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Essential oils are aromatic and volatile liquids extracted from plants.The chemicals in essen-
tial oils are secondary metabolites, which play an important role in plant defense as they
often possess antimicrobial properties.The interest in essential oils and their application in
food preservation has been amplified in recent years by an increasingly negative consumer
perception of synthetic preservatives. Furthermore, food-borne diseases are a growing
public health problem worldwide, calling for more effective preservation strategies. The
antibacterial properties of essential oils and their constituents have been documented
extensively. Pioneering work has also elucidated the mode of action of a few essential
oil constituents, but detailed knowledge about most of the compounds’ mode of action
is still lacking. This knowledge is particularly important to predict their effect on different
microorganisms, how they interact with food matrix components, and how they work in
combination with other antimicrobial compounds. The main obstacle for using essential
oil constituents as food preservatives is that they are most often not potent enough as
single components, and they cause negative organoleptic effects when added in sufficient
amounts to provide an antimicrobial effect. Exploiting synergies between several com-
pounds has been suggested as a solution to this problem. However, little is known about
which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge
could contribute to design of new and more potent antimicrobial blends, and to under-
stand the interplay between the constituents of crude essential oils. The purpose of this
review is to provide an overview of current knowledge about the antibacterial properties and
antibacterial mode of action of essential oils and their constituents, and to identify research
avenues that can facilitate implementation of essential oils as natural preservatives in foods.
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INTRODUCTION
Essential oils are aromatic and volatile liquids extracted from plant
material, such as flowers, roots, bark, leaves, seeds, peel, fruits,
wood, and whole plant (Deans and Ritchie, 1987; Hammer et al.,
1999; Sánchez et al., 2010). Essential oils have been used for cen-
turies in medicine, perfumery, cosmetic, and have been added to
foods as part of spices or herbs. Their initial application was in
medicine, but in the nineteenth century their use as aroma and
flavor ingredients increased and became their major employment.
Almost 3000 different essential oils are known, and 300 are used
commercially in the flavor and fragrances market (Burt, 2004).

Essential oils are considered to be secondary metabolites and
important for plant defense as they often possess antimicrobial
properties (Fraenkel, 1959; Tajkarimi et al., 2010). The antibac-
terial properties of secondary metabolites were first evaluated
using essential oil vapors by De la Croix in 1881 (Burt, 2004).
Since then, essential oils or their components have been shown to
not only possess broad-range antibacterial properties (Deans and
Ritchie, 1987; Oussalah et al., 2007), but also antiparasitic (George
et al., 2009), insecticidal (Essam, 2001; Kim et al., 2003), antiviral
(Schnitzler et al., 2011), antifungal (Fitzgerald et al., 2003; Kalemba

and Kunicka, 2003; Silva et al., 2011; Tserennadmid et al., 2011),
and antioxidant (Brenes and Roura, 2010) properties. Further-
more, they also function as growth enhancers for animals (Brenes
and Roura, 2010; Ahmadifar et al., 2011).

Although the food industry primarily uses essential oils as
flavorings, they represent an interesting source of natural antimi-
crobials for food preservation. However, application of essential
oils as food preservatives requires detailed knowledge about their
properties, i.e., the minimum inhibitory concentration (MIC), the
range of target organisms, the mode of action, and the effect
of food matrix components on their antimicrobial properties.
The purpose of this review is to provide an overview of current
knowledge about the antimicrobial mode of action of essential
oil constituents, and to identify research avenues that can facili-
tate implementation of essential oil constituents as natural food
preservatives in foods.

ESSENTIAL OIL CONSTITUENT CLASSES: THEIR
ANTIMICROBIAL ACTIVITY AND MODE OF ACTION
Plants produce a variety of compounds with antimicrobial activ-
ity. Some are always present while others are produced in response
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to microbial invasion or physical injury (Roller, 2003). Identifying
the most active antimicrobial compounds of essential oils is cum-
bersome because essential oils are complex mixtures of up to 45
different constituents (Delaquis et al., 2002; Djenane et al., 2011;
Espina et al., 2011), and the composition of a particular essential
oil may vary depending on the season of harvest, and the methods
used to extract the oil (Nannapaneni et al., 2009; Pereira and Meire-
les, 2010; Sánchez et al., 2010; Demuner et al., 2011; Djenane et al.,
2011; Paibon et al., 2011). Essential oil constituents are a diverse
family of low molecular weight organic compounds with large
differences in antimicrobial activity. The active compounds can
be divided into four groups according to their chemical structure:
terpenes, terpenoids, phenylpropenes, and “others.” This section
will provide an overview of what is currently known about the
antimicrobial properties and the mode of action of selected essen-
tial oil constituents. Although studies have been performed on the
mode of action of some essential oils (Table 1), analyzing the mode
of action behind each constituent in the oils can reveal details of
its antimicrobial properties that might be concealed when studied
in a mixture with many other compounds. We will thus focus this
review on the individual constituents of essential oils.

Most studies concerning the antimicrobial mode of action of
essential oil constituents have been performed on bacteria, while
less is known about their action on yeast and molds. Gram-
negative bacteria are generally less susceptible than Gram-positive
bacteria (Trombetta et al., 2005). The outer membrane of Gram-
negative bacteria contain hydrophilic lipopolysaccharides (LPS),
which create a barrier toward macromolecules and hydrophobic
compounds, providing Gram-negative bacteria with higher tol-
erance toward hydrophobic antimicrobial compounds like those
found in essential oils (Nikaido, 1994, 2003). Most essential oil
constituents have several targets (Table 2). It is therefore difficult
to predict how susceptible a microorganism is and why the sus-
ceptibility varies from strain to strain. Predictions about the mode
of action of crude essential oils require thorough investigations
of their constituents’ target site, their mode of action, and their
interactions with the surrounding environment. In this context,
the following is known about the mode of action of some selected
essential oil constituents.

TERPENES
Terpenes are hydrocarbons produced from combination of several
isoprene units (C5H8). Terpenes are synthesized in the cytoplasm
of plant cells, and the synthesis proceeds via the mevalonic acid
pathway starting from acetyl-CoA. Terpenes have a hydrocar-
bon backbone which can be rearranged into cyclic structures by
cyclases, thus forming monocyclic or bicyclic structures (Caballero
et al., 2003). The main terpenes are monoterpenes (C10H16)
and sesquiterpene (C15H24), but longer chains such as diter-
penes (C20H32), triterpenes (C30H40), etc., also exist. Examples
of terpenes include p-cymene, limonene, terpinene, sabinene, and
pinene (Figure 1).

Terpenes do not represent a group of constituents with high
inherent antimicrobial activity. For example, p-cymene, one of the
major constituents in thyme, had no antimicrobial activity against
several Gram-negative pathogens even at 85700 μg/mL concen-
tration (Bagamboula et al., 2004). In a large scale experiment,

limonene, α-pinene, β-pinene, δ-3-carene, (+)-sabinene, and α-
terpinene showed no or low antimicrobial activity against 25
different genera of bacteria that pose problems in animals, plants,
and food products (Dorman and Deans, 2000). Koutsoudaki et al.
(2005) compared the effect of α-pinene, β-pinene, p-cymene,
β-myrcene, β-caryophyllene, limonene, and γ-terpinene against
Escherichia coli, Staphylococcus aureus, and Bacillus cereus, and
their antimicrobial activity were low or absent. p-Cymene and
γ-terpinene were ineffective as fungicides against Saccharomyces
cerevisiae (Rao et al., 2010). These in vitro tests indicate that
terpenes are inefficient as antimicrobials when applied as single
compounds.

p-Cymene
The carvacrol precursor p-cymene is a monoterpene that has a
benzene ring without any functional groups on its side chains.
p-Cymene is not an efficient antimicrobial compound when used
alone (Juven et al., 1994; Mann et al., 2000; Aligiannis et al., 2001;
Bagamboula et al., 2004), but it potentiate the activity of com-
pounds like carvacrol (Ultee et al., 2002; Rattanachaikunsopon
and Phumkhachorn, 2010) and polymyxin B nonapeptide (Mann
et al., 2000).

