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The first work reporting synthesis of glucosylceramide (cerebrin, GlcCer) by yeasts was
published in 1930. During approximately 70 years members of this class of glycosphin-
golipids (GSL) were considered merely structural components of plasma membrane in
fungi. However, in the last decade GlcCer was reported to be involved with fungal growth,
differentiation, virulence, immunogenicity, and lipid raft architecture in at least two human
pathogens. Fungal GlcCer are structurally distinct from their mammalian counterparts and
enriched at the cell wall, which makes this molecule an effective target for antifungal activ-
ity of specific ligands (peptides and antibodies to GlcCer). Therefore, GSL are promising
targets for new drugs to combat fungal diseases. This review discusses the most recent
information on biosynthesis and role of GlcCer in fungal pathogens.
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INTRODUCTION
The family of glycosphingolipids (GSL) combines a diversity of
molecules consisting of at least one saccharide unit covalently
linked to a ceramide (Schnaar et al., 2009). The biosynthesis of GSL
is complex and involves a repertoire of enzymes that must be care-
fully expressed and distributed over endoplasmic reticulum (ER)
and Golgi in all eukaryotic cells (Halter et al., 2007; Daniotti and
Iglesias-Bartolome, 2011). Due to their structural properties and
primary cellular location, GSL were initially described as architec-
tural components of cell membranes, straightly connected with
fluidity and stability (Feinstein et al., 1975; Tinker et al., 1976;
Aaronson and Martin, 1983; Campanella, 1992). Recent finding,
however, clearly demonstrate that their role goes beyond the for-
mer concepts, since these molecules are major components of spe-
cialized membrane domains called lipid rafts (Bagnat et al., 2000;
Hakomori, 2003, 2008; Wachtler and Balasubramanian, 2006). In
addition, GSL have been characterized as relevant structures in
events of cell–cell interaction, cell signaling and protein sorting
(Bagnat et al., 2000; Bagnat and Simons, 2002; Nimrichter et al.,
2008; Lopez and Schnaar, 2009; Schnaar et al., 2009; Staubach and
Hanisch, 2011).

In fungal organisms two types of GSL have been reported. Inos-
itol phosphorylceramides (IPC) are used to make complex fungal
GSL and have been extensively studied in the yeast model Sac-
charomyces cerevisiae (Sugimoto et al., 2004; Dickson et al., 2006;
Dickson, 2008). They consist of a ceramide usually containing
phytosphingosine as long chain base, associated with a very long
fatty acid (C24:1–C26:1). A unit of inositol is covalently linked to
the ceramide and the preformed molecule, which is not found in
mammalian cells, is the substrate for mannosyltransferases for the
synthesis of mannosylinositol phosphorylceramide (MIPC) and
mannosyldiinositol phosphorylceramide [M(IP)2C]. The second

major class of GSL synthesized by fungal cells is the monohexosyl-
ceramide (CMH, glycosylceramide, cerebroside, or cerebrin). The
sugar moiety covalently linked to a distinct ceramide is usually glu-
cose (GlcCer) or, to a minor extent, galactose (GalCer; Boas et al.,
1994; Takahashi et al., 1996; Levery et al., 2000, 2002; Rodrigues
et al., 2000; Toledo et al., 2000; Pinto et al., 2002; Barreto-Bergter
et al., 2004; da Silva et al., 2004; Nimrichter et al., 2004, 2005a).
GlcCer and GalCer are not synthesized by S. cerevisiae but are
part of the lipid arsenal of classical fungal pathogens, excepting
Candida glabrata (Saito et al., 2006; Tavares et al., 2008).

A very conserved structure was described as the major GlcCer in
fungal pathogens, the N -2′-hydroxy(hexa/octa)de(ca/ce)noyl-1-
beta-d-glucopyranosyl-9-methyl-4,8-sphingadienine. GlcCer dis-
tribution is not limited to fungal membranes, since large amounts
of this GSL have been also found at cell wall (Rodrigues et al., 2000;
Nimrichter et al., 2005a; Rhome et al., 2011). Although GlcCer
have been identified as fungal components decades ago, knowledge
about their functions during fungal growth/dimorphism, lipid
raft formation, and correlation with virulence has been recently
reported. In this review we discuss the most recent findings that
characterize the functions of GlcCer and its biosynthetic steps as
potential targets for new antifungal drugs. The putative correla-
tion between GlcCer, lipid rafts and secretion and the potential
role of this GSL as virulence regulators are also reviewed.

