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Iron (Fe) is an essential micronutrient for marine organisms, and it is now well estab-
lished that low Fe availability controls phytoplankton productivity, community structure,
and ecosystem functioning in vast regions of the global ocean. The biogeochemical cycle
of Fe involves complex interactions between lithogenic inputs (atmospheric, continental,
or hydrothermal), dissolution, precipitation, scavenging, biological uptake, remineralization,
and sedimentation processes. Each of these aspects of Fe biogeochemical cycling is likely
influenced by organic Fe-binding ligands, which complex more than 99% of dissolved Fe.
In this review we consider recent advances in our knowledge of Fe complexation in the
marine environment and their implications for the biogeochemistry of Fe in the ocean. We
also highlight the importance of constraining the dissolved Fe concentration value used in
interpreting voltammetric titration data for the determination of Fe speciation. Within the
published Fe speciation data, there appear to be important temporal and spatial variations
in Fe-binding ligand concentrations and their conditional stability constants in the marine
environment. Excess ligand concentrations, particularly in the truly soluble size fraction,
seem to be consistently higher in the upper water column, and especially in Fe-limited,
but productive, waters. Evidence is accumulating for an association of Fe with both small,
well-defined ligands, such as siderophores, as well as with larger, macromolecular com-
plexes like humic substances, exopolymeric substances, and transparent exopolymers.
The diverse size spectrum and chemical nature of Fe ligand complexes corresponds to a
change in kinetic inertness which will have a consequent impact on biological availabil-
ity. However, much work is still to be done in coupling voltammetry, mass spectrometry
techniques, and process studies to better characterize the nature and cycling of Fe-binding
ligands in the marine environment.

Keywords: seawater, speciation, colloids, siderophores, exopolymeric substances, humic substances,

nanoparticles, ligands

INTRODUCTION – IRON BIOGEOCHEMISTRY IN THE OCEAN
AND THE IMPORTANCE OF IRON SPECIATION
Approximately 30% of surface waters in the open ocean are known
as high nutrient low chlorophyll (HNLC) regions (Boyd et al.,
2007). These areas are replete in the macronutrients nitrate and
phosphate, but present lower phytoplankton biomass, in terms of
chlorophyll concentrations, than expected from residual macronu-
trient concentrations (Figure 1). The restriction of phytoplankton
growth in these regions is now acknowledged to be the result of
iron (Fe) limitation (Martin and Fitzwater, 1988; Boyd et al., 2007).
Fe is a micronutrient required for proteins involved in fundamen-
tal cellular processes, including both photosynthesis and respira-
tion (Raven et al., 1999). Despite being the fourth most abundant
element in the Earth’s crust (Liu and Millero, 2002), dissolved
Fe (dFe: <0.2 or 0.45 μm) concentrations in open ocean surface
waters typically fall below 0.2 nM, (De Baar and De Jong, 2001;
Boyd and Ellwood, 2010) and dFe generally exhibits a nutrient-
type depth profile in the ocean, depicting removal in surface waters
by biological uptake, and increased concentrations at depth from

remineralization processes occurring through the water column
(Boyd and Ellwood, 2010). Although low, dFe concentrations in
the ocean can be much higher than might be predicted given that
the solubility of ferric hydroxide in seawater at pH 8.1 and 25˚C has
been determined to be as low as 0.01 nM (Liu and Millero, 2002).
The presence of dFe at concentrations beyond the inorganic solu-
bility of Fe is thought to be facilitated by organic complexation of
Fe with stabilizing ligands, which buffer dFe in seawater against
hydrolysis and ensuing precipitation (Hunter and Boyd, 2007;
Boyd and Ellwood, 2010). However, the overall physico-chemical
speciation of dFe, which encompasses all of its possible physical
and chemical forms in seawater, is more complex than implied
by the consideration of organic complexation alone. The different
physico-chemical fractions of dFe include Fe(II), colloidal, truly
soluble, and inorganic iron in addition to organically complexed
iron. These different fractions have different environmental and
biological mobility (Kuma et al., 1996; Maldonado et al., 2005;
Hunter and Boyd, 2007; Kitayama et al., 2009; Boyd and Ellwood,
2010; Hassler et al., 2011b). The motivation for understanding the
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physico-chemical speciation of Fe, therefore, results from a desire
to understand how these different fractions influence the overall
biogeochemistry of Fe in the oceans.

It is important to note that dissolved iron (dFe) is operationally
defined by filtration, with early studies employing 0.45 μm or,
more recently, 0.2 μm membrane filters (De Baar and De Jong,
2001; Cutter et al., 2010). However, it has been shown that a sig-
nificant proportion of dFe is colloidal (Fecolloidal; Wu and Luther,
1994; Cullen et al., 2006; Bergquist et al., 2007; Kondo et al., 2008;
Schlosser and Croot, 2008; Boye et al., 2010). Colloidal Fe is charac-
terized as the difference between the Fe concentration determined
in the <0.2 μm fraction (dFe) and the >1 kDa or >0.02 μm frac-
tion, depending on whether cross flow filtration or membrane
filtration techniques are used for the determination (Schlosser and
Croot, 2008). The colloidal fraction is not measured directly, but
inferred from the difference between dissolved (<0.2 μm) and
soluble (<1 kDa or <0.02 μm) fractions.

The mass balances for Fe when considering its physical
distribution can be described as

Fetotal = Feparticulate + Fecolloidal + Fesoluble

while the mass balance from a chemical perspective might be
described as

Fetotal = Fe′ + FeL + Feinert,

where Fe′ represents labile inorganic Fe complexes, FeL represents
Fe organic ligand complexes exchangeable within a time scale of
<1 day, and Feinert represents the Fe fraction bound up in matri-
ces that are essentially non-labile. As our analytical methods for
the determination of the physico-chemical speciation of Fe tend
to focus on either the physical (e.g., Schlosser and Croot, 2008;
Baalousha et al., 2011) or the chemical (e.g., Gledhill and van den
Berg, 1994; Rue and Bruland, 1995; van den Berg, 1995; Wu and
Luther, 1995; Laglera et al., 2007; Mawji et al., 2008a; Velasquez
et al., 2011) perspective, reconciling these two approaches remains
a major challenge to Fe biogeochemists.

In recent years there has been a concerted effort to understand
more about both the physical partitioning of Fe in the marine
environment, and the chemical nature of the Fe ligand pool. The
application of filtration with trace metal clean 0.02 μm pore size
membrane filtration, ultrafiltration (10 kDa cut offs), and flow
field flow fractionation (FFFF) coupled to ultra-violet (UV) and
inductively coupled plasma-mass spectrometry (ICP-MS) detec-
tion techniques have considerably improved our knowledge of
the physical partitioning of Fe in marine waters (Schlosser and
Croot, 2008; Baalousha et al., 2011). Characterization of the FeL
pool has been tackled through the utilization of high performance
liquid chromatography–electrospray ionization-mass spectrome-
try (HPLC–ESI-MS) and development of novel electroanalytical
techniques (McCormack et al., 2003; Laglera et al., 2007; Velasquez
et al., 2011). In parallel to these advances a concerted effort is being
made to improve our understanding of the robustness of compet-
itive ligand exchange–adsorptive cathodic stripping voltammetry
(CLE–ACSV), the technique most commonly used to determine Fe
complexation in seawater (Buck et al., under review;Laglera et al.,

2011). These advances have indicated that although the absolute
physical partitioning determined varies from study to study as a
result of the different techniques and filter cut offs, the colloidal
Fe pool makes up between 30 and 91% of the dFe pool (Wu and
Luther, 1994; Nishioka et al., 2001; Cullen et al., 2006; Bergquist
et al., 2007; Hurst and Bruland, 2008; Kondo et al., 2008; Schlosser
and Croot, 2008; Boye et al., 2010). The presence of Fe-binding
ligands has been inferred in colloidal and measured in soluble
fractions (Wu et al., 2001; Boye et al., 2010; Thuroczy et al., 2010),
but both FFFF and ultrafiltration studies indicate that not all of the
colloidal Fe (organic or inorganic) is exchangeable or under satu-
rated with respect to Fe (Wu et al., 2001; Boye et al., 2010; Stolpe
and Hassellov, 2010; Stolpe et al., 2010; Thuroczy et al., 2010).
The existence of an inert colloidal fraction has broad implications
for our understanding of Fe biogeochemistry and its significance
in the ocean has yet to be properly assessed. Thus, while Fesoluble

might reasonably be expected to include Fe′, FeL, or Feinert are
unlikely to be discreet to Fesoluble, Fecolloidal, or Feparticulate.