Several studies indicate that p-cymene is likely to act as a sub-
stitutional impurity in the membrane, which partly perturbs the
membrane of microorganisms. p-Cymene has a high affinity for
membranes and causes membrane expansion and affect the mem-
brane potential of intact cells (Ultee et al., 2002). Investigations
on cell and vesicle systems confirm that p-cymene has no effect on
the membrane permeability, but cause a decrease in the enthalpy
and melting temperature of membranes (Cristani et al., 2007),
supporting the hypothesis that p-cymene acts as a substitutional
impurity in the membrane.

Even though the action of p-cymene on the cell membrane
is well established, its effect on protein synthesis and cell motility
has also been investigated. p-Cymene had a negligible effect on the
protein synthesis of E. coli cells (Burt et al., 2007), while its effect
on the membrane potential resulted in decreased cell motility, as a
proton motive force is needed for flagellar movement (Gabel and
Berg, 2003; Burt et al., 2007).

TERPENOIDS
Terpenoids are terpenes that undergo biochemical modifications
via enzymes that add oxygen molecules and move or remove
methyl groups (Caballero et al., 2003). Terpenoids can be sub-
divided into alcohols, esters, aldehydes, ketones, ethers, phe-
nols, and epoxides. Examples of terpenoids are: thymol, car-
vacrol, linalool, linalyl acetate, citronellal, piperitone, menthol, and
geraniol (Figure 1).

The antimicrobial activity of most terpenoids is linked to
their functional groups, and it has been shown that the hydroxyl
group of phenolic terpenoids and the presence of delocalized
electrons are important for antimicrobial activity. For example,
the antimicrobial activity of the carvacrol derivatives carvacrol
methyl ether and p-cymene were much lower than carvacrol (Dor-
man and Deans, 2000; Ultee et al., 2002; Ben Arfa et al., 2006).
Exchanging the hydroxyl group of carvacrol with methyl ether
affects its hydrophobicity, antimicrobial activity, and changes how
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FIGURE 1 | Chemical structures of selected essential oil constituents.

the molecule interacts with the membrane (Veldhuizen et al.,
2006). Carvacrol’s antimicrobial activity is comparable to that of
2-amino-p-cymene, which indicates that the hydroxyl group is
important, but not essential for carvacrol’s activity (Veldhuizen
et al., 2006). The antimicrobial activity of essential oils can often
be correlated to its content of phenolic constituents (Aligiannis
et al., 2001; Kalemba and Kunicka, 2003; Rhayour et al., 2003).

The terpenoids are a large group of antimicrobial compounds
that are active against a broad spectrum of microorganisms, with
the most active monoterpenoids identified so far being carvacrol

and thymol. Dorman and Deans (2000) investigated the effect
of many terpenoids against 25 different bacterial strains, and
showed that all terpenoid compounds, except borneol and car-
vacrol methyl ester, exhibited a broad antimicrobial activity. The
antimicrobial activity of carvacrol, thymol, linalool, and men-
thol were evaluated against Listeria monocytogenes, Enterobacter
aerogenes, E. coli, and Pseudomonas aeruginosa. The most active
compound was carvacrol followed by thymol with their high-
est MIC being 300 and 800 μg/mL, respectively (Bassolé et al.,
2010). These results confirm the high antimicrobial activity of
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a broad collection of terpenoids, and because their chemical
structures are closely related to that of terpenes, the increased
activity compared to terpenes can be attributed to the functional
moieties.

Thymol
The mode of action of thymol, a phenolic monoterpenoid and
one of the major constituents of thyme oil, has received much
attention from researchers. Thymol is structurally very similar to
carvacrol, having the hydroxyl group at a different position on
the phenolic ring (Figure 1). The antimicrobial action of phenolic
compounds, such as thymol and carvacrol, are expected to cause
structural and functional damages to the cytoplasmic membrane
(Sikkema et al., 1995). The primary mode of antibacterial action
of thymol is not fully known, but is believed to involve outer-
and inner membrane disruption, and interaction with membrane
proteins and intracellular targets.

Studies have shown that thymol interacts with cell membranes.
The interaction affects membrane permeability, and this has been
documented by loss of membrane potential, cellular uptake of
ethidium bromide, and leakage of potassium ions, ATP, and car-
boxyfluorescein (Helander et al., 1998; Lambert et al., 2001; Walsh
et al., 2003; Xu et al., 2008). Although the protective properties
of lipopolysaccharide (LPS) against thymol had been confirmed
using random transposon-insertion mutants, treatment of E. coli
cells with thymol caused release of LPS and disruption of the outer
membrane (Helander et al., 1998; Shapira and Mimran, 2007).
The outer membrane disruption could not be prevented by addi-
tion of magnesium, suggesting that thymol did not disrupt the
membrane by chelating cations (Helander et al., 1998). Thymol
integrates at the polar head-group region of a lipid bilayer caus-
ing alterations to the cell membrane, which at low concentrations
induce adaptational changes in the membrane lipid profile in order
to compensate for thymol’s fluidifying effects and to maintain the
membrane function and structure (Turina et al., 2006; Di Pasqua
et al., 2007).

In addition to interacting with membrane phospholipids, evi-
dence has accumulated that documents thymol’s interaction with
membrane proteins and intracellular targets, which hinder cell
recovery after temporary exposure. The ability of thymol to inter-
act with proteins was examined using the protein bovine serum
albumin (BSA) and the organic compound deferoxamine, which
is also rich in amine groups but otherwise known for its Fe3+-
chelating properties. These compounds react similarly to that of
amine groups in bacterial membrane proteins (Juven et al., 1994).
Based on the antimicrobial activity of thymol in the absence and
presence of the thymol-inhibiting deferoxamine or BSA, Juven
et al. (1994) hypothesized that thymol forms a complex with
membrane-bound or periplasmic proteins by means of hydrogen
bonds and hydrophobic interactions. Interaction with membrane
proteins was further supported by Di Pasqua et al. (2010) who
exposed Salmonella enterica to sub-lethal concentrations of thy-
mol, and observed accumulation of misfolded outer membrane
proteins and upregulation of genes involved in synthesis of outer
membrane proteins. Contrarily, down-regulation of outer mem-
brane proteins was shown in Erwinia spp. (Horváth et al., 2009).
Upon exposure to thymol, S. enterica upregulated production of

the chaperon proteins Heat Shock Protein 60 (GroEL), and Heat
Shock Protein 70 (DnaK), which are key proteins in the protec-
tion against thermal stress and misfolding of proteins (Di Pasqua
et al., 2010; Hartl et al., 2011). Thymol also impaired the citrate
metabolic pathway and affected many enzymes directly or indi-
rectly involved in the synthesis of ATP (Di Pasqua et al., 2010).
Thymol’s intracellular action indicates that it affects important
energy-generating processes, which lower a cells’ ability to recover
after exposure to thymol.

The mode of action of thymol against yeast and fungi has been
sparsely investigated, but studies point to interactions with the
cell envelope and intracellular targets. Thymol disrupted vesicles
and cell membranes, and impaired ergosterol biosynthesis in Can-
dida strains, which consequently affected cell membrane integrity
because ergosterol regulates membrane fluidity and asymmetry
similarly to cholesterol in animal cells (Ghannoum and Rice, 1999;
Cristani et al., 2007; Ahmad et al., 2011). Interestingly, thymol
induced cell lysis and only altered the cell structure of proliferat-
ing S. cerevisiae cells, indicating the effect of thymol depends on
cell proliferation (Bennis et al., 2004). Contrary to this, Rao et al.
(2010) proposed that thymol activates specific signaling pathways
in yeast, rather than causing non-specific lesion of membranes.
This proposal was based on the observation that thymol caused
cytosolic Ca2+ bursts and transcription responses similar to Ca2+
stress and nutrient starvation (Rao et al., 2010).

Carvacrol
Carvacrol is a phenolic monoterpenoid and a major constituent
of oregano. Together with its closely related isomer thymol, it is
one of the most extensively studied essential oil constituents. The
antimicrobial effect of carvacrol is expected to be similar to that
of thymol, causing structural and functional damages to the cell
membrane (Sikkema et al., 1995). The primary mode of action
of carvacrol is its ability to position in the membrane where it
increase permeability, however, other more specific actions may
be important and will be discussed.

