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The cellular antioxidant system is a target in the antifungal action of amphotericin B (AMB)
and itraconazole (ITZ), in filamentous fungi. The sakAA mutant of Aspergillus fumigatus,
a mitogen-activated protein kinase (MAPK) gene deletion mutant in the antioxidant sys-
tem, was found to be more sensitive to AMB or ITZ than other A. fumigatus strains, a
wild type and a mpkCA mutant (a MAPK gene deletion mutant in the polyalcohol sugar
utilization system). Complete fungal kill (=99.9%) by ITZ or AMB was also achieved by
much lower dosages for the sakAA mutant than for the other strains. It appears msnA,
an Aspergillus ortholog to Saccharomyces cerevisiae MSNZ2 (encoding a stress-responsive
CyHa-type zinc-finger regulator) and sakA and/or mpkC (upstream MAPKS) are in the same
stress response network under tert-butyl hydroperoxide (t-BuOOH)-, hydrogen peroxide
(H209)- or AMB-triggered toxicity. Of note is that ITZ-sensitive yeast pathogens were
also sensitive to t-BuOOH, showing a connection between ITZ sensitivity and antioxidant
capacity of fungi. Enhanced antifungal activity of AMB or ITZ was achieved when these
drugs were co-applied with redox-potent natural compounds, 2,3-dihydroxybenzaldehyde,
thymol or salicylaldehyde, as chemosensitizing agents. We concluded that redox-potent
compounds, which target the antioxidant system in fungi, possess a chemosensitizing
capacity to enhance efficacy of conventional drugs.

Keywords: amphotericin B, itraconazole, natural compounds, chemosensitization, Candida, Cryptococcus,
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INTRODUCTION

Recent studies have shown that one of the antimicrobial modes of
action of certain drugs involves cellular oxidative stress response
in pathogens, which further contributes to the death of microor-
ganisms. Thus, these types of drugs could be defined as oxidative
stress drugs.

Examples include amphotericin B (AMB). Although AMB is
known as a fungicidal drug by causing ion leakage, studies have
shown that forming channels in the cellular membrane was not
the sole mechanism of AMB activity (Palacios et al.,2007). Instead,
oxidative stress triggered by AMB could be one of the contribut-
ing mechanisms for AMB fungicidality. For instance, addition
of antioxidants, such as reduced glutathione (GSH), cysteine,
etc., could revive endospores of Coccidioides immitis treated with
AMB (Graybill et al., 1997 and references therein), indicating the
involvement of cellular oxidative stress in AMB activity. Results
showed that superoxide radical-mediated oxidative damage was
involved in AMB activity (Okamoto et al., 2004). Other stud-
ies further support involvement of cellular oxidative stress as a
component of the antifungal mode of action of AMB (Sokol-
Anderson et al., 1986, 1988; Blum et al., 2008; An et al., 2009;
Gonzélez-Pdrraga et al., 2011).

Itraconazole (ITZ) is another example of an oxidative stress
drug. The main mechanism of action of ITZ is similar to other
azole agents by inhibiting fungal cytochrome P450 oxidase-
mediated biosynthesis of ergosterol, ultimately inhibiting fungal

growth. However, a recent study with the Ddr48 protein of
Candida albicans indicated the oxidative stress response of this
pathogen was also triggered by ITZ treatment (Dib et al., 2008).
The C. albicans Ddr48 protein is essential for fungal filamentation,
stress response, and also confers partial resistance to antifungal
drug(s). The DDR48/ddr48 heterozygote mutant strain was sus-
ceptible to ITZ in a concentration-dependent manner (Dib et al.,
2008). Noteworthy is that this mutant also showed hypersensitivity
to hydrogen peroxide (H,0,), a strong oxidant, which indicated
there was a relationship between ITZ susceptibility and H,0,
hypersensitivity (Dib et al., 2008). Thus, it appears that the cel-
lular antioxidant system in yeasts is involved in tolerance to AMB
or ITZ.

Stress-signaling/response genes of fungal pathogens are known
to play roles in virulence, pathogenesis and defense against oxida-
tive burst (rapid production of reactive oxygen species, ROS) from
the host (Washburn et al., 1987; Hamilton and Holdom, 1999;
Clemons et al., 2002; de Dios et al., 2010). In fungi, stress signals
resulting from oxidative stress are integrated into the upstream
mitogen-activated protein kinase (MAPK) pathways, which ulti-
mately regulate the downstream response genes detoxifying the
stress (Miskei et al., 2009). In yeasts, such as Saccharomyces cere-
visiae or Schizosaccharomyces pombe, the HOG MAPK system plays
a key role in countering oxidative stress (Toone and Jones, 1998;
Lee et al., 2002; Miskei et al., 2009). SakA and MpkC in Aspergillus
fumigatus are orthologous proteins to Hoglp of S. cerevisiae
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(Xue et al.,, 2004; Reyes et al., 2006). The sakAA (sakA gene
deletion) is an osmotic/oxidative stress sensitive mutant, while
the mpkCA (mpkC gene deletion) is a mutant of the polyalcohol
sugar utilization system (Xue et al., 2004; Reyes et al., 2006).

The A. flavus msnA is an orthologous gene of S. cerevisiae MSN2
that encodes a C;H,-type zinc-finger regulator, Msn2p. Msn2p
is required for yeast cells to cope with a broad range of envi-
ronmental and physiological stresses (Ruis and Schuller, 1995).
Maximum induction of Msn2p-dependent genes, such as CTT1I
(encoding a catalase), under osmotic/oxidative stress required
Hoglp (O’Rourke et al., 2002; see Miskei et al., 2009 for review).
We surmised MsnA in Aspergillus would also functionally interact
with MAPKs such as SakA and/or MpkC. Recently, an A. flavus
CAl4msnAA mutant was generated (and also examined in this
study). Deletion of the A. flavus msnA gene adversely affected
the fungus, as manifested by (1) increased expression of oxidative
stress defense genes in Aspergillus, and (2) increased levels of ROS
in msnAA mutant comparing to the parental strain (Chang et al,,
2011).

Thus, it is quite evident that the fungal antioxidant system could
serve as an effective antifungal target of redox-potent agents. Such
agents could disrupt cellular redox homeostasis in fungi and serve
as a means for controlling fungal pathogens (see also Smits and
Brul, 2005; Jaeger and Flohe, 2006).