Even though we have not fully characterized either colloidal or
organic Fe associations, efforts to understand the overall effects of
Fe speciation on Fe biogeochemistry have been made (Archer and
Johnson, 2000; Moore et al., 2004; Parekh et al., 2005; Weber et al.,
2005; Fan, 2008; Moore and Braucher, 2008; Tagliabue et al., 2009;
Fan and Dunne, 2011; Tagliabue and Voelker, 2011). Modelers
have made considerable progress toward capturing the complex-
ity of iron speciation, incorporating inorganic iron scavenging
and up to two ligand classes, in order to investigate the large
scale implications of iron speciation on ocean productivity and the
potential effects of a changing climate (Tagliabue et al., 2009; Ye
et al., 2009; Tagliabue and Voelker, 2011). Fe biogeochemical mod-
els incorporating Fe speciation tend to highlight the importance of
photoreduction processes in determining the dissolved concentra-
tions of Fe in surface waters, while indicating that organic ligands
are likely to strongly influence the thermodynamic solubility of Fe
(Weber et al., 2005; Fan, 2008; Tagliabue et al., 2009; Tagliabue and
Voelker, 2011). Furthermore, variations in organic ligand concen-
tration and conditional stability constants have also been shown
to influence the residence time and potential bioavailability of Fe
in models (Tagliabue et al., 2009). Other studies have shown that
different organic ligands have different chemical labilities and dif-
ferent susceptibilities to photoreduction (Hutchins et al., 1999;
Barbeau et al., 2001, 2003; Maldonado et al., 2005; Hassler et al.,
2011b). Overall, such studies highlight the need to characterize
more fully the physico-chemical speciation of dFe.

In this paper, we will review current knowledge of the organic
complexation of Fe, the characterization and distributions of
specific FeL complexes, and the characterization of colloidal Fe
fractions as a first attempt at reconciling the different approaches
to understanding the physico-chemical speciation of dFe in sea-
water. We will not consider the reduced Fe pool, Fe(II), in this
review as our understanding of the interactions between Fe(II),
Fe(III), and organic matter (e.g., Toner et al., 2009; Bligh and
Waite, 2010) require further investigation. However, it should be
born in mind that Fe(II) is likely important to Fe biogeochemistry
as it is thought to be highly biologically available and can make
up 50–60% of the dFe pool in illuminated surface waters or near
sediments, hydrothermal vent systems, or oxygen minimum zones

Frontiers in Microbiology | Microbiological Chemistry February 2012 | Volume 3 | Article 69 | 2

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiological_Chemistry
http://www.frontiersin.org/Microbiological_Chemistry/archive


Gledhill and Buck Organic iron complexation: a review

FIGURE 1 | (A) Annualized average nitrate (μM) and (B) composite chlorophyll
a (mg L−1) distributions observed in surface waters in the global ocean. The
nitrate distribution was obtained using data from the World Ocean Atlas 2009

(http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html), while the
chlorophyll a distribution represents the 2009 Aqua MODIS chlorophyll
composite (http://oceancolor.gsfc.nasa.gov/cgi/l3).

(Hong and Kester, 1986; Kuma et al., 1992; Johnson et al., 1994;
Gledhill and van den Berg, 1995; Croot et al., 2005; Ussher et al.,
2007; Hansard et al., 2009; Sarthou et al., 2011).

IRON COMPLEXATION AS DETERMINED BY COMPETITIVE
EQUILIBRIUM EXPERIMENTS
The organic complexation of dFe, including organic Fe-binding
ligand concentrations ([Li]) and their associated conditional sta-
bility constants (K cond

FeLi ,Fe’ or K cond
FeLi ,Fe3+), is primarily measured in

seawater using the electrochemical technique CLE–ACSV. The
ambient Fe-binding ligands determined by this technique are
typically described as ligand “classes,” which are operationally
defined by the associated conditional stability constant mea-
sured. Ligand classes are denoted as Li, where i = 1 for stronger
ligand classes and i = 2, 3, etc., for progressively weaker ligand
classes. Conditional stability constants for these ligand classes

are expressed as either K cond
FeLi ,Fe’ or K cond

FeLi ,Fe3+ , where K cond
FeLi ,Fe3+ =

K cond
FeLi ,Fe’ • αFe ′ and αFe′ is the inorganic side reaction coefficient

for Fe, with αFe′ = [Fe′]/[Fe3+]. αFe′ varies with pH (Byrne et al.,
1988), but a value of 1010 is commonly used for αFe′ in pH
8 seawater (Hudson et al., 1992; Sunda and Huntsman, 2003),
although other values have been used (Gledhill and van den
Berg, 1994; Rue and Bruland, 1997; Gledhill et al., 1998; Nolt-
ing et al., 1998). In CLE–ACSV, samples are buffered prior to
analyses, typically to pH 8, and mostly equilibrated and measured
at room temperature, so the use of an αFe′ = 1010 is reasonable
for these cases, regardless of original sample pH or tempera-
ture. To better facilitate comparisons across studies, we encourage
analysts to consider adjusting their K cond

FeLi ,Fe3+ to K cond
FeLi ,Fe’ using

the appropriate αFe′ for the analytical pH employed. Similarly,
those who report K cond

FeLi ,Fe’ are encouraged to specify the αFe′
used.
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COMPETITIVE LIGAND EXCHANGE–ADSORPTIVE CATHODIC STRIPPING
VOLTAMMETRY
Aliquots of a filtered, but otherwise unaltered, seawater sample are
first buffered to maintain pH near 8, and then titrated with increas-
ing additions of dissolved Fe (dFe) from +0 to typically 10×–20×
the ambient dFe concentration. It is recommended to have two
+0 Fe additions in the titration, with at least eight Fe amend-
ments, for a total of 10 or more titration points to provide the
best data structure for interpretation (Garnier et al., 2004; Sander
et al., 2011). DFe additions are left to equilibrate with ambient
Fe-binding ligands, often for several hours, before each aliquot is
amended with a given concentration of a well-characterized added
ligand (AL) and allowed an additional equilibration time of min-
utes to hours. Once equilibrated with both added dFe and AL, each
sample aliquot of the titration is analyzed sequentially by ACSV
on a hanging mercury drop electrode (HMDE).

Over a deposition time predetermined to allow sufficient pre-
concentration of Fe(AL)x in the sample, the Fe(AL)x complex
formed in the titrations is adsorbed at a set initial potential to
the surface of the HMDE while stirring the solution. As the depo-
sition time employed is applied to all aliquots in a given titration, it
is essential that the length of time chosen is long enough to distin-
guish the small increases in the added dFe between vials early in the
titration, but not so long that the larger amendments of dFe at the
end of the titration saturates the HMDE surface. After the depo-
sition time concludes, there is often a few seconds of “quiet time,”
when stirring is stopped, before the voltage applied to the HMDE
is ramped in the negative direction (cathodic stripping) following
the optimal excitation signal wave form (differential pulse, linear
sweep, Osteryoung square wave) for the Fe(AL)x chosen.

At the reduction potential of Fe, roughly −0.5 V (depending
on AL chosen), Fe is reduced from the Fe(AL)x complex, or, in
some cases, the Fe(AL)x itself may reduce, generating a peak in
current measured at the HMDE. The height of this peak in cur-
rent, typically expressed in absolute nA units, is recorded for each
aliquot as a titration point and plotted against the added dFe to
generate a titration curve. This raw titration data is then inter-
preted using either linear (Scatchard, 1949; Ružic, 1982; Van Den
Berg, 1982) or non-linear (Gerringa et al., 1995) transformations
to determine ambient Fe-binding ligand concentrations and their
thermodynamic conditional stability constants.

The concentration and choice of AL employed, along with the
thermodynamic characteristics of the Fe(AL)x complex formed,
defines the analytical window of the analyses. This analytical win-
dow is described as αFe(AL)x

, where αFe(AL)x = βcond
Fe(AL)x,Fe’ • [AL]x.

The analytical window applied constrains the measured ligand
concentrations and conditional stability constants such that the
end result is best described as averages of the different ligand
classes identified within an analytical window. These parame-
ters produce an αFeLi , where αFeLi = K cond

FeLi ,Fe’ • [Li]. In most
cases, only one ligand class is identified in Fe speciation titra-
tions, but in the case of more than one ligand class, αFeLi =
K cond

FeL1,Fe’ • [L1] + K cond
FeL2,Fe’ • [L2] + . . . + K cond

FeLi ,Fe’ • [Li].
While the use of multiple analytical windows has not yet been

addressed for Fe speciation, there is some indication from recent
GEOTRACES inter calibration efforts that the analytical window
applied to Fe speciation may impact calculated results for [Li]

and K cond
FeLi ,Fe’ (Buck et al., under review). This effect is much less

pronounced, however, than has been established previously for
dissolved copper (Cu) speciation (Bruland et al., 2000), likely
reflecting the very different inorganic side reactions of Cu and Fe,
as well as the relative breadth of the ligand pools for these elements.

With respect to ligand classes, it should be noted that analysts
commonly apply the notation of “L1” to the strongest (or only)
ligand class detected in their sample, regardless of the associated
K cond

FeLi ,Fe’. Thus, ligand class definitions may vary widely between
analysts and sample data sets, complicating comparisons across
studies. For example, the range of logK

′cond
FeL1,Fe reported in the litera-

ture, for either the single ligand class identified or the designated L1

in two ligand systems, covers more than four orders of magnitude
(from ∼9 to ∼13.5; Table 1). Even in field studies distinguishing
two ligand classes, the logK

′cond
FeL1,Fe reported for the stronger ligand

class range between 11.1 and 13.9, overlapping with the weaker
ligand class logK

′cond
FeL2,Fe values of 9.7–11.95 reported (Table 1; Rue

and Bruland, 1995, 1997; Cullen et al., 2006; Buck and Bruland,
2007; Buck et al., 2007; Ibisanmi et al., 2011). Correspondingly,
it would be useful to agree on definitions for ligand classes based

on the range of K
′cond′
FeLi ,Fes reported in natural systems. Along these

lines, we would propose using “L1” for logK cond
FeLi ,Fe’ > 12, “L2” for

log logK cond
FeLi ,Fe’ = 11–12, and “L3” for logK cond

FeLi ,Fe’ < 11. Regardless
of whether such new definitions are employed, when comparing
results between studies we implore analysts to consider mak-
ing comparisons between logK cond

FeLi ,Fe’ instead of designated ligand
classes.