Carvacrol has been demonstrated to affect the outer membrane
of Gram-negative bacteria (La Storia et al., 2011). Disintegration
of the outer membrane caused release of LPS from Gram-negative
bacteria (Helander et al., 1998). Although carvacrol affects the
outer membrane, its site of action is thought to be the cytoplasmic
membrane, resulting in passive transport of ions across the mem-
brane. Carvacrol has a hydroxyl group that has been proposed
to function as a transmembrane carrier of monovalent cations
across the membrane, carrying H+ into the cell cytoplasm and
transporting K+ back out (Ultee et al., 2002; Ben Arfa et al., 2006).
However,Veldhuizen et al. (2006) found the hydroxyl group of car-
vacrol not to be essential for antimicrobial activity, and proposed
that although the transmembrane proton carrier mechanism plays
a role in the antimicrobial activity, the relatively high activity of a
non-hydroxyl compound ruled it out as the main mode of action
of carvacrol.

The evidences for the membrane as carvacrol’s site of action
are many, and the results suggest that the mode of action of car-
vacrol is to increase fluidity and permeability of membranes. It
has been proposed that cells exposed to carvacrol change the fatty
acid composition of the membrane as an adaptation mechanism
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to maintain optimal membrane structure and function because of
carvacrol’s effect on fluidity (Ultee et al., 2000; Di Pasqua et al.,
2006, 2007). It is well established that increased membrane flu-
idity enhances the permeability of membranes (Nikaido, 1994).
Membrane permeabilization by carvacrol has been confirmed by
monitoring the efflux of H+, K+, carboxyfluorescein, and ATP,
and the influx of nucleic acid stains (Helander et al., 1998; Ultee
et al., 1999; Lambert et al., 2001; Cristani et al., 2007; Xu et al.,
2008).

Besides the interaction with membranes, carvacrol has been
proposed to interact with membrane proteins and periplasmic
enzymes (Juven et al., 1994), but the evidence for this is lim-
ited. The only example used isolated bacterial membranes with
ATPase activity as the indicator for direct molecular binding of
carvacrol in an assay with excess amounts of ATP added (Gill and
Holley, 2006b). Carvacrol has also been proposed to have intra-
cellular targets, but the studies documenting this are few and do
not identify the possible intracellular targets. Inhibitory concen-
trations of carvacrol caused over-expression of outer membrane
proteins in Erwinia amylovora cells (Horváth et al., 2009), indicat-
ing that carvacrol possibly affect outer membrane protein folding
or insertion. In another study, E. coli cells grown in the pres-
ence of sub-lethal concentration of carvacrol produced significant
amounts of GroEL, indicating that protein folding was affected.
Furthermore, it inhibited the synthesis of flagellin, which caused
new cells to be without flagella (Burt et al., 2007). Cells that
had flagella exhibited decreased motility at increasing carvacrol
concentration, indicating that carvacrol disrupts the membrane
potential and thereby the proton motive force needed to drive
flagellar movement (Gabel and Berg, 2003; Burt et al., 2007).

The mechanism of antifungal activity of carvacrol resembles
that of thymol, showing disruption of Ca2+ and H+ homeostasis,
up- and down-regulation of gene transcription similar to Ca2+-
stress and nutrient starvation (Rao et al., 2010), disruption of
membrane integrity and impairment of ergosterol biosynthesis in
Candida strains (Ahmad et al., 2011).

PHENYLPROPENES
Phenylpropenes constitute a subfamily among the various groups
of organic compounds called phenylpropanoids that are synthe-
sized from the amino acid precursor phenylalanine in plants.
Phenylpropanoids have their name from the six-carbon aromatic
phenol group and the three-carbon propene tail of cinnamic acid,
produced in the first step of phenylpropanoid biosynthesis. The
phenylpropenes constitute a relatively small part of essential oils,
and those that have been most thoroughly studied are eugenol,
isoeugenol, vanillin, safrole, and cinnamaldehyde (Figure 1).

Comparison of molecules that are chemically similar to eugenol
and isoeugenol indicated that the free hydroxyl groups are impor-
tant for their activity against bacteria, but not yeast (Laekeman
et al., 1990). Some of isoeugenol’s activity might be attributed to
the double bond in the α,β positions of the side chain, and a methyl
group in the γ position (Jung and Fahey, 1983). Furthermore, the
antimicrobial activity of phenylpropenes depends on the kind and
number of substituents on the aromatic ring, selected microbial
strains, and the experimental test parameters such as choice of
growth medium, temperature, etc. (Pauli and Kubeczka, 2010).

The antibacterial activity of eugenol was evaluated against 25
different bacterial strains of which only one strain was not inhib-
ited (Dorman and Deans, 2000). Isoeugenol and eugenol showed
pronounced inhibition activity against yeasts and 6 out of 10
Gram-positive and Gram-negative bacteria at 1000 μg/mL (Laeke-
man et al., 1990). The antimicrobial properties of isoeugenol
appear more potent than eugenol, as lower MIC values are found
against a variety of bacteria, yeast, and molds (Zemek et al.,
1979, 1987). Interestingly, isoeugenol and eugenol have higher
antimicrobial activity against Gram-negative bacteria, yeasts, and
molds than Gram-positive bacteria (Mygind, unpublished). This
is unusual for essential oil constituents because they normally are
more effective against Gram-positive bacteria.

Cinnamaldehyde appears less potent than eugenol. In a study of
L. monocytogenes and Lactobacillus sakei, 3965 and 66080 μg/mL
of cinnamaldehyde, but only 821 and 985 μg/mL of eugenol were
required to obtain a bactericidal effect (Gill and Holley, 2004).
However, when tested against E. coli and Salmonella typhimurium,
the antimicrobial activity of cinnamaldehyde equals that of the
potent monoterpenoids thymol and carvacrol (Helander et al.,
1998). Another phenylpropene, vanillin, inhibits a range of yeasts,
molds, and bacteria (Fitzgerald et al., 2003, 2004, 2005; Rupas-
inghe et al., 2006). It should be noted that some yeasts were able to
convert sub-lethal concentrations of vanillin into non-inhibitory
compounds (Fitzgerald et al., 2003).

Eugenol
Eugenol is a major constituent in clove essential oil, and its antimi-
crobial activity is linked to its ability to permeabilize the cell
membrane and interact with proteins. Eugenol’s action on mem-
branes occurs mainly by a non-specific permeabilization. The
non-specific permeabilization of the cytoplasmic membrane by
eugenol has been demonstrated in various studies as increased
transport of potassium and ATP out of the cells (Walsh et al., 2003;
Gill and Holley, 2006a; Hemaiswarya and Doble, 2009). Eugenol
induced minor changes in the fatty acid profile of Pseudomonas
fluorescens, E. coli, Brochotrix thermosphacta, S. enterica, and S.
aureus, and cell damages to E. coli and B. thermosphacta cells (Di
Pasqua et al., 2006, 2007).

The hydroxyl group of eugenol is thought to bind to and
affect the properties of proteins, thereby contributing to eugenol’s
inhibitory effect at sub-lethal concentrations. Consistent with this,
eugenol has proven to inhibit the activity of the following enzymes:
ATPase, histidine decarboxylase, amylase, and protease (Thoroski,
1989; Wendakoon and Morihiko, 1995; Gill and Holley, 2006b).
Inhibition of the ATPase may be important for cell killing at high
eugenol concentrations because energy generation needed for cell
recovery is impaired (Gill and Holley, 2006b).

The antifungal mode of action of eugenol needs further inves-
tigation, but it is known to depend on cell proliferation. Eugenol
treatment altered cell membrane and cell wall structures of prolif-
erating S. cerevisiae cells resulting in the release of cellular content
(Bennis et al., 2004).

Cinnamaldehyde
Aldehyde groups are reactive and have the ability to cross-link
covalently with DNA and proteins through amine groups, thereby
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interfering with their normal function (Feron et al., 1991). How-
ever, the mode of action of cinnamaldehyde, a phenylpropene
aldehyde, is inconclusive. At least three things are believed to occur:
At low concentrations, cinnamaldehyde inhibits different enzymes
involved in cytokinesis or less important cell functions. At higher
but sub-lethal concentrations, it acts as an ATPase inhibitor, and
at lethal concentrations it perturbs cell membrane. Cinnamalde-
hyde was suggested to inhibit cytokinesis as a mode of action on
B. cereus because cells could not separate although septa were
present after division (Kwon et al., 2003). It has been estab-
lished that cinnamaldehyde binds to the FtsZ protein, inhibiting
its GTP dependent polymerization and thereby preventing cell
division (Domadia et al., 2007; Hemaiswarya et al., 2011). The
FtsZ protein is an attractive target for antimicrobial therapies as
it is evolutionary distant from eukaryotic tubulin, and the pre-
dicted interaction of H2 and H3 of cinnamaldehyde with G295
and V208 of FtsZ, respectively, is conserved among FtsZ pro-
teins from several species (Domadia et al., 2007; Hemaiswarya
et al., 2011). Other enzymes, e.g., the histidine decarboxylase,
is also inhibited by cinnamaldehyde (Wendakoon and Morihiko,
1995).

