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A remarkable number of microbial cells have been enumerated within subseafloor sedi-
ments, suggesting a biological impact on geochemical processes in the subseafloor habitat.
However, the metabolically active fraction of these populations is largely uncharacterized.
In this study, an RNA-based molecular approach was used to determine the diversity and
community structure of metabolically active bacterial populations in the upper sedimen-
tary formation of the Nankai Trough seismogenic zone. Samples used in this study were
collected from the slope apron sediment overlying the accretionary prism at Site C0004
during the Integrated Ocean Drilling Program Expedition 316. The sediments represented
microbial habitats above, within, and below the sulfate–methane transition zone (SMTZ),
which was observed approximately 20 m below the seafloor (mbsf). Small subunit riboso-
mal RNA were extracted, quantified, amplified, and sequenced using high-throughput 454
pyrosequencing, indicating the occurrence of metabolically active bacterial populations to
a depth of 57 mbsf.Transcript abundance and bacterial diversity decreased with increasing
depth. The two communities below the SMTZ were similar at the phylum level, however
only a 24% overlap was observed at the genus level. Active bacterial community composi-
tion was not confined to geochemically predicted redox stratification despite the deepest
sample being more than 50 m below the oxic/anoxic interface. Genus-level classification
suggested that the metabolically active subseafloor bacterial populations had similarities to
previously cultured organisms. This allowed predictions of physiological potential, expand-
ing understanding of the subseafloor microbial ecosystem. Unique community structures
suggest very diverse active populations compared to previous DNA-based diversity esti-
mates, providing more support for enhancing community characterizations using more
advanced sequencing techniques.
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INTRODUCTION
Microbial populations in subseafloor sediments on the global con-
tinental margins account for one tenth to one third of the total
biomass on Earth (Whitman et al., 1998; Parkes et al., 2000; Lipp
et al., 2008). Although microbial populations have been detected
ubiquitously in the marine subseafloor environment, the diver-
sity, activity, metabolic processes, and interactions with geochem-
istry are still largely unknown (D’Hondt et al., 2007; Bach et al.,
2010). Microbial processes in the marine subsurface are poten-
tially significant to global carbon and nutrient cycles (Whiticar,
1999; D’Hondt et al., 2002) and provide relevant analogs to the

emerging astrobiology field (Gold, 1992; Chapelle et al., 2002).
To better understand the subseafloor biosphere, the Integrated
Ocean Drilling Program (IODP) has made microbiology and
biogeochemistry a prominent initiative on recent drilling expedi-
tions recognizing the broad scientific benefit (Bickle et al., 2011).
Microbiological samples were collected during the IODP Nankai
Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedi-
tion 316. The expedition provided an opportunity to advance the
understanding of the subseafloor biosphere in an active crustal
seismogenic zone characterized by large-scale earthquake- and
tsunami-genesis (Kimura et al., 2008).
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The sulfate–methane transition zone (SMTZ) represents a dis-
tinct geochemical demarcation within the marine subseafloor
(Iversen and Jørgensen, 1985; D’Hondt et al., 2002). Geochemistry
predicts a thermodynamic driven stratification of the associated
microbial community structure within this zone (D’Hondt et al.,
2004; Parkes et al., 2005; Inagaki et al., 2006). While some microbial
processes associated with the SMTZ have been previously exam-
ined (Parkes et al., 2005; Biddle et al., 2006), recent findings suggest
that microbial activity may not be as restricted as predicted by
redox potential (Orcutt et al., 2011). Geochemical descriptions of
microbial activity rely on the consumption or production of mea-
surable compounds. Transformations of such compounds may be
undetectable using standard geochemical analysis if the end prod-
ucts of the reactions are consumed by a secondary reaction. For
example, sulfur-related cryptic cycles have been previously noted
in the oxygen minimum zone off the Chilean coast where sulfur
is being reduced but rapidly re-oxidized leaving no geochemi-
cal marker of the reduction pathway (Canfield et al., 2010). The
active reduction pathway was determined by molecular analysis
active sulfate reducing bacteria. Therefore, molecular characteriza-
tions of metabolically active microbial populations is necessary to
determine these geochemically cryptic cycles and provide a better
understanding of the subsurface biosphere.