LIMITATIONS OF INTERPRETATION
Competitive ligand exchange–ACSV is an indirect approach to
determining the organic complexation of dFe. As such, there are
some fundamental assumptions and limitations inherent to CLE–
ACSV data interpretation, which are worth reviewing in brief
before attempting to contextualize published field data. First, raw
titration is interpreted assuming that ambient ligands are coordi-
nated with dFe in a 1:1 ratio. In reality, the wide range of dissolved
organic matter present in seawater likely includes ligands that may
bind dFe in ratios greater than or less than 1:1. Thus, the reported
ligand concentrations measured from CLE–ACSV represent the
binding capacity for organic ligand classes present in the sample,
not necessarily an absolute concentration of ligand molecules. As
a consequence, some analysts report their measured ligand con-
centrations in terms of nanoequivalents (nEq; e.g., Nolting et al.,
1998; Gerringa et al., 2008) or nanomolar Fe equivalents (e.g.,
Croot et al., 2004) instead of simply nanomolar concentrations to
highlight this distinction.

A second, and more problematic, assumption in the interpreta-
tion of CLE–ACSV data is that all of the dFe in a given sample is in
an exchangeable form with respect to the added competitive ligand
(AL). Arising from this assumption, any dFe that does not bind to
the AL to form Fe(AL)x is then assumed in the data interpretation
to be complexed by an organic ligand class with a larger αFeLi than
the αFe(AL)x

applied. This is clearly problematic in natural samples,
where much of the dFe, especially in high dFe environments, may
exist as stable inorganic or organically associated colloids, or as
other phases of dFe not exchangeable with AL (e.g., Feinert). It has
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Table 1 | Compilation of published field data on the organic complexation of dFe in marine environments, as measured by CLE–ACSV

techniques.

Region Depth, m Filter [Fe], nM [L1], nM LogK cond
FeL1,Fe’

eL1, nM Reference

[L2], nM LogK cond
FeL2,Fe’

eLT, nM

NE Atlantic 2–1002 <0.45 μm 0.8–8.5 3–10.1 10.4–13.11 1.6–4.1 Gledhill and van den

Berg (1994)

Central N Pacific 20–2000 <0.4 μm 0.09–0.77 0.37–1 12.7–13.2 0.13–2.13 Rue and Bruland (1995)

1.3–2.8 11.3–11.8 1.63–4.93

Mediterranean 20–2586 <0.4 μm ∼2.5–6* 4.21–12.65 12.0–13.6 ∼1.2–9.1* van den Berg (1995)

NW Atlantic 5–15 <0.4 μm 0.6–3.7 0.45–6.4 > 151 n.d. Wu and Luther (1995)

Equatorial Pacific 15 <0.4 μm 0.009–2.8 0.31–1.75 11.2–13 −1.4 to 1.73 Rue and Bruland (1997)

0.19–2 10.6–11.91 −0.63 to 2.98

N Atlantic 0–70 Unfiltered 1.3–35.9 1.3–39.2 10.3–12.11 −0.4 to 4.1 Gledhill et al. (1998)

Southern Ocean, Pacific Sector 25–800 Unfiltered 0.14–0.72 1.08–13.27 10.93–11.93 0.87–13 Nolting et al. (1998)

NW Atlantic 11–2874 <0.2 μm 0.36–1.9 1.67–4.62 12.2–12.9 0.71–2.72 Witter and Luther

(1998)

Southern Ocean, Atlantic Sector 5–110 <0.4 μm 7–14.3 2.4–17.6 10.7–11.1 −4.6 to 5.6 Croot and Johansson

(2000)

Arabian Sea 25–600 <0.4 μm 1.25–2.63 1.47–6.33 11.6–12.5 0.19–4.62 Witter et al. (2000)

Southern Ocean, Atlantic Sector 20–4500 <0.2 μm 0.05–0.65 0.37–1.39 10.92–13 0.01–1.01 Boye et al. (2001)

Peconic Estuary, NW Atlantic 5 <0.2 μm 28.6–237 17–209 12.9–13.5 −39 to −3.4 Gobler et al. (2002)

NE Atlantic 2 <0.2 μm 0.56–2.46 1.68–3.87 10.5–11.4 0.84–2.1 Boye et al. (2003)

Mississippi River 2 <0.2 μm 1.4–29.9 4.3–64.1 10.4–12.3 −0.2 to 60.3 Powell and

Wilson-Finelli (2003a)

Southern Ocean, Atlantic Sector 10–1500 <0.4 μm 0.04–0.6 0.9–3 11.4–13.4 0.64–2.58 Croot et al. (2004)

Southern Ocean, Atlantic Sector 20–100 <0.2 μm 0.06–5.5 0.6–3.52 11.05–13 −2.05 to 1.15 Boye et al. (2005)

<200 kDa 0.03–1.62 0.5–1.58 11.15–12.76 −0.04 to 0.66

NE Atlantic 10–2000 <0.2 μm 0.48–1.57 1.17–3.52 10.36–12.25 0.1–2.73 Boye et al. (2006)

NW Atlantic 5–5256 <0.4 μm 0.23–0.66 0.81–1.14 12.69–13.14 −0.43 to 0.58 Cullen et al. (2006)

1.11–2.11 11.50–11.93 0.69–2.50

<0.02 μm 0.04–0.28 0.56–0.63 12.38–13 −0.28 to 0.59

0.83–2.08 11.38–11.94 0.57–2.67

NE Atlantic 9.8–152.2 <0.2 μm 0.06–0.67 0.83–4.78 9.68–12.67 0.4–4.65 Gerringa et al. (2006)

SW Pacific 2 <0.2 μm 0.07–0.84 0.66–1.72 12.23–13.05 0.39–1.56 Tian et al. (2006)

Central N Pacific 3–1000 <0.1 μm 0.08–1.6 0.86–2.45 11.42–12.3 0.11–1.48 van den Berg (2006)

NE Pacific, Columbia River 2–31 <0.4 μm 0.6–22.4 1–55.8 nd-9 11.8–13.9 −0.4 to 39 Buck et al. (2007)

10.7–11.8 0–39

NW Pacific 10–3941 <0.22 μm 0.25–1.83 0.43–1.46 12.2–13.8 −0.64 to 0.48 Kondo et al. (2007)

Scheldt Estuary, NE Atlantic 2 <0.2 μm 12–536 40–526 9.6 0–27 Gerringa et al. (2007)

<1 kDa

Bering Sea 2–57 <0.4 μm 0.01–13 0.43–18 11.1–12 −0.4 to 5.4 Buck and Bruland

(2007)

1.2–15 9.7–10.8 1.61–19

Eastern Tropical N Pacific 10–190 <0.4 μm 0.06–1.12 0.44–1.63 11.11–12.77 0–1.17 Hopkinson and

Barbeau (2007)

Southern Ocean, Indian Sector 20–620 <0.2 μm 0.046–0.385 0.082–1.61 11.01–12.79 0–1.48 Gerringa et al. (2008)

NW Pacific 2 <0.22 μm 0.3–1.4 0.29–2.02 11.9–12.5 0.12–0.94 Kondo et al. (2008)

<200 kDa 0.1–0.39 0.31–1.78 10.9–12.3 0.21–1.63

NE Atlantic 3 <0.2 μm 0.088–0.332 0.822–1.463 11.94–13.41 0.67–1.34 Rijkenberg et al.