THE UNCOVERED PATHWAY FOR FUNGAL GlcCer SYNTHESIS
Sphingoid bases of fungal GlcCer are structurally distinct from
mannosylated IPCs and from their counterparts in animal cells.
They have a methyl group at C-9 and an extra unsaturation at C-8,
forming the typical fungal base mentioned above (for review please
see Barreto-Bergter et al., 2004). However, initial steps of ceramide
biosynthesis are the same independent of the cell type studied.
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Ceramide synthesis always begins with condensation of palmitoyl-
CoA and serine, followed by sphinganine formation through the
activity of a 3-ketosphinganine reductase (Barreto-Bergter et al.,
2004; Li et al., 2006; Schnaar et al., 2009; Gault et al., 2010). The
product, sphinganine, is then N -acylated to generate ceramide.
Two distinct pools of ceramide operate as building blocks for
major fungal GSL (CMH and IPCs). They differ according to the
hydroxylation level of long chain base (dihydroxy or trihydroxy)
and the extension of hydroxylated fatty acids (C16:1–C18:1 or C24:1–
C26:1)(Barreto-Bergter et al., 2004; Dickson et al., 2006; Takakuwa
et al., 2008; Rittenour et al., 2011; Ternes et al., 2011). All enzymes
involved in fungal ceramide synthesis operate specifically accord-
ing to their substrate leading to precise production of GlcCer or
MIPCs. So far, the only exceptions appear to be Magnaporthe grisea
and Neurospora crassa, discussed later on (Lester et al., 1974; Maciel
et al., 2002). It implies that preformed ceramide must be consid-
erably modified before GlcCer or IPC synthesis. This section is
focused on fungal GlcCer biosynthesis. Approaches utilized for
structural characterization of these molecules are discussed in
detail by Barreto-Bergter et al. (this issue).

Synthesis of IPC and GlcCer must include a branching point,
since the enzymes required for this process make part of common
and specific biosynthetic pathways. A very elegant study published
by Ternes et al. (2011) contributed significantly to the understand-
ing of GlcCer biosynthesis. Briefly, these authors demonstrated
that in Pichia pastoris, similarly to S. cerevisiae, Lag 1 and Lac1
appear to be the genes responsible for coding the enzymes that
make trihydroxy ceramides carrying very long chain fatty acids
(Ternes et al., 2011). On the other hand, BarA (biocontrol agent
resistance) is related to synthesis of dihydroxy ceramides bearing
hydroxylated C16–C18 fatty acids in P. pastoris. BarA was originally
identified by a screen assay performed to isolate mutants from A.
nidulans resistant to the polyketide HSAF, a heat-stable antifungal
factor isolated from the biocontrol agent Lysobacter enzymogenes
(Zhang and Yuen, 1999). In A. nidulans, exposure to HSAF leads
to a rapid loss of the formin SepA at growing hyphal tips and
disturbs the polarized growth (Li et al., 2006). Phylogenetic analy-
sis indicated that BarAp belongs to a distinct clade of ceramide
synthases when compared to Lag1p and Lac1p. Accordingly, A.
nidulans lacking BarAp do not synthesize GlcCer (Li et al., 2006).
In Kluyveromyces lactis, overexpression of Lac1 increased GlcCer
synthesis while gene disruption blocked this pathway, leading to
IPC accumulation (Takakuwa et al., 2008). Disruption of Lag 1
appears to be lethal in K. lactis. Orthologous expression of Lac1
from K. lactis in S. cerevisiae resulted in IPC with C18:1 fatty acids,
which are presumably exclusive to GlcCer. Sequence analysis sug-
gests that Lac1 of K. lactis belongs to the same clade as BarA
(Rittenour et al., 2011). These data indicated that when BarA is
absent in fungi that express GlcCer, Lac1 is the gene involved with
GlcCer production.

The biosynthetic steps occurring right after ceramide hydrox-
ylation at C-2 of fatty acid are Δ4-desaturation, Δ8-desaturation,
C-9-methylation, and then glucose addition by ceramide glucosyl
ceramide-synthetase (GCS; Ternes et al., 2002, 2011; Michaelson
et al., 2009). Membrane-bound desaturases are part of a super-
family defined by the histidine boxes HX3–4H, HX2–3HH, and
(H/Q)X2–3HH that usually require NAD(P)H and O2 as cofactors

(Sperling et al., 1995; Zauner et al., 2008). Searching proteins with
histidine box sequence motifs a family of Δ4-desaturase was dis-
covered. Homo sapiens, Mus musculus, Drosophila melanogaster,
and Candida albicans Δ4-desaturases were expressed in S. cere-
visiae and biochemically characterized (Ternes et al., 2002).
Sphing-4-enine and 4-hydroxysphinganine were characterized as
products in all situations, indicating a bifunctional activity (Δ4-
desaturase and C14-hydroxylase). This enzymatic step appears to
be essential, given that P. pastoris mutant lacking Δ4-desaturase is
not able to make GlcCer (Ternes et al., 2011). Insertion of a double
bond between C-8 and C-9 of long chain base, the step catalyzed by
a Δ8-desaturase, does not appear to be a requirement for GlcCer.
P. pastoris lacking the enzyme is still able to build regular amounts
of GlcCer.

Transference of the C-9-methyl group to the sphingoid base is
the last step of ceramide synthesis used to construct fungal GlcCer.
The enzyme responsible for this step belongs to the superfamily
of S-adenosylmethionine-(SAM)-dependent methyltransferases,
appears to be membrane-bound and requires a Δ4,8-desaturated
ceramide as substrate (Ternes et al., 2006). As observed for Δ8-
desaturase, absence of C-9 methyltransferase in P. pastoris (coding
the enzyme Ppmt1) does not impair GlcCer synthesis, resulting
in the exclusive formation of methylated ceramide. In C. albicans,
strains lacking GlcCer, or C-9 methyltransferase were also viable,
although a deficient hyphal growth was observed when compared
to the wild type strain (Oura and Kajiwara, 2010). Two genes
encoding putative C-9 methyltransferase were found in Fusarium
graminearum, FgMT1, and FgMT2 (Ramamoorthy et al., 2009).
Both genes complemented the lack of C-9 methyltransferase activ-
ity in P. pastoris mutant Ppmt1. FgMT1 disruption did not change
the ceramide methylation and mutants grew as wild type cells. On
the other hand, disruption of FgMT2 reduced the enzymatic prod-
uct in approximately 35%, decreased growth ratio, altered shape,
and size of conidia, reduced mycelial formation and virulence to
A. thaliana leaves and wheat. Double-knockouts were not viable,
suggesting that C-9 methyltransferase is essential to fungal growth
in F. graminearum.

Glucose transfer to ceramide occurs at Golgi stacks in animal
cells through a CGS (Halter et al., 2007). A fraction of newly
synthesized GlcCer returns to ER and is transported to Golgi
lumen to synthesize LacCer and other complex GSL. Using a
second pathway, intact GlcCer reaches the cell surface through
a non-vesicular pathway. In yeast, ceramide is also transported
to Golgi through vesicular and non-vesicular routes (Funato and
Riezman, 2001) where complex GSL will be synthesized. It is
not clear whether N -2′-hydroxy(hexa/octa)de(ca/ce)noyl-1-beta-
d-glucopyranosyl-9-methyl-4,8-sphingadienine follows a similar
pathway.

The complexity of fungal GSL biosynthesis is supported by
studies on the phytopathogens F. graminearum and M. grisea.
F. graminearum is a causative agent of head blight, a plant dis-
ease that results in crop loss or grain unsuitability for animal
consumption due to mycotoxin production (Xu and Nichol-
son, 2009). As observed for A. nidulans, Bar1 mutants of
F. graminearum do not synthesize GlcCer and are resistant to
HSAF (Rittenour et al., 2011). GlcCer was also isolated from
lipid extracts of the rice blast agent M. grisea (Maciel et al.,
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2002). The typical fungal GlcCer structure was characterized in
this model, consisting of N -2′-hydroxy(octa/hexa)decanoyl-1-O-
β-d-glucopyranosyl-9-methyl-4,8-sphingadienine. The M. grisea
crude extract showed an extra orcinol positive TLC band migrat-
ing above GlcCer, indicative of a dihexosylceramide (CDH). The
purified molecule was identified as lactosylceramide (LacCer).
Unusually, the lipid moiety of LacCer consisted of a phytosphingo-
sine covalently linked to a C24:2 fatty acid. A tetrahexosylceramide
has been also reported in N. crassa (Lester et al., 1974). By using
gas and thin layer chromatography the identified components were
Gal3Glc, sphinganine, and a C24:1 fatty acid.

These results establish that GSL biosynthesis is conserved in
fungal cells; however, it cannot be summarized by a simple path-
way. It seems important to consider that different species must be
investigated individually. Reconstituted strains on GSL pathways
also should be carefully investigated, since proper enzyme location
usually cannot be assured, which may result in unusual products.

CORRELATION BETWEEN FUNGAL GlcCer, LIPID RAFTS, AND
SECRETION MECHANISMS
To our knowledge, the mechanisms displayed by fungal organ-
isms to traffic GlcCer intracellularly have never been investigated.
Fungal GlcCer destiny includes plasma membrane and cell wall
(Rodrigues et al., 2000; Nimrichter et al., 2005a), as well as the
extracellular space (Rodrigues et al., 2007a, 2008a,b; Nosanchuk
et al., 2008).

As mentioned previously, along with sterol and GPI-anchored
proteins, GSL are components of lipid domains or lipid rafts
(Hakomori, 2003, 2008). These lipid platforms are found in dif-
ferent cell types, including non-pathogenic and pathogenic fungi,
where they participate in polarization and compartmentalization
steps of the plasma membrane (Bagnat et al., 2000; Bagnat and
Simons, 2002; Martin and Konopka, 2004; Siafakas et al., 2006;
Wachtler and Balasubramanian, 2006). In the C. albicans model,
the ability of fungal cells to switch from yeast to hyphae is con-
sidered a crucial step for host cell colonization (Mitchell, 1998).
Such morphological changes are dependent on a polarized growth
mediated by cytoskeleton (Whiteway and Bachewich, 2007). The
first correlation between lipid rafts and polarization in C. albi-
cans was suggested by Martin and Konopka (2004). They observed
accumulation of sterols at the growing tip of hyphal cells and at
sites of septum formation in mature hyphae. In addition, treat-
ment with myriocin, an inhibitor of serine palmitoyltransferase,
decreases filipin staining, and reduces Pma1p recruitment to lipid
rafts. Pma1p is a plasma membrane proton pump that is consid-
ered a raft marker in C. albicans and S. cerevisiae (Bagnat et al.,
2001; Insenser et al., 2006). Along with Pma1p, heat shock proteins
(HSP70, HSP90) and molecules required for sterol metabolism,
energy production, and polysaccharide synthesis were compart-
mentalized in lipid domains in C. albicans (Insenser et al., 2006).
A connection between polarized growth, lipid rafts, and GlcCer
was also observed in F. graminearum and A. nidulans lacking
Bar1p and GlcCer as well. In F. graminearum, germ tube for-
mation occurs regularly in the absence of Bar1p, but hyphal tip
organization is considerably altered. Although sterols accumu-
late in hyphal tips of a wild type strain, Δbar1 mutants lack
this distribution. Similarly, no filipin staining was visualized at

hyphal tips of A. nidulans lacking Bar1p. These mutants do not
display regular Spitzenkorper when stained with FM4-64, a fluo-
rescent lipid marker. Polarization defects were confirmed by the
altered tropomyosin distribution. Together, these data suggested
a requirement of GlcCer and intact lipid rafts for hyphal growth
and polarization of fungal cells.

Lipid rafts were also isolated from the opportunistic pathogen
C. neoformans. GlcCer, phospholipase B1 (PLB1), and Cu/Zn
superoxide dismutase (SOD1), molecules involved with fungal
virulence, were characterized as raft components in this fungus
(Siafakas et al., 2006). It was hypothesized that membranes of C.
neoformans contain lipid domains that concentrate some viru-
lence factors at fungal surface. Secretion of virulence factors could
be associated to their aggregation to lipid rafts.