At sub-lethal concentrations, cinnamaldehyde gains access to
the periplasm and inhibits the activity of transmembrane ATPase.
Sub-lethal concentrations of cinnamaldehyde did not affect the
integrity of the outer membrane of E. coli, but it inhibited growth
and bioluminescence of Photobacterium leiognathi, indicating that
cinnamaldehyde does gain access to the periplasm and possi-
bly also the cytoplasm (Helander et al., 1998). The ability of
cinnamaldehyde to access the periplasm was confirmed by demon-
strating a decrease in ATPase activity of isolated cell membranes at
increasing concentrations of cinnamaldehyde (13.6–1362 μg/mL;
Gill and Holley, 2006a,b). ATPase inhibition was, however, sug-
gested not to be the primary cause of cell death because the
concentration required to inhibit the ATPase also resulted in mem-
brane disruption of E. coli cells (681–1362 μg/mL; Gill and Holley,
2006a).

Many studies have demonstrated that cinnamaldehyde inter-
acts with the cell membrane, but it is not yet clear how it perturbs
membranes. It is not a general mode of action of cinnamaldehyde
to disrupt membranes as illustrated by Di Pasqua et al. (2007).
Cinnamaldehyde altered the membrane lipid profile with large
increases in saturated fatty acids, yielding a more rigid membrane
probably compensating for a fluidifying effect of cinnamaldehyde,
and cell structure of E. coli, S. enterica, P. fluorescens, and B. thermo-
sphacta, while only S. aureus demonstrated disintegration of the
cell envelope (Di Pasqua et al., 2006, 2007). Cinnamomum verum
essential oil (73% cinnamaldehyde) caused membrane depolar-
ization, loss of membrane integrity, reduced respiratory activity,
and coagulation of cytoplasmic material of P. aeruginosa, while
exposure of S. aureus cells caused them to enter a viable but
non-cultivable state (Bouhdid et al., 2010).

Among fungi, the primary mode of action of cinnamaldehyde
has also been proposed to be inhibition of cell division. This was
proposed because cinnamaldehyde inhibited the cell wall synthe-
sizing enzymes in S. cerevisiae by functioning as a non-competitive
inhibitor of β-(1,3)-glucan synthase and a mixed inhibitor of
chitin synthase isozymes (Bang et al., 2000).

Vanillin
The mode of action of the phenylpropene phenolic aldehyde
vanillin is not well understood, but it has been proposed to func-
tion as a membrane active compound that might have intracellular
targets.

The proposed membrane and protein interactions of vanillin
are based on one study. Vanillin inhibited respiration of E. coli and
Listeria innocua cells, and disrupt the potassium and pH home-
ostasis of Lactobacillus plantarum cells (Fitzgerald et al., 2004).
Propidium iodide staining demonstrated that treatment with
vanillin disrupted membrane integrity of only a sub-population
of cells and it was proposed that although vanillin primarily is a
membrane active compound, it may also have intracellular target
sites (Fitzgerald et al., 2005).

Not much is known about vanillin’s mechanism of antifun-
gal activity, but it has been suggested that the aldehyde moiety
of vanillin plays an important role in its antifungal activity. The
rationale for this is that S. cerevisiae convert vanillin into vanillic
acid and vanillyl alcohol, which possess no antimicrobial activity,
confirming the key-role of the aldehyde moiety (Feron et al., 1991;
Fitzgerald et al., 2005).

OTHER ESSENTIAL OIL CONSTITUENTS
Essential oils contain a number of different degradation products
originating from unsaturated fatty acids, lactones, terpenes, glyco-
sides, and sulfur- and nitrogen-containing compounds (Caballero
et al., 2003). Two examples of sulfur- and nitrogen-containing
compounds with known antimicrobial activity are allicin and allyl
isothiocyanate (AITC).

Allicin (diallyl thiosulfinate) is found in garlic and plays an
important role in plant defense (Ankri and Mirelman, 1999).
Inside the garlic cloves, the amino acid cysteine is converted
to alliin (S-allyl-l-cystein-S-oxide), a known sulfoxide with no
antimicrobial activity (Block, 1992; Ankri and Mirelman, 1999).
Conversion of alliin to the antimicrobial allicin requires the
enzyme alliinase. Studies suggest that alliin and alliinase are located
in two different compartments (Ankri and Mirelman, 1999), and
when garlic cloves are crushed, alliinase comes into contact with
alliin and produces allicin (Ankri and Mirelman, 1999). Allicin
has a pungent smell of garlic and exhibits antibacterial, antifun-
gal, antiparasitic, and antiviral properties (Kyung, 2011). Allicin is
equally effective against Gram-negative and Gram-positive bacte-
ria (Cavallito and Bailey, 1944). Allicin is bactericidal with LD50

values against different bacteria ranging between 3 and more than
100 μg/mL, while a bacteriostatic effect was observed at much
lower concentrations reflected in MIC values for fungal pathogens
were in the range 0.15–1.5 μg/mL (Ankri and Mirelman, 1999).
Although allicin shows great potential as a food preservative when
evaluated in vitro, conflicting results have been obtained in food
matrixes (Kyung, 2011).

Isothiocyanates, also known as mustard oils, are common
essential oil constituents from plants belonging to the mustard
family (Brassicaceae), such as mustard, broccoli, horseradish,
and turnips (Nielsen and Rios, 2000). Isothiocyanates arise in
plants as a result of enzymatic cleavage of released glucosinolates
from intracellular compartments by membrane-bound myrosi-
nase upon damage to the plant (Delaquis, 1995). Myrosinase
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promotes hydrolysis and intramolecular rearrangement of inter-
mediates, resulting in the three main groups of substances: nitriles,
thiocyanates, and isothiocyanates (Zhang and Talalay, 1994). The
latter group includes the non-phenolic volatile AITC which can
constitute close to 90% of the oil composition (Ward et al., 1998).
Allyl isothiocyanate in vapor and liquid forms has demonstrated
high bactericidal activity against various food spoilage microor-
ganisms and food pathogens, including E. coli O157:H7 (Luciano
and Holley, 2009), S. typhimurium, L. monocytogenes, and other
aerobic Gram-negative spoilage bacteria (Delaquis, 1997), and a
broad spectrum of fungi (Delaquis, 1997; Nielsen and Rios, 2000).

Allicin
The antimicrobial activity of allicin has been known since it was
first isolated and studied by Cavallito and Bailey (1944), since then
the mode of action of allicin have been elucidated in great detail.
Allicin is shown to target intracellular enzymes by interacting with
their free SH groups.

Allicin is readily transported across the cell membrane into
the cytoplasm where it can exert its antimicrobial action. Garlic
extract, with allicin as major component, induced no significant
changes in E. coli and S. aureus cell morphology, supporting the
hypothesis that allicin acts intracellularly (Perry et al., 2009).
In another study, Miron et al. (2000) showed that allicin freely
permeated phospholipid vesicles and reacted with encapsulated
SH-containing molecules.

