros, P., and Nunez, G. (2007). The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J. Immunol. 178, 8022–8027.
- Lightfield, K. L., Persson, J., Brubaker, S. W., Witte, C. E., Von Moltke, J., Dunipace, E. A., Henry, T., Sun, Y. H., Cado, D., Dietrich, W. F., Monack, D. M., Tsolis, R. M., and Vance, R. E. (2008). Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. *Nat. Immunol.* 9, 1171–1178.
- Liu, Y., and Luo, Z. Q. (2007). The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. *Infect. Immun.* 75, 592–603.
- Lomma, M., Dervins-Ravault, D., Rolando, M., Nora, T., Newton, H. J., Sansom, F. M., Sahr, T., Gomez-Valero, L., Jules, M., Hartland, E. L., and Buchrieser, C. (2010). The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates

ubiquitination of the host protein parvin B and promotes intracellular replication. *Cell. Microbiol.* 12, 1272–1291.

- Luo, Z. Q. (2011). Targeting one of its own: expanding roles of substrates of the Legionella pneumophila Dot/Icm type IV secretion system. Front. Microbiol. 2:31. doi:10.3389/fmicb.2011.00031
- Luo, Z. Q., and Isberg, R. R. (2004). Multiple substrates of the *Legionella pneumophila* Dot/Icm system identified by interbacterial protein transfer. *Proc. Natl. Acad. Sci. U.S.A.* 101, 841–846.
- Lurin, C., Andrés, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyère, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., Lecharny, A., Le Ret, M., Martin-Magniette, M. L., Mireau, H., Peeters, N., Renou, J. P., Szurek, B., Taconnat, L., and Small, I. (2004). Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. *Plant Cell* 16, 2089–2103.
- Machner, M. P., and Isberg, R. R. (2006). Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11, 47–56.
- Machner, M. P., and Isberg, R. R. (2007). A bifunctional bacterial protein links GDI displacement to Rab1 activation. *Science* 318, 974–977.
- Marra, A., Blander, S. J., Horwitz, M. A., and Shuman, H. A. (1992). Identification of a *Legionella pneumophila* locus required for intracellular multiplication in human macrophages. *Proc. Natl. Acad. Sci. U.S.A.* 89, 9607–9611.
- Marrie, T. J. (2008). "Legionnaires' disease – clinical picture," in Legionella pneumophila: Pathogenesis and Immunity, eds P. Hoffmann, H. Friedman and M. Bendinelli (New York: Springer), 133–150.
- Mcdade, J. E., Shepard, C. C., Fraser, D. W., Tsai, T. R., Redus, M. A., and Dowdle, W. R. (1977). Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. *N. Engl. J. Med.* 297, 1197–1203.
- Mckinney, R. M., Porschen, R. K., Edelstein, P. H., Bissett, M. L., Harris, P. P., Bondell, S. P., Steigerwalt, A. G., Weaver, R. E., Ein, M. E., Lindquist, D. S., Kops, R. S., and Brenner, D. J. (1981). *Legionella longbeachae* species nova, another etiologic agent of human pneumonia. *Ann. Intern. Med.* 94, 739–743.