(2008b)

Humic-rich coastal water, NE

Atlantic

1 <0.4 μm 23.1–573.2 46.5–604.4 10.23–11.97 −52.1 to 49.3 Batchelli et al. (2010)

(Continued)
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Table 1 | Continued

Region Depth, m Filter [Fe], nM [L1], nM LogK cond
FeL1,Fe’

eL1, nM Reference

[L2], nM LogK cond
FeL2,Fe’

eLT, nM

Southern Ocean, Atlantic Sector 20–1000 <0.2 μm 0.04–0.41 0.58–0.86 11–12.86 0.31–0.75 Boye et al. (2010)

<200 kDa 0.03–0.21 0.42–0.76 11.25–12.9 0.27–0.69

NE Atlantic 26–3998 <0.2 μm 0.13–0.7 0.65–1.76 11.68–13 0.23–1.09 Thuroczy et al. (2010)

<1000 kDa 0.019–0.22 0.42–1.35 11.98–12.47 0.4–1.32

Unfiltered 0.91–4.1 1.74–4.56 12.23–13.4 0.46–1.18

Southern Ocean, Indian and

Pacific Sector

15–1000 <0.2 μm 0.2–0.39 0.26–0.61 12.28–13.72 −0.37 to 0.25 Ibisanmi et al. (2011)

0.2–1.51 11–11.95 −0.11 to 1.28

High latitude N Atlantic 5–2237 <0.2 μm 0.04–0.34 0.2–3.2 11.5–13.9 0.1–1.8 Mohamed et al. (2011)

*Estimated concentrations from figures, as data were not available from publications in table format. Values originally reported as logK cond
FeLi ,Fe3+ were converted to log

logK cond
FeLi ,Fe’ using an αFe′ of 1010. 1K cond

FeLi ,Fe’calculated using αFe′ = 8.4.

been noted previously that inclusion of Feinert in calculations of
ligand concentrations results in an overestimation of [Li] and a
shift in the logK cond

FeLi ,Fe’ toward higher stabilities (Bruland and Rue,
2001). This becomes particularly critical if ligand titrations are car-
ried out in unfiltered samples (Gledhill et al., 1998; Thuroczy et al.,
2010), but given the evidence for an inert colloidal fraction (see
below), is also likely to affect determination of ligands in dissolved
samples. Determinations of [Li] and logK cond

FeLi ,Fe’ in the ocean are,
thus, potentially subject to systematic errors when using the total
dFe concentration in the interpretation of CLE–ACSV titration
data.

To further explore the implications of overestimating exchange-
able Fe, we consider the data in Thuroczy et al. (2010) and data on
titrations in unfiltered samples from Gledhill et al. (1998), recal-
culated using the reactive Fe concentration (FeR) determined in
the unfiltered samples (Gledhill et al., 1998). Although the datasets
used were both obtained for unfiltered samples, the same system-
atic errors with respect to Feinert and exchangeable Fe will occur
within the dFe pool, albeit to a lesser degree.

Plots of [Li] and logK cond
FeLi ,Fe’, determined using FeT (unfil-

tered), against [Li] and logK cond
FeLi ,Fe’ determined using either dis-

solved or reactive Fe concentration (dFe or FeR), are presented in
Figures 2A,B. In these studies, FeT was determined in unfiltered
samples either by flow injection analysis (FIA) after acidification
(pH 1.8, samples analyzed after 1 year; Thuroczy et al., 2010) or
by ACSV after acidification (pH 2) and UV irradiation (Gledhill
et al., 1998). Dissolved Fe was determined by FIA after filtration
(<0.2 μm) and acidification (pH 1.8, samples analyzed after 12 h,
Thuroczy et al., 2010) and FeR was determined in unfiltered sam-
ples by ACSV and defined as the amount of Fe freely complexed
by 20 μM 1-nitroso-2-napthol at pH 6.9 (Gledhill et al., 1998).

From these plots, it is clear that both [Li] and log logK cond
FeLi ,Fe’

are overestimated if the Fe concentration used in data transfor-
mation includes Feinert (Figures 2A,B). An overestimation of [Li]
and logK cond

FeLi ,Fe’ is not desirable as this will result in an overestima-
tion of the degree to which L can stabilize Fe in solution, and can
thus underestimate the potential for competing biogeochemical
processes such as colloidal aggregation, scavenging, and uptake.
Calculation of the excess ligand (eLi) for each case confirms

results shown previously (Thuroczy et al., 2010), that this para-
meter is more or less independent of the Fe concentration used
in the transformation, at least at low excess ligand concentrations
(Figure 2C).

Figure 2D shows that overestimation of log K cond
FeLi ,Fe’ is likely to

be important only in areas where the Feinert concentration is high.
Such areas will include coastal regions as observed in Gledhill et al.
(1998), hydrothermal vents, and the edge of the ice shelf (Bennett
et al., 2008; van der Merwe et al., 2009; Batchelli et al., 2010; Stolpe
and Hassellov,2010; Stolpe et al.,2010). In these regions a good dis-
tinction between the dissolved Feinert and exchangeable Fe could
be very informative, and may strongly influence our interpretation
of the role of ligands in stabilizing Fe in solution (e.g., Sander and
Koschinsky, 2011). Further work is therefore required in order to
identify a practical method which can distinguish between Feinert

and dFe. One approach may simply be the standard addition of
dFe with over-competition with a higher concentration of AL,
although this may be complicated by limits in the concentration
of AL that may be used before saturation of the HMDE becomes
problematic.

Clearly, the fractionation of Fe, particularly within the dissolved
phase, between Feinert and exchangeable Fe deserves further atten-
tion. In the meantime, analysts may qualify ligand concentrations
by reporting excess L ([eL] = [L] − [dFe]) as a proxy for ligand
under saturation (Wu and Luther, 1995; Witter and Luther, 1998;
Witter et al., 2000; Boye et al., 2001; Tian et al., 2006; Rijkenberg
et al., 2008b; Thuroczy et al., 2010; Ibisanmi et al., 2011).

DISTRIBUTIONS OF Fe-BINDING LIGANDS IN THE MARINE
ENVIRONMENT
The organic complexation of Fe, with typically >99.9% of dFe
complexed by ligands in the marine environment, is a nearly
ubiquitous feature of dFe speciation in seawater. While these Fe-
binding ligands are present seemingly everywhere, from surface
to deep waters of the coastal and open ocean, there are some
distinguishable trends in their distributions and thermodynamic
characteristics. Previous reviews have highlighted the predomi-
nant feature of higher ligand concentrations in surface waters of
depth profiles, often with stronger stability constants, compared
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FIGURE 2 | Comparison of data obtained for (A) the ligand

concentration [Li], (B) conditional stability constant logK cond
FeLi ,Fe’

, and

(C) excess ligand concentration [eLi] determined using either total

Fe concentrations or the lower dissolved or reactive Fe

concentrations. Closed symbols represent data from Gledhill et al.

(1998), where FeR was used in the comparison, and open symbols
represent data from Thuroczy et al. (2010), where dFe was used in the
comparison. (D) Plot of the dependence of the change in logK cond

FeLi ,Fe’ on
the difference between FeT and the lower Fe concentration. Solid lines
represent a 1:1 relationship.

to deep waters (Bruland and Rue, 2001; Hunter and Boyd, 2007).
Here we review trends of organic complexation of Fe in terms of
excess ligand concentrations ([eLi] = [Li] − [dFe]), since total lig-
and concentrations ([Li]) determined by CLE–ACSV will include
stable inorganic colloidal Fe or other Feinert components (see
above).

In most waters, Fe-binding ligand concentrations exceed dFe
(Table 1). Excess ligand concentrations are commonly highest and
most variable in the upper water column (Rue and Bruland, 1995;
van den Berg, 1995, 2006; Witter and Luther, 1998; Boye et al.,
2001, 2006, 2010; Croot et al., 2004; Gerringa et al., 2006; Hop-
kinson and Barbeau, 2007; Kondo et al., 2007; Rijkenberg et al.,
2008b; Thuroczy et al., 2010; Ibisanmi et al., 2011; Mohamed et al.,
2011), and relatively static at depth within individual profiles (Rue
and Bruland, 1995; van den Berg, 1995; Nolting et al., 1998; Boye
et al., 2001, 2006, 2010; Ibisanmi et al., 2011). The highest excess
ligand concentrations are often associated with the fluorescence
or chlorophyll biomass maxima (Rue and Bruland, 1995; van den
Berg, 1995, 2006; Boye et al., 2001, 2006; Croot et al., 2004; Ger-
ringa et al., 2006, 2008; Tian et al., 2006; Buck and Bruland, 2007;
Wagener et al., 2008; Ibisanmi et al., 2011). The uptake of dFe
associated with fluorescence or biomass maxima results in ele-
vated and variable excess ligand concentrations at low dFe (e.g.,
Buck and Bruland, 2007).

An atmospheric source has been hypothesized for surface
waters of the NE Atlantic with low chlorophyll (Gerringa et al.,

2006), though a reduction in excess ligand after dust deposition
was observed by Rijkenberg et al. (2008b). Excess ligands in low
chlorophyll surface waters may alternatively be the remnants of a
previous bloom, as excess ligands have been shown in incubation
experiments to increase in proportion to chlorophyll consump-
tion by grazers (Sato et al., 2007). In some cases, a minimum
in excess ligands within the upper water column is attributed
to photochemical ligand destruction at the surface (Boye et al.,
2001; Croot et al., 2004), although the photochemical lability of
ambient Fe-binding ligands has also been shown to be rather
unpredictable (Powell and Wilson-Finelli, 2003b; Rijkenberg et al.,
2006b).

Anomalously high excess ligand concentrations have been
reported in shelf and bottom boundary layers (Croot and Johans-
son, 2000; Gobler et al., 2002; Boye et al., 2003; Buck et al.,
2007; Kondo et al., 2007; Gerringa et al., 2008; Batchelli et al.,
2010), as well as in river plumes (Powell and Wilson-Finelli,
2003a; Buck et al., 2007; Kondo et al., 2007). The excess Fe-
binding ligands measured in these coastal waters may be humic
substances (HS), which have been suggested to be an impor-
tant component of the ligand pool for dFe in margin envi-
ronments (Laglera et al., 2007; Laglera and van den Berg,
2009). Regardless of chemical nature, river plumes and sedi-
ment resuspension on shelves appears to be a source of both
dFe and Fe-binding ligands to the marine water column (Croot
and Johansson, 2000; Powell and Wilson-Finelli, 2003a; Buck
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et al., 2007; Gerringa et al., 2008; Batchelli et al., 2010). As
with dFe, total dissolved ligand concentrations also typically
decrease from shore to sea (Boye et al., 2003; Buck and Bruland,
2007).