Previous analyses of subseafloor microbial populations have
targeted ribosomal RNA genes (DNA-based) to describe the total
microbial community, which includes metabolically active pop-
ulations as well as potentially dormant and/or dead cells (e.g.,
Newberry et al., 2004; Inagaki et al., 2006; Polymenakou et al.,
2009). DNA-based studies reported few shifts in microbial pop-
ulation structure associated with varying geochemical conditions
(Parkes et al., 2005). Metagenomic analyses have observed shifts
with depth in gene abundance associated with sulfur metabolism
but lacked variability in genes associated with methanogenesis
despite a pronounced SMTZ (Biddle et al., 2008). DNA-based
analysis of microbial communities within the subseafloor, as in
other environments, may detect dormant or extremely low meta-
bolically active populations in the natural environment and thus
may not correspond with observed geochemistry (Davis et al.,
1986).

In contrast, the ribosomal RNA transcripts (RNA-based) can be
used to describe the metabolically active community, providing a
better link to the geochemistry. Detection of rRNA transcripts have
been correlated to reproducing cells (Neidhardt and Magasanik,
1960) as they rapidly degrade upon cell dormancy or death (Davis
et al., 1986). Two previous molecular studies analyzed metaboli-
cally active Archaea using cloning and Sanger sequencing of RNA
targets (Biddle et al., 2006; Sørensen and Teske, 2006), however a
detailed description of the active bacterial population using more
robust techniques is lacking. Recent advances in pyrosequencing
technologies have increased the accuracy and decreased the associ-
ated costs, providing access to the depth of sequencing required to
more adequately sample environmental microbial diversity com-
pared to previous methods, such as cloning (Edwards et al., 2006;
Sogin et al., 2006; Liu et al., 2008). The authors recognize that
this method does not eliminate PCR amplification biases com-
mon with cloning and Sanger based sequencing. This study is the
first report to utilize high-throughput sequencing of RNA targets

from the marine subseafloor providing a novel analysis of the
metabolically active and ecologically relevant bacterial community
structure and function.

This study advances current understanding of subseafloor
microbial communities by characterizing the metabolically active
bacterial populations surrounding and within the SMTZ in the
Nankai Trough subseafloor sediments. Structural diversity of
the active community was used to interpret potential metabolic
function and was compared to measured geochemical concentra-
tions. We hypothesized that the functional diversity of subseafloor
microbial populations will exceed the observed geochemically
predicted zones as some carbon and nutrient measured below
detection limits. Therefore, RNA characterizations of microbial
communities will provide a more informative description of envi-
ronmental microbial ecology than DNA or geochemical-based
methods alone.

MATERIALS AND METHODS
SITE AND SAMPLE DESCRIPTION
Sediment samples were obtained during IODP Expedition 316
from Site C0004 in the Nankai Trough, located approximately 63
nautical miles southeast from the city of Shingu off the Kii Penin-
sula of Japan (see Kinoshita et al., 2009 for IODP Expedition 316
Site Map). A detailed geological description of this area is avail-
able as part of the IODP site description report (Kimura et al.,
2008). Site C0004 Hole C (33˚13.0′N, 136˚43.0′E) was drilled on
December 20, 2008 using the hydraulic piston coring system. Core
sediments were processed less than 1 h after core recovery (Kimura
et al., 2008; Strasser et al., 2009, 2011). Whole round cores were
sectioned, immediately stored at −80˚C for preservation of both
RNA and DNA, and were shipped to the Mills laboratory on dry
ice. Samples from three different depths of 1, 19, and 57 m below
sea floor (mbsf) were selected for RNA and geochemical analysis
surrounding and within the SMTZ.

GEOCHEMICAL ANALYSES
Standard shipboard operations obtained concentrations of
methane, sulfate, and iron (Fe2+; Kimura et al., 2008). To assess
the amount of iron sulfide minerals in these sediments, chromium
reducible sulfur (CRS = FeS2, S0 and remaining part of Fe3S4)
concentrations were determined by treating samples of approxi-
mately 0.5 g with the two-step acid Cr (II) method (Fossing and
Jørgensen, 1989). Trapped sulfide was analyzed by the methylene
blue method (Cline, 1969).