Redox-potent natural phenolics, such as benzaldehyde analogs,
or sulfur-containing compounds can be potent redox-cyclers in
microorganisms and inhibit microbial growth by interfering with
cellular redox homeostasis and/or the function of redox-sensitive
components (Guillen and Evans, 1994; Jacob, 2006). We reasoned
that redox-potent natural compounds, which destabilize the fun-
gal antioxidant system, could act as potent chemosensitizing agents
when co-applied with oxidative stress drugs, such as AMB or ITZ.
Redox-potent chemosensitizers and drugs can affect common cel-
lular targets, i.e., the antioxidant system of fungi, which results in
synergistic inhibition of fungal growth. Thus, chemosensitization
could make the use of toxic antifungal drugs or fungicides more
attractive as an antifungal therapeutic strategy (see also Ogita et al.,
2006).

In this in vitro study, we attempted to develop a chemosen-
sitization strategy for control of fungal pathogens. We focused
on targeting the oxidative stress response system of fungi with
redox-potent chemosensitizing agents. Research emphasis was on:
(1) identification of the level of sensitivities of Aspergillus MAPK
or msnA gene deletion mutants to oxidizing agents, conventional
oxidative stress drugs, i.e., AMB and ITZ, or redox-potent phe-
nolic compounds, (2) chemosensitization of antifungal drugs
with redox-potent phenolic compounds in Aspergillus and yeast
pathogens (Candida, Cryptococcus), and (3) identification of com-
plex I1I of mitochondrial respiratory chain (MRC) as an alternative
oxidative stress target for control of yeast pathogens.

MATERIALS AND METHODS

FUNGAL STRAINS AND CULTURE CONDITIONS

Aspergillus fumigatus AF293, wild type, and A. fumigatus MAPK
gene deletion mutants (sakAA and mpkCA) were grown at 35°C
on potato dextrose agar (PDA) or Sabouraud dextrose agar (SDA;
Sigma, St. Louis, MO, USA). A. terreus UAB673, UAB680, and

UAB698 (clinical isolates) were procured from Centers for Disease
Control and Prevention, Atlanta, GA, USA, and were grown at 35°C
on PDA or SDA. A. flavus NRRL3357, procured from the National
Center for Agricultural Utilization Research, USDA-ARS, Peoria,
IL, USA, was grown at 35°C on PDA or SDA. Also, A. flavus CA14
(parental strain) and CAl4msnAA (knockout mutant for msnA
gene; Chang et al., 2011) strains were grown at 28°C on PDA.

C. albicans 90028 and C. krusei 6258 (reference strains)
were procured from American Type Culture Collection (Man-
assas, VA, USA). C. albicans CAN276, C. krusei CAN75, C.
tropicalis CAN286 and Cryptococcus neoformans CN24 (clinical
isolates) were procured from Instituto de Higiene e Medicina Trop-
ical/CREM, Universidade Nova de Lisboa, Portugal. S. cerevisiae
wild type BY4741 (Mat a his3A 1 leu2 A0 met15A0 ura3A0) and
selected single gene deletion mutants, i.e., cytosolic superoxide
dismutase (SOD; Cu, Zn-SOD; sodl1A) mutant, mitochondrial
SOD (Mn-SOD; sod2 A) mutant, antioxidative transcription factor
mutant (yaplA), glutathione reductase mutant (glrIA), vacuolar
HT-ATPase (V-ATPase) assembly mutant (vph2A) and V-ATPase
subunit A mutant (vmalA), were procured from Open Biosys-
tems [Huntsville, AL, USA; see Saccharomyces Genome Database
(www.yeastgenome.org; accessed February 2,2012)]. Yeast strains
were cultured on synthetic glucose (SG; Yeast nitrogen base with-
outamino acids 0.67%, glucose 2% with appropriate supplements:
uracil 0.02 mgmL~!, amino acids 0.03 mg mL~") agar, yeast pep-
tone dextrose (YPD; Bacto yeast extract 1%, Bacto peptone 2%,
glucose 2%) agar or SDA at 30°C for S. cerevisiae or 35°C for yeast
pathogens (Candida, Cryptococcus), respectively.

CHEMICALS

Antifungal chemosensitizing agents [2,3-dihydroxybenzaldehyde
(2,3-DHBA), salicylaldehyde (SA), thymol (THY)], antifungal
drugs [antimycin A (AntA), amphotericin B (AMB), itraconazole
(ITZ)], strobilurins [pyraclostrobin (PCS), kresoxim methyl (Kre-
Me)],and oxidizing agents [ tert-butyl hydroperoxide (+-BuOOH),
hydrogen peroxide (H,O;; Sigma product No. H1009, contained
stabilizer)] were procured from Sigma Co. Hydrogen peroxide
stock was prepared based on molar concentration provided by
the manufacturer. Each compound was dissolved in dimethyl sul-
foxide (DMSO; absolute DMSO amount: <1% in media), except
oxidizing agents, which were dissolved in water, before incorpora-
tion into culture media. In all tests, control plates (i.e., “No treat-
ment”) contained DMSO at levels equivalent to that of cohorts
receiving antifungal agents, within the same set of experiments.

ANTIFUNGAL BIOASSAY

Agar plate bioassay: filamentous fungi

In the plate bioassay, measurement of sensitivities of filamentous
fungi to the antifungal agents was based on percent (%) radial
growth of treated compared to control (“No treatment”) fungal
colonies (see text for test concentrations; Vincent, 1947). Mini-
mum inhibitory concentration (MIC) values on agar plates were
determined based on triplicate (except duplicate for A. flavus CA14
and CA14msnAA mutant) assays, and defined as the lowest con-
centration of agents where no fungal growth was visible on the
plate. For the above assays, fungal conidia (5 x 10* CFUmL™!)
were diluted in phosphate-buffered saline (PBS) and applied as
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a drop onto the center of PDA or SDA plates with or without
antifungal compounds. Growth was observed for 3—-7 days, except
A. flavus CAl4msnAA mutant (and A. flavus CA14 as a control),
which needed around 3 weeks for optimal growth to determine
cellular responses to drugs/compounds.

Agar plate bioassay: yeasts

Petri plate-based yeast dilution bioassays were performed with the
S. cerevisiae wild type and mutant [antioxidant (sodIA, sod2A,
girIA, yapIA), vacuolar (vph2A, vmalA)] strains to assess the
effects of THY on the antioxidant or vacuolar system of fungi.
Yeast strains were exposed to 0.2—-1.4 mM of THY. This assay was
performed in duplicate on SG agar following previously described
protocols (Kim et al., 2008a). S. cerevisiae strains were grown at
30°C for 37 days.