- MMWR. (2000). Legionnaires' disease associated with potting soil – California, Oregon, and Washington, May-June 2000. Morb. Mortal. Wkly. Rep. 49, 777–778.
- Moliner, C., Ginevra, C., Jarraud, S., Flaudrops, C., Bedotto, M., Couderc, C., Etienne, J., and Fournier, P. E. (2009). Rapid identification of *Legionella* species by mass spectrometry. J. Med. Microbiol. 59(Pt 3), 273–284.
- Molofsky, A. B., Byrne, B. G., Whitfield, N. N., Madigan, C. A., Fuse, E. T., Tateda, K., and Swanson, M. S. (2006). Cytosolic recognition of flagellin by mouse macrophages restricts *Legionella pneumophila* infection. *J. Exp. Med.* 17, 1093–1104.
- Molofsky, A. B., and Swanson, M. S. (2004). Differentiate to thrive: lessons from the *Legionella pneu-mophila* life cycle. *Mol. Microbiol.* 53, 29–40.
- Montanaro-Punzengruber, J. C., Hicks, L., Meyer, W., and Gilbert, G. L. (1999). Australian isolates of *Legionella longbeachae* are not a clonal population. J. Clin. Microbiol. 37, 3249–3254.
- Morozova, I., Qu, X., Shi, S., Asamani, G., Greenberg, J. E., Shuman, H. A., and Russo, J. J. (2004). Comparative sequence analysis of the *icm/dot* genes in *Legionella*. *Plasmid* 51, 127–147.
- Müller, M. P., Peters, H., Blümer, J., Blankenfeldt, W., Goody, R. S., and Itzen, A. (2010). The *Legionella* effector protein DrrA AMPylates the membrane traffic regulator Rab1b. *Science* 329, 946–949.
- Murata, T., Delprato, A., Ingmundson, A., Toomre, D. K., Lambright, D. G., and Roy, C. R. (2006). The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 8, 971–977.
- Nagai, H., Cambronne, E. D., Kagan, J. C., Amor, J. C., Kahn, R. A., and Roy, C. R. (2005). A C-terminal translocation signal required for Dot/Icmdependent delivery of the *Legionella* RalF protein to host cells. *Proc. Natl. Acad. Sci. U.S.A.* 102, 826–831.
- Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A., and Roy, C. R. (2002). A bacterial guanine nucleotide exchange factor activates ARF on *Legionella* phagosomes. *Science* 295, 679–682.
- Nagai, H., and Kubori, T. (2011). Type IVB secretion systems of *Legionella* and other Gram-negative bacteria. *Front. Microbiol.* 2:136. doi:10.3389/fmicb.2011.00136
- Nakamura, T., Schuster, G., Sugiura, M., and Sugita, M. (2004). Chloroplast

RNA-binding and pentatricopeptide repeat proteins. *Biochem. Soc. Trans.* 32, 571–574.

- Neunuebel, M. R., Chen, Y., Gaspar, A. H., Backlund, P. S. Jr., Yergey, A., and Machner, M. P. (2011). De-AMPylation of the small GTPase Rab1 by the pathogen *Legionella pneumophila. Science* 333, 453–456.
- Newton, H. J., Sansom, F. M., Dao, J., Mcalister, A. D., Sloan, J., Cianciotto, N. P., and Hartland, E. L. (2007). Sel1 repeat protein LpnE is a *Legionella pneumophila* virulence determinant that influences vacuolar trafficking. *Infect. Immun.* 75, 5575–5585.
- Ninio, S., Celli, J., and Roy, C. R. (2009). A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles. PLoS Pathog 5, e1000278. doi: 10.1371/journal.ppat.1000278
- Nora, T., Lomma, M., Gomez-Valero, L., and Buchrieser, C. (2009). Molecular mimicry: an important virulence strategy employed by *Legionella pneumophila* to subvert host functions. *Future Microbiol.* 4, 691–701.
- O'Connor, B. A., Carman, J., Eckert, K., Tucker, G., Givney, R., and Cameron, S. (2007). Does using potting mix make you sick? Results from a *Legionella longbeachae* case-control study in South Australia. *Epidemiol. Infect.* 135, 34–39.
- Pan, X., Lührmann, A., Satoh, A., Laskowski-Arce, M. A., and Roy, C. R. (2008). Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. *Science* 320, 1651–1654.
- Pravinkumar, S., Edwards, G., Lindsay, D., Redmond, S., Stirling, J., House, R., Kerr, J., Anderson, E., Breen, D., Blatchford, O., Mcdonald, E., and Brown, A. (2010). A cluster of Legionnaires' disease caused by *Legionella longbeachae* linked to potting compost in Scotland, 2008-2009. *Euro Surveill.* 15, 19496.
- Price, C. T., Al-Khodor, S., Al-Quadan, T., Santic, M., Habyarimana, F., Kalia, A., and Kwaik, Y. A. (2009). Molecular mimicry by an F-Box Effector of *Legionella pneumophila* hijacks a conserved polyubiquitination machinery within macrophages and protozoa. *PLoS Pathog.* 5, e1000704. doi:10.1371/journal.ppat.1000704
- Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F., and Vance, R. E. (2006). Flagellin-deficient *Legionella* mutants evade caspase-1- and Naip5-mediated macrophage immunity. *PLoS Pathog.* 2, e18. doi:10.1371/journal.ppat.0020018