The antimicrobial activity of allicin is ascribed to its reactive
chemical group that binds to and inhibits a broad-range of intra-
cellular targets. Allicin’s -S(O)-S- group reacts with SH groups
of enzymes (Rabinkov et al., 1998). Allicin irreversibly inhibited
the thiol-protease papain, NADP+-dependent alcohol dehydro-
genase from Thermoanaerobium brockii, and a NAD+-dependent
alcohol dehydrogenase from horse liver (Rabinkov et al., 1998).
Interestingly, all three enzymes could be reactivated with thiol-
containing components like dithiothreitol, 2-mercaptoethanol,
and glutathione (Rabinkov et al., 1998), demonstrating that the
interaction leading to inhibition is reversible. Focke et al. (1990)
also demonstrated reversible inhibition by specific binding of
allicin to the enzymes involved in acetyl-CoA synthesis in bac-
teria, plants, yeasts, and mammals. Allicin only partially and tran-
siently inhibited the DNA replication and protein synthesis in S.
typhimurium, while RNA synthesis was reduced by more than 90%
for at least 30 min, suggesting RNA synthesis as the primary target
of allicin (Feldberg et al., 1988). Collectively, these studies indicate
that allicin is a non-specific inhibitor of many enzymes. Allicin
could potentially be used in combination with other antimicro-
bials because it has inhibiting effects on RNA synthesis and thereby
reduce or hinder cell protection mechanisms induced by other
antimicrobials.

Allyl isothiocyanate
The mode of action behind AITC’s antimicrobial activity is not yet
fully understood, but since it might penetrate membranes and no
single site of action has been described, it is generally regarded as
a non-specific inhibitor of periplasmic or intracellular targets.

It is not yet clear if AITC rapidly crosses membranes and enters
the cytoplasm of prokaryotic and eukaryotic cells, or if it has an

effect on cell membranes. Ahn (2001) visualized the AITC-treated
cells by transmission electron microscopy (TEM) and showed that
AITC altered the internal cell structures without causing ATP leak-
age or cell wall damages to L. monocytogenes. However, it did
reduce the internal levels of ATP, indicating that cellular energy-
generating processes were affected. In contrast, another study
showed that AITC caused cell membrane damages to E. coli and
Salmonella Montevideo leading to leakage of cellular metabolites,
but not cell lysis (Lin et al., 2000).

The mode of action of AITC is due to its chemical group. The
central carbon atom of isothiocyanate (R − N = C = S) is highly
electrophile and reacts readily, and under mild conditions with
oxygen-, sulfur-, or nitrogen-centered nucleophiles resulting in
carbamates, thiocarbamates, or thiourea derivatives, respectively
(Zhang and Talalay, 1994; Verma, 2003). Inside a cell, AITC can
react with glutathione, sulfites, amino acids, oligopeptides, pro-
teins, and water (Kawakishi and Namiki, 1982; Kawakishi and
Kaneko, 1985, 1987; Cejpek et al., 2000). AITC cleaves the cysteine
disulfide bond in proteins through an oxidative process (Kawakishi
and Namiki, 1982), but also attacks free amino groups and argi-
nine residues (Kawakishi and Kaneko, 1987). The antimicrobial
mode of action of AITC is thus related to its general inhibition
of enzymes and alteration of proteins by oxidative cleavage of
disulfide bonds (Delaquis, 1995; Luciano and Holley, 2009).

The action of AITC on yeast is not well understood and war-
rants more investigation. Allyl isothiocyanate stalls oxygen uptake
of yeasts, and uncouples the oxidative phosphorylation through
the inhibition of cytochrome c oxidase in the electron transport
chain (Kojima, 1971). Due to its very general mode of action in
prokaryotes, similar effects are likely observed in eukaryotes also.

EXPERIMENTAL APPROACHES TO INVESTIGATE THE
ANTIMICROBIAL MODE OF ACTION
The diversity of essential oil constituents is enormous and presents
a wide range of compounds. Some have low or no efficiency
against microorganisms while others are potent antimicrobials.
The majority of antimicrobial compounds found in essential oils
are terpenoids and phenylpropenes with the most active being phe-
nols, although some aldehydes and non-phenolic substances also
present promising antimicrobial activity. The target site and mode
of action of most essential oil components is still not well under-
stood, especially in yeast. Commercial applications of essential oils
would benefit from deeper insight into the mode of action behind
individual compounds, as this could facilitate the exploitation of,
e.g., synergistic combinations with more powerful antimicrobial
properties.

Many different techniques have been applied to elucidate the
mode of action of essential oils and their constituents. Here we will
present and discuss the most common experimental approaches.
After establishing the killing or inhibition activity of a compound,
an array of experiments can be performed to identify how a com-
pound interacts with the cell to cause the observed effects. In this
context, it is important to distinguish between experiments that
identify the target site from those that elucidate the mode of action.
The site of action refers to the part of the cell which interacts with
the compound, e.g., the cell membrane, cell wall, or intracellu-
lar proteins, enzymes, nucleic acids, or metabolites. The mode
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of action, however, yields more elaborate knowledge about the
molecular mechanisms or intermolecular interactions behind the
inhibition or killing effects. An overview of methods addressing
the site or mode of action of antimicrobial compounds is provided
in Table 3.

LOCATING THE SITE OF ACTION
High-resolution microscopy, such as electron microscopy or
atomic force microscopy (AFM), can reveal the most extreme
consequences of exposure to an antimicrobial compound, i.e.,
deformation of cells occurring from lysis or from damages to the
cell wall. An advantage of TEM is that ultra-thin cross sections can
reveal ultrastructural changes in the interior of the cell. Scanning
electron microscopy (SEM) and AFM only image the cell surface.
AFM has one important advantage over electron microscopy, in
that it allows measurements in liquid under physiological con-
ditions, avoiding difficult sample preparation and the artifacts
associated herewith (Alessandrini and Facci, 2005). A limitation
of both AFM and electron microscopy is, however, that specific
cellular structures must be identified according to morphology
unless some form of labeling can be applied. While antibodies
conjugated to metal nanoparticles have been used with TEM in
a few studies (Romero et al., 2010), no labeling techniques have
been reported for SEM and AFM. It is, however, possible to com-
bine AFM with optical microscopy and thus take advantage of the
numerous options for fluorescent labeling of biomolecules.

An important site of action is the cell membrane, and indeed,
many essential oil constituents have been proposed to act on
the bacterial membrane. Interaction of antimicrobial compounds
with the membrane can affect the transport of nutrients and ions,
the membrane potential, and the overall permeability of the cell.
These effects are investigated by measuring the efflux of intra-
cellular ions like K+ and H+ (Ultee et al., 1999; Lambert et al.,
2001). Efflux of small ions is not necessarily indicative of com-
plete loss of membrane function, and can be observed in viable
cells where growth is inhibited because the cell uses energy for
repair or survival rather than cell proliferation (Bouhdid et al.,
2010). Effects on the cell membrane that lead to cell death is more
accurately predicted by detecting the efflux of larger molecules like
ATP or carboxyfluorescein diacetate (cFDA) after esterase reaction
(Xu et al., 2008), or by influx of large polar organic DNA-binding
stains like ethidium bromide (Lambert et al., 2001) and propidium
iodide (Bouhdid et al., 2010). It should be pointed out that it is
always good practice to validate the observed effects by combining
several techniques. Monitoring the release of calcein encapsulated
in membrane vesicles can for example be used as a complimentary
technique to confirm the membrane as the site of action (Miron
et al., 2000).

If no effects are observed on cell structure and membrane
functionality, it is assumed that the site of action is intracellu-
lar. The target can be proteins and enzymes in general, or it can
be essential cellular processes involved in biosynthesis or energy
generation. An intracellular site of action can for example be deter-
mined by incorporation of radioactively labeled substrates used
in particular biosynthesis pathways (Schneider et al., 2010). Lack
of or decreased incorporation is then taken as an indication of
the process being affected by the antimicrobial compound. For

example, radiolabeled nucleotides or amino acids can be used
to detect if DNA replication or protein synthesis takes place,
respectively (Schneider et al., 2010).

Some compounds have multiple sites of action, and in that case
it can be difficult to pinpoint which one is ultimately responsible
for cell death. For example, a compound that affects membrane
permeability will also affect the membrane potential and thereby
energy generation by respiration. It is thus difficult to distinguish
direct effects on energy-generating processes from the indirect
effect a permeable membrane has on these processes. At sub-
lethal concentrations, changes to the transcriptome and proteome
during exposure can reveal how the cell responds to the com-
pound, and upregulation of genes involved in certain metabolic or
biosynthesis pathways can be indicative of which cell structures or
processes that are affected (Burt et al., 2007; Rao et al., 2010).