CELL COUNTS
Cells were stained with SYBR Green I and then enumerated by flu-
orescent image-based cell count technique (Morono et al., 2009)
using an automated slide-loader system (Morono et al., 2009;
Morono and Inagaki, 2010).

NUCLEIC ACID EXTRACTION AND REVERSE TRANSCRIPTION-PCR
Microbial SSU ribosomal RNA (rRNA) was extracted from
approximately 0.5 g of sediment from the center of a whole round
core using the Mills Extraction Method as described in Mills et al.
(2008). Extraction controls containing no sediment were per-
formed simultaneously with environmental samples to confirm
lack of contamination during the extraction process.
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All incubation steps during the reverse transcription (RT)-PCR
were conducted on a Veriti 96-well Fast Thermal Cycling System
(Applied Biosystems, Foster City, CA, USA). Ribosomal RNA was
reverse transcribed to cDNA using the Moloney murine leukemia
virus (M-MLV) reverse transcriptase and Bacteria domain spe-
cific Small subunit ribosomal RNA (SSU rRNA) reverse primer
518R (Nogales et al., 1999). RNA was incubated at 65˚C for 5 min
followed by an incubation of both RNA extract and primer at
70˚C for 5 min. The total RT-PCR reaction mixture [1X M-MLV
buffer containing 50 mM Tris–HCl, 3 mM MgCl2, 75 mM KCl, and
10 mM DTT (Promega, USA), 10 mM deoxynucleotide triphos-
phate solution mix (New England Biolabs, USA), 1 U of M-MLV
enzyme (Promega, USA), and molecular grade water] was incu-
bated at 37˚C for 60 min. PCR amplification of cDNA used Bacteria
domain specific SSU rRNA forward primer 27F (Giovannoni,
1991) and reverse primer 518R (Nogales et al., 1999). This frag-
ment of the 16S rRNA gene includes the hypervariable V3 region.
The reaction mixture was as follows: 1× buffer [10 mM KCl,
10 mM (NH4)2 SO4, 20 mM Tris–HCl, 2 mM Mg SO4, 0.1% Tri-
ton X-100; New England Biolabs, USA], 10 mM deoxynucleotide
triphosphate solution mix (New England Biolabs, USA), 1 U of
Taq DNA Polymerase (New England Biolabs, USA), and molecu-
lar grade water. Thermal cycling conditions were 95˚C for 5 min,
40 cycles of 95˚C for 30 s, 50˚C for 30 s, and 72˚C for 30 s with
a final extension of 72˚C for 10 min. Amplicons were visualized
by gel electrophoresis on 0.7% agarose gels, stained with ethidium
bromide, and illuminated by UV exposure. DNA contamination of
RNA extracts was determined by omitting the RT step. No ampli-
fiable DNA remained in RNA extracts. Standard negative controls
for the RT and PCR steps were also incorporated, both indicated
no contamination of the reactions.

QUANTITATIVE RT-PCR
To quantify the bacterial SSU rRNA transcripts, a series of stan-
dards were amplified from purified pure culture bacterial SSU
rRNA gene amplicons. The PCR product was obtained using
primers 331F and 797R (Nadkarni et al., 2002). Amplicon size was
confirmed by gel electrophoresis. PCR purification was completed
using the QIAquick PCR purification kit (Qiagen, Valencia, CA,
USA) according to the manufacturer’s instructions. The concen-
tration of standards was determined on a NanoDrop 1000 Spec-
trophotometer (Thermo Scientific, Waltham, MA, USA). Copy
number was calculated assuming a molecular mass of 660 Da for
a base pair of DNA and using the following formula: Copy Num-
ber = [6.023 × 1023 (bp mol−1 bp−1) × concentration of stan-
dard (ng μL−1)]/[PCR Product Size (bp gene copy−1) × 1 × 109