When two ligand classes are detected, a particularly strong lig-
and class (log K cond

FeL1,Fe’ > 12) is reported primarily in the upper

water column, and the weaker ligand class (log K cond
FeL2,Fe’ = 11–12)

exists throughout the water column (Rue and Bruland, 1995, 1997;
Cullen et al., 2006; Ibisanmi et al., 2011). When only one lig-
and class is measured, no trend in logK cond

FeLi ,Fe’ values (∼11–12) is

reported with depth in profiles, with similar log log K cond
FeLi ,Fe’ values

through the entire water column (van den Berg, 1995, 2006; Witter
and Luther, 1998; Boye et al., 2001, 2006, 2010; Croot et al., 2004;
Gerringa et al., 2006, 2008; Thuroczy et al., 2010). Log K cond

FeLi ,Fe’
values reported for coastal and open ocean samples are within
the same range (∼9–14; Table 1), as are values from river plumes
(10.4–13.9; Powell and Wilson-Finelli, 2003b; Buck et al., 2007;
Table 1). Transects conducted between the shore and sea found
no significant trends in log K cond

FeLi ,Fe’ values with distance from
shore (Boye et al., 2003; Buck and Bruland, 2007; Hopkinson and
Barbeau, 2007).

Recent size fractionation studies of the dissolved ligand pool
have shown that the excess ligand is observed predominantly in
the soluble size fraction throughout the water column (Cullen
et al., 2006; Boye et al., 2010; Thuroczy et al., 2010), but partic-
ularly in upper waters (Cullen et al., 2006; Kondo et al., 2008;
Boye et al., 2010; Thuroczy et al., 2010). Colloidal ligands, on the
other hand, approach Fe saturation (Gobler et al., 2002; Boye et al.,
2005, 2010; Cullen et al., 2006; Gerringa et al., 2007; Kondo et al.,
2008; Batchelli et al., 2010; Thuroczy et al., 2010), with the colloidal
fraction of Fe, and presumably L, increasing with depth (Thuroczy
et al., 2010).

The conditional stability constants of Fe-binding ligands in
the soluble (<1–1000 kDa) size fraction are largely within 1 SD
of the values reported in the total dissolved (<0.2–0.4 μm) size
fraction (Boye et al., 2005, 2010; Cullen et al., 2006; Gerringa
et al., 2007; Kondo et al., 2008; Thuroczy et al., 2010; Table 1).
When two ligand classes were detected within the soluble and
dissolved size fractions (Cullen et al., 2006), most of the lig-
ands of both classes were present in the soluble (<0.02 μm)
fraction, and excess ligand concentrations of both L1 and L2

were higher in the soluble fraction. The conditional stability
constants of these ligand classes were similar in both size frac-
tions (Cullen et al., 2006; Table 1). In mesoscale Fe fertiliza-
tion experiments, Fe additions were observed primarily in the
colloidal fraction (Boye et al., 2005; Kondo et al., 2008), and
both Fe and ligand concentrations increased in response to Fe-
enrichment (Rue and Bruland, 1997; Boye et al., 2005; Kondo
et al., 2008). Excess ligand concentrations in these experiments,
however, typically decreased as Fe additions saturated ligands,
and some of the increase in [Li] may reflect an artifact in
interpretation. At the conclusion of the SEEDS II experiment
in the NW Pacific, excess ligand concentrations increased, pre-
dominantly in the soluble fraction, as the stimulated bloom
declined (Kondo et al., 2008). Shipboard microzooplankton graz-
ing experiments conducted during the SEEDS II experiment
demonstrated an increase in ligand concentrations proportional

to the chlorophyll consumed by added grazers (Sato et al.,
2007).

In environments high in Fe, dFe concentrations may meet or
exceed measured ligand concentrations. Examples of this, where
[dFe] > [LT], have been reported in hydrothermal vent plumes
(Bennett et al., 2008), artificial Fe-enrichment experiments (Rue
and Bruland, 1997; Boye et al., 2005; Kondo et al., 2008), and
Fe-rich coastal shelf environments (Croot and Johansson, 2000;
Gobler et al., 2002; Powell and Wilson-Finelli, 2003a; Buck and
Bruland, 2007; Buck et al., 2007; Kondo et al., 2007; Batchelli
et al., 2010). In the Eastern Tropical North Pacific suboxic zone,
dFe concentrations also approach dissolved ligand concentrations,
resulting in diminished excess ligand concentrations compared to
surrounding oxygenated waters (Hopkinson and Barbeau, 2007).
The conditional stability constant of the ligand measured in the
suboxic zone was also slightly stronger than the ligands measured
in the oxic waters above (Hopkinson and Barbeau, 2007). In the
suboxic zone of the Arabian sea, on the other hand, excess ligand
concentrations were much greater than in the oxic waters, with
a similar or slightly lower conditional stability constant of these
suboxic zone ligands (Witter et al., 2000).

LINKS BETWEEN BIOLOGICAL ACTIVITY AND LIGAND
CONCENTRATIONS
Previous reviews have emphasized the important interplay
between biological activity and Fe-binding ligand cycling (Bru-
land and Rue, 2001; Hirose, 2006, 2007; Hunter and Boyd, 2007;
Boyd and Ellwood, 2010). There are multiple lines of evidence in
support of a biological source of Fe-binding ligands in the marine
environment. As mentioned above, field studies have commonly
found highest excess ligand concentrations within and around the
biomass maximum in the water column (Rue and Bruland, 1995;
van den Berg, 1995, 2006; Boye et al., 2001, 2006; Croot et al., 2004;
Gerringa et al., 2006, 2008; Tian et al., 2006; Buck and Bruland,
2007; Wagener et al., 2008; Ibisanmi et al., 2011; Mohamed et al.,
2011). Excess ligand concentrations have been observed to show
an annual cycle (Wagener et al., 2008), with increases in excess lig-
and concentrations observed during the most productive periods.
Surface transects also show elevated excess ligand concentrations
with high productivity in Fe-depleted waters (Boye et al., 2003;
Gerringa et al., 2006; Tian et al., 2006; Buck and Bruland, 2007).
The particularly strong Fe-binding ligand class, detected only in
the upper water column (Rue and Bruland, 1995, 1997; Cullen
et al., 2006; Ibisanmi et al., 2011), presents the same class of log
K values (log K > 12) as siderophore-type ligands measured by
CLE–ACSV (Rue and Bruland, 1995; Witter et al., 2000; Buck et al.,
2010; Poorvin et al., 2011).

Recent incubations of natural surface seawater have shown
active production of Fe-binding ligands concomitant with diatom
growth under Fe-limiting conditions (Buck et al., 2010; King et al.,
2012). In these incubations, ligand production was only observed
in the unamended bottles, Fe-amended bottles presented much
higher growth but no ligand production, suggesting that the Fe-
limitation status of the diatoms in the unamended bottles was
related to the ligand production observed (Buck et al., 2010; King
et al., 2012). In the field, Gerringa et al. (2006) found that 63% of
the variability in ligand concentrations in profiles from the Canary
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Basin was explained by changes in phytoplankton biomass and sili-
cic acid concentrations, indicating a correlation between diatom
growth and Fe-binding ligand concentrations. Recent incubation
studies have furthermore shown an increase in Fe bioavailability
due to redox speciation changes specifically in diatom cultures
(Rijkenberg et al., 2008a). In combination, these studies sug-
gest a connection between Fe-stressed diatom communities and
Fe-binding ligand concentrations that deserves further attention.

The passive production of Fe-binding ligands from grazing and
bacterial remineralization of organic matter is another important
biological source of ligands. HS, degradation products of terres-
trial and marine organic matter, may be a substantial component
of the Fe-binding ligand pool in some coastal and deep ocean
waters (Laglera and van den Berg, 2009). A recent study of coastal
estuarine waters found that Fe was strongly (log K cond

FeLi ,Fe’ = 11–12)

but reversibly complexed with HS, predominantly in the colloidal
fraction (Batchelli et al., 2010).

Increased excess ligand concentrations, largely in the soluble
size fraction, were reported during the bloom decline of the SEEDS
II experiment (Kondo et al., 2008). Shipboard grazer experiments,
also conducted during SEEDS II, showed that dFe and ligand
concentrations increased as chlorophyll biomass was consumed
(Sato et al., 2007). The highest increases in ligand concentrations,
normalized to biomass consumption, were measured in the cope-
pod grazing experiments (Sato et al., 2007). The ligands produced
in these grazer experiments were similar to the L1 type ligands
(log K cond

FeLi ,Fe’ > 12), and were found to be more bioavailable to
diatom species than to picoplankton in the incubations (Sato et al.,
2007).