ELUCIDATING THE MODE OF ACTION
The probably most comprehensive approach to investigate the
mode of action of a particular compound is to perform random
transposon mutagenesis in order to search for mutations that com-
pensate for the antimicrobial effect of a particular compound. In
this way, it is possible to identify the mode of action of compounds
that interact very specifically with, e.g., a single enzyme or with
particular proteins or lipids in the membrane (Shapira and Mim-
ran, 2007; Van Hoang et al., 2011). The approach is, however, not
suited for investigating antimicrobial compounds that act simul-
taneously on several components in the cell, as a single mutation
is unlikely to facilitate compensation for the antimicrobial effect
on the cell as a whole.

Antimicrobial compounds that act on the membrane can cause
depolarization or increased permeability through various mech-
anisms. For example, some antimicrobial peptides form pores
(Cotter et al., 2005; Fantner et al., 2010) while other compounds,
such as certain essential oil constituents, have a fluidifying effect
on the membrane (Trombetta et al., 2005; Cristani et al., 2007).
Membrane properties like lipid packing can be investigated in
membrane vesicles by LAURDAN staining combined with spec-
trofluorometry (Nielsen and Otzen, 2010), and membrane fluidity
can be investigated directly in bacteria by differential scanning
calorimetry (Trombetta et al., 2005) or fluorescence anisotropy
measurements of DPH using a spectrofluorometer (Liao et al.,
2010). AFM imaging has also in recent years allowed high-
resolution visualization of native membranes on a solid support.
Structural changes resulting from integration of an antimicro-
bial compound into the membrane can thus be visualized directly
(Brasseur et al., 2008), and the effect on membrane rigidity can
be quantified by AFM force spectroscopy (Sullan et al., 2010).
Functionalizing the AFM tip with the antimicrobial compound
of interest furthermore allows investigation of interaction forces
between the compound and its target. This approach was for exam-
ple used to map binding events of vancomycin on the surface of
bacteria and confirmed that binding occurred at the site of cell
wall synthesis in dividing cells (Gilbert et al., 2007).

ESSENTIAL OILS IN FOOD PRESERVATION
Food-borne diseases are a growing public health problem world-
wide. It is estimated that each year in the United States,31 species of
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Table 3 | Overview of experimental approaches used to identify target sites and modes of action of antimicrobial compounds.

Target site or

mode of action

Experiment Reference

Changes in cell

morphology

Scanning electron microscopy (SEM) visualizes the cell structure with

sub-micron resolution.

Burt and Reinders (2003), Kwon et al. (2003), Bennis et al.

(2004), Di Pasqua et al. (2007), Turgis et al. (2009), De Souza

et al. (2010), Gao et al. (2011), Lv et al. (2011), Paul (2011)

Transmission electron microscopy (TEM) can visualize changes in cell

morphology, damages to cell wall and cell membrane, and

coagulation of intracellular content.

Claeson et al. (1992), Gustafson et al. (1998), Ahn (2001), Car-

son et al. (2002), Rasooli et al. (2006), Bouhdid et al. (2009,

2010), Fisher and Phillips (2009), De Oliveira et al. (2011),

Pajohi (2011), Rammanee and Hongpattarakere (2011), Zeng

et al. (2011)

Atomic force microscopy (AFM) visualizes cells at nanometer

resolution in liquid under physiological conditions, and can provide

information about changes in cell topography and elasticity.

Perry et al. (2009), Hafedh et al. (2010), La Storia et al. (2011)

Disruption of

cytoplasmic

membrane

Cell lysis or release of cellular content can be detected

spectrophotometrically at 260 nm.

Carson et al. (2002), Bennis et al. (2004), Turgis et al. (2009),

De Souza et al. (2010), Lv et al. (2011), Paul (2011)
Measurement of potassium or phosphate leakage from the cells

using ion-selective electrodes, atomic absorption spectroscopy, or

flame photometry.

Lambert and Hammond (1973), Ultee et al. (1999), Cox et al.

(2000), Lambert et al. (2001), Walsh et al. (2003), Fitzgerald

et al. (2004), Shapira and Mimran (2007), Bouhdid et al. (2009,

2010)

Measurement of ATP leakage from the cells using an assay based on

luciferase activity quantified by bioluminescence.

Helander et al. (1998), Ultee et al. (1999, 2002), Ahn (2001),

Fitzgerald et al. (2004), Gill and Holley (2004, 2006b), Fisher

and Phillips (2009), Turgis et al. (2009), Sánchez et al. (2010),

Paul (2011)

Uptake of fluorescent DNA-binding stains, such as propidium iodide

(PI), SYTO9, ethidium bromide (EB), and carboxyfluorescein diacetate

(cFDA), using fluorescence microscopy or flow cytometry.

Cox et al. (2000), Lambert et al. (2001), Fitzgerald et al. (2004),

Nguefack et al. (2004a), Gill and Holley (2006a), Paparella et al.

(2008), Bouhdid et al. (2009, 2010), Somolinos et al. (2010),

Ahmad et al. (2011), Ait-Ouazzou et al. (2011)

Leakage of the self-quenching dyes calcein or carboxyfluorescein

encapsulated in phospholipid vesicles is as an increase in

fluorescence intensity as the intravesicular concentration decreases.

Cox et al. (2000), Miron et al. (2000), Trombetta et al. (2005),

Cristani et al. (2007)

Changes in concentration gradients of ions across a cell membrane

can be detected by fluorometry using bis-oxonol or DiSC3(5), or by

flow cytometry using bis-oxonol, DiOC2(3), or BOX.

Ultee et al. (1999, 2002), Veldhuizen et al. (2006), Xu et al.

(2008), Bouhdid et al. (2009, 2010), Fisher and Phillips (2009),

Sánchez et al. (2010), Silva et al. (2011)

Disruption of

outer

membrane in

Gram-negative

bacteria

Damages to the outer membrane is detected by monitoring the

uptake of the hydrophobic fluorescent probe.

1-N -phenyl-l-napthylamine (NPN) into the membrane using

fluorescence microscopy.

Helander et al. (1998), Fisher and Phillips (2009)

Release of phospholipid and LPS from the outer membrane is

detected by capillary gas chromatography and compared with an

internal fatty acid standard. The release of proteins from the outer

membrane is detected by a electrophoresis (SDS-PAGE) in which the

protein profiles of cell-free supernatants of treated and untreated

cells are compared.

Helander et al. (1998)

Changes in the protein profile of the outer membrane can be

measured by separating the proteins according to mass and labeling

for detection by laser induced fluorescence.

Horváth et al. (2009)

Changes in

membrane

properties

Membrane expansion can be detected by relief of fluorescence

self-quenching by the liposome probe octadecyl rhodamine β chloride.

Ultee et al. (2002)

Effects on membrane melting temperature, fluidity, and phase

separation can be detected using differential scanning calorimetry,

Fourier-transform infrared spectrometer, nuclear magnetic

resonance, or small-angle X-ray diffraction.

Ultee et al. (2000), Trombetta et al. (2005), Pérez-Fons et al.

(2006), Cristani et al. (2007)

(Continued)
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Table 3 | Continued

Target site or

mode of action

Experiment Reference

Changes in yeast cell’s ergosterol biosynthesis can be evaluated by

comparing the intracellular content of ergosterols of cells grown in

the absence or presence of antimicrobials. The content of ergosterols

in an intracellular extract can be calculated using data obtained from a

spectrophotometrically scan of the extract between 240 and 300 nm.

Ahmad et al. (2011)

Disruption of

membrane

potential

Changes in concentration gradients of ions across a cell membrane

can be detected either with a spectrofluorometer using bis-oxonol or

DiSC3(5), or by flow cytometry using bis-oxonol, DiOC2(3), or BOX.

Ultee et al. (1999, 2002), Veldhuizen et al. (2006), Xu et al.

(2008), Bouhdid et al. (2009, 2010), Fisher and Phillips (2009),

Sánchez et al. (2010), Silva et al. (2011)

Disruption of

intracellular pH

homeostasis

5-(and 6-)carboxyfluorescein diacetate succinimidyl ester (cFDA-SE)

is readily taken up by bacteria and hydrolyzed by esterases to 5-(and

6-)carboxyfluorescein succinimidyl ester (cFSE). The intracellular pH

can then be determined from the ratio of the fluorescent signal of

cFSE at the pH-sensitive 490 nm and the pH-insensitive 440 nm.