(ng g−1) × 660 (g mol−1 bp−1)] (Mattes and Jin, 2010). Standard
concentrations ranged over five orders of magnitude from 2.6 to
2.6 × 104 copies μL−1 and were amplified in triplicate during Q-
PCR. Environmental samples and extract controls were reverse
transcribed as described above using the 797R primer and was Q-
PCR amplified from two dilutions, 1× and 1/100× of the reverse
transcribed product, in duplicate. All samples were amplified using
the primers 331F and 797R and TaqMan probe BacTaq (Nadkarni
et al., 2002). Manufacturers suggested Q-PCR reaction mixes were
used with thermal cycling conditions as follows: initial warming
step at 50˚C for 2 min, a denaturation step at 95˚C for 10 min

followed by 40 cycles of 95˚C for 30 s, 52˚C for 1 min, 65˚C for
30 s, and a final extension step at 65˚C for 6 min. The quantification
and data analysis was conducted using a StepOnePlus Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA1) and the
StepOne Software 2.0 (Applied Biosystems, Foster City, CA, USA).
Baseline and C t values were automatically selected by the provided
software and visually verified by the user.

PYROSEQUENCING AND SEQUENCE ANALYSIS
Sequences were obtained from two dilutions of cDNA reverse tran-
scribed from a single RNA extract. The dilutions were sequenced
as described below with the libraries combined after the sequences
were quality checked. Pyrosequencing, including initial amplifica-
tion of the cDNA with primers containing unique sequence iden-
tifiers, was conducted at the Medical Biofilm Research Institute
(Research and Testing Laboratory, Lubbock, TX, USA) according
to standard laboratory procedures using a 454 FLX Sequencer (454
Life Sciences, Branford, CT, USA). Pyrosequencing conditions are
routinely optimized by the Research and Testing Laboratory to
limit multiple strand attachment. Long homopolymer regions can
be misread by 454 (Jones, 2010), however such misreads are less
problematic for SSU rRNA analysis. Resulting sequences were first
de-noised and then individual sequences were parsed the into sam-
ple specific libraries. Libraries were screened for reads less than 200
bases, reads lacking a Roche-designed four base key sequence, and
non-bacterial reads lacking specific 28F primer recognition site.
Chimera detection was completed using the Chimera Slayer sys-
tem adapted for the Mothur Program (Schloss et al., 2009; Haas
et al., 2011). Sequences were uploaded to the National Center for
Biotechnology Information Sequence Read Archive (NCBI-SRA)
under accession number SRA049352.

Phylogenetic analyses were conducted on the combined
sequence data sets to reduce the potential for RT-PCR and pyrose-
quencing biases. Sequences were aligned using the Ribosomal
Database Project (RDP) Pyrosequencing Aligner tool, which is
based on Infernal aligner (Nawrocki and Eddy, 2007). Sequences
were clustered at a 95% sequence similarity using farthest-
neighbor method on the RDP Complete Linkage Clustering pro-
gram available on the RDP pyrosequencing pipeline2 (Cole et al.,
2009) and verified using the Mothur Program3 (Schloss et al.,
2009). Taxonomic classification of the sequences was completed
using the NET Network Distributed Basic Local Alignment Search
Toolkit (W.ND-BLAST) program (Dowd et al., 2005) and ran-
domly checked against the Basic Local Alignment Search Tool
(BLAST) pipeline through National Center for Biotechnology
Information (NCBI) database. The highest classification level with
a confidence interval greater than 80% was used in downstream
analysis. Genera identified by more then 1% of the sequence data
set at a given depth were used in community functional group
characterization.

Diversity indices including Shannon, Chao1, and rarefaction
were calculated from the 95% similarity operational taxonomic
units (OTU) defined by the RDP clustering at. Comparison of

1www.appliedbiosystems.com
2http://pyro.cme.msu.edu/
3http://www.mothur.org/wiki/Main_Page
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OTUs that were absent or present between samples was completed
using the shared OTU and Venn diagram systems in the mothur
program (Schloss et al., 2009).