The ability of ligands to solubilize natural Fe sources may also
be linked to biological productivity. An annual cycle in the dissolu-
tion of Fe from Saharan dust has been observed in water sampled at
different times of the year from the Mediterranean (Wagener et al.,
2008), with dust derived Fe being less soluble in water sampled
during the winter period (Dec–Feb). This was linked to a change
in excess ligand concentration, and a potential change in ligand
characteristics (although stability constants were not reported in
the study), as Fe dissolution could not be determined in the winter,
despite the presence of excess ligands (Wagener et al., 2008).

Bacterial remineralization of sinking biogenic particles, on the
other hand, produces weaker Fe-binding ligands (log K cond

FeLi ,Fe’ =
11–12, or lower) concomitant with dFe release (Boyd et al., 2010).
Viral lysis of cells in grazing experiments has also recently been
shown to produce similarly weak Fe-binding ligands (Poorvin
et al., 2011). The weakly complexed Fe released by these passive
grazing processes (Boyd et al., 2010; Poorvin et al., 2011) may
be more biologically available to the phytoplankton community
than the strongly complexed siderophore-bound Fe (Poorvin et al.,
2011).

THE CHEMICAL CHARACTERIZATION OF THE DISSOLVED
IRON LIGAND POOL
Since the first evidence for Fe complexation by natural organic
ligands in seawater was presented (Gledhill and van den Berg,
1994; Rue and Bruland, 1995; van den Berg, 1995; Wu and Luther,
1995), the question of the identity, chemical structure, and source
of Fe-binding organic ligands in the oceans has fueled research

across disciplines. While we have learned a great deal about Fe-
binding ligands, it is still not possible to give definitive answers
to these questions some 17 years later. Initially, the strength and
concentration of the ligands measured by competitive equilibrium
techniques indicated that ambient ligands had a high affinity for
Fe (Gledhill and van den Berg, 1994; Rue and Bruland, 1995; van
den Berg, 1995; Wu and Luther, 1995), while, as had been high-
lighted above, many profiles of ligand distributions in the ocean
point to an autochthonous biological source. Determination of the
conditional stability constants of potential ligand types produced
by phytoplankton and bacteria indicated that some of these ligand
types had very similar binding strengths in seawater to the detected
natural ligands (Rue and Bruland, 1995; Witter et al., 2000; Macrel-
lis et al., 2001). Hence these biologically produced ligand types,
which may include compounds like siderophores and porphyrins,
were hypothesized to make up a major part of the ligand pool.
However, characterization of Fe ligands in seawater is a consider-
able challenge because the ligands are of unknown composition,
are likely complex in chemical nature and are present at very
low concentrations in a matrix of high ionic strength. The recent
progress made in this field has been greatly facilitated by improve-
ments in the sensitivity, mass accuracy and robustness of both
inorganic and organic mass spectrometers. Such improvements
have resulted in the detection of specific iron organic complexes
such as siderophores by HPLC–ESI-MS (McCormack et al., 2003;
Gledhill et al., 2004; Mawji et al., 2008a,2011;Velasquez et al., 2011)
and the detection of Fe associated with more complex organic frac-
tions by FFFF–ICP-MS (Stolpe and Hassellov, 2010; Stolpe et al.,
2010; Baalousha et al., 2011).

SMALL, DEFINED ORGANIC LIGANDS
Siderophores are compounds produced by bacteria in order to
sequester Fe from their environment (Hider and Kong, 2010).
Siderophores are known to be produced by a wide variety of
bacteria, including marine bacteria (Amin et al., 2009; Cabaj and
Kosakowska, 2009; Vraspir and Butler, 2009). Bacteria appear to
be able to produce families of different but related siderophores
(Martinez et al., 2000, 2003; Ito and Butler, 2005; Martinez and
Butler, 2007; Homann et al., 2009a,b), but uptake of siderophores
by bacteria is not necessarily specific (Stintzi et al., 2000), so that a
bacterial species may be able to acquire siderophores produced by
other species. There has been much progress in the characteriza-
tion of specific siderophores produced by marine bacteria (Amin
et al., 2009; Vraspir and Butler, 2009), in particular by the A. Butler
research group at the University of California in Santa Barbara.

Relatively large quantities of isolated siderophore are cur-
rently required for a complete description of chemical structure
so that it is only possible to fully characterize siderophores in
bacteria that can be cultured in the laboratory. In addition, the
time and effort required also imposes restrictions on the num-
ber of siderophores that can be fully characterized. Character-
ized siderophores are, thus, likely to represent only a fraction of
the potential siderophore pool. Marine siderophores produced
in laboratory cultures have been found to contain all the major
siderophore chelating groups of hydroxamate, catecholate, and
carboxylate functional groups (Vraspir and Butler, 2009). To date,
the majority of marine siderophores characterized contain mixed
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ligand carboxylate groups, and many of these characterized marine
siderophores have fatty acid tails attached to the chelating head
(Martinez et al., 2000, 2003; Xu et al., 2002; Owen et al., 2005;
Martin et al., 2006; Martinez and Butler, 2007; Homann et al.,
2009a,b). Such fatty acid tails are likely to strongly influence
siderophore biogeochemistry, affecting siderophore partitioning
between dissolved and particulate phases and perhaps mitigating
against diffusive losses of siderophores from the bacterial cell (Xu
et al., 2002; Martinez and Butler, 2007).

Progress has also been made in the detection and characteri-
zation of siderophores in natural seawater itself (Gledhill et al.,
2004; Mawji et al., 2008a, 2011; Velasquez et al., 2011; Table 2;
Figure 3). The first reports of dissolved siderophores in seawater
were made by Kosakowska et al. (Kosakowska et al., 1999; Mucha
et al., 1999) using capillary electrophoresis to detect hydroxam-
ate siderophores in the Baltic Sea. Macrellis et al. (2001) used
siderophore assays to report the presence of siderophore like func-
tional groups in coastal NE Pacific upwelling waters. More recently,
chromatographic techniques have been coupled to ESI or ICP-MS
in order to either characterize or quantify specific siderophores
in seawater (Mawji et al., 2008a; Velasquez et al., 2011; Table 2).
Separation techniques coupled to mass spectrometry show much
promise for both the identification and quantification of specific
metal complexes like with siderophores, largely as a result of the
high sensitivity of these techniques, which are capable of detecting
in the picomolar–nanomolar range. Mass spectrometry has been
used to detect unknown and known siderophores in the Southern
Ocean and in the Atlantic Ocean (Mawji et al., 2008a; Velasquez
et al., 2011). In the Southern Ocean, unidentified siderophore-type
complexes were detected with the molecular masses varying from
station to station (Velasquez et al., 2011). In the Atlantic Ocean,
ferrioxamine type siderophores were detected ubiquitously and
were found to be present at concentrations of upto 20 pM, and
to make up between 0.5 and 5% of the total dissolved Fe pool
(Mawji et al., 2008a). The somewhat sparse data so far obtained
indicates that siderophore distributions may be linked to bacterial
abundance, but otherwise gives little clue as to how siderophore
concentrations might vary with, for example, depth. It is clear,
however, that the presence of marine siderophores is not limited
to low dFe waters.

It is notable that, while the available data is limited, the
siderophores detected in seawater to date are all hydroxamates,
with no reports of any identifiable siderophores containing car-
boxylate or catecholate functional groups being recovered from the
dissolved phase in seawater. The lack of detected carboxylate or cat-
echolate type siderophores indicates that either these siderophore
types are not present in the dissolved phase, or more likely, that the
analytical techniques used to detect these compounds are biased
toward the detection of hydroxamate siderophores. Current meth-
ods to detect siderophores in seawater rely on a preconcentration
step, necessary in order to both remove interfering matrices, and to
increase siderophore concentrations to detectable ranges (Mucha
et al., 1999; Mawji et al., 2008a; Velasquez et al., 2011). Such pre-
concentration techniques introduce bias and probably restrict the
types of siderophores that can be detected. For example, at the nat-
ural pH of seawater (∼8), both carboxylate and catecholate type
Fe–siderophore complexes will be deprotonated and negatively

FIGURE 3 | Structures of fully characterized siderophores that have

been identified in seawater or natural seawater incubations. (A)

Ferrioxamine B, (B) Ferrioxamine D2, (C) Ferrioxamine E, (D) Ferrioxamine
G, and (E) Amphibactins D (R = C13H27) and E (R = C15H29).

charged (Harris et al., 1979a; Loomis and Raymond, 1991). Thus,
the preconcentration efficiency of catecholate and carboxylate
siderophore types onto the commonly used hydrophobic resins
(e.g., C18, polystyrene divinyl benzene, XAD) will be reduced.
Acidification of the sample prior to preconcentration (Mucha
et al., 1999; Velasquez et al., 2011), in order to neutralize nega-
tively charged complexed siderophores and thus make them more
hydrophobic may also result in siderophore hydrolysis or precipi-
tation (Harris et al., 1979b; Loomis and Raymond, 1991). Changes
in sample pH during analysis are also common, with chromato-
graphic separations performed at low pH (McCormack et al., 2003;
Velasquez et al., 2011). However, catecholate type siderophore–Fe
complexes undergo hydrolysis at low pH and are not detectable
when either the sample pH is low or the chromatographic con-
ditions employ low pH eluants (Loomis and Raymond, 1991;
Gledhill, unpublished data). Consequently, further work is nec-
essary in order to develop robust preconcentration and analysis
techniques applicable to a wider variety of siderophore types.
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Table 2 | Siderophores identified in seawater or natural seawater incubations by high performance liquid chromatography – electrospray

ionization mass spectrometry.