Breeuwer et al. (1996), Ultee et al. (1999, 2002), Fitzgerald

et al. (2004), Fisher and Phillips (2009), Turgis et al. (2009),

Sánchez et al. (2010)

Intracellular pH is measured with pH-sensitive fluorescent probes

pHluorin (cytoplasmic) and BCECF AM (vacuoles).

Rao et al. (2010)

Disruption of

intracellular

Ca2+

homeostasis

Intracellular Ca2+ concentration is measured after transformation

with a plasmid containing the gene for aequorin. Aequorin emits light

upon binding Ca2+, and Ca2+ is thus quantified by measuring

luminescence.

Rao et al. (2010)

Disruption of

cellular

respiration

Disruption of the cellular respiration can be detected by oxygen

consumption measured with oxygen electrodes or by reduction of

the stain 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), which is

reduced by the electron transport chain to the insoluble and

fluorescent formazan.

Cox et al. (2000), Fitzgerald et al. (2004), Bouhdid et al. (2009,

2010)

Complex

reaction

mechanism

Reaction with thiol groups in a variety of targets can be monitored by

complex formation with cysteine or glutathione as free SH-group

compounds. Complex formation is then detected with high

performance liquid chromatography (HPLC), liquid chromatography

coupled with mass spectroscopy (LC–MS), or NMR.

Rabinkov et al. (1998), Miron et al. (2000), Luciano et al.

(2008), Luciano and Holley (2009)

Competitive binding of thiol groups can also be tested by adding

thiol-containing compounds, e.g., the protein bovine serum albumin

(BSA) or the organic compound desferal to the growth medium and

test if the antimicrobial effect can be relieved.

Juven et al. (1994)

Inhibition of

particular

enzymes

Inhibition of the cell wall synthesizing enzymes β-(1,3)-glucan

synthase and chitin synthase have been monitored using the

radioactive substrates UDP[14C]-Glu and UDP[U-14C]-GlcNAc by a

liquid scintillation counter.

Bang et al. (2000)

Changes in enzyme activity of proteases, alcohol dehydrogenases,

thioredoxin reductase, acetate kinase, decarboxylases, α-amylase,

subtilisin, acetyl-CoA-forming enzyme systems, and ATPase has

been investigated, using techniques such as spectrophotometer,

luminometer, HPLC, pH monitoring, liquid scintillation counter, and

zone of proteolysis.

Thoroski (1989), Focke et al. (1990), Wendakoon and Morihiko

(1995), Rabinkov et al. (1998), Gill and Holley (2006b), Luciano

and Holley (2009)

Inhibition of

cell division

The effect on FtsZ assembly and hence on the cell division apparatus

can be investigated using light scattering assay, GTP hydrolysis, TEM,

isothermal titration calorimetry, saturation transfer difference NMR

spectroscopy (STD NMR), and in silico molecular modeling.

Domadia et al. (2007), Hemaiswarya et al. (2011)

Changes in

transcriptome

Random mutation can be used to identify the role of a particular

genes in resistance or susceptibility mechanisms. Transcriptional up-

and down-regulation can subsequently be detected for genes of

interest using RT-qPCR, or for a large number of genes

simultaneously using microarrays.

Somolinos et al. (2010), Shapira and Mimran (2007)

(Continued)
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Table 3 | Continued

Target site or

mode of action

Experiment Reference

Changes in RNA, DNA, and protein biosynthesis can be detected by

continuous incorporation of radioactive labeled uridine, thymidine,

and leucine, respectively.

Feldberg et al. (1988)

Changes in

proteome

Expression of specific proteins can be determined by SDS-PAGE gel

electrophoresis and western blotting followed by identification of

peptide fragments by mass spectrometry.

Burt et al. (2007), Liu et al. (2010)

Changes in a proteome profile can be detected by 2D-PAGE

electrophoresis separation followed by selection and excision of up-

or down-regulated protein-spots, which are then identified by mass

spectrometry.

Di Pasqua et al. (2010), Liu et al. (2010)

Changes in

toxin

production

The effect on excreted toxin production can be measured using

enzyme linked immunosorbent assay (ELISA) and

spectrophotometric quantification.

Ultee and Smid (2001), De Souza et al. (2010)

pathogens cause 9.4 million cases of food-borne illnesses (Scallan
et al., 2011). Successful control of food-borne pathogens requires
the use of multiple preservation techniques in the manufacturing
and storage of food products. A recent consumer trend toward
preference for products with lower salt and sugar content presents
an increased need for efficient food preservatives, as lowering the
salt and sugar content would otherwise compromise the product’s
shelf-life (Zink, 1997). A wide range of preservatives are used to
extend the shelf-life of a product by inhibiting microbial growth.
However, an increasingly negative consumer perception of syn-
thetic food additives has spurred an interest in finding natural
alternatives to the traditional solutions (Zink, 1997). Although
originally added to change or improve taste, the antimicrobial
activity of essential oils makes them an attractive choice for
substituting synthetic preservatives.

PERSPECTIVES AND LIMITATIONS IN APPLICATION OF ESSENTIAL OILS
IN FOOD
A range of essential oil components have been accepted by the
European Commission for their intended use as flavorings in
food products. The registered flavorings are, e.g., linalool, thy-
mol, eugenol, carvone, cinnamaldehyde, vanillin, carvacrol, citral,
and limonene, all of which are considered to present no risk to
the health of the consumer. The United States Food and Drug
Administration (FDA) also classifies these substances as gener-
ally recognized as safe (GRAS). The crude essential oils classified
as GRAS by FDA include amongst others clove, oregano, thyme,
nutmeg, basil, mustard, and cinnamon. There are regulatory limi-
tations on the accepted daily intake of essential oils or essential oil
components, so before they can be used in food products, a daily
intake survey should be available for evaluation by FDA.

Despite the demonstrated potential of essential oils and their
constituents in vitro, their use as preservatives in food has been lim-
ited because high concentrations are needed to achieve sufficient
antimicrobial activity. In many food products, the hydrophobic
essential oil constituents are impaired by interactions with food
matrix components, such as fat (Cava-Roda et al., 2010; Rat-
tanachaikunsopon and Phumkhachorn, 2010), starch (Gutierrez

et al., 2008), and proteins (Cerrutti and Alzamora, 1996; Kyung,
2011). Furthermore, the antimicrobial potency of essential oil con-
stituents also depends on pH (Juven et al., 1994), temperature
(Rattanachaikunsopon and Phumkhachorn,2010),and the level of
microbial contamination (Somolinos et al., 2010). Extrapolation
of results from in vitro tests to food products is thus difficult at best,
and a lower performance of the antimicrobial compound must be
expected. For example, Cilantro oil had significant antibacterial
activity at 0.018% in vitro, but when applied to a ham model,
even 6% cilantro oil had no antimicrobial activity (Gill et al.,
2002). Before being added to food products, it is therefore use-
ful to investigate how essential oils or their constituents interact
with food components in vitro. Food matrix interactions with the
essential oils or their constituents can be investigated by measur-
ing the growth of microorganisms in culture medium containing
a range of concentrations of fat, protein, or starch as well as the
antimicrobial compound of interest. Such experiments have been
performed using a so-called food model media (Gutierrez et al.,
2009), and can be used to provide quick answers to which kind of
food products the compound in question can be used in.

The intense aroma of essential oils, even low concentrations,
can cause negative organoleptic effects exceeding the threshold
acceptable to consumers (Lv et al., 2011). Having to increase the
concentration of essential oils to compensate for their interactions
with food matrix components is therefore highly unfortunate and
limits their application to spicy foods where the acceptable sen-
sory threshold is relatively high. Different strategies can be used
to circumvent this problem. One option is to use essential oils
in active packaging rather than as an ingredient in the product
itself. Essential oils can be encapsulated in polymers of edible and
biodegradable coatings or sachets that provide a slow release to
the food surface or to the headspace of packages of, e.g., fruit,
meat, and fish (Pelissari et al., 2009; Sánchez-González et al.,
2011). Sachets that release volatile essential oils into the headspace
environment are simply placed within an enclosed food package
(Ahvenainen, 2003). The advantage of incorporating volatile com-
ponents of essential oils in films or edible coatings is that the diffu-
sion rate of the agents away from the food product can be reduced,
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thereby maintaining the active compounds in the headspace or on
the product surface for extended periods of time (Phillips and
Laird, 2011; Sánchez-González et al., 2011). A way to minimize
organoleptic effects of essential oils added to the matrix of a food
product is to encapsulate essential oils into nanoemulsions. This
approach increases the stability of volatile components, protect-
ing them from interacting with the food matrix, and increases
the antimicrobial activity due to increased passive cellular uptake
(Donsí et al., 2011).