Petri plate-based yeast dilution bioassays were also performed
with the yeast pathogens (Candida and Cryptococcus) to investi-
gate (1) the level of sensitivity of pathogens to ITZ or t+-BuOOH
(see text for concentrations), (2) sensitivities of pathogens to
the inhibitors of complex III of MRC (100 pg mL™1), ie., AntA,
Kre-Me, and PCS (see Chemicals above), and (3) the chemosen-
sitizing activity of 2,3-DHBA to PCS in yeast pathogens. For
the chemosensitization test, yeast pathogens were exposed to
100 pgmL~! of MRC inhibitors without or with 0.1-0.4 mM of
2,3-DHBA. Yeast pathogens were grown on SG agar (in duplicate
as described above for S. cerevisiae) at 35°C for 3—7 days.

Microtiter plate (microdilution) bioassay: filamentous fungi

To determine antifungal MICs and/or chemosensitizing activi-
ties of natural compounds (0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 mM)
to antifungal drugs (AMB or ITZ; 0.125, 0.25, 0.5, 1, 2, 4, 8,
16, 32 ugmL™!) in filamentous fungi, triplicate checkerboard
bioassays (0.4 x 10* to 5 x 10* CFUmL™') were performed in
microtiter wells using a broth microdilution, according to modi-
fied methods outlined by the Clinical Laboratory Standards Insti-
tute (CLSI) M38-A (CLSI, 2008). MICs for chemosensitization
were defined as the concentrations where no fungal growth was
visible at 48 and 72 h.

Microtiter plate (microdilution) bioassay: yeasts

Chemosensitizing activities of natural compounds (0.1, 0.2, 0.4,
0.8,1.6,3.2,6.4 mM) to antifungal drugs (AMB or ITZ;0.125,0.25,
0.5,1,2,4,8,16,32 ug mL~!) were determined by using checker-
board bioassays in microtiter plates (with RPMI 1640 medium;
Sigma Co.). To determine changes in MICs of antifungal agents
(i.e., drugs and chemosensitizers) in microtiter wells, triplicate
assays (0.5 x 10° to 2.5 x 10° CFUmL™!) were performed using
broth microdilution protocols according to modified methods
outlined by the European Committee on Antimicrobial Suscep-
tibility Testing (EUCAST; Cuenca-Estrella et al., 2003). MICs for
chemosensitization were defined as the concentrations where no
fungal growth was visible at 24 and 48 h.

DETERMINATION OF CHEMOSENSITIZING ACTIVITY OF SA TO ITZ

Determination of chemosensitizing activity of SA, a volatile ben-
zaldehyde analog, to ITZ was performed in segmented Petri dishes
(150 mm x 10 mm; VWR International Co., Radnor, PA, USA).

These dishes are divided into four, isolated sections, and each of
two sections was supplied with 6 mL of SDA for fungal growth
(without or with 1-7 g mL~! of ITZ in SDA). Then, conidial sus-
pensions of A. fumigatus AF293 (5 x 10* CFU mL™!) were diluted
in PBS and applied as a drop on the center of each section,
providing two fungal inocula within each plate; see also Figure 3.).

SA was dissolved in DMSO, and was applied onto a round
Whatman™paper (2.5 cm in diameter; GE Healthcare Bio-science
Co., Piscataway, NJ, USA; Final volume: Total 150 uL of SA plus
DMSO on a Whatman™paper per each plate based on SA con-
centration tested). Each SA preparation was then placed onto
an empty section located between the fungal inocula. The fun-
gal spores inside the Petri plate would be exposed to the volatilized
SA. The SA-wet (or DMSO-wet control) Whatman™paper was
placed onto a piece of Parafilm® (American National Can Co.,
Chicago, IL, USA) to avoid the direct contact of SA plus DMSO
with the surface of a Petri dish. The plates containing SA (or DMSO
control) and fungal inocula were then sealed with two layers of
Parafilm® to prevent escape of SA. The plates were incubated at
35°C (5-7 days). The antifungal treatments, therefore, consist of
(1) control plates: A. fumigatus AF293 inocula without SA vapor
(DMSO only) and (2) treated plates: A. fumigatus AF293 inocula
with SA vapor (9.5-95 mM on a Whatman™paper). Results were
based on two replicated plates.

RESULTS

ASPERGILLUS MAPK AND msnA MUTANTS WERE SENSITIVE TO
OXIDATIVE STRESS

We initially investigated the phenotypic responses (i.e., level of sen-
sitivity) of three Aspergillus mutant strains, i.e., deletion mutants
for A. fumigatus MAPKs, sakA and mpkC, and A. flavus msnA
genes, to -BuOOH (an organic peroxide) and H,0O, (hydro-
gen peroxide). Sensitivities of fungi to the oxidizing agents were
determined based on relative fungal radial growth on agar plates.
The sakAA, mpkCA and msnAA mutants currently available were
derived from two different species of infectious Aspergillus. How-
ever, we reasoned that results presented in this study would provide
the basis for detecting signaling network(s) in Aspergillus, in gen-
eral, under the stress/toxicity triggered by oxidizing agents and/or
antifungal drugs. To our knowledge, the A. flavus msnA is the
first MSN2 gene ortholog functionally characterized (with gene
knockout) in Aspergillus.

In our tests, all three Aspergillus mutants, i.e., A. fumigatus
sakAA and mpkCA, A. flavus CAl4dmsnAA, showed margin-
ally higher sensitivity to -BuOOH and H,O, compared to the
wild type strains (Data not shown). Based on these results, we
postulated that msnA (downstream regulator) and sakA/mpkC
(upstream MAPKs) are located in the same stress response
network in Aspergillus under the peroxide-mediated oxidative
stress.