Molecular ion mass

(m/z, H+ ion)

Compound identity Sample location Reference

494 Cyclic ferrioxamine Neritic Otago Shelf waters Velasquez et al. (2011)

501 Linear hydroxamate siderophore Sub-Antarctic surface waters Velasquez et al. (2011)

620, 603, 559 Cyclic ferrioxamine and fragments Sub-Antarctic surface waters Velasquez et al. (2011)

605 Cyclic hydroxamate siderophore Sub-Antarctic surface waters Velasquez et al. (2011)

614 Ferrioxamine B Atlantic Ocean, British coastal waters Gledhill et al. (2004), Mawji et al. (2008a),

Mawji et al. (2011)

622 Unknown North Atlantic subtropical gyre Mawji et al. (2011)

640 Ferrioxamine D2 North Atlantic subtropical gyre Mawji et al., 2011

654 Ferrioxamine E Atlantic Ocean Mawji et al. (2008a), Mawji et al. (2011)

658 Unknown ferrioxamine British coastal waters Gledhill et al. (2004)

672 Ferrioxamine G Atlantic Ocean, British coastal waters Gledhill et al. (2004), Mawji et al. (2008a),

Mawji et al. (2011)

675 Unknown hydrophilic siderophore South Atlantic subtropical gyre Mawji et al. (2011)

857 Amphibactin British coastal waters Gledhill et al. (2004)

883 Amphibactin South Atlantic subtropical gyre Gledhill et al. (2004), Mawji et al. (2011)

885 Amphibactin D South Atlantic subtropical gyre Gledhill et al. (2004), Mawji et al. (2011)

911 Amphibactin E South Atlantic subtropical gyre Gledhill et al. (2004), Mawji et al. (2011)

1044 Unknown South Atlantic subtropical gyre Mawji et al. (2011)

Identification of siderophore complexes in mass spectra takes
place via the utilization of distinctive isotopic ratios endowed
upon the complex by the metal ion (McCormack et al., 2003;
Velasquez et al., 2011). Two strategies are currently employed; the
first involves complexation of the siderophore with gallium, which
has a very identifiable isotopic ratio for 69Ga:71Ga of 3:2 and allows
for several mechanisms of checking against false positives, increas-
ing the robustness of the analysis (McCormack et al., 2003; Mawji
et al., 2011). Such checks include analysis of the original sample for
the presence of the Fe-complexed or apo- (metal free) siderophore
and analysis by ICP-MS in order to check that gallium is indeed
present at the expected relative retention time (Mawji et al., 2011).
The gallium exchange method suffers from disadvantages in that
it involves reduction of the sample pH in order to keep gallium in
solution and, thus, is likely to result in losses of chemically unstable
siderophores (see above).

A second promising technique recently applied to the iden-
tification of siderophores in seawater is based on the distinctive
isotopic ratio endowed on a molecule by Fe (Velasquez et al.,
2011). The natural abundance of the 54Fe isotope is approximately
5.6% of the 56Fe isotope. When incorporated into an organic com-
plex, the combination of the Fe and carbon isotopic abundances
increases the abundance of the lighter molecular ion so that fer-
rioxamine B will have expected isotopic ratios of 6.4:100:32.4 for
m/z (M + H+) 612, 614, and 617. A key component of this tech-
nique is the ability to detect the putative 54Fe containing molecular
ion and then confirm it otherwise has the same structure as the
56Fe containing molecular ion. This has been shown to be possible
with a nano-HPLC coupled to a high resolution mass spectrom-
eter (Velasquez et al., 2011). Unfortunately, the background noise
in lower resolution instruments working with higher flow rates

may make it difficult to identify the 54Fe isotope, as it is present
at quite a low relative abundance in MS spectra. However, even
in lower resolution instruments fragment ions obtained on colli-
sion induced dissociation of pseudo molecular ions can be used to
provide evidence for Fe complexes (Velasquez et al., 2011) as Fe is
strongly retained in fragment ions (Mawji et al., 2008b; Velasquez
et al., 2011). In theory, Fe could also be determined in parallel by
ICP-MS in analogy to the gallium technique in order to confirm
the presence of the metal at the expected retention time, although
more care would have to be taken with respect to contamination.
Furthermore the determination of Fe by ICP-MS can be more
difficult due to isobaric interferences (Mawji et al., 2008a, 2011).

The limited number of reports on siderophore concentrations
in the dissolved phase in the ocean indicates that the concen-
trations of individual siderophores are likely to be quite low,
in the picomolar range (Mawji et al., 2008a). However, as has
been pointed out above, while the pool of potential siderophores
is apparently quite large (e.g., Amin et al., 2009; Cabaj and
Kosakowska, 2009; Vraspir and Butler, 2009), it is likely that only
a limited number of siderophores in seawater are detectable using
the currently applied methods. Thus, although it is now clear that
siderophores can be present in the open ocean, it is not possible
at this stage to say what proportion of the dissolved ligand pool is
made up of siderophores.

Porphyrins (molecular weight 600–1000 Da) are another bio-
logically produced class of compounds that have been suggested as
potential Fe ligands (Witter et al., 2000; Hunter and Boyd, 2007).
Porphyrins function as prosthetic groups in proteins and are useful
for their ability to absorb light, transfer electrons, and bind oxygen
(Mochizuki et al., 2010). Porphyrins, which include chlorophylls,
chlorophyll breakdown products like phaeophytin, hemes, and
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vitamin B12, are produced by almost all living organisms via a well
conserved tetrapyrrole biosynthesis pathway (Mochizuki et al.,
2010). The biological production of these compounds is tightly
controlled, as they cause oxidative stress if present in excess of
their proteins (Mochizuki et al., 2010). Hemes have been detected
at picomolar concentrations in particulate material (Gledhill et
al., under review) and heme like compounds have been detected
in the dissolved fraction at nanomolar concentrations in river
and estuarine waters (Vong et al., 2007). However, given that por-
phyrins have a very low solubility in water at pH 8 and more recent
work has found little evidence to show that Fe(III) spontaneously
complexes with porphyrins in solution (Rijkenberg et al., 2006a;
Schlosser and Croot, 2008) it remains questionable as to whether
porphyrins form a part of the dissolved ligand pool.

Domoic acid (DA), an algal toxin produced by Pseudo-nitzschia
spp., has also been shown to complex Fe (Rue and Bruland, 2001),
although with a weak stability constant (log K ′

FeDA = 8.7) that is
unlikely to make it an effective competitor in the ocean. However,
there is evidence that DA, through its ability to complex dissolved
Cu, may facilitate the high affinity Fe uptake from strongly com-
plexed Fe by diatoms in Fe-limited environments (Wells et al.,
2005), regions where DA levels can be elevated (Silver et al.,
2010). Thus, while possibly not a significant component of the
Fe-binding ligand pool, DA may nonetheless play an important
role in the biogeochemical cycling of Fe, particularly in Fe-limited
environments.

LARGER, LESS WELL-DEFINED ORGANIC LIGANDS
Recent evidence has indicated that more diffuse, less well-defined
organic compounds such as HS and exopolysaccharides (EPS) may
contribute to the Fe ligand pool (Batchelli et al., 2009, 2010; Laglera
and van den Berg, 2009; Stolpe and Hassellov, 2010; Stolpe et al.,
2010; Hassler et al., 2011a,b). Laglera and van den Berg recently
reported an electrochemical technique that allows for the direct
detection of humic like substances in seawater by ACSV (Laglera
et al., 2007; Laglera and van den Berg, 2009). The technique deter-
mines the catalytically enhanced reduction current produced by
Fe bound to HS, and is standardized using the Suwannee River
fulvic acid (SRFA) standard (Laglera et al., 2007). Determination
of the conditional stability constants and binding capacities of
these putative humic like substances by competition with ethylene-
diaminetetraacetic acid (EDTA) has shown that these ligands have
similar stability constants to the natural organic ligands measured
by CLE–ACSV (Laglera and van den Berg, 2009). Apparent bind-
ing capacities for these humic like substances in seawater are also
similar to those determined by CLE–ACSV (Laglera and van den
Berg, 2009), and it has been suggested that HS can account for
the majority of the total ligand pool in coastal and deep waters
(Batchelli et al., 2009, 2010; Laglera and van den Berg, 2009). The
coincidence of similar reduction potentials and binding capac-
ities for the detected ambient Fe ligand, SRFA, and Suwannee
River humic acid (SRHA) make it tempting to identify the ambi-
ent ligand detected using the technique as a humic like substance
(Laglera et al., 2007). However, the technique is not specific to HS,
as EPS will also become electrochemically active upon addition of
Fe and are, thus, indistinguishable from HS by ACSV (Hassler et al.,
2011b). Further support for identification of a ligand fraction as

HS is, however, provided by FFFF. Studies in coastal waters using
FFF–ICP-MS and FFFF coupled to UV and fluorescence detec-
tors have indicated that dFe in coastal waters is associated with
fluorescent, colored, dissolved humic like organic matter (Stolpe
and Hassellov, 2010; Stolpe et al., 2010), and that, furthermore,
freshly added Fe readily associates with this fraction (Stolpe et al.,
2010).