The authors acknowledge and have taken steps to limit potential
for bias associated with extraction, amplification, and sequencing
of SSU rRNA from marine sediments. The authors recognize that
the use of one primer set may reduce the detection of overall diver-
sity. Multiple sediment samples at each depth were combined to
limit effects of community and sediment chemistry heterogene-
ity. PCR and Q-PCR cycling conditions were optimized for the
specific reagents to reduce effects of mis-priming, primer–dimer
formation, unequal amplification efficiency of template, and the
potential formation of chimeric sequence formation. In addition,
amplicons were obtained from two dilutions of cDNA and com-
bined according to depth reduce the potential for RT-PCR biases.
Despite the biases inherent with molecular studies, the steps taken
to reduce the effect of these biases have produced a data set that
is comparable to previous studies and is of sufficient quality for
future comparisons.

STATISTICAL ANALYSIS
Geochemical data was correlated to phylogenetic profiles through
Singular value decomposition (SVD) and principal component
analysis (PCA) using Microsoft Excel Pop Tools. Geochemical and
phylogenetic data was first transformed using either chi-square or
arcsine statistical tests, where appropriate, and normalized prior
to SVD and PCA analyses. Statistical significance (p < 0.01) was
determined using the Monte Carlo significance test with 10,000
iterations.

RESULTS
SITE DESCRIPTION
Site C0004 Hole C was located on the slope of the accretionary
prism in the Nankai Trough, over an active megasplay fault that
has repeatedly caused episodic earthquakes and tsunamis (Strasser
et al., 2009). Water depth at Site C0004 Hole C was 2,627 m. A total
of 403 m of sediment core was retrieved during IODP Expedition
316. In this study, sediment samples were selected from above,
within, and below the SMTZ (1, 19, and 57 mbsf, respectively) in
the upper sedimentary unit of the slope apron overlying the accre-
tionary prism (i.e., Lithologic Unit I, 0–78.08 mbsf). The sediment
samples are mainly composed of nannofossil-rich hemi-pelagic
mud (Strasser et al., 2009).

GEOCHEMICAL PROFILES
Pore water geochemical characteristics for sediments at Site C0004
were determined onboard during IODP Expedition 316 (Kimura
et al., 2008). Sulfate and methane concentration profiles showed
that the SMTZ was located between 18.5 and 22.9 mbsf (Figure 1).
The sulfate concentration was 25.3 mM at 2.7 mbsf and decreased
with increasing depth down to below detection limits at 22.9 mbsf
(Figure 1). Methane concentrations increased three orders of mag-
nitude from an initial 1.8 × 10−3 mM at 1.4 mbsf to 1.4 mM at
18.5 mbsf and continued to increase to a maximum concentration
of 9.7 mM at 35.3 mbsf (Figure 1). The Fe (II) concentration was
2.5 μM at 1 mbsf but then remained less than 1.0 μM until approx-
imately 48.6 mbsf where it began to increase to a concentration of

FIGURE 1 | (A) Concentration of SO2−
4 in millimolar and CH4 in millimolar

with depth to 60 mbsf. (B) Concentration of Fe2+ (μM) and iron sulfides,
determined as chromium reducible sulfur (CRS; μmol g−1), with depth to
60 mbsf.

4.7 μM at 59.5 mbsf (Figure 1). The amount of iron sulfide phases
(determined by CRS) increased from 78.1 μmol g−1 at 2.8 mbsf
and to a maximum of 428.4 μmol g−1 at 29.5 mbsf. Below this
depth the concentration of iron sulfides decreases consistently
down to 99.4 μmol g−1 at approximately 59.5 mbsf (Figure 1).

CELL ABUNDANCE AND QUANTIFICATION OF BACTERIAL SSU rRNA
Cell abundance in sediment at 1 mbsf was 3.4 × 107 cells cm−3

and decreased approximately two orders of magnitude to
1.3 × 105 cells cm−3 at both the 19- and 57-mbsf sampling depths.
The trend of cell concentration matched the yield of SSU rRNA
gene transcript. Quantitative real-time PCR analyses showed that
the bacterial SSU cDNA reverse transcribed from Hole C0004C
sediment RNA extracts were estimated to be 6.5 × 106 copies g−1

in the 1.0-mbsf sample and 3.3 × 103 copies g−1 at 19 mbsf and
9.0 × 104 copies g−1 at 57 mbsf. The ratio of transcripts per cell
increases at the lowest depth from 0.19 at 1 mbsf to 0.03 at 19 mbsf
to 0.69 at 57 mbsf.