ANTIOXIDANT MUTANTS WERE SENSITIVE TO TOXICITIES OF AMB
AND ITZ

Next, we examined the level of sensitivity of Aspergillus mutants to
ITZ or AMB in plate bioassays. We tried to determine if the func-
tion of the fungal antioxidant system is responsive to toxicities
triggered by ITZ or AMB. As shown in Figure 1, the A. fumigatus
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FIGURE 1 | Phenotypic responses of Aspergillus strains to antifungal
drugs. A. fumigatus sakAA mutant was more sensitive to itraconazole (ITZ)
or amphotericin B (AMB) compared to other A. fumigatus strains, i.e.,
AF293 (wild type) and mpkCA mutant. Results also showed that A. flavus
CA14msnAA mutant was hypersensitive to AMB compared to its parental
strain (CA14), while the level of sensitivity of msnAA mutant to ITZ was
similar to that of CA14. Percent (%) value indicated relative growth rate of
“treated” compared to “not treated” control (=100%) in each strain

(SD <5%).

sakA A mutant showed higher sensitivity to ITZ or AMB compared
to AF293 or the mpkC A mutant. The A. fumigatus sakAA mutant
did not grow at 0.5 ugmL~! of ITZ (i.e., sensitive), while AF293
and the mpkC A mutant did grow (Figure 1). Also, the A. fumigatus
sakA A mutant was more sensitive to AMB compared to the AF293
or mpkC A strains. For example, when treated with AMB, the inhi-
bition rate of fungal growth for the sakAA mutant was 32-54%
(i.e., more sensitive; SD < 5%) at 1.0-2.0 pg mL~! of AMB, while
inhibition of AF293 or the mpkCA mutant was around 8-34%
(SD < 5%; Figure 1).

To evaluate the negative impact of the deletion of MAPK genes
on cell survivability after AMB or ITZ treatment, we also moni-
tored the minimum fungicidal concentrations (MFCs) of AMB or
ITZ for A. fumigatus AF293, sakAA and mpkCA strains in a sepa-
rate microdilution (microtiter plate) bioassay. Fungi were treated
with 1-128 or 1-64 ug mL~! of AMB or ITZ, respectively. In this
test, over 99.9% of fungicidality was achieved in the A. fumiga-
tus sakAA mutant at dosage levels of ITZ or AMB lower than

Table 1| Levels of fungicidality of itraconazole (ITZ) or amphotericin B
(AMB) at various concentrations against Aspergillus fumigatus
strains (AF293, sakAA, mpkCA).

Strains
AF293 SakAA mpkCA
ITZ Conc. (ngmL~")
1 ND' 99.45% ND
2 ND 99.85% 99.65%
4 ND 99.89% 99.72%
8 ND 99.92% 99.76%
16 99.39% 99.94% 99.83%
32 99.42% 99.95% 99.83%
64 99.93% 99.99% 99.99%
AMB Conc. (ng mL™1)
1 ND ND ND
2 ND ND ND
4 ND 99.95% ND
8 ND 100.00% ND
16 99.31% 100.00% 99.45%
32 99.43% 100.00% 99.68%
64 99.88% 100.00% 99.94%
128 99.95% 100.00% 99.98%

ND, not determined (<99.00%).
Columns showing over 99.90% of fungicidality are indicated in bold.

that for AF293 or the mpkCA mutant (Table 1). Altogether, we
concluded that the antifungal activity of AMB or ITZ evoked a
cellular oxidative stress response requiring participation of MAPK
pathway genes in A. fumigatus. However, SakA must play a more
significant role in response to AMB or ITZ than MpkC, as repre-
sented by the higher sensitivity of sakAA than mpkCA to either
drug. A similar type of hypersensitivity of the sakAA mutant was
previously observed when it was treated with redox-potent phe-
nolic reagents, where the mpkCA mutant showed less sensitivity
to the same treatment (Kim et al., 2010).

Sensitivity of the A. flavus CAl4msnAA mutant to AMB was
also examined using plate bioassays. As shown in Figure 1, the
MIC of the A. flavus CA14msnAA mutant for AMB was between
4.0 and 8.0 ug mL ™!, while that of the parental strain, A. flavus
CA14, was above 8.0 ugmL~! (the highest concentration of AMB
tested). However, unlike its response to AMB, there was no differ-
ence in level of sensitivity of the A. flavus CAl4msnAA mutant
and the parental strain to ITZ (i.e., MICs for both strains were
between 0.25 and 0.5 jLg mL~'; although, some discoloration of
the parental strain occurred with ITZ treatment; Figure 1). One
plausible explanation for this differential response to two different
drugs would be that a regulator(s) other than MsnA is involved in
fungal response/tolerance to ITZ.

Collectively, the experimental results from the A. fumigatus and
A. flavus strains studied indicate that antifungal activity of ITZ or
AMB involves the functioning/response of fungal antioxidant sys-
tem. Among the molecular genetic components examined in these
Aspergillus strains, it appears that SakA plays a more significant
role for fungal tolerance/response to both ITZ- and AMB-induced
toxicity than do either MpkC or MsnA.
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A. FLAVUS msnA MUTANT WAS SENSITIVE TO REDOX-POTENT
PHENOLIC COMPOUNDS

In prior studies, the A. fumigatus sakAA mutant showed hyper-
sensitivity to 2,3-DHBA or THY (Kim et al., 2008a,b). These com-
pounds were effective as chemosensitizing agents to conventional
antifungal drugs/fungicides (Kim et al., 2008a,b).

In the present study, the A. flavus CAl4msnAA mutant was
also more sensitive to 2,3-DHBA or THY compared to the parental
strain in plate bioassays (Figure data not shown). For example, the
MIC:s for 2,3-DHBA and THY were between 0.8 and 1.6 mM or 3.2
and 6.4 mM, respectively, in the parental strain, while those of the
msnAA mutant were between 0.0 and 0.1 mM or 0.2 and 0.4 mM,
respectively. Therefore, including results with the +-BuOOH and
H;0; experiments (see above), these findings with 2,3-DHBA and
THY further provide evidence of antioxidative cellular compo-
nents (i.e., MAPKs and MsnA) playing a role in fungal response to
drugs (ITZ, AMB) or redox-potent compounds (2,3-DHBA, THY)
[see Table 2 for the summary of responses of Aspergillus MAPKs
(sakAA, mpkCA) and msnAA mutants to the test compounds].

REDOX-POTENT PHENOLIC COMPOUNDS ACT AS CHEMOSENSITIZERS
TO ANTIFUNGAL DRUGS IN FILAMENTOUS FUNGI

We next investigated the potential role of redox-potent com-
pounds (2,3-DHBA, THY) as chemosensitizing agents to oxidative
stress drugs (AMB, ITZ) in different fungal pathogens. SA was
also included in these tests. We reasoned there should be either an
additive or synergistic antifungal interaction if the drug and com-
pounds were co-applied, lowering dosages for control of fungi
than sole treatment of each drug. At this stage of study, we tried to
identify the most effective chemosensitization strategy with var-
ious combinations of redox-potent compounds and antifungal
drugs.