By their very nature, both HS and EPS are challenging to
chemically characterize. Both HS and EPS are oxygen rich – the
SRFA used in Laglera and van den Berg (2009) consists of 44%
oxygen (% w/w,http://www.ihss.gatech.edu/elements.html), while
EPS are predominantly composed of neutral sugars and contain
a significant fraction of acidic polysaccharides like uronic acids
(Mancuso Nichols et al., 2004). Uronic acids are known to complex
Fe (Gyurcsik and Nagy, 2000), with complexes being more stable at
high pH (Gyurcsik and Nagy, 2000), as observed for Fe–HS com-
plexes (Laglera et al., 2007). Classical pH-metric determinations of
stability constants for simple acidic polysaccharide-Fe complexes
show that they are low (log β 3–4; Gyurcsik and Nagy, 2000) and Fe
complexation of model polysaccharides carrageenan, laminarin,
and alginic acid in seawater has been found to be undetectable by
CLE–ACSV (Strmecki et al., 2010), although this may have been
an artifact of the selected AL (Laglera et al., 2011). In other stud-
ies, EPS from bacteria have been observed to be associated with
Fe (Hassler et al., 2011a,b) and EPS has been shown to reduce the
lability of Fe to other Fe ligands while enhancing Fe availability
to phytoplankton when compared to Fe–siderophore complexes
(Hassler et al., 2011b).

In addition to an Fe–HS fraction, Stolpe and Hassellov (2010)
also observed an association of Fe with a higher molecular weight
organic fraction described as nanofibrils, particularly at a time of
enhanced productivity (Stolpe and Hassellov, 2010). The nanofib-
rils were consistent in size and appearance to transparent exopoly-
mer (TEP) like compounds (Stolpe and Hassellov,2010). However,
although Fe present in the samples was found to co-elute with
the nanofibril fraction, freshly added Fe did not associate with the
nanofibrils. Stolpe and Hassellov (2010) suggested that this behav-
ior could be explained as an inorganic Fe-nanoparticle association
(Stolpe and Hassellov, 2010), although it could also be a reflection
of under saturation of binding sites in the HS fraction, coupled to
a weaker affinity between Fe and the larger nanofibrils.

APPROACHING AN OVERVIEW OF IRON COMPLEXATION
AND PHYSICO-CHEMICAL SPECIATION IN SEAWATER
Several types of Fe organic complexes and associations have
now been shown to exist in seawater, ranging from high affin-
ity siderophores present at low concentrations, to weaker but
more abundant HS and EPS associations, and likely also includ-
ing associations between inorganic Fe nanoparticles and larger
TEP like organic macromolecules (Figure 4). These organic com-
plexes and associations are currently best distinguished by size
fractionation, as they generally fall along an increasing size spec-
trum from siderophores to macromolecules. Often coupled to this
increasing size spectrum is a decreasing thermodynamic stabil-
ity of the complexes as measured by CLE–ACSV, but increasing
kinetic inertness, leading to an overall potential decrease in bio-
logical availability. It is, therefore, becoming possible to unravel
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FIGURE 4 | Schematic figure illustrating potential components of the dFe pool so far identified in seawater. Decreasing kinetic lability of Fe within the
components is represented by deeper orange background shading.

the different biogeochemical behaviors of the many components
of the dFe pool.

Siderophores are associated with bacterial productivity and
may only be produced in significant quantities when readily avail-
able carbon is abundant (Mawji et al., 2011). Siderophores maybe
important in regions where organic carbon concentrations are
high enough to support significant bacterial productivity, but
where dFe is not readily available. The photochemical lability of
siderophores suggests that many siderophore types will not per-
sist in the water column, although their breakdown products may
be more stable and form weaker, more bioavailable, Fe complexes
(Barbeau et al., 2001, 2003). Siderophores may play an important
role in increasing the availability of Fe for particular types of bac-
teria, influencing bacterial diversity and productivity in the ocean.
Siderophores may also play a role in the solubilization of partic-
ulate and colloidal Fe. Given their origin, function and reactivity,
siderophores are anticipated to contribute to Fe-binding ligand
pools primarily in the upper water column, and especially in the
truly soluble size fraction of ligands, although siderophores may
also be associated with colloidal and particulate fractions as well.

Field studies of Fe-binding ligand distributions consistently
report higher excess ligand concentrations in the upper water
column, and these maxima in eLi are often, though not always,
associated with elevated fluorescence and phytoplankton biomass.
When size fractionation is assessed, these excess ligand concentra-
tions also appear to be predominantly in the soluble size fraction.
In combination, field studies support a siderophore-type origin
of ambient Fe-binding ligands in the upper oceans. However,
siderophores extracted from natural waters to date have been
found in only the picomolar range, while ambient strong Fe-
binding ligands are measured by CLE–ACSV in the nanomolar
range. Recent incubation studies of natural surface seawater have
shown strong Fe-binding ligand production, also measured by
CLE–ACSV in the nanomolar range, under conditions of both Fe-
limited phytoplankton growth and stimulated bloom decay (Sato
et al., 2007; Buck et al., 2010). Furthermore, the thermodynamic
stability constants (log K ′) of some known Fe–siderophore com-
plexes are too high to detect with usual CLE–ACSV approaches.

Altogether, this would suggest that, in addition to siderophores,
other strong Fe-binding ligand types are also likely to contribute
to the Fe-binding ligand pool measured by CLE–ACSV in surface
waters.

Humic substances and EPS may be either terrestrial or
autochthonous in nature, and are typically found in the colloidal
fraction. It appears that the HS fraction is quite refractory and
persists into the deep ocean while EPS is likely to be produced in
surface waters as it is, by definition, associated with phytoplankton
productivity. Fe bound to model humic acids and Fe bound to EPS
have been shown to be as available to phytoplankton as inorganic
Fe (Chen and Wang, 2008; Hassler et al., 2011b). However, both
EPS and HS are complex molecules that remain poorly defined;
greater effort is required in order to characterize the association
between Fe, HS, and EPS, and the contribution of HS and EPS to
the ambient ligand pool in the open ocean. It is apparent that cur-
rent techniques may not distinguish particularly well between HS
and EPS, yet the biogeochemistry of these two organic fractions is
potentially quite different.

The biological availability of colloidal Fe is rather hard to define
as it is probably highly dependent on the chemical nature of the
colloids (Kuma and Matsunaga, 1995; Yoshida et al., 2006), as
well as the capabilities of organisms present to extract Fe from
the colloids, whether by reduction (Maldonado and Price, 2001;
Rijkenberg et al., 2008a) or by dissolution via a high affinity uptake
mechanism (Vraspir and Butler, 2009). The biological availability
of some colloids, like Fe nanoparticles, is poorly understood. Col-
loidal Fe biogeochemistry is also likely to be strongly influenced by
temperature, another consideration that has yet to be investigated
fully. However, it is becoming apparent that Fe biogeochemistry in
the open ocean may be strongly influenced by the stability of the
colloidal fraction. While it has been suggested that organic Fe col-
loids formed in surface waters are scavenged quite rapidly through
the water column (Wu and Luther, 1994; Nishioka et al., 2001;
Wu et al., 2001; Cullen et al., 2006; Bergquist et al., 2007; Hurst
and Bruland, 2008; Kondo et al., 2008; Schlosser and Croot, 2008;
Boye et al., 2010; Thuroczy et al., 2010), stable Fe colloids from
continental shelves have also been implicated in the long range
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transport of Fe to the open ocean (Elrod et al., 2004; Lam and
Bishop, 2008). More information is, thus, needed on the nature
of Fe colloids in open ocean surface and continental shelf waters
in order to understand more fully these potentially contrasting
behaviors. Investigation of an organic Fe colloid-like fraction in
future global ocean models incorporating Fe speciation would also
allow the role of this fraction in the Fe biogeochemical cycle to be
further examined.

Taken together, the evidence described above points toward
the existence of a spectrum of Fe ligands in seawater, and we
found that the different experimental approaches employed by
Fe biogeochemists appear to be converging toward a consistent
overview. Increases in the size and complexity of the Fe species
appear to be accompanied by a weakening of the thermodynamic
stability of the Fe complex. The weaker complexation between Fe′
and the larger sized organic macromolecules is, however, poten-
tially mitigated by the existence of associations between inert Fe
nanoparticles and nanofibrils like TEP, resulting in an apparently
Fe saturated inert colloidal ligand pool. Substantial progress has

been made in trace metal clean size fractionation, CLE–ACSV, and
HPLC–ESI-MS techniques over the last decade. We anticipate that
future studies will increasingly couple these techniques, along with
incubations and other biological process studies, providing much
needed insight on the nature and cycling of Fe-binding ligands
in the oceans. Finally, we conclude that the biogeochemical role
of each of the organic ligand fractions appears to be very differ-
ent and deserves further investigation, as this spectrum of organic
Fe-binding ligands overwhelmingly complexes dFe in the marine
environment.
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