- Rossier, O., and Cianciotto, N. P. (2001). Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect. Immun. 69, 2092–2098.
- Rowbotham, T. J. (1980). Preliminary report on the pathogenicity of *Legionella pneumophila* for freshwater and soil amoebae. *J. Clin. Pathol.* 33, 1179–1183.
- Sahr, T., Bruggemann, H., Jules, M., Lomma, M., Albert-Weissenberger, C., Cazalet, C., and Buchrieser, C. (2009). Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol. Microbiol. 72, 741–762.
- Sansom, F. M., Newton, H. J., Crikis, S., Cianciotto, N. P., Cowan, P. J., D'Apice, A. J., and Hartland, E. L. (2007). A bacterial ecto-triphosphate diphosphohydrolase similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila. Cell. Microbiol. 9, 1922–1935.
- Sansom, F. M., Riedmaier, P., Newton, H. J., Dunstone, M. A., Müller, C. E., Stephan, H., Byres, E., Beddoe, T., Rossjohn, J., Cowan, P. J., D'Apice, A. J., Robson, S. C., and Hartland, E. L. (2008). Enzymatic properties of an ecto-nucleoside triphosphate diphosphohydrolase from Legionella pneumophila: substrate specificity and requirement for virulence. J. Biol. Chem. 283, 12909–12918.
- Schmitz-Esser, S., Tischler, P., Arnold, R., Montanaro, J., Wagner, M., Rattei, T., and Horn, M. (2010). The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J. Bacteriol. 192, 1045–1057.
- Schmitz-Esser, S., Toenshoff, E. R., Haider, S., Heinz, E., Hoenninger, V. M., Wagner, M., and Horn, M. (2008). Diversity of bacterial endosymbionts of environmental *Acanthamoeba* isolates. *Appl. Environ. Microbiol.* 74, 5822–5831.
- Schmitz-Linneweber, C., and Small, I. (2008). Pentatricopeptide repeat proteins: a socket set for organelle gene expression. *Trends Plant Sci.* 13, 663–670.
- Schroeder, G. N., Petty, N. K., Mousnier, A., Harding, C. R., Vogrin, A. J., Wee, B., Fry, N. K., Harrison, T. G., Newton, H. J., Thomson, N. R., Beatson, S. A., Dougan, G., Hartland, E. L., and Frankel, G. (2010). Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm

secretion system effector proteins. J. Bacteriol. 192, 6001–6016.