BACTERIAL COMMUNITY STRUCTURE
Pyrosequencing of reverse transcribed bacterial SSU rRNA gene
transcripts from the metabolically active fraction of the total
microbial community resulted in a total of 12,020 sequences with
an average length of 426 base pairs (Table 1). Two different species
diversity indices were calculated from the pyrosequencing data.
For sample depths 1, 19, and 57 mbsf, Shannon diversity index
calculated values of 6.32, 3.02, and 3.13 and Chao1 index calcu-
lated values of 2,638, 67, 90, respectively (Table 1). The rarefaction
curve generated for the 1-mbsf sample did not indicate exhaus-
tive sampling of the sequence data set whereas the rarefaction
curves generated from the 19- and 57-mbsf libraries indicated that
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Table 1 | Summary of sequence analysis data Nankai Site C0004

Hole C.

Sample Library

size

Number of

OTUs

Shannon (H ′) Chao1

RDP Mothur

All depths 12,020 1,624 1,531 5.41 ± 4.1 × 10−4 2,737 ± 232

1 mbsf 6,152 1,532 1,448 6.32 ± 4.3 × 10−4 2,638 ± 234

19 mbsf 2,012 54 59 3.02 ± 5.1 × 10−4 67 ± 34

57 mbsf 3,856 81 80 3.13 ± 4.6 × 10−4 90 ± 23

FIGURE 2 | Rarefaction analysis based on pyrosequencing of

community bacterial SSU rRNA from 1, 20, and 57 mbsf. Sequences
with 95% sequence similarity were combined as a single OTU. These data
indicate that the sampling effort at 19 and 57 mbsf adequately represents
the phylogenetic diversity of the population. Although additional
sequencing would be required to fully annotate the entire diversity of the
bacterial population at 1 mbsf, sufficient data have been collected to make
conclusions regarding the more frequently detected lineages.

sequencing efforts sufficiently represented the detectable diver-
sity of the community based on the methods used in this study
(Figure 2). Comparison of OTUs observed between those depths
showed that 1.3% of OTUs were shared between 1 and 19 mbsf,
1.2% of OTUs were shared between 1 and 57 mbsf, and 23.6% of
OTUs were shared between 19 and 57 mbsf (Figure 3).

Phylogenetic analysis detected 18 unique phyla (Figure 4). At
all depths sampled, Proteobacteria had the highest sequence abun-
dance (68.4, 49.8, and 58.6% of total sequences obtained from 1,
19, and 57 mbsf, respectively). Additional lineages detected and
their associated sequence detection frequency at 1 mbsf included
Chloroflexi (10.3%), Cyanobacteria (5.3%), Bacteroidetes (3.8%),
Deferribacteres (3.0%), Actinobacteria (2.0%), and Firmicutes
(1.7%; Figure 4). A shift in community composition occurred
between the 1 mbsf and the 19 and 57 mbsf depth ranges.

FIGURE 3 | Venn diagram comparing OTUs shared by and unique to

the 1, 19, and 57 mbsf sampling depths. Sequences with 95% sequence
similarity were combined as a single OTU. These data indicate that the
bacterial diversity at 1 mbsf is greater than at 19 and 57 msbf. Although the
abundance of OTUs at 19 and 57 mbsf is similar only 24% are shared
between depths.

FIGURE 4 | Combined bacterial diversity at the phylum level based on

small subunit ribosomal (SSU rRNA) at 1, 19, and 57 m below the

seafloor (mbsf) from PCR amplicons at 1× and 1/10× dilutions. The
phylum Proteobacteria is separated into the classes Alphaproteobacteria,
Betaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, and
Gammaproteobacteria. The presence and abundance of different phyla
varied between depths and treatments.The majority of the sequences were
contained within the Proteobacteria, Bacteroidetes, and Firmicutes phyla.