Chemosensitization of ITZ with THY

First, we performed a yeast dilution bioassay on SG agar contain-
ing THY (0.2-1.4 mM), using a number of different S. cerevisiae
gene deletion mutants (see Fungal Strains and Culture Condi-
tions). As shown in Figure 2, vacuolar [vph2A, vmalA; “growth”
at no dilution (10°) and 10! dilution spots only] and antioxidant
(s0d2A, sodIA, girlA; “growth” at no dilution, 10! and/or 102
dilution spots only) mutants exhibited higher sensitivity to THY
(0.8 mM) compared to the wild type (“growth” from no dilution to
10* dilution). These results indicated that, like carvacrol (a struc-
tural isomer of THY; Rao et al., 2010), THY disrupted cellular

ion and also redox homeostasis in fungi. The vacuolar mutants
appeared to be more sensitive to THY compared to the antioxidant
mutants. The yaplA, an antioxidative transcription factor mutant,
was sensitive to THY butless so than the other antioxidant mutants
examined.

Next, we examined the chemosensitizing efficacy of THY to ITZ
in five different Aspergillus strains using microdilution bioassays.
As shown in Table 3, co-application of THY and ITZ enhanced
the antifungal efficacy of either compounds. Namely, MICs of
THY and ITZ were lowered under co-application compared to
independent treatment of each compound, alone, in most fungi.
Fungal response to chemosensitization (i.e., THY plus ITZ) was
strain dependent, where A. fumigatus AF293 was the most sen-
sitive/responsive strain (i.e., both MIC and MFC were lowered),
while A. flavus 3357 was the least affected by chemosensitization
[i.e., no effect on MIC or MFC (data not shown)].

MsnA as an effective target of chemosensitization: AMB with
2,3-DHBA

First, chemosensitization of fungi by 2,3-DHBA to AMB (see
Microtiter Plate (Microdilution) Bioassay: Filamentous Fungi
for concentrations) was investigated in five Aspergillus strains
using microdilution bioassays. All the compound interactions
between 2,3-DHBA and AMB were additive (0.6 < FICI < 1.0),
depending on Aspergillus strain (Data not shown). However, no

No treatment

THY (0.8 mM)

FIGURE 2 | Yeast dilution bioassay showing the sensitive response of
Saccharomyces cerevisiae gene deletion mutants, i.e., vacuolar
(vph2A, vma1A) and antioxidant (sod2A, sod71A, gir1A, yap1A), to
thymol (THY). Although few colonies of yap7A mutant appeared at the
dilution spots 10~% and 10~*, where the wild type colonies also appeared,
yap1A mutant was also considered to be sensitive to THY. Results shown
are representative data from treatment with 0.8 mM of THY.

Table 2 | Summary of sensitivities of Aspergillus MAPKs (sakAA, mpkCA) and msnAA mutants to the test compounds.!

Strains Compounds

t-BuOOH H,0, AMB ITZ 2,3-DHBA THY
A. flavus msnAA S S S N S S
A. fumigatus sakAA S S S S g? s?
A. fumigatus mpkCA S S N N N2 N2

'S, sensitive; N, not sensitive (compared to the parental strains).
2Determined in previous studies (see Kim et al., 2008a,b).
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Table 3 | Chemosensitization of itraconazole (ITZ; g mL~1) with thymol (THY; mM) tested against pathogenic Aspergillus.

Strains Compounds MIC alone MIC combined FiCI'
A. fumigatus AF293 THY, ITZ 0.4-0.8, 2-4 0.2-0.4, 1-2 1.0
A. flavus NRRL3357 THY, ITZ 0.8-1.6, 0.5-1 0.8-1.6, 0.5-1 2.0
A. terreus UAB673 THY, ITZ 1.6-3.2, 0.5-1 0.8-1.6, 0.25-0.5 1.0
A. terreus UAB680 THY, ITZ 1.6-3.2, 0.5-1 0.8-1.6, 0.25-0.5 1.0
A. terreus UAB698 THY, ITZ 0.8-1.6, 0.5-1 0.4-0.8, 0.25-0.5 1.0
Strain Compounds MFC alone MFC combined FFCI?
A. fumigatus AF293 THY, ITZ 1.6-3.2, >16° 0.8-1.6, 0.5-1 0.5

"Levels of compound interactions (i.e., changes in MICs) between antifungal drug and chemosensitizer were based on Fractional Inhibitory Concentration Indices
(FICI; Isenberg, 1992), where FICI= (MIC of compound A in combination with compound B/MIC of compound A, alone)+ (MIC of compound B in combination
with compound A/MIC of compound B, alone). Compound interactions were: synergistic (FICI < 0.5), additive (0.5 < FICI< 1), neutral (1 < FICI < 2), or antagonistic
(FICI> 2). If preferred, the Odds’ (2003) methodology can be substituted in parallel calculations of “synergism,” where FICI values <0.5 indicate “synergy” and values
>0.5-4 indicate “indifference.”

?To calculate Fractional Fungicidal Concentration Indices (FFCI), minimum fungicidal concentrations (MFCs) were used. To obtain MFCs, the entire volume of each
microtiter well (200wL), after determination of MICs, was spread onto individual YPD or SDA plates, and cultured for an additional 48 and 72 h. MFC was defined as
the lowest concentration of agent where >99.9% fungal death was achieved. Compound interactions were: synergistic (FFCI < 0.5), additive (0.5 < FFCI < 1), neutral
(1< FFCI < 2) or antagonistic (FFCI> 2; Isenberg, 1992). If preferred, the Odds’ (2003) methodology can be substituted in parallel calculations of “synergism,” where

FFCl values <0.5 indicate “synergy” and values >0.5-4 indicate “indifference.”
3For calculation (FFCI) purpose, 32\.gmL~" (doubling of 16ugmL~") was used.

chemosensitization was detected for lowering MFCs in all fungi
tested (data not shown), indicating the efficacy of chemosensiti-
zation by using 2,3-DHBA plus AMB was at the level of lowering
MIC:s of each agent, only.