- Schuelein, R., Ang, D. K., Van Driel, I. R., and Hartland, E. L. (2011). Immune control of *Legionella* infection: an in vivo perspective. *Front. Microbiol.* 2:126. doi:10.3389/fmicb.2011.00126
- Segal, G., Feldman, M., and Zusman, T. (2005). The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol. Rev. 29, 65–81.
- Segal, G., Russo, J. J., and Shuman, H. A. (1999). Relationships between a new type IV secretion system and the *icm/dot* virulence system of *Legionella pneumophila*. Mol. Microbiol. 34, 799–809.
- Shin, S., and Roy, C. R. (2008). Host cell processes that influence the intracellular survival of *Legionella pneumophila*. *Cell. Microbiol.* 10, 1209–1220.
- Shohdy, N., Efe, J. A., Emr, S. D., and Shuman, H. A. (2005). Pathogen effector protein screening in yeast identifies *Legionella* factors that interfere with membrane trafficking. *Proc. Natl. Acad. Sci. U.S.A.* 102, 4866–4871.
- Steele, T. W., Moore, C. V., and Sangster, N. (1990). Distribution of *Legionella longbeachae* serogroup 1 and other legionellae in potting soils in Australia. *Appl. Environ. Microbiol.* 56, 2984–2988.
- Steinert, M., Hentschel, U., and Hacker, J. (2002). Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol. Rev. 26, 149–162.
- Steinert, M., Heuner, K., Buchrieser, C., Albert-Weissenberger, C., and Glockner, G. (2007). *Legionella* pathogenicity: genome structure, regulatory networks and the host cell response. *Int. J. Med. Microbiol.* 297, 577–587.
- Tan, Y., and Luo, Z. Q. (2011). *Legionella pneumophila* SidD is a deAMPy-lase that modifies Rab1. *Nature* 475, 506–509.
- Tijet, N., Tang, P., Romilowych, M., Duncan, C., Ng, V., Fisman, D. N., Jamieson, F., Low, D. E., and Guyard, C. (2010). New endemic Legionella pneumophila serogroup I clones, Ontario, Canada. Emerging Infect. Dis. 16, 447–454.
- Velonakis, E. N., Kiousi, I. M., Koutis, C., Papadogiannakis, E., Babatsikou, F., and Vatopoulos, A. (2009). First isolation of *Legionella* species, including *L. pneumophila* serogroup 1, in Greek potting soils: possible importance for public health. *Clin. Microbiol. Infect.* 16, 763–766.

- Weber, S. S., Ragaz, C., and Hilbi, H. (2009). The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of *Legionella*, localizes to the replicative vacuole and binds to the bacterial effector LpnE. *Cell. Microbiol.* 11, 442–460.
- Weber, S. S., Ragaz, C., Reus, K., Nyfeler, Y., and Hilbi, H. (2006). Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog. 2, e46. doi:10.1371/journal.ppat.0020046
- Whiley, H., and Bentham, R. (2011). Legionella longbeachae and legionellosis. Emerging Infect. Dis. 17, 579–583.
- Wright, E. K., Goodart, S. A., Growney,J. D., Hadinoto, V., Endrizzi, M.G., Long, E. M., Sadigh, K., Abney,A. L., Bernstein-Hanley, I., and

Dietrich, W. F. (2003). Naip5 affects host susceptibility to the intracellular pathogen *Legionella pneumophila*. *Curr. Biol.* 13, 27–36.

- Yu, V. L., Plouffe, J. F., Pastoris, M. C., Stout, J. E., Schousboe, M., Widmer, A., Summersgill, J., File, T., Heath, C. M., Paterson, D. L., and Chereshsky, A. (2002). Distribution of *Legionella* species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. *J. Infect. Dis.* 186, 127–128.
- Zamboni, D. S., Kobayashi, K. S., Kohlsdorf, T., Ogura, Y., Long, E. M., Vance, R. E., Kuida, K., Mariathasan, S., Dixit, V. M., Flavell, R. A., Dietrich, W. F., and Roy, C. R. (2006). The Birc1e cytosolic pattern-recognition receptor contributes to the detection

and control of *Legionella pneu-mophila* infection. *Nat. Immunol.* 7, 318–325.

- Zeigler, D. R. (2003). Gene sequences useful for predicting relatedness of whole genomes in bacteria. *Int. J. Syst. Evol. Microbiol.* 53, 1893–1900.
- Zhu, W., Banga, S., Tan, Y., Zheng, C., Stephenson, R., Gately, J., and Luo, Z. Q. (2011). Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of *Legionella pneumophila*. *PLoS ONE* 6, e17638. doi:10.1371/journal.pone.0017638

**Conflict of Interest Statement:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 July 2011; paper pending published: 21 August 2011; accepted: 23 September 2011; published online: 28 October 2011.

Citation: Gomez-Valero L, Rusniok C, Cazalet C and Buchrieser C (2011) Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front. Microbio. 2:208. doi: 10.3389/fmicb.2011.00208

This article was submitted to Frontiers in Cellular and Infection Microbiology, a specialty of Frontiers in Microbiology.

Copyright © 2011 Gomez-Valero, Rusniok, Cazalet and Buchrieser. This is an open-access article subject to a nonexclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.