In the 19- and 57-mbsf depths the majority of non-
Proteobacteria sequences were related to the Firmicutes (46.8,
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37.0%) phyla while the phyla Chloroflexi, Cyanobacteria, Bac-
teroidetes, and Deferribacteres individually represented less than
0.5% of the sequences obtained in both samples or were not
observed (Figure 4). However, the Fusobacteria, which were iden-
tified as 0.1% of the sequences at 1 mbsf and 0.0% at 57 mbsf, com-
prised 2.4% of the sequences at 19 mbsf (Figure 4). The Actinobac-
teria accounted for 1.0% at 1 mbsf and only 0.2% of the sequences
at 19 mbsf but represented 2.9% of the sequences at 57 mbsf
(Figure 4). The Tenericutes composed 1.0% of the sequences at
57 mbsf whereas they were not observed at the other depths.

POTENTIAL METABOLIC FUNCTION
The authors acknowledge the limitations of using SSU rRNA for
functional characterization of microbial communities. The trends
in potential metabolic function are presented recognizing that
pyrosequencing technology is semi-quantitative. Lineages with
known metabolic functions were described and the abundance
of each genus was noted as a percentage of the total sequences
obtained at 1, 19, and 57 mbsf. Forty-two genera were observed
to compose greater than 1.0% of the sequences obtained within
at least one of the sampling depths (Table S1 in Supplemen-
tary Material). In general, sequences representing lineages capable
of sulfur cycling accounted for 15.5, 12.83, and 4.66% of the
total sequences at 1, 19, and 57 mbsf, respectively. Genera pre-
viously linked with iron cycling composed 2.7, 2.7, and 1.4% of
the total sequences from 1, 19, and 57 mbsf, respectively. Genera
that are potentially associated with nitrogen cycling were associ-
ated with 29.5, 29.1, and 49.5% of the total sequences at 1, 19,
and 57 mbsf respectively. Finally, 14.7, 43.3, and 27.9% of the
sequences were observed to be associated with lineages capable of
fermentative-based metabolism at 1, 19, and 57 mbsf, respectively.

Sulfur cycling
Metabolically active genera were identified having the potential to
contribute to sulfur cycling in the marine subseafloor. A major-
ity of these sequences were detected in the 1-mbsf sample (Table
S1 in Supplementary Material). The genera Desulfonema (Kuever
and Meyer, 2007), Desulfobacterium (Brysch et al., 1987), Desulfos-
arcina (Leloup et al., 2009), and Desulfuromonas have the capacity
to use sulfate as a terminal electron acceptor, while a Helicobacter-
related lineage within the Epsilonproteobacteria has been shown
to reduce sulfur to hydrogen sulfide (Campbell et al., 2006). Pre-
vious studies have shown that the genera Achromatium (Head
et al., 2000), Thioalkalispira (Sorokin et al., 2002), and Thiothrix
(Macalady et al., 2008) have the capacity for full or partial oxida-
tion of sulfur species. The number of sequences related to sulfate
reducing and sulfur-oxidizing lineages detected in the database
were negatively correlated with the amount of iron sulfide and
depth (p < 0.01; i.e., as depth from surface increases, the number
of sequences related to sulfate reducing and sulfur-oxidizing lin-
eages detected decreases) but positively correlated (p < 0.01) with
a loss of sulfate. The percentage of sequences associated with each
lineage is presented in Table S1 in Supplementary Material.

Iron cycling
The potential for metabolically active iron cycling by bacteria
was observed at all depths (Table S1 in Supplementary Mater-
ial). In the 1-mbsf sample, the genera Acidimicrobium has the

potential to oxidize iron (Clark and Norris, 1996). Genera capa-
ble of reducing iron for energy conservation detected in this study
included Anaeromyxobacter (Sanford et al., 2002), Dyella (Lu et al.,
2010), and Ralstonia (Roling et al., 2007). These lineages were
detected at all depths with the highest percentage of sequences at
the 19-mbsf depth. The frequency of detecting iron reducing lin-
eage sequences were positively correlated (p < 0.01) with depth,
whereas Fe(II) accumulation was negatively correlated (p < 0.01)
with iron oxidizing lineage sequences, as observed through SVD.