Meanwhile, in separate plate bioassays, we exposed A. flavus
CA14 (parental strain) and the A. flavus CAl4msnAA mutant
to 2,3-DHBA plus AMB. Co-application of AMB (2 gmL~!)
and 2,3-DHBA at 20 uM (which is a much lower concentration
compared to that used in the microdilution bioassay above) com-
pletely inhibited the growth of the A. flavus CA14msnAA mutant,
while independent treatment of each compound, at these concen-
trations alone, allowed full (with 2,3-DHBA) to slightly sensitive
(with AMB) growth of this mutant (Data not shown). However,
almost no chemosensitization was achieved in the parental strain
under the same condition (Data not shown). Thus, it appears
that msnA could be an effective antifungal target of redox-potent
drugs/compounds, where disruption of its function enhanced the
antifungal interaction between 2,3-DHBA and AMB.

Chemosensitization of ITZ with SA

We examined the chemosensitizing efficacy of SA, a volatile ben-
zaldehyde analog, to ITZ in A. fumigatus AF293 in plate bioassays.
We reasoned that the volatile characteristic of SA would facili-
tate the development of targeted delivery of this compound to
the infection site, such as pulmonary aspergillosis. Previously,
the growth of Aspergillus was inhibited up to 10-75% by co-
application of volatilized SA with either AntA or strobilurin, both
inhibitors of complex IIT in the MRC (Kim et al., 2011a). We iden-
tified the fungal antioxidant system as one of the molecular targets
of SA, where the model yeast S. cerevisiae sod1A, sod2A, gir1A,
and vph2A mutants showed hypersensitivity to SA (Kim et al,,
2011a).

As shown in Figure 3, combined application of volatile SA (at
37.5-45.0mM) and ITZ (2-3 wgmL™!, incorporated into SDA
media) completely inhibited the growth of A. fumigatus AF293,
while individual treatment of each compound, alone, allowed fun-
gal growth. Therefore, like the chemosensitization of SA to the
MRC inhibitors (Kim et al., 2011a), volatilized SA also enhanced
the antifungal activity of ITZ as a chemosensitizing agent of A.
fumigatus.

CORRELATION BETWEEN ITZ AND t-BuOOH SENSITIVITIES IN
CANDIDA AND CRYPTOCOCCUS

Since positive correlation between the level of drug/compound
sensitivity and antioxidation capacity was identified in the fila-
mentous fungi (see above), we also investigated if such a rela-
tionship occurred in yeast pathogens using ITZ and t-BuOOH.
As shown in Figure 4, C. albicans 90028, CAN276, C. krusei
CAN75, and C. tropicalis CAN286 were relatively more tolerant
(i.e., growth up to the 10° dilution spot) to ITZ compared to
C. krusei 6258 and C. neoformans CN24 (i.e., growth at no cel-
lular dilution only). Noteworthy is that C. krusei 6258 and C.
neoformans CN24, two ITZ-sensitive strains, were also sensitive to
t-BuOOH (Figure 4). This finding indicated there might be a con-
nection between ITZ sensitivity and antioxidation capacity in yeast
pathogens [Our recent data with yeast pathogens also indicated
the positive correlation between AMB sensitivity (of C. albicans
CAN276) and thiol-oxidant sensitivity (Manuscript submitted)].

REDOX-POTENT PHENOLIC COMPOUNDS ACT AS CHEMOSENSITIZERS
TO ANTIFUNGAL DRUGS IN YEAST PATHOGENS

Chemosensitization of AMB with THY

We examined the chemosensitizing efficacy of THY to AMB in six
different yeast pathogens. As shown in Table 4, most of the com-
pound interactions (FICI) between THY and AMB were additive,
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except for C. neoformans CN24, which was a neutral interaction.
The level of MFC was also lowered in C. albicans CAN276 and
C. krusei CAN75, where the FFCI was determined as additive
and synergistic, respectively. Whereas, no chemosensitization was

A No treatment control SA treatment

/ fungus / fungus
B ;
A. fumigatus AF293
SA (mM) SA
0.0 37.5 o ’
7 —
o 2
IS
o
=
N
=

FIGURE 3 | Chemosensitization of itraconazole (ITZ) by salicylaldehyde
(SA). (A) Scheme for chemosensitization of ITZ by SA. For control, DMSO
was used. (B) Fungal plate bioassay showing combined treatment of SA
(37.5-45.0mM, spotted on Whatman™filter paper) and ITZ [2-3 pgmL~",
incorporated into Sabouraud dextrose agar (SDA) medium] completely
inhibited the growth of Aspergillus fumigatus AF293, while individual
treatment of each compound, alone, at the same concentrations allowed
the growth of fungi.

achieved in other strains for lowering the MFCs. We concluded
that C. albicans CAN276 and C. krusei CAN75 were the most
sensitive/responsive strains for this chemosensitization.

Chemosensitization of ITZ with 2,3-DHBA

Next, we investigated the chemosensitizing activity of 2,3-DHBA
to ITZ (see Microtiter Plate (Microdilution) Bioassay: Yeasts
for concentrations) in yeast pathogens. The compound interac-
tions (FICI) between the two compounds in C. albicans 90028,
CAN276 and C. tropicalis CAN286 were synergistic to additive
(0.5 < FICI < 0.6), while those of the remaining yeasts were neu-
tral (Data not shown). No chemosensitization was achieved in any
of the strains for lowering MFCs, indicating that, compared to
other chemosensitization tests (see above), co-application of 2,3-
DHBA and ITZ resulted in limited chemosensitizing efficacy, i.e.,
chemosensitization in three yeast pathogens for lowering MICs
only (Data not shown).

INHIBITION OF COMPLEX 11l OF THE MRC: ALTERNATIVE OXIDATIVE
STRESS TARGET FOR CONTROL OF YEAST PATHOGENS

We examined the antifungal efficacy of three inhibitors of complex
III of the MRG, i.e., AntA and strobilurins (Kre-Me, PCS), in four
clinical yeast isolates to investigate whether yeast pathogens could

ITZ t-BuOOH

(1.0 ug mL*") (1.5 mM)
10°10102101010° 10°10™10210°10*10° 10°10°10210310*10°
C. albicans 90028 X X X X X
C. albicans CAN276 { X X ]
C. krusei 6258 1 |
C. krusei CAN75 K X ]
C. tropicalis CAN286 & L J

C. neoformans CN24 [l X J

No treatment

FIGURE 4 | Phenotypic responses of yeast pathogens to itraconazole
(ITZ) and tert-butyl hydroperoxide (t-BuOOH). Results showed that
Candida krusei 6258 and Cryptococcus neoformans CN24, two
|ITZ-sensitive strains, were also sensitive to t-BuOOH, indicating the
correlation between ITZ toxicity and oxidative stress. Results shown here
are representative data from the treatment with 1.0 ugmL~" of ITZ and
1.5mM of t-BuOOH, respectively.

Table 4 | Chemosensitization of amphotericin B (AMB; jvg mL~1) with thymol (THY; mM) tested in yeast pathogens.

Strains Compounds MIC alone MIC combined FiCI
C. albicans ATCC 90028 THY, AMB 0.8-1.6, 1-2 0.4-0.8, 0.125-0.25 0.6
C. albicans CAN276 THY, AMB 0.8-1.6, 0.5-1 0.4-0.8, 0.125-0.25 0.8
C. tropicalis CAN286 THY, AMB 0.8-1.6, 1-2 0.4-0.8, 0.25-0.5 0.8
C. krusei ATCC 6258 THY, AMB 0.8-1.6, 1-2 0.4-0.8, 0.5-1 1.0
C. krusei CAN75 THY, AMB 0.8-1.6, 1-2 0.4-0.8, 0.5-1 1.0
Cryptococcus neoformans CN24 THY, AMB 0.4-0.8, 1-2 0.4-0.8, 1-2 2.0
Strains Compounds MFC alone MFC combined FFCI?
C. albicans CAN276 THY, AMB 0.8-1.6, 1-2 0.4-0.8, 0.5-1 1.0
C. krusei CAN75 THY, AMB 1.6-3.2,2-4 0.8-1.6, 0-0.125 0.5

"2 See footnotes of Table 3 for calculations.
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also be chemosensitized by 2,3-DHBA to increase vulnerability to
the complex III inhibitors.

As shown in Figure 5A (i.e., yeast dilution bioassay on SG agar
containing 100 g mL~! of MRC inhibitors), C. neoformans CN24
was relatively more innately sensitive to the MRC inhibitors com-
pared to other pathogens. Results indicated disruption of complex
III of MRC, alone, could be an effective strategy for control of C.
neoformans CN24. The remaining three pathogens, relatively tol-
erant to the complex III inhibitors, were further examined for
chemosensitization with 2,3-DHBA in plate bioassays.

Disruption of complex IIT of the MRC results in an abnormal
release of electrons that additionally damage cellular components
by oxidative stress (Takimoto et al., 1999). Therefore, antioxidant
enzymes, such as Mn-SOD, play important roles in protecting
cells from oxidative damage caused by MRC inhibitors. However,
when fungal cells are treated with redox-potent chemosensitizers,
cellular demand for Mn-SOD will continuously increase as more
and more oxidative stress is applied. In this situation, the lev-
els of antioxidant capacity in fungi, such as antioxidant enzymes,
would not be sufficient for detoxifying the concerted activities of
multiple oxidative stressors (e.g., MRC inhibitors/oxidative stress
drug + redox-potent chemosensitizer), resulting in increased inhi-
bition of fungal growth. Hence, we surmised redox-potent ben-
zaldehydes could be useful chemosensitizing agents also in yeast
pathogens when co-applied with the complex III inhibitors of the

MRC. We used 2,3-DHBA as a representative molecule for this
chemosensitization.

As shown in Figure 5B, co-application of 2,3-DHBA (0.1 mM)
and PCS (100 pgmL~!) enhanced growth inhibition of C. albi-
cans CAN276 and C. tropicalis CAN286 compared to the control,
while C. krusei CAN75 maintained robust growth under the same
condition. Thus, C. krusei CAN75 seemed to be more tolerant to
chemosensitization by 2,3-DHBA (A relatively lackluster response
of C. krusei CAN75 to 2,3-DHBA chemosensitization was also
observed above, with ITZ). However, slight enhancement [i.e., a
10-fold increase in number of yeast cells needed to survive (one
cellular dilution less)] of growth inhibition of C. krusei CAN75
was achieved by increasing the concentration of 2,3-DHBA to
0.4 mM (see Figure 5B). In summary, these results indicated that:
(1) The MRC (e.g., complex III) could be an alternative oxidative
stress target for yeast pathogens, (2) Benzaldehyde analogs, such
as 2,3-DHBA, could be developed as potent chemosensitizers in
yeasts, especially with MRC inhibitors, and (3) Fungal sensitivity
to chemosensitization (i.e., with 2,3-DHBA plus PCS), is strain
specific, wherein C. krusei CAN75 was least sensitive.

DISCUSSION

Cellular antioxidant systems of fungi appear to be promising
targets of redox-potent natural phenolics for control of fungal
pathogens. The natural phenolics studied, in vitro, targeted MAPK

A No treatment AntA

10°1010210%10410°

CN24 i XK N X I

CAN75
CAN276
CAN286

g0

B No treatment PCS

FIGURE 5 | Chemosensitization of pyraclostrobin (PCS), an inhibitor for
complex Il in mitochondrial respiratory chain (MRC) with
2,3-dihydroxybenzaldehyde (2,3-DHBA) in yeast pathogens. (A)
Cryptococcus neoformans CN24 was relatively more sensitive to MRC
inhibitors (100 g mL~") compared to other pathogens (Candida albicans

10°1010210%10410° 10°1010210*10410°

10°10™0210°1010° 10°1010210*10410° 10°10™10210°*10*10° 10°10-10210°10410°
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® 2 00005

eesfl®%00se

PCS +
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2,3-DHBA
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CAN276, C. krusei CAN75, C. tropicalis CAN286). (B) Co-application of
2,3-DHBA (0.1 mM) and PCS (100 ug mL~") enhanced the inhibition of the
growth of C. albicans CAN276 and C. tropicalis CAN286, while similar type of
growth inhibition of C. krusei CAN75 could be achieved by increasing the
concentration of 2,3-DHBA up to 0.4 mM.
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signaling and/or the antioxidant enzymes, Cu, Zn-SOD, Mn-SOD,
or glutathione reductase. THY further targeted the vacuolar sys-
tem, such as VPH2 and VMAI, as examined in S. cerevisiae. Also,
THY or benzaldehyde analogs, such as 2,3-DHBA and SA, can
be used as potent chemosensitizing agents to enhance antifungal
activity of AMB, ITZ, or PCS.

A. fumigatus MAPK (sakA, mpkC) and A. flavus msnA gene
deletion mutants were sensitive to organic and hydrogen perox-
ides. This common sensitivity indicates that msnA, a gene regulator
downstream of the MAPKSs sakA and mpkC, and these MAPKs, are
all located in the same stress response network under t-BuOOH or
H, O, stress. Also confirmed was that oxidative stress is one of the
contributing mechanisms of toxicities of AMB and ITZ in fungal
pathogens. In A. fumigatus, SakA appeared to play a more impor-
tant role for fungal tolerance to ITZ and/or AMB than MpkC,
the deletion mutant of which was relatively insensitive to these
drugs. Meanwhile, in the yeast pathogens, ITZ-sensitive strains
(i.e., C. krusei 6258, C. neoformans CN24) were also sensitive to ¢-
BuOOH. Thus, results indicated that the level of sensitivity (and/or
tolerance) to oxidative stress drugs was correlated with the antiox-
idant capacity of fungal pathogens (both in ascomycetous and
basidiomycetous fungi).

Involvement of stress response signaling systems in drug resis-
tance has been previously documented in fungal pathogens. For
example, the heat shock protein Hsp90, an essential molecular
chaperone regulating cell signaling, was shown to govern azole
drug resistance of C. albicans either in planktonic or biofilm con-
ditions (LaFayette et al., 2010; Robbins et al., 2011). In the case
of Hsp90, its inhibition/depletion resulted in reduction of cal-
cineurin and the terminal cell wall integrity MAPK, Mkcl, in
planktonic conditions, whereas marked decrease in matrix glucan
levels occurred in biofilms (LaFayette et al., 2010; Robbins et al.,
2011). The Mkcl-mediated pathway is also activated in response
to oxidative stress (de Dios et al., 2010 and references therein).
Like the SakA shown in our study, another Hogl pathway compo-
nent, i.e., Hrkl (Hogl-regulated kinase 1) of C. neoformans was
recently shown to be involved in the response to azole drug treat-
ment (Kim etal., 2011b). Also, ROS-inducing effect of miconazole,
and involvement of SODs of C. albicans in biofilm persistence
against miconazole (Vandenbosch et al., 2010; Bink et al., 2011)
were recently reported, further demonstrating the role of fungal
antioxidant system such as SODs in drug resistance.

We also found differences in effects of tested compounds
depending upon (1) types of mutation in the antioxidant sys-
tem (i.e., MsnA or MAPK gene deletions) and (2) types of drugs.
For example, Aspergillus deletion mutants for sakA or msnA genes
were hypersensitive to AMB (Figure 1), while the A. flavus msnAA
mutant was less sensitive to ITZ compared to the A. fumigatus
sakAA mutant. Presumably, regulator(s) other than MsnA might
be involved in fungal response/tolerance to ITZ. Regarding the
AMB sensitivity of both sakAA and msnAA mutants of Aspergillus,
S. cerevisiae could serve as a model for explaining their sensi-
tive phenotype. In S. cerevisiae, functional interaction between
the HOG signaling system and Msn2p (and Msn4p, which is a
Msn2p analog) under oxidative stress has been well documented
(Gorner et al., 1998; O’Rourke et al., 2002 and references therein).
Thus, functions of Hoglp and Msn2p/Msn4p are tightly linked

under stress conditions. Considering SakA in A. fumigatus is an
orthologous protein to Hoglp of S. cerevisiae, a similar phenom-
enon might also occur with the treatment of AMB in filamentous
fungal pathogens.

We observed similar levels of sensitivity in both Aspergillus
msnAA and A. fumigatus sakA A mutants to redox-potent phenolic
compounds. These similar responses indicated that the signal-
ing route through “SakA-MsnA” might also be governing fungal
response to redox-potent phenolics, such as 2,3-DHBA and THY
in Aspergillus (Table 2). A recent study showed significant changes
occurred in transcription levels of environmental stress response
genes of S. cerevisiae treated with THY (Bi et al., 2010). More-
over, these environmental stress genes are mainly controlled by
Msn2p/Msn4p transcription factors. These results from S. cere-
visiae agree with our findings of the hypersensitivity of the A.
flavus msnAA mutant. Msn2p/Msn4p-regulated genes contain
one or more stress response element (STRE) motifs in their pro-
moter regions (Bi et al., 2010), further emphasizing the impor-
tant roles of MsnA and/or Msn2p/Msn4p in fungal tolerance to
THY.

We also demonstrated the chemosensitization of fungal
pathogens to conventional drugs by redox-potent phenolic com-
pounds. We found that THY was a better chemosensitizing agent
than 2,3-DHBA in combination with ITZ or AMB. All results with
THY, in both filamentous fungi and yeasts, had lowered MFCs of
drugs/compounds. Whereas, the least effective chemosensitization
was found with 2,3-DHBA plus ITZ. Therefore, there were some
unique interrelationships between levels of fungal response and
types of chemosensitizers applied. C. neoformans CN24 was the
least sensitive strain to any chemosensitization examined in our
test. THY also possessed intrinsic antifungal activity when treated
alone (Pinto et al., 2006). However, chemosensitization strategy
can lower dosages of THY required for effective control of fungi,
as shown in this study.

Fungi could also be sensitized by compounds and antifun-
gal agents that are inhibitor(s) of complex III of the MRC. We
were able to demonstrate this with 2,3-DHBA in yeast pathogens.
However, there is differential fungal strain sensitivity to chemosen-
sizers/MRC inhibitors (e.g., the low sensitivity of C. krusei CAN75
to 2,3-DHBA plus PCS). Accordingly, doses and/or types of MRC
inhibitors or chemosensitizers should be precisely determined
for effective control of fungi in the future. Noteworthy is that
artemisinin, the wormwood herb used as an antimalarial drug,
was recently shown to inhibit the growth of S. cerevisige. In this
case, mitochondrial respiration stimulates the effect of this drug,
and the mitochondria are subsequently damaged (i.e., depolariza-
tion of mitochondrial membrane) by the ROS generated locally
(Li et al., 2005).

In conclusion, cellular antioxidant systems can serve as promis-
ing molecular targets of redox-potent phenolics for control of
fungi. Benzaldehyde analogs, such as 2,3-DHBA, SA, etc., or
THY can be developed as chemosensitizing agents to enhance
the efficacy of antifungal drugs. Future studies are needed for
comprehensive determination of optimum chemosensitization in
different fungal pathogens by including additional redox-potent
compounds. Further in vivo studies are also warranted to deter-
mine if the activities shown in this in vitro study can translate
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into a clinically effective therapeutic strategy for control of fungal

pathogens.
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