Lowering the concentration of essential oils without compro-
mising their antimicrobial activity can also be obtained by apply-
ing them in combination with other antimicrobial compounds
that provide a synergistic effect (Nguefack et al., 2012). Synergies
are known to occur for essential oil combinations, and it is there-
fore a field with countless opportunities to find potent antimicro-
bial blends, which may be the key to implementing essential oils
in food preservation without simultaneous organoleptic effects.

SYNERGIES BETWEEN ESSENTIAL OIL COMPONENTS
The interaction between antimicrobials in a combination can have
three different outcomes, synergistic, additive, or antagonistic.
Synergy occurs when a blend of two antimicrobial compounds
has an antimicrobial activity that is greater than the sum of the
individual components. An additive effect is obtained when the
combination of antimicrobials has a combined effect equal to the
sum of the individual compounds. Antagonism occurs when a
blend of antimicrobial compounds has a combined effect less than
when applied separately (Davidson and Parish, 1989; Burt, 2004).

The combined effect of a blend is analyzed by using
measurements of the MIC to calculate the fractional inhibi-
tion concentration index (FICIndex) according to the formulas
defined by (Davidson and Parish, 1989): FICA = MICA+B/MICA,
FICB = MICB+A/MICB, FICIndex = FICA + FICB. The MICA+B

value is the MIC of compound A in the presence of compound
B, and vice versa for MICB+A. Calculating the FIC value for either
substance A or B then requires determination of the MIC for the
individual components. Theoretically, a FICIndex near 1 indicates
additive interactions, while below 1 implicates synergy, and above
1 antagonism (Davidson and Parish, 1989). However, this defini-
tion has been replaced by a more general one where the FICIndex

results are interpreted as synergistic if FICIndex < 0.5, additive if
0.5 < FICIndex < 4, or antagonistic if FICIndex > 4 (Odds, 2003).

The antimicrobial activity of a given essential oil may depend
on only one or two of the major constituents that make up the
oil. However, increasing amounts of evidence indicate that the
inherent activity of essential oils may not rely exclusively on the
ratio in which the main active constituents are present, but also
interactions between these and minor constituents in the oils. Var-
ious synergistic antimicrobial activities have been reported for
constituents or fractions of essential oils when tested in binary
or ternary combinations (Delaquis et al., 2002; Pei et al., 2009;
García-García et al., 2011; Nguefack et al., 2012). For example,
García-García et al. (2011) found the most synergistic binary
combination against L. innocua to be carvacrol and thymol,
and the most active ternary combination to be carvacrol, thy-
mol, and eugenol. Reports on greater antimicrobial activity of
crude essential oils compared to blends of their major individual

components suggests that trace components in the crude essen-
tial oils are critical to the activity and may have a synergistic
effect (Marino et al., 2001; Delaquis et al., 2002; Burt, 2004; Kout-
soudaki et al., 2005). In contrast to this, trace components may
also cause antagonistic interactions, which were seen by com-
paring the antimicrobial effect of pure carvacrol to oregano oil
where carvacrol is a major constituent. Pure carvacrol was 1500
times more effective than the crude essential oil (Rao et al., 2010).
Among individual essential oil constituents, synergy has been
observed for carvacrol and p-cymene on B. cereus (Ultee et al.,
2002; Rattanachaikunsopon and Phumkhachorn, 2010). It appears
that p-cymene swells bacterial cell membranes, probably enabling
easier entrance of carvacrol into the cell membrane where it exerts
its action (Ultee et al., 2002). Furthermore, Bassolé et al. (2010)
showed that if linalool or menthol was combined with eugenol
it showed the highest synergy, suggesting that a monoterpenoid
phenol combined with a monoterpenoid alcohol is an effective
combination.

Little is currently known about what governs synergy and
antagonism among essential oil constituents. Four theoretical
mechanisms of antimicrobial interactions produce synergy: (i)
sequential inhibition several steps in a particular biochemical
pathway, (ii) inhibition of enzymes that degrade of excrete antimi-
crobials, (iii) interaction of several antimicrobials with the cell
wall, or (iv) interaction with the cell wall or membrane that leads
to increased uptake of other antimicrobials (Davidson and Parish,
1989; Eliopoulos et al., 1996). Another possibility for synergistic
effects could be that antimicrobials have different mode of actions,
thereby attacking two different sites on or in the cell, which indi-
rectly depend on each other. Even less is known about the cause
antagonism, it is hypothesized to occur when: (i) combining bac-
teriostatic and bactericidal antimicrobials, (ii) antimicrobials have
the same site of action, (iii) antimicrobials interact with each other
(Davidson and Parish, 1989), Larson (1985) in Roller (2003). The
hypothesized synergistic or antagonistic interactions are based on
15 year old results, and with the emergence of new techniques this
field is likely to see some significant advances in our understanding
of how antimicrobial compounds affect each other when acting in
concert.

In practice, the knowledge needed to exploit synergistic com-
binations of essential oils in food products is (i) the site and
mode of action of each essential oil constituent, and (ii) the
mechanisms resulting in synergy or antagonism between several
compounds, and (iii) how each compound interacts with food
matrix components in a way that affects is antimicrobial prop-
erties. When the mechanistic details for synergistic interactions
are better understood, it will be easier to exploit synergies using
intelligent combinations of constituents to combat food spoilage
microorganisms.

OUTLOOK
An attractive application of essential oils and their constituents
is in food products to prolong the shelf-life of foods by limiting
growth or survival of microorganisms. The organoleptic impact
of essential oils and their components in food products currently
limits their usage to spicy foods normally associated with herbs,
spices, or seasonings. Synergistic interactions should therefore be
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exploited to lower the organoleptic impact and thereby facilitate
the use in a broader range of products.

The lack of detailed knowledge about the mode of action of the
individual essential oil constituents is also the underlying cause
for our superficial understanding about what governs synergy
and antagonism. Future research should thus explore the mode
of action of individual essential oil constituents further, while
also initiating systematic investigations into the mechanisms of
synergy among different constituents. Many studies have investi-
gated the site of action, while few proceed to reveal the mode of
action. Furthermore, most work to date has focused on prokary-
otes, and little is known about how essential oils interact with
yeast and fungi. Regardless of the microorganism, future research
into the mode of action will need a standardization of investiga-
tion methods, complementary experiments that validate results,
and implementation of new techniques. Taking a systems biol-
ogy approach to investigating the mode of action of antimicrobial
compounds will no doubt further this field. Transcriptomic and
proteomic analyses can identify pathways targeted by an antimi-
crobial, whereas nuclear magnetic resonance (NMR) spectroscopy,
X-ray crystallography, and computer modeling help identify key
residues involved in the molecular interactions between target and
the antimicrobial (Wang et al., 2006; Domadia et al., 2007; Liu
et al., 2010; Schneider et al., 2010). Interactions with cell sur-
face structures or cell membranes can be studied in detail by

AFM force spectroscopy (Brasseur et al., 2008; Dufrêne, 2008).
These techniques provide valuable information about an antimi-
crobial’s specific intracellular targets, the structural nature of inter-
action, and what governs susceptibility, adaptation, and resistance
mechanisms (Schneider et al., 2010).

Synergistic blends that have commercial interest must be eval-
uated under the relevant environmental conditions which reflect
the food matrixes to which they should be applied, as interactions
with food matrix ingredients could decrease their activity. Inves-
tigating the molecular interactions behind the inhibition of food
matrix ingredients opens an entirely different research direction,
which focuses on formulating essential oils in foods with the aim to
minimize organoleptic effects without compromising the antimi-
crobial properties. Encapsulation and controlled/sustained release
of potent synergistic combinations could potentially reduce the
organoleptic impact and simultaneously increase the antimicro-
bial potency if the encapsulation material facilitates close interac-
tion with the microorganisms. New strategies for nanoencapsu-
lation may thus provide an interesting platform for this research
avenue in the future.
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