Nitrogen cycling
Multiple genera capable of using nitrogen species as a terminal
electron acceptor were throughout the sediment samples (Table
S1 in Supplementary Material). The most frequently detected
lineage with the sequence database was Cupriavidus (described
in Van Damme and Coenye, 2004), representing 14.7, 21.9, and
36.3% of the total sequences at 1, 19, and 57 mbsf (Table S1
in Supplementary Material). Additional nitrogen-reducing lin-
eages detected as being metabolically active included Alcanivorax
(Nakano et al., 2008), Burkholderia (Igual et al., 2006), Caldithrix
(Miroshnichenko et al., 2003), Corynebacterium (Renner and
Becker, 1970), and Stenotrophomonas. The number of nitrate
reducing lineage sequences detected did not significantly change
with depth. Genera detected as metabolically active with the capac-
ity for nitrogen fixation included Herbaspirillum (Rigo et al., 2007),
Alkalilimnicola (Tourova et al., 2007), Spirochaeta (Rainey et al.,
1991), and Cyanothece (Pakrasi et al., 2008) were identified in all
samples (Table S1 in Supplementary Material), despite ammonia
concentrations being positively correlated (p < 0.01) with depth.

Fermentation and methylotrophy metabolism
Genera with the capacity for fermentative metabolism were fre-
quently detected at each depth, accounting for 14.7, 43.3, and
27.9% of the total sequences (Table S1 in Supplementary Mate-
rial). These genera included Anaerophaga (Schink et al., 2002),
Byssovorax (Kunze et al., 2006), Caldilinea (Ollivier et al., 2011),
Faecalibacterium (Fidopiastis et al., 2006), Lactobacillus (Kandler
et al., 1983), Leptolinea (Yamada et al., 2006), Levillnea (Yamada
et al., 2006), Staphylococcus (Gregory et al., 2003), and Turicibac-
ter (Bosshard et al., 2002). Group 1 methylotrophs, Methylobacter
and Methylomicrobium (Bowman et al., 1993), were detected in
the 1-mbsf sequence database but were absent from the deeper
depths (Table S1 in Supplementary Material).

DISCUSSION
The community characterization data presented in this study
represent one of the first RNA-based pyrosequencing and quan-
titative PCR analyses of microbial communities associated with
the subseafloor sedimentary habitat. The highly resolved sequence
dataset produced a novel structural view of the metabolically
active fraction of subseafloor bacterial populations. Sequence data
also revealed numerous genera that individually represented less
than 1% of the sequence dataset highlighting the overall diver-
sity of the community. Active microbial populations and their
environmental factors were compared by combining geochemical
analysis to robust molecular data to predict the local microbial
ecology and metabolic processes. In addition, this study enhances
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sequence databases produced by previous RNA-based community
pyrosequencing efforts from marine water samples (Frias-Lopez
et al., 2008; Gilbert et al., 2008) and from soil samples (Leininger
et al., 2006; Urich et al., 2008) to improve understanding of the
metabolically active fraction of the microbial communities.

METABOLICALLY ACTIVE COMMUNITY STRUCTURE
Quantification of cell and SSU rRNA transcript abundance indi-
cated a decreasing population density and reduced overall meta-
bolic activity from the top depth horizon to within and below
the SMTZ. The reported cell abundance was in agreement with
previously observed ranges within the subsurface and follows a
similar decreasing trend with depth (Parkes et al., 1994, 2000).
Similar trends were detected in Peru margin sediments where bac-
terial SSU rRNA gene abundance (DNA) decreased rapidly over
the top 20 mbsf but remained unchanged to 50 mbsf (Biddle et al.,
2008). A similar trend was observed with transcript abundance.
It was interesting to note that the ratio of transcripts detected
to cells counted increased over 3.5 fold from the 1-mbsf sam-
ple to the 57-mbsf sample. This does not imply higher activity at
depth, as there are both more cells and more transcripts in the
surfaces communities. However, it does suggest a higher propor-
tion of the total population may be metabolically active at depth
compared to the shallow communities. The concentration of ribo-
somes, and thus copies of SSU rRNA transcripts within a cell, is
linearly correlated to cellular metabolic activity (