A few years ago, we discussed aspects of cell wall that, at that
point, were considered unusual (Nimrichter et al., 2005b). We then
raised the possibility that compact vesicles capable of crossing
polar environments, such as the fungal cell wall, could be used by
fungal organisms for the extracellular release of macromolecules.
Lipid rafts would be likely necessary to increase vesicle stability. In
fact, we recently demonstrated that C. neoformans produces extra-
cellular vesicles containing GlcCer, sterol, and SOD1 (Rodrigues
et al., 2007a, 2008a). Trans-cell wall traffic of GlcCer-containing
vesicles could in fact explain the high amounts of GlcCer that are
found at the cell wall of fungal pathogens (Rodrigues et al., 2000;
Nimrichter et al., 2005a). Further studies revealed that extracellu-
lar vesicles are produced by different fungal organisms, possibly
representing a conserved mechanism of trans-cell wall transport
(Nosanchuk et al., 2008; Oliveira et al., 2010a,b). A number of pro-
teins can reach the extracellular environment through these vesi-
cles, including other lipid raft components, such as Pma1p, HSP70,
and HSP90 (Albuquerque et al., 2008; Rodrigues et al., 2008a). The
putative correlation between extracellular vesicle formation and
fungal lipid rafts is then suggested.

Molecular exportation to the extracellular space through vesi-
cles is not limited to proteins. The polysaccharide glucuronoxy-
lomannan (GXM), a major capsule component of C. neoformans,
follows a vesicle association pathway to leave the cells, in a process
that apparently requires a close association with GlcCer (Rodrigues
et al., 2007a; Oliveira et al., 2009). These data indicate that Glc-
Cer regulates/participates on polysaccharide and protein sorting
in fungal cells. Such processes involve compartmentalization and
changes in membrane shape. This attribute could be correlated
with another property of some complex GSL, the capacity to con-
trol membrane curvature and vesicle formation (Sonnino et al.,
2007). Recently, a correlation between GlcCer and Golgi morphol-
ogy was observed in plant cells (Melser et al., 2010). Treatment of
A. thaliana with the inhibitor of GlcCer synthesis PDMP disturbed
transport of soluble and membrane-associated secretory proteins
to plant cell surface. This phenotype was accompanied by remark-
able morphological changes and protein retention in the Golgi
of treated cells. Reduction on Golgi cisternal thickness and stack
width together with an increase in the number of vesicular struc-
tures surrounding this organelle was visualized after treatment
with drugs that inhibit ceramide glycosylation.

As depicted above, pharmacological drugs that inhibit GSL syn-
thesis are important tools to investigate the role of GSL and lipid
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rafts physiological events in animal cells (Tifft and Proia, 2000).
Their activity against fungi is controversial, as discussed below.

Treatment of Aspergillus species with d-threo-1-phenyl-
2-palmitoyl-3-pyrrolidino propanol (P4) and d-threo-3P,4P-
ethylenedioxy-P4 (EDO-P4), inhibitors of ceramide glycosylation,
was followed by a decrease on GlcCer expression and defects in
spore germination, cell cycle, and hyphal growth (Levery et al.,
2002). Hillig et al. (2005) extended these findings by evaluating
the activity of GSL inhibitors on P. pastoris expressing heterolo-
gous GCS. The activity of these enzymes was measured in cell-free
membrane fractions in the presence of EDO-P4, a GCS inhibitor.
Although the human enzyme was strongly inhibited by this drug,
it showed no effect over fungal GCS (for instance, C. albicans).
These results, however, must be carefully interpreted, given the
lack of information in the literature on the properties of GCS
activity from other fungal species. However, we could not exclude
the possibility that other fungal species are sensitive to derivatives
of these inhibitors.

GlcCer AND FUNGAL VIRULENCE IN MURINE MODELS
As discussed above it is unquestionable that GlcCer is a key mol-
ecule during physiological events in fungal organisms. However,
mutants lacking GCS are usually viable. These mutant strains have
been used to evaluate the role of GlcCer during infection. In this
section we will debate the capacity of fungal GlcCer to regulate
virulence in animal models of mycoses.

The first report showing that GlcCer could influence the capac-
ity of a fungal organism to cause disease was established by Rit-
tershaus et al. (2006). C. neoformans lacking GlcCer synthesis was
generated after GCS disruption and used in murine models of
cryptococcosis. Although the capacity to produce key virulence
factors of C. neoformans was intact in the mutant, this strain
was avirulent when inhaled by CBA/J mice. Dissemination to
the brain was not observed even after 90 days of infection. When
injected intravenously using the same mouse background, yeasts
of C. neoformans reached different tissues, including the brain,
with a similar outcome observed for WT strain. Histopathological
sections confirmed these data and also showed yeast cells confined
to granulomas in the lung of mice after intranasal infection. These
granulomas were necessary to control fungal growth since brain
dissemination was observed after inhalation of GCS mutants by
T- and NK-cell-immunodeficient mice, where granuloma forma-
tion is impaired (Kechichian et al., 2007). A refined mechanism of
yeast cell cycle transition correlated with pH and CO2 concentra-
tion was suggested. For establishment of cryptococcosis, GlcCer
appears to be required for fungal growth in the blood and alveolar
spaces of the lung, which, in contrast to the acidic intracellular
environment in macrophages, have a neutral pH. Corroborating
with these data T- and NK-cell-immunodeficient mice depleted
of alveolar macrophages had decreased dissemination to the brain
and prolonged survival. The hypothesis raised by Rittershaus et al.
(2006) is also in agreement with experiments published by Saito
et al. (2006). These authors reported a relationship between Glc-
Cer synthesis and the capacity of fungal cells to grow under neutral
or alkaline pH.

Results from a meticulous work developed by Noble et al.
(2010) using the model C. albicans reinforce the role of GlcCer

as a virulence regulator. These authors disrupted 674 genes in
C. albicans using auxotrophic markers with no effect on viru-
lence. Mutants were then screened for three major phenotypes: (i)
pathogenicity in mouse model of candidiasis, (ii) morphological
switching (yeast to hypha conversion), and (iii) cell prolifera-
tion in vitro. The experiments in vivo disclosed 115 mutants with
impaired pathogenicity. Among these only 15 mutants displayed
impairment to differentiate and grow as hypha. In addition, in the
group of 115 mutants with impaired pathogenicity, 89 exhibited
growth rates that were close to the WT strain. Therefore, delay in
fungal growth did not correlate with capacity to cause disease in
mice. The authors then analyzed the mutants with impaired capac-
ity to colonize mice but efficient in proliferating and in promoting
morphological changes. Strikingly, four mutants were involved
with synthesis of GlcCer.

Previous studies by Oura and Kajiwara (2010) have shown that
mutants of C. albicans lacking C-9 methyltransferase, GCS, and
Δ8-saturase have growth rates that are similar to those observed
in WT cells. Delayed morphological changes were visualized when
these mutants were cultivated in spider medium, but hypha forma-
tion was observed in all situations. Contrasting with C. neoformans
mutants lacking GlcCer, mutants of C. albicans isolated by Noble
and colleagues were able to grow under neutral and alkaline pH
similar to WT. Thus, a distinct mechanism of virulence regulation
is dependent on GlcCer in C. albicans. The authors identified Glc-
Cer as the first molecule specifically required to govern virulence
in C. albicans (Noble et al., 2010).

FUNGAL GlcCer AS TARGETS TO NEW ANTIFUNGAL DRUGS
Together with other groups we have demonstrated the use of anti-
GlcCer antibodies to prevent fungal differentiation and growth
of fungal pathogens. For instance, these antibodies blocks germ
tube formation in C. albicans, Colletotrichum gloeosporioides, and
Pseudallescheria boydii (Pinto et al., 2002; da Silva et al., 2004).
Furthermore, anti-GlcCer antibodies were able to protect mice in
a lethal infection by C. neoformans (Rodrigues et al., 2007b). The
mechanism of action for these antibodies is still unknown. The
enrichment of GlcCer at budding sites in C. neoformans, suggested
that the antibodies could interfere with the cell wall biosynthesis
and organization as previously described for the lectin WGA (Cio-
praga et al., 1999). Alternatively, these antibodies could associate
to GlcCer on lipid rafts, impairing cleavage of GPI-anchored pro-
teins, essential to cell wall assembly. Cross linking of components
found on lipid rafts by antibodies or ligands could also initiate a
cell signaling response as observed in mammalian cells (Landry
and Xavier, 2006; Marta et al., 2008; Bingaman et al., 2010). In this
context, the only information available was the prominent cellu-
lar damage, with organelle destruction, membrane retraction, and
increased vacuolization observed in yeasts from C. neoformans
treated with anti-GlcCer (Nimrichter et al., 2005b). Some TEM
images suggested an apoptotic mechanism, but no biochemical
evidences were characterized.

A set of experiments published by Thevissen et al. (2004)
strongly suggested that targeting fungal GlcCer could in fact initi-
ate a cell signaling response in fungal organisms (Thevissen et al.,
2004; Aerts et al., 2007). These authors demonstrated that a pep-
tide isolated from radish seeds and named RsAFP2 was able to
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specifically bind to fungal GlcCer (Thevissen et al., 2004). The
peptide displayed a potent microbicidal activity in micromolar
concentrations against fungal species that express GlcCer. The
exact region of GlcCer where the peptide binds is not known,
but apparently C-9 methylation at ceramide is not required, since
mutants where this enzyme was impaired remained susceptible to
the peptide (Ramamoorthy et al., 2009). Binding of peptide was
followed by ROS production and fungal death (Aerts et al., 2007).
The peptide activity was impaired by anti-oxidative molecules,
confirming that fungal death was caused by an oxidative activity.
Further studies by our group demonstrated a prophylactic activ-
ity for RsAFP2 in a murine model of candidiasis (Tavares et al.,
2008). The peptide was biologically active against distinct Candida
species and its potency was proportional to the amount of GlcCer
expressed by the Candida strain tested.

Although the use of current GCS inhibitors is still questionable,
a new alternative to decrease fungal GlcCer content in patho-
genic fungi was recently proposed by Rhome et al. (2011): the
administration of cerezyme (Cz) to mice lethally infected with
C. neoformans. Cz is a human recombinant enzyme that removes
glucose from GlcCer. It has been used as an alternative treatment
for patients with Gaucher’s, disease where hydrolysis of GlcCer is
impaired and the GSL accumulates in lysosomes (Charrow, 2009).
This enzyme was proven to hydrolyze fungal GlcCer and reduce
its content in C. neoformans in vitro and in vivo. Cz-induced Glc-
Cer decrease was associated with reduction of fungal membrane
stability. In a murine model of cryptococcosis Cz was also able to
increase mice survival (Rhome et al., 2011).

CONCLUSION AND PERSPECTIVES
For over half a century, GlcCer was classified as a structural
membrane component of eukaryotic cells. In the last decade,

however, a number of studies have uncovered sophisticated
functions for GlcCer in eukaryotes. In fungi, it is now clear that
knowledge on functions related to virulence, growth, and mor-
phological transitions can be connected to specific structural
features and particular biosynthetic steps to validate GlcCer as
a potential target to development of new antifungal drugs. A
major challenge, however, is to identify these drugs. The liter-
ature suggests several inhibitors of fungal GlcCer synthesis as
candidates. So far, none of them have appeared to be sufficiently
specific to allow use in human patients. In parallel, GlcCer ligands
are apparently efficient and selective antifungal agents where in
fact, peptides and monoclonal antibodies were already adminis-
tered in murine models with encouraging results. Other candi-
dates, including the antifungal factor HSAF and the enzyme Cz
(which is already approved for use in humans), are also promis-
ing GlcCer-binding candidates. We need now more details on how
antibodies, peptides, and enzymes interfering with the structure
of GlcCer alter the biology of fungal cells, as well as how they
impact human/animal physiology. Considering the critical side
effects usually observed during antifungal therapy, the low effi-
cacy of currently approved antifungal drugs and the emerging
resistance of fungal cells against antifungals, we believe GlcCer is
a very promising target for the activity of new compounds with
potential to be used in human and animal individuals with severe
mycoses.
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