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Tropical epiphytic plants within the family Bromeliaceae are unusual in that they possess
foliage capable of retaining water and impounded material. This creates an acidic (pH 3.5—
6.5) and anaerobic (<1 ppm O3) environment suspended in the canopy. Results from a
Costa Rican rainforest show that most bromeliads (n = 75/86) greater than ~20 cm in plant
height or ~4-5 cm tank depth, showed presence of methanogens within the lower anoxic
horizon of the tank. Archaea were dominated by methanogens (77-90% of recovered ribo-
types) and community structure, although variable, was generally comprised of a single
type, closely related to either hydrogenotrophic Methanoregula or Methanocella, a spe-
cific clade of aceticlastic Methanosaeta, or Methanosarcina. Juvenile bromeliads, or those
species, such as Guzmania, with shallow tanks, generally did not possess methanogens,
as assayed by polymerase chain reaction specific for methanogen 16S rRNA genes, nor
did artificial catchments (~100 ml volume), in place 6-12 months prior to sample collection.
Methanogens were not detected in soil (n=20), except in one case, in which the dominant
ribotype was different from nearby bromeliads. Recovery of methyl coenzyme M reduc-
tase genes supported the occurrence of hydrogenotrophic and aceticlastic methanogens
within bromeliad tanks, as well as the trend, via QPCR analysis of mcrA, of increased
methanogenic capacity with increased plant height. Methane production rates of up to
300 nmol CH4 ml tank water—" day—" were measured in microcosm experiments. These
results suggest that bromeliad-associated archaeal communities may play an important

role in the cycling of carbon in neotropical forests.
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INTRODUCTION

Because of the significant influence of methane on atmospheric
chemistry and it’s prominent role as a greenhouse gas, it is becom-
ing increasingly important to understand its sources and sinks on
Earth (Crutzen, 1991; IPCC, 2001). Methanogenesis is the domi-
nant terminal mineralization process in wetlands and freshwater
sediments that experience prolonged flooding and are limited
in more energetically favorable electron acceptors (e.g., sulfate,
nitrate, and metal oxides; Whalen, 1993; Grosskopf et al., 1998;
Galand et al., 2002; Cadillo-Quiroz et al., 2006). Methane emis-
sions from these environments, both natural and man-made, are
substantial (~200 Tgyear~!) and are estimated to contribute up
to 40% of total global CHy emissions annually (Crutzen, 1991;
Grosskopf et al., 1998; Watanabe et al., 1999; IPCC, 2001; Galand
et al., 2002). Methane in these ecosystems is produced exclusively
by the activity of certain archaea, during the final step in the
anaerobic degradation of organic matter.

Methanogenic archaea can use a number of substrates as pre-
cursors of methane, with CO; reduction and acetate fermentation
being most important in wetland soils. Although the relative con-
tributions of the two pathways can vary, aceticlastic methanogen-
esis generally contributes more to total terrestrial CH4 production
than hydrogenotrophic CO, reduction (Jetten et al., 1992; Conrad,

1999; Conrad et al., 2010). Specialist acetotrophic and more ver-
satile methylotrophic (C1) methanogens belong predominantly
to the Methanosarcinales, while H,/CO,-utilizing methanogens
include members of the Methanocellales and Methanomicrobiales,
to name a few. Methane production by these groups can be influ-
enced by many factors, including availability of substrates and
electron donors (e.g., Hy ), which are often formed catabolically by
bacteria, quantity and quality of organic carbon, the presence of
possible substrate competitors (e.g., bacteria), and environmen-
tal conditions such as pH and oxygen levels (Capone et al., 1983;
Galand et al., 2002; Juottonen et al., 2005).

There is a general expectation that as the conditions for
methanogenesis are discovered to be broader than predicted, so
too will the number of habitats known to contribute methane to
the atmosphere. Small-scale water catchments such as bromeliad
tanks, Heliconia bracts, tree holes, etc., have the capacity to collect
water, thereby hosting microbial communities, with the collective
potential to possibly influence carbon cycling, when integrated
over ecosystem scales. Epiphytic tank-forming bromeliads, in par-
ticular, are those that possess foliage arranged in a compact rosette
capable of retaining water. They are predominant members of
neotropical habitats, including rain and montane cloud forests,
and by some estimates may trap as much as 50,0001 of suspended
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water in the canopy ha~! (Sugden and Robins, 1979; Fish, 1983).
In this way, bromeliad tanks provide a vast and unique freshwa-
ter niche that does not typically occur in other, especially above
ground, locations in tropical forests. In fact, in a recent article
by Yavitt (2010), the lentic ecosystems found in bromeliads were
classified as “cryptic wetlands.” Accumulation of organic matter,
such as leaves and carcasses of dead fauna, primarily arthropods,
in bromeliad tanks under acidic, submerged conditions, provides
the conditions necessary for the creation of an anaerobic micro-
cosm capable of sustained decomposition and remineralization of
terrestrial carbon and the potential for production and release of
methane.

Martinson et al. (2010) first reported that tank bromeliads are
important sources of atmospheric methane. Methane fluxes, mea-
sured from bromeliads in the Ecuadorian Andes, were directly
correlated with tank diameter and the plant vascular system itself
was determined to act as an important conduit for methane
release (Martinson et al., 2010). By extrapolation, it was sug-
gested that CH4 emissions from bromeliad-associated archaea (up
to ~2Tg CHyyear~!) might possibly explain the anomalously
high methane levels observed previously over neotropical forests
(Frankenberg et al., 2008; Martinson et al., 2010). Whether or
not the contribution of methane by these ecosystems is globally
significant, as suggested by Martinson et al. (2010), but down-
played by Yavitt (2010), it is clear that methanogens in bromeliad
tank water play a key role in the cycling of carbon in neotropical
environments.

Biomass degradation through methanogenesis remains largely
unexplored with regard to suspended catchments, such as
bromeliad tanks. Within bromeliad tanks, total organic carbon
levels are elevated (~46% TOC), relative to nearby soil (4% TOC),
the pH is neutral to acidic (6.5-3.5), and oxygen is low (<1 ppmy;
Bermudes and Benzing, 1991; Guimaraes-Souza et al., 2006; Gof-
fredi et al., 2011). Additionally, bacteria related to Proteobacteria,
Acidobacteria, Bacteroidetes, and Firmicutes, with varying capa-
bilities of organic carbon breakdown, have been recovered from
Costa Rican bromeliad tanks (Goffredi et al., 2011). These bacteria
presumably contribute to organic matter decomposition, from
recalcitrant chitin and cellulose breakdown to the production of
volatile fatty acids and hydrogen, which facilitate the final pro-
duction and evolution of methane gas by archaea. The objective
of this study was to provide a molecular and functional assess-
ment of the methanogen communities inhabiting bromeliad tanks
in a lowland neotropical rainforest in Costa Rica, with empha-
sis on community structure and possible influences on methane
production potential (e.g., environment and plant morphology).
Bromeliads, as well as nearby soil and artificial catchments, were
sampled over the course of 18 months, using both 16S rRNA
genes, as well as methanogen-specific mcrA genes, to document
variations in methanogen populations among tanks.

MATERIALS AND METHODS

SAMPLE COLLECTION

La Selva Biological Station, situated in a wet (4 m annual rainfall)
lowland neotropical forest in northern Costa Rica, is located at the
confluence of the Sarapiqui and Puerto Viejo rivers in the province
of Heredia, Costa Rica (10°26'N, 83°59'W, 37—-130 m elevation).

The reserve, which covers approx 1600 ha, is home to dozens of
bromeliads species, including those within the genera Werauhia
(syn. Vriesea), Guzmania, Androlepis, and Aechmea, which were
sampled in this study on three separate occasions over 18 months
during 2009-2010 (Figure 1). This study included tank water from
106 adult and juvenile bromeliad specimens (Figure 1C), compris-
ing six species; Aechmea mariae-reginae (“Amr”), Aechmea nudi-
caulis (“An”), Werauhia gladioliflora (“Wg”), Werauhia kupperi-
ana (“Wk”), Androlepis skinneri (“As”), and Guzmania lingulata
(“GI”), which encompassed a range of tank morphologies (e.g.,
~3-114 cm plant height) and pH conditions (3.6-6.5; Figure 1D).
Additionally, 20 soil samples were collected from near and below
sampled bromeliads, as well as eight amber bottles (~100 ml vol-
ume) intended to artificially simulate bromeliad tanks, attached
to nearby bromeliads for a duration of 6-12 months (Figure 1B).
For two bromeliads (Amrl and Amr51), the pH was artificially
depressed, from ~6.5 to ~4.5 for a total of 62 days, by the fre-
quent addition of 1IN hydrochloric acid to the tank (Goffredi
etal.,2011). Several bromeliads (and paired soil) were sampled by
climber from the canopy (~30 m), but most were within 2 m high
on host trees, typically in either man-made or natural clearings.
Tank water samples were collected via serological pipette from the
bottommost horizon within the tank, with the exception of four
bromeliads (with tank depths of ~10-15 cm), which were sampled
stratigraphically every ~ 3—-5 cm. Samples were transported to the

FIGURE 1 | Costa Rican bromeliads used in this study. (A) Aechmea
mariae-reginae with nearby note card and ruler for scale (B) Werauhia
gladioliflora, with nearby amber bottle (arrow) intended to artificially
simulate a bromeliad tank. (C) A juvenile specimen of W. gladioliflora. (D)
Two specimens of W. gladioliflora, showing a pH electrode (arrow) and
meter, reading 5.05 in the central catchment water of the left hand
specimen. Scale bars, 5cm.
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lab in clean 15 ml plastic tubes and either processed or preserved
immediately.

CHEMICAL ANALYSES

Tank pH was measured via hand-held pH electrode (Hanna Instru-
ments HI-98103B) in the field, prior to sampling for DNA analysis.
Oxygen was also measured in situ using a colorimetric dissolved
oxygen test kit (CHEMetrics, Inc.).

Methane production by bromeliad tank communities was
assayed via incubation of tank water (13-30ml) in gas tight
serum vials (total volume 73 ml). Bromeliad tank water for incu-
bation experiments was collected by siphoning through a tube
(tygon) inserted, at the other end, into a 100-ml serum vial.
Minor amounts of partially decomposed leaf litter and inverte-
brate remains were entrained in the siphoned water. The serum
vials were crimp sealed using a butyl rubber stopper and incu-
bated, inverted, at a laboratory temperature of ~22°C in the
dark. Over the course of 10-77 days, 10 ml headspace samples
were taken via syringe after brief shaking. These samples were
taken in the following manner to minimize pressure differences
between the interior and exterior of the serum vial. A fully
depressed 10-ml syringe with a 22-gauge needle was inserted into
the headspace of the serum vial. A second 10-ml syringe with a 22-
gauge needle filled with UHP nitrogen gas was inserted into the
headspace. Pushing and pulling on the syringe plungers approx-
imately 10-15 times mixed the gases. A 10-ml gas sample was
pushed through a low volume magnesium perchlorate drying col-
umn prior to injection into the gas chromatograph via a 1-ml
sample loop. The addition of nitrogen gas was accounted for
when calculating methane concentrations. Headspace methane
concentrations were determined using a Shimadzu mini-2 gas
chromatograph equipped with a 1/8” x 5-ft stainless steel col-
umn packed with Carbosieve G and a flame ionization detec-
tor (FID) and operated in isothermal mode (oven temperature
100°C; detector temperature 110°C) with a UHP nitrogen carrier

gas. Methane gas standards (9.93 and 98.6 ppm CHj in helium)
were used for calibration. Compound specific isotopic values
for methane from three selected samples were measured via
gas chromatography-combustion-isotope ratio mass spectrome-
try using a system consisting of an Agilent 6890 GC, a combustion
unit, and a mass spectrometer (Finnigan Delta V plus). Hydro-
carbon components were separated by GC, and each individual
component slated for isotopic analysis was combusted. The resul-
tant CO, was introduced directly into the mass spectrometer,
and Finnigan’s Isodat software was utilized for peak detection
and quantification (Isotech Laboratories Inc., Champaign, IL,
USA).

PHYLOGENETIC ANALYSES

Freshly collected bromeliad tank water (0.5 ml, including debris)
was spun at 15,000 x g for 10 min and the resulting pellet was
either extracted for total nucleic acids or preserved in 0.5-
1.0 ml RNAlater (Ambion, Inc.). DNA was extracted using the
Power Soil DNA extraction kit (MoBio Laboratories, Inc., Carls-
bad, CA, USA), modified by two initial 5-10 min incubations
at 65°C, one in the presence of solution S1, followed by 5-
10 min vortexing. The remainder of the extraction procedure
was carried out according to the manufacturer’s instructions,
with the exception of a 4°C incubation in IRS solution (5 min)
between solutions S2 and S3 to increase DNA yield and inhibitor
removal. SSU (16S) rRNA was amplified by polymerase chain
reaction (PCR) from extracted DNA, using the archaea-specific
primer pair 1F/1100R (1F, 5-TCYGKTTGATCCYGSCRGAG-
3’; 1100R, 5-TGGGTCTCGCTCGTTG-3’; Hales et al., 1996),
the methanogen-specific primer pair 355F/1068R (355F, 5'-
CAGGCGCGAAAACTTTAC-3'; 1068R, 5 -ATGCTTCACAGTAC
GAAC-3’; Banning et al., 2005), or a combination of 355F/1100R
(Table 1). Thermal cycling conditions were as described, with an
annealing temperature of 52°C, for 25 cycles (Hales et al., 1996;
Banning et al., 2005). No difference in relative abundance and

Table 1 | Summary of archaeal ribosomal 16S rRNA clone library results (shown as % of each library).

Sample ID! Wg37 Amr34 Wg104 Wg104 An82 As12 Wg86 An91 BtI5 Soil13
Catchment pH 4.80 5.45 5.10 5.10 5.14 5.63 5.20 4.65 5.10 nm

Group Closest relative Archaeal primers? Methanogen-specific primers?
Methanomicrobiales Methanoregula 14 - 75 79 77 74 - 3 12 10

Methanospirillum - - - - - - - - 62 -
Methanocellales Methanocella 2 32 - - 7 3 21 88 - -
Methanosarcinales Methanosaeta 64 24 15 17 - 23 4 - - 4

Methanosarcina 6 21 - - 3 - 75 - 9 73
Thermoplasmatales i 12 - - - - - - 17 3
Crenarchaea/Unknown 3 1 10 4 13 - - 9 - 10

Total # of clones 36 34 38 48 30 31 44 33 34 30

'An, Aechmea nudicaulis; Amr, A. mariae-reginae; As, Androlepis skinneri; Wg, Werauhia gladioliflora. Btl5= an amber bottle (~ 100 ml volume) intended to artificially

simulate a bromeliad tank, attached to Amr1 for a duration of 12 months. Soil13 was a soil sample collected from just below a group of bromeliads.
?The archaea-specific primer pair was IF/1100R (IF;, 5-TCYGKTTGATCCYGSCRGAG- 3, 1100R, 5-TGGGTCTCGCTCGTTG-3, Hales et al., 1996).
3The methanogen-specific primer pair was 355F/1068R (355F 5-CAGGCGCGAAAACTTTAC-3, 1068R, 5-ATGCTTCACAGTACGAAC-3; Banning et al., 2005).

nm = not measured.
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types of methanogens was detected between those recovered using
the two main primer pairs (see Wg104; Table 1).

Presence/absence of methanogens was judged by elec-
trophoretic separation and visualization of PCR products pro-
duced by the 355F/1068R primer set. For seven bromeliads, one
artificial catchment, and one soil sample, PCR-amplified bacte-
rial 16S rRNA genes were used for clone library construction.
PCR products were pooled in triplicate prior to ligation. Transfor-
mants (3048 clones analyzed for each bromeliad library; Table 1)
were screened directly for the presence of inserts using M13F/R
vector primers (8 min initial denaturation). M13 amplicons were
cleaned prior to sequencing with MultiScreen HTS plates (Milli-
pore Corporation, Bedford, MA, USA). Sequencing reactions were
performed using the Genome Lab DTCS Quick Start Kit (Beckman
Coulter, Fullerton, CA, USA), precipitated according to the man-
ufacturer’s instructions, and run on a CEQ 8800 Genetic Analysis
System (Beckman Coulter, Fullerton, CA, USA). Representative
ribotypes, based on 97% sequence similarity, were selected for
near full-length sequencing (Figure 4).

Sequences were assembled and edited using Sequencher v4.10.1
(Gene Codes Corporation). Initial sequence homology searches
were performed using BLASTn (NCBI) and the Ribosomal Data-
base Project classifier. Our 16S rRNA sequences along with addi-
tional sequences obtained from GenBank were compiled in ARB,
after initial alignment using the SILVA Aligner function, with sub-
sequent manual refinements (Ludwig et al., 2004; Preusse et al.,
2007). For near full-length representatives and closest relatives,
neighbor-joining (NJ) analysis was conducted with Felsenstein
distance correction. In some cases, partial sequences recovered in
our study were added to the NJ tree in ARB via parsimony inser-
tion within a tree of longer sequences. NJ analysis was performed
with 2000 bootstrap replicates to assign confidence levels to nodes,
shown in Figure 4, if >70% confidence (PAUP*4.0b10; Swofford,
1998). Sequences obtained in this study have been deposited in the
GenBank database under accession numbers JN810747-JN810784
(archaeal 16S rRNA ribotypes) and JN810785-JN810789 (mcrA
genes).

QUANTITATIVE PCR

A SYBR green I assay was used to quantify total copy num-
bers of methyl coenzyme M reductase A (mcrA) genes present
in bromeliad tank genomic DNA extracts. Methyl coenzyme M
reductase is the key enzyme, unique among methanogenic archaea,
which catalyzes the reduction of methyl coenzyme M, the final
step in methanogenesis (Ermler et al., 1997; Lueders et al., 2001;
Luton et al., 2002). The alpha subunit of the methyl coenzyme M
reductase gene (mcrA) is highly conserved among all methanogens
and is commonly used as an ecological and phylogenetic met-
ric by which to investigate methanogens. mcrA primers, designed
previously by Steinberg and Regan (2008) in a study of acidic
peat, manure, and anaerobic wastewater, were used to amplify
a 489-bp region of the mcrA subunit from methanogens (mlas;
5 -GGTGGTGTMGGDTTCACMCARTA-3’ and mcrA-rev; 5'-
CGTTCATBGCGTAGTTVGGRTAGT-3'). pCR®4-TOPO-derived
plasmids (Invitrogen, Eugene, OR, USA) containing known partial
mcrA sequence copies were prepared according to the QIAPrep
Spin Miniprep Kit (Qiagen, Valencia, CA, USA). During library

construction for plasmid recovery, several mcrA clones were M 13-
amplified and sequenced, as described earlier (Table A1 in Appen-
dix). Serial dilutions of the plasmids were used in the optimization
of primer concentrations, as well as generation of a standard curve
for cycle threshold (Ct) versus gene copy number. The Ct values
from these plasmids were converted into copy numbers with con-
sideration of the plasmid preparation nucleic acid concentration,
length of the plasmid (3956 bp) and gene insert length (489 bp),
average molecular weight of a double stranded DNA molecule
(660 g mole™!), and Avogadro’s number, resulting in a DNA mass
conversion of 1.096 x 1072! gbp~!. The slope of the standard
curve [regression line of Ct versus log(DNA)] was used to assess
amplification efficiency and was empirically determined to be 3.3
for the mcrA primer set. Quantitative PCR amplifications (20 pl),
performed in duplicate, contained 417 nmol of primer mcrA-mlas
and 278 nmol of primer mcrA-rev, and 1x PCR buffer contain-
ing MgCl,, dNTPs, and Amplitaq Gold in the SYBR green master
mix (Power SYBR® Green PCR Master Mix; Applied Biosystems,
Foster City, CA, USA). Purified DNA from bromeliad tank water
was added as template (~1-6 ng u1~1), in replicate dilution series.
DNA concentrations for samples and standards were measured
using the Quant-iT PicoGreen dsDNA assay kit (Invitrogen) and a
DTX880 multimode detector and workstation (Beckman Coulter,
Brea, CA, USA). Lambda-DNA was used as a standard, as per the
manufacturer’s instructions. QPCR amplifications were carried
out using an ABI Prism 7500 Sequence Detection System (Applied
Biosystems). Cycling parameters included an initial denaturation
of 95°C for 3 min, followed by 50 cycles of denaturation at 95°C
(15's) and 60 s of annealing/extension at 60°C. A dissociation curve
from each reaction was examined to further ensure proper target
sequence amplification (i.e., Ty, > 80°C). Given the uncertainty
of using plasmids as standards for absolute copy numbers (Hou
etal., 2010), mcrA values are shown as relative in Figure 3.

TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM AND
DIVERSITY

Methanogen-specific terminal restriction fragment length poly-
morphism (T-RFLP) profiling was used to characterize the relative
proportions, and corresponding diversity, of methanogen groups
associated with bromeliad catchments. This approach has been
used previously to quantify major methanogen phylotypes from
acidic peatlands, a minerotrophic fen, and brackish lake sedi-
ment (Banning et al., 2005; Cadillo-Quiroz et al., 2006, 2008).
A subset of 25 bromeliads, encompassing a range of morpholog-
ical and physical-chemical parameters, was selected for T-RFLP
fingerprinting. 16S rRNA genes from purified DNA samples, as
described above, were PCR-amplified using methanogen-specific
primers 355F/1100R [the latter was fluorescently labeled at posi-
tion 1100 (E. coli numbering) with Well RED dye D4, Sigma-
Proligo, St. Louis, MO, USA; Cadillo-Quiroz et al., 2006], using the
conditions described above for unlabelled PCR amplifications. For
each sample, duplicate PCR amplifications were performed and
pooled (300-500 ng total) prior to digestion with Hhal/Sau961
(for 8h at 37°C, with addition of bovine serum albumin; New
England Biolabs, Beverly, MA, USA). Fluorescently labeled frag-
ments were separated by capillary electrophoresis and analyzed on
a CEQ 8800 Genetic Analysis System (Beckman Coulter, Fullerton,
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CA, USA). Fragment sizes were parsed by separation of >3 bp, and
relative abundances were estimated using the CEQ 8800 Fragment
Analysis software.

Statistical analyses were performed using the JMP statistical
software (version 4.04; SAS Institute, Cary, NC, USA). Diversity
estimates of T-RFLP data were performed using Primer v6 (Clarke,
1993; Clarke and Gorley, 2006). Hierarchical cluster analysis, using
Bray—Curtis similarity resemblance, Euclidean distance, and no
transformation of the data, was also performed using Primer v6.

RESULTS

METHANE PRODUCTION IN BROMELIAD TANK INCUBATIONS
Methane production potential was assayed via incubation of
bromeliad tank water in gas tight serum vials. Methane increased
within a few days and reached a plateau, by day ~30, at
~900 nmolml~! CHy in the headspace (=~22000ppm CHy;
Figure 2). This plateau was likely due to constraints within the
incubation vials as methane production resumed following a
purge of the headspace, at day 76, with nitrogen (Figure 2).
Methane production rates varied initially between 7 and 38 nmol
CHyml tank water™! day_l, and increased to 100-300 nmol
CH; ml~! day™! immediately following the purge. Additionally,
§813C stable isotopic signatures of the generated methane, taken
at day 76, were —56.5 and —58.4%o, indicative of a combination
of both hydrogenotrophic and aceticlastic methanogenesis. The
8!13CHy value of an additional sample (Wg104), not monitored
for methane production, was —62.5%o.

MEASURES OF, AND INFLUENCES ON, MCRA GENE COPY NUMBER

The methanogenic potential of the tank community was exam-
ined by QPCR assay of the methyl coenzyme M reductase A
(mcrA) gene. Relative mcrA copy number ranged from 1.6 x 10° to
7.0 x 107 ng~! DNA extract, however, actual copy numbers (and
corresponding methanogen abundance) may have been overes-
timated due to use of plasmids as a standard curve for QPCR

analysis (Hou et al., 2010). Nevertheless, there was a positive cor-
relation between mcrA copy number and plant height, suggesting
a greater capacity for methanogenesis in larger tanks (Figure 3,
R?=0.61, P=0.0009). For seven clonal specimens of A. nudi-
caulis (ranging from 2 to 7 cm tank depth and 4-20 cm estimated
plant height), quantitative assessment of mcrA revealed the same
trend of increased copy number in larger plants, and no detec-
tion of mcrA genes in the smallest individuals (Figure 3, inset).
It should be noted that this relationship did not hold for plants
with heights of >54 cm. Although they did possess mcrA genes
(data not shown), greater stratification, and a sample volume of
~10-15 ml, likely resulted in an inability to quantitatively sample
larger tanks. Additionally, QPCR analysis on four of the artificial
catchments did not render detectable levels of the mcrA gene. Two
artificial catchments, however, did possess methanogens, albeit at
lower relative levels (40% of signal, as compared to the bromeliads
with which they were paired).

PHYLOGENETIC CHARACTERIZATION OF METHANOGENIC
ASSEMBLAGES IN BROMELIAD TANKS

Archaeal community composition in bromeliad catchments was
analyzed by cloning and sequencing of 16S rRNA genes. Archaea
were dominated by methanogens (77-90% of recovered ribotypes)
and community structure, although variable, revealed a predom-
inance of various hydrogenotrophic methanogenic orders (e.g.,
Methanomicrobiales and Methanocellales), as well as both general
and specific acetotrophs (Methanosarcinales; Table 1; Figure 4).
Very few non-methanogen taxa were detected, using archaeal
domain primers, but additional minor archaeal groups included
possible members of Thermoplasmatales/Candidate Division II,
and uncultured crenarchaea. Notably, the “methanogen-specific”
primer set not only amplified the 16S rRNA genes from other Eur-
yarchaeota, perhaps not surprisingly, but also Crenarchaeota in
proportions not much different from the archaeal primers, which
themselves, are somewhat biased toward Euryarchaeota. Many

FIGURE 2 | Methane production by bromeliad catchment water. Methane
increased within a few days and reached a plateau, by day ~30, at

~900 nmol ml~" CH, in the headspace (= ~22000 ppm CH,). Following a
purge of the headspace with nitrogen, at day 76, methane production
resumed, and was measured once more at day 192. Methane production
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rates varied initially between 7 and 38 nmol CH, ml tank water~' day’', and
increased to 100-300 nmol CH, mI~' day~" immediately following the purge
(days 77-78). Additionally, the §'*C isotopic signatures of the generated
methane, taken at day 76 prior to the purge, were —56.5 and —58.4%., for
Wg37 and As12, closed and open circles, respectively.
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FIGURE 3 | Methanogenic potential of the tank community as examined
by QPCR assay of the methyl coenzyme M reductase gene (mcrA). A
direct relationship existed between relative mcrA copy number and plant
height (R? =0.61, P=0.0009), suggesting a greater potential for
methanogenesis in larger tanks. This relationship did not exist in plants larger
than 54 cm in height, likely due to an inability to quantitatively sample larger

Plant Height (cm)

30 40 50

tanks. For seven clonal specimens of A. nudicaulis (connected via a rhizome
and ranging from 2 to 7 cm tank depth; 4-20 cm estimated plant height),
mcrA copy number revealed the same trend of increased relative copy # in
larger plants, and no detection of mcrA genes in the smallest four individuals
(inset). Note that actual mcrA copy numbers are not the focus and may have
been affected (overestimated) by using plasmids as a QPCR standard.

euryarchaeal ribotypes, using both archaeal- and methanogen-
specific primers, were closely related (based on 97-100% simi-
larity in partial 16S rRNA) to cultured representatives, including
Methanoregula boonei, isolated from an acidic peat bog (Briuer
et al., 2006, 2011), Methanocella paludicola, isolated from rice
paddy soil (Sakai et al., 2008), Methanosarcina barkeri, isolated
from rice paddies and an underground gas storage facility (Joulian
etal., 1998; Tarasov et al., 2011), and Methanosaeta concilii isolated
from an anaerobic sewage sludge fermenter (Patel, 1984). Others
were related to ribotypes associated with uncultured groups previ-
ously recovered from a range of environments, including estuaries,
landfills, deep aquifers, fens, and bromeliads. In fact, several ribo-
types recovered in the present study were most closely related to
those recovered from Ecuadorian bromeliads (Figure 4; Martinson
et al., 2010).

The predominant group of methanogens recovered in clone
libraries varied between bromeliads. For example, recovered ribo-
types associated with Methanocella were numerically dominant
(46 and 97% of methanogen 16S rRNA ribotypes recovered)
in the tanks of two bromeliads (Amr34 and An91, respec-
tively), Methanoregula-associated ribotypes were dominant (75
and 82%) in two other bromeliads (Wg104 and An82, respec-
tively), while Methanosaeta- and Methanosarcina-associated ribo-
types each dominated one bromeliad, as assayed via clone library
construction (72 and 75% for Wg37 and Wg86, respectively;
Table 1; Figure 4). Both the Methanosaeta- and Methanocella-
associated clusters, in particular, appeared to be bromeliad-
specific, in that ribotypes were most closely related to each
other than to any others sequences deposited in the databases
(Figure 4).

Out of 20 nearby soil samples (both ground level and canopy
height, ~33 m), only one sample (soil13) produced a positive
signal for methanogens. Methanogen ribotypes recovered from
this soil sample were generally distinct from those recovered
from nearby bromeliads, and were, instead, closely related to
Methanosarcina vacuolata from sludge and Methanosarcina mazei
from rice paddy soil (97-99% similarity in 16S rRNA; Table 1;
Figure 4; Deppenmeier et al., 2002; Liu et al., 2009). Conversely,
ribotypes associated with Methanoregula were recovered predom-
inantly from a nearby bromeliad (data not shown). Additional
methanogenic ribotypes in soil included those found in meadow
soil and aquifers (Figure 4).

Artificial catchments (amber bottles), intended to simulate
bromeliad tanks, were also analyzed for methanogen presence.
Methanogens were generally not detected within the contents of
these artificial catchments, suspended in the canopy near bromeli-
ads, even though they had been in place, collecting debris, for 6—
12 months. Despite holding similar volumes of water (~100 ml),
oxygen levels in bottles were generally elevated (6-8 ppm O3),
compared to <1 ppm O; in the bottommost depths of paired
bromeliad tanks. Two artificial catchments did show evidence of
methanogens. Visual examination of these two bottles revealed
that they contained the largest amount of organic debris. More-
over, they had the lowest pH values of all bottles measured (5.1
versus 6.6 average pH, comparatively). Unfortunately, oxygen lev-
els were not measured in these specific bottles. Time in the field
did not appear to matter, as both bottles that assayed positive
for methanogens were in place for only 6 months, compared to
others in place for up 12 months. The community composition
within one bottle (“Btl5,” Table 1) was investigated further and
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Methanosarcinaceae *
Methanosarcinales

L

Methanosarcina barkeri, CP000099
unc. freshwater reservoir, AF418936
Btl5_H5

Methanosarcina vacuolata, FR733661

unc. landfill, AJ831174

Btl5_D6
unc. termite mound, AY487188

soil13_H7
soil13_B4
soil13_C2
Wg86_H2
Amr34_G1
unc. freshwater reservoir, AF418929

Wg37_F5
Wg37_H4
Amr34_D5
Wg37_A11
Wg104_E8

— Wg104_E3
Wg86_D1

As12_A2

AJ879059

Methanosaetaceae

|: unc. acidic bog rhizoplane, FJ822552
unc. acidic peatland, DQ301882

Methanosaeta concilii, X51423

Wg86_B6
o~ An91_C9
Methanocellales * L An91_G7

Methanomicrobiales ¢

E unc. tank bromeliad, GU223537
unc. boreal subsurface, DQ200757

I: soil13_D1

Thermoplasmatales / Candidate Division Il ¢

unc. sphagnum peat, AF524853
o unc. tank bromeliad, GU223554
unc. acidic peatland, DQ301891
_E An82_B1
An91_D11
— An82_C3
o —— Wg104_C5

As12_E2
Methanoregula boonei, CP000780
unc. tank bromeliad, GU223470

Wg37_B3

unc. acidic bog rhizoplane, FJ822551

unc. acidic peatland, DQ301904

BtI5_A3
- Wg104_C4
Wg37_E2

unc. sludge, FR865328

Btl5_A4

unc. minerotrophic fen, EU155983
Methanospirillum hungatei, AB517987
unc. aquifer, AB288248
unc. sludge, HM639851
Wg37_H3
Amr34_E4
o Amr34_F1
unc. rice rhizosphere, AJ879052

0.05

FIGURE 4 | Phylogenetic relationships among archaea associated with
Costa Rican bromeliads, a nearby soil sample, and an artificial
catchment, relative to selected cultured and environmental sequences in
public databases. Relationships are based on sequence divergence within
the 16S rRNA gene, with emphasis on methanogenic archaea, as well as
those related to the Thermoplasmatales/Candidate Division I, and an

unc. boreal oligotrophic fen, AJ548940
soil13_E1
Btl5_E2
o— Wg37_C11
unc. fen soil, FR745001

uncultured member of the Korarchaeota (DQ465910) as an out group (not
shown). The symbols at the nodes represent bootstrap values from a
Kimura-2 parameter neighbor-joining analysis obtained from 2000 replicate
samplings (open symbol =70-80%, closed symbol =80+% bootstrap
support). Sequences obtained in this study have been deposited in the
GenBank database under accession numbers JN810747-JN810784.
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determined to be distinct from nearby bromeliads, with ribo-
types most closely related (97% similarity) to Methanospirillum
hungatei, isolated from sewage sludge (Ferry et al., 1974), as the
dominant methanogen (75% of known methanogen 16S rRNA
ribotypes; Figure 4). Additional close relatives (99% similarity)
included uncultured representatives isolated from minerotrophic
fens and sludge, including a few Methanoregula-associated ribo-
types (Figure 4; Cadillo-Quiroz et al., 2008; Riviere et al,
2009).

Ribotypes tentatively characterized as Thermoplasmatales-
associated were recovered in significant numbers from two
bromeliads (~12% of the recovered ribotypes; Amr34 and Wg37)
and one artificial catchment (at least 17%; Btl5; Table 1). Thermo-
plasmatales do occur in low temperature soils (Horn et al., 2003;
Juottonen et al., 2005), however, nearest neighbors in other studies
(based on 16S rRNA) have been classified as distinct from Ther-
moplasmatales and may, in fact, represent new members within
the Candidate Division IT (Watanabe et al., 2002; Liu et al., 2009).
Whether or not they play a role in methane metabolism is currently
unknown.

The alpha subunit of the methyl coenzyme M reductase gene
(mcrA) was also cloned and sequenced, using the QPCR primers
described above, from the tank water of three bromeliads (Table A1
in Appendix). Based on recovered mcrA gene sequences, the dom-
inant methanogens were closely related (86—96% amino acid simi-
larity) to members of both the Methanosarcinales and Methanomi-
crobiales, many of which were previously recovered from similar
habitats (e.g., rice paddy soil, acidic peat bogs, and wastewater
sludge; Table A1 in Appendix).

PRESENCE AND ABSENCE OF METHANOGENS IN TANK-FORMING
BROMELIADS

Tank water samples from 106 specimens, comprising 6 bromeliad
species (including A. mariae-reginae, A. nudicaulis, W. gladioliflora,
and A. skinneri, as noted in the above section, and W. kupperiana
and G. lingulata), were extracted for examination of methanogen
presence by PCR. Methanogen-specific 16S rRNA genes were
recovered for 75 of the 106 bromeliad tanks sampled and included
all species, which ranged in plant height from 20 to 114 cm and
tank pH of 3.6-6.5. Of the 31 tanks that were negative, or below
the detection limit for methanogens, 10 were juvenile plants (less
than 5 cm height, with small tank volumes of ~ 0.5-2 ml), 10 were
small adult plants (<20 cm plant height and <5-7 cm tank depth),
3 were Guzmania species, which typically have very shallow tanks,
leaving only eight that were within all specifications of those that
did possess methanogens. Seven clonal, rhizomatous specimens
of A. nudicaulis, ranging from 2 to 7 cm tank depth (=4-20cm
estimated plant height for this species in general) were compared
and found to possess methanogens only when tank depth exceeded
~4 cm (see also mcrA results; Figure 3).

Four bromeliads (with tank depths of ~10-15 cm) were sam-
pled stratigraphically with three tank horizons sampled every ~3—
5 cm depth. In all cases, only the deepest, bottommost layer tested
positive for methanogens (data not shown). Strong pH and oxygen
gradients were measured in the deeper horizons as well, with pH
depressed by 0.2-0.6 pH units and oxygen dramatically reduced
(<1 ppm O; at depths of 6-7 cm, compared to 2—8 ppm O, within

1 cm of the surface of the tank, n = 3; Walter T. Woodside, personal
observation).

T-RFLP ANALYSIS OF METHANOGENIC ASSEMBLAGE STRUCTURE AND
DIVERSITY

For a subset of bromeliads (1#=25) that encompassed a range
of morphologies and environmental conditions, T-RFLP finger-
printing was used to compare the diversity and relative ratios
of associated methanogen-specific groups (Figure 5; Table A2 in
Appendix). These bromeliads spanned a range of plant heights
from 21 to 114 cm, photosynthetically active radiation (PAR)
of 33-1282 umolm™2%s7 1, position off ground of 0.5-34 m, 2—
51 mg ml~! debris within the catchment fluid, and catchment
water pH of 3.5-6.5 (including two bromeliads that underwent
a manual pH adjustment from 4.5 to 6.5). Fragments (T-RFs)
were assigned to particular phylogenetic groups, based on in sil-
ico analysis and direct comparison of T-RFs from methanogen
clones recovered from bromeliad tank 16S rRNA libraries, as
well as previous data from Cadillo-Quiroz et al., 2006, includ-
ing: Methanosarcinaceae — 87, 142, 271 bp; Methanosaetaceae —
90, 119, 399 bp; Methanomicrobiales/Fen Cluster (group E2) or
Methanocellales (Rice Cluster 1) — 232 bp; Methanomicrobiales/Fen
Cluster (group E1) — 291bp; Methanocellales (RCI) — 363 bp.
Although Cadillo-Quiroz et al. (2006) distinguished T-RF 230 bp
(RCI) from 233 bp (Fen Cluster group E2), we have conservatively
combined them, as did Martinson et al. (2010), as a represen-
tation of Hj-consuming methanogens. Certain T-RF’s could not
be phylogenetically resolved (e.g., 76-79, 135, and 143-150 bp).
These unknown fragments typically represented <20% of the total
(average 9.8 £ 1.6%), with the exception of five samples (cluster B,
described below, Figure 5), for which the unknowns represented
30-49% of the community. In general, T-RFLP analysis resolved
the dominant methanogen-affiliated taxa and supported the pro-
portions of methanogens recovered (within ~10%) in the clone
libraries. For Wg104 for example, the Methanomicrobiales/Fen
Cluster represented ~78% of the clone library (Methanoregula
spp. specifically) versus ~69% via T-RFLP analysis (T-RF 233
specifically). Likewise, the clone library for Wg104 recovered 17%
Methanosaeta-associated relatives, whereas the T-RFLP analysis
showed ~26% Methanosaeta (Table 1; Figure 5).

Hierarchical analysis revealed three main clusters of sam-
ples, with regard to diversity and relative ratios of associated
methanogens, based on T-RF abundances, in bromeliad catch-
ment water (>50% community similarity, Figure 5). Group A,
which consisted of only specimens of A. mariae-reginae, was
primarily distinguished by a high abundance of Methanosae-
taceae (38.1 £8.8% average) and very few Methanomicrobiales
(3.1£0.8%, n=3). Group B showed the highest abundance
(40.6 £ 3.1%, n=15) of the putative unknown methanogen ribo-
types T-RF 143bp. Group C, comprised of subgroups Cl
and C2, had a high abundance of Methanomicrobiales (group
E2)/Methanocellales (55.6 £3.4%, n=16; Figure 5). GI71 was
distinct from the main groups, likely due to the very low diver-
sity and dominance by Methanomicrobiales/ Methanocellales (92%
of T-RFs; Figure 5). Groups B and C1 also had moderately high
abundances (~26 & 3% average) of Methanosarcinaceae. Diversity
indices ranged from 1.36 & 0.08 (H’, Shannon index), 0.66 & 0.03

Frontiers in Microbiology | Terrestrial Microbiology

December 2011 | Volume 2 | Article 256 | 8


http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive

Goffredi et al.

Methanogens in tropical bromeliad catchments

45-75 % abundance
20-45 %
5-20 %
<5%

FIGURE 5 | Hierarchical cluster analysis of methanogen community
composition, as analyzed by T-RFLP fingerprinting, for the
catchment water of 25 bromeliad individuals, comprising 6 species.
Fragments (T-RFs) were assigned to particular phylogenetic groups,
including: Methanosarcinaceae, Methanosaetaceae,
Methanomicrobiales/Fen Cluster (group E2) or Methanocellales (Rice
Cluster |), Methanomicrobiales/Fen Cluster (group E1), and
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Methanocellales (RCI) specifically. Hierarchical analysis revealed three
main clusters of samples (A-C), with regard to diversity and relative
ratios of associated methanogens, shown at left, shaded in relation to
% abundance (performed using Primer v6, Bray-Curtis similarity
resemblance, Euclidean distance, and no transformation of the data).
“M-micro-E2" or “E1" = Methanomicrobiales/Fen Cluster group E2 or
E1, respectively.

(1), Simpson index), 0.77 £ 0.02 (J, Pielou’s evenness) for all
bromeliads measured (= 25; Table A2 in Appendix; Figure 5).
Bromeliads that underwent manual perturbation of tank pH
(manual adjustment from pH 4.5 to 6.5 for bromeliads Amrl
and Amr51) had the highest measures of methanogen diversity
(2.01, 0.83, and 0.87, for H’, 1)/, and ', respectively; Table A2
in Appendix). The heterogeneous nature of methanogen com-
munity structure was similar to that observed in Martinson et al.
(2010),and did not appear to correlate with any of the in situ para-
meters measured, including PAR, amount of solid debris within
the tank, position off ground, specific location within the for-
est, or host plant species. Two notable exceptions included Group
A, which were all A. mariae-reginae with high tank pH [~6.5,

either naturally (Amr106) or experimentally induced (Amr1 and
Amr51)] and Group B, which only included bromeliads collected
from sites high in the canopy (11-34m estimated height off
ground).

DISCUSSION

Plants within the family Bromeliaceae are known for their capac-
ity for extreme epiphytism, sometimes growing on bare rock or
suspended from vines. Tank-forming bromeliads, in particular,
possess foliage arranged in a compact rosette capable of retain-
ing water. In lieu of uptake via root systems, these plants are
thought to rely on the catchments and products of decomposi-
tion of impounded material (litter and animals) for water and
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nutrients, respectively (Benzing, 1970; Winkler and Zotz, 2009).
As a consequence, the suspended water within bromeliad tanks
provides a unique niche in that water-saturated, acidic, anaerobic
conditions do not typically occur in other locations in the canopy
of tropical forests. These catchments are an ideal site for micro-
bial decomposition, and possibly important habitats with regard
to global biogeochemical cycling, including CO; and CHy efflux
and organic carbon storage.

METHANE PRODUCTION POTENTIAL IN BROMELIAD TANKS

In vitro CHy production potential measured for bromeliad tank
water was comparable to methane production rates in ecosys-
tems known to emit large quantities of methane. Methane pro-
duction by bromeliad tanks varied between ~12 and 72 nmol
CHyml™!day~!, as compared to rice paddies (43-212nmol
CHy4 g_1 day_l; Watanabe et al,, 2009) and certain peatland
ecosystems (13-47 nmol CH, g~!day™!; Basiliko et al., 2003).
Methane dynamics in water-saturated ecosystems are complex and
additional parameters must be known, including diffusion, con-
ductance by plants, and oxidation by methanotrophs in overlying
aerobic layers, in order to accurately extrapolate bromeliad tank
water production rates to field emission rates. We have not indenti-
fied aerobic methanotrophs in bromeliad tank water, nor have we
successfully amplified the key gene involved in aerobic methane
oxidation (pmoA; Goffredi unpublished observation; Goffredi
et al., 2011). To provide an estimate of net emission rate by tank
bromeliads, we assume that aerobic methane oxidation is insignif-
icant relative to methane production rate, and that methane trans-
fer across the tank water (or plant tissue)-atmosphere interface is
by diffusion and is in steady-state. Therefore, assuming an aver-
age bromeliad tank volume of 100 ml and a bromeliad density
of 25,000-175,000ha=! (Sugden and Robins, 1979; Martinson
et al., 2010), potential emission rates are of the order ~10-
500 moles CH4 ha=! year~!. These estimated emission rates are
comparable to those measured for montane bromeliads (82 moles
CH,4 ha=!year~!; Martinson et al., 2010) and plant-based pasture
production (~190 moles CH, ha~! year™!; Parsons et al., 2006),
but still fall short of the high, yet variable, values noted for acidic
peatlands in general (72-210,000 moles CH, ha=! year™! which
depend primarily on moisture regime; Svensson and Rosswall,
1984; Galand et al., 2002; Horn et al., 2003).

The tank rosette itself may be important for the maintenance
of the methanogenic microcosm. Stable, strong gradients, with
regard to micro-limnological parameters (O2, pH, Corg) may, in
part, be related to tank size and shape. Methane release from
Ecuadorian bromeliads correlated, exponentially, with tank diam-
eter (Martinson et al., 2010). Similarly, we observed a relation-
ship between mcrA copy number and plant height, suggesting
an influential role of plant (and consequently tank) height on
methane production capacity, and possibly methanogen commu-
nity structure. Taller, deeper tanks have time to collect more debris,
assuming tank size is positively correlated with plant lifespan.
Larger tanks may also experience less mixing and decreased sus-
ceptibility to desiccation (Benzing et al., 1972), thereby sustaining
methanogen-favorable conditions. Similarly, oxygen levels appear
to have some effect on methanogens, which were not observed
in either the uppermost horizons within bromeliad tanks or

throughout the water column in artificial catchments (i.e., amber
bottles), both of which had elevated O, levels (2-8 ppm O,),
compared to the bottommost methanogen-dominated horizons
within bromeliad tanks (<1 ppm O3). This implies that either tank
shape, or other plant-related parameter, is required for establishing
methanogen-favorable conditions (i.e., low oxygen, production of
fermentation products).

METHANOGENIC COMMUNITIES ASSOCIATED WITH BROMELIAD
TANKS

Molecular analysis of the archaeal communities within bromeliad
tanks revealed a dominance of methanogens (77-90% of the recov-
ered ribotypes) and demonstrated the presence of members of
both the Methanomicrobiales and Methanocellales, known to use
H,/CO,, as well as the Methanosarcinales, which are versatile,
but known commonly to be aceticlastic. Similar substrate het-
erogeneity, in terms of methane production, has been observed
for methanogenic communities found in other freshwater envi-
ronments, including fen soil, acidic peat bogs, and the Florida
Everglades (Kotsyurbenko et al., 2004; Smith et al., 2007; Watanabe
et al., 2009; Wiist et al., 2009; Martinson et al., 2010; Borrel et al.,
2011; Kanokratana etal.,2011). For Ecuadorian bromeliads specif-
ically, there was a similarly strong presence of ribotypes related to
Methanosaeta, Methanocella, and what was called the Fen Cluster
(or Methanomicrobiales), presumably Methanoregula (Martinson
et al., 2010). Interestingly, the Methanobacteriales, which repre-
sented ~30% of the ribotypes recovered from montane bromeliad
tanks (Martinson et al., 2010), were not observed in the lowland
forest bromeliads of the present study. Although many parameters
are required to determine more certainly the relative contribu-
tions of hydrogenotrophic versus aceticlastic methanogenesis in
bromeliad catchments (Conrad, 1999, 2005; Whiticar, 1999; Kot-
syurbenko et al., 2004), isotopic measures of methane in two tank
microcosms reflected an environment in which methane was gen-
erally produced from both processes (8!*CHy = approx —57%o
for Wg37 and As12), and one for which perhaps a slight shift
in balance toward H,/CO;-based CH4 production was suggested
(—62.5%0 8'3CHy4 for Wg104). This assumption is consistent with
clone library results from Wg37 and As12, which both showed
~ 30:70 ratios of the two major methanogenic guilds, whereas
Methanoregula was the dominant methanogen in Wg104 (>80%;
Table 1; Figure 2).

The relative contribution of acetate and H,/CO, to CHy pro-
duction can vary within ecosystems (Conrad, 1999, 2005) and,
among many influences on community composition, it appears
that pH may play a role. In this study, individual bromeliads
with lower tank pH values (<6.1) were overwhelmingly domi-
nated by H,/CO;-utilizing methanogens, including those most
closely related to Methanoregula (Fen Cluster group E2), and
Methanocella (Rice Cluster I), both found previously to be abun-
dantin similarly organic-rich, acidic habitats (Ramakrishnan etal.,
2001; Galand et al., 2003; Sizova et al., 2003; Cadillo-Quiroz et al.,
2006, 2008; Wiist et al., 2009). These two groups are tolerant of
low pH and are known to use H; as their primary electron donor
(Sakai et al., 2008; Briuer et al., 2011), and, in the case of Rice
Cluster I, possess a genome specifically suggestive of a H,/CO;-
dependent lifestyle (Erkel et al., 2006). Indeed, for methanogenic
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communities found in rice paddies, acidic peat bogs, and fens,
hydrogenotrophic methanogenesis is commonly reported as the
predominant process (Horn et al., 2003; Kotsyurbenko et al., 2004;
Smith et al., 2007; Conrad et al., 2008; Watanabe et al., 2009).

There are several possible explanations for a higher contribu-
tion of hydrogenotrophic methanogenesis in bromeliad catch-
ments. Goffredi et al. (2011) demonstrated an abundance of
both hydrolytic and fermentative bacteria (e.g., Acidobacteria and
Bacteroidetes), which may influence the ecological structure of
methanogenic archaea by their production of volatile fatty acids
and hydrogen during fermentation of organic matter. Both of these
bacterial groups have been found to be essential for the cultiva-
tion of certain methanogens in the laboratory, providing further
evidence for their supporting role in methane production (Sizova
et al.,, 2003). Additionally, hydrogenotrophic methanogenesis can
also dominate if there is incomplete degradation of organic matter
(Miyajima et al., 1997; Conrad, 1999; Conrad et al., 2009). This is
likely the case for bromeliad catchments, which have elevated total
organic carbon levels (~46%) compared to nearby soil (4%; Gof-
fredi et al., 2011), much of which is dead crustaceans (i.e., chitin)
and lignified plant-derived cellulose. It is, thus, likely that part of
the organic matter is refractory and incompletely oxidized even
over very long time frames. In support of this idea, preliminary
experiments in the field suggest that, although discoloration and
leaching of leaf material can be observed, actual decrease in bio-
mass occurs very slowly (i.e., precut dead leaves retained sharp,
un-eroded edges after 3 months of submergence in bromeliad
tanks in situ; Walter T. Woodside, unpublished observation).

Acetate-driven methanogenesis, which is estimated to account
for a substantial amount of methane released in terrestrial
and freshwater environments, appears to also be a common
metabolic process in bromeliad tanks. Aceticlastic members of
the Methanosaetaceae were recovered from certain bromeliad
catchments, although often in lower abundance than their
hydrogenotrophic counterparts (similarly observed in Martinson
et al.,, 2010). Notably, Methanosaeta, which appeared to com-
prise a bromeliad-specific clade, were generally most prevalent in
tanks with pH ~6.5 (Figure 5). Methanosaeta-associated strains,
like many methanogens, have a pH optimum near neutrality and
often predominate at higher pH values (Jones et al., 1987; Horn
et al., 2003). In these same tanks, there was a striking decrease
in Methanomicrobiales- and Methanocellales-associated ribotypes
(<3%, as compared to ~40-80% in tanks with lower pH), per-
haps suggesting a slight influence of tank pH on methanogen
community structure. Similarly, the dominance of Methanosaeta-
associated ribotypes in certain tanks strongly suggests that acetate
concentrations were low, and illustrates the important need
for future analysis of fatty acid concentrations maintained by
bromeliad catchments.

The more versatile Methanosarcina, on the other hand, were
only dominant in one bromeliad, by library construction, and
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APPENDIX

Table A1 | Summary of archaeal methyl coenzyme M reductase (mcrA) clone library results from the tank water of three bromeliads specimens.

Sequence i.d. Closest cultured relative % Similarity Closest environmental relative % Similarity
nucleotides (ace #/environment) amino acid
(BLASTn) (BLASTXx)
An9_mcrA_D4 Methanoregula boonei 97 CAH68747 acidic peat bog 95
An9_mcrA_A6 Methanosarcina mazei 84 CBL29136 rice paddy soil 93
An9_mcrA_B6 Methanothermobacter wolfeii 86 ACD35158 biogas plant 90
An22_mcrA_C9 Methanoregula boonei 97 CAHB68747 acidic peat bog 96
Wg37_mcrA_E9 Methanosaeta concilii 89 CBA18220 Amazon lake sediment 86

An, Aechmea nudicaulis; Wg, Werauhia gladioliflora.

Table A2 | Bromeliads used in T-RFLP analysis, including catchment pH, plant diameter (cm), photosynthetically active radiation (xmol m~2s~1)

exposure at the time of sample collection, position off ground (m), group-specific abundances (%) based on T-RFLP analysis, and corresponding

diversity indices (Shannon index H’, Pielou’s evenness J’, and Simpson’s index 1)\’).

ID Species’ pH Size? PAR POG3 M-saeta M-sarc E2 E1 other H J 0

106 Amr 6.50 nm nm nm 47 3 5 45 0 1.01 0.63 0.58
1 Amr 6.40 145 nm 1.2 21 20 12 34 13 1.96 0.85 0.82
51 Amr 6.35 110 nm 0.3 47 13 11 14 15 2.06 0.89 0.84
91 An 4.65 nm 62 11 0 31 20 0 49 1.75 0.98 0.82
96 Wg 4.95 nm 48 10 5 17 22 26 30 1.87 0.90 0.83
61 Wg 427 30 114 34 11 25 20 0 a4 1.94 0.93 0.84
82 An 5.14 nm 64 32 0 27 33 0 40 1.58 0.81 0.76
83 An 5.12 nm 89 32 0 32 28 0 40 1.68 0.86 0.78
71 Gl 5.60 31 147 34 0 0 92 0 8 0.87 0.79 0.52
23 An 4.95 24 nm 2 0 10 69 0 21 0.89 0.64 0.48
54 Wg 4.20 116 200 05 6 1 73 0 20 1.02 0.52 0.45
70 Gl 4.96 30 92 34 5 6 71 0 19 1.15 0.64 0.53
99 Wy 4.83 nm nm nm 18 22 60 0 0 1.02 0.74 0.57
88 Wg 4.50 102 200 0.5 29 0 67 0 3 0.74 0.67 0.46
89 Wg 3.65 36 730 0.3 14 4 77 0 4 0.75 0.54 0.38
58 Wg 4.30 120 200 05 22 0 55 22 0 1.20 0.87 0.66
25 Wg 4.08 167 nm 0 41 4 50 0 5 1.29 0.66 0.64
27 Wk 6.08 99 nm 0 20 10 55 0 15 147 0.67 0.65
104 Wg 5.10 nm nm nm 26 0 68 0 6 0.78 0.71 0.46
92 An nm nm 62 11 9 30 36 8 16 1.99 0.83 0.81
95 An 4.82 nm 62 11 0 32 47 0 21 1.17 0.85 0.65
57 Wg 5.60 110 200 05 11 23 55 0 11 1.49 0.83 0.72
60 An 4.32 56 33 34 22 14 61 0 2 1.50 0.77 0.69
55 Wg 5.38 nm 107 05 27 18 45 0 10 1.42 0.88 0.72
87 Wg 5.30 116 200 0.5 18 36 40 0 6 1.41 0.79 0.71

"An, Aechmea nudicaulis; Amr, A. mariae-reginae; As, Androlepis skinneri; Wg, Werauhia gladioliflora; Wk, Werauhia kupperiana; Gl, Guzmania lingulata.

?In some cases, plant diameter was estimated from longest leaf length (using a conversion of x1.7).
3A position off ground (POG) of 0 m indicates that the plant had established itself in soil, presumably after falling from a tree.

“E2 and E1 correspond to Methanomicrobiales/Fen Cluster, group E2 or E1, respectively.
nm = not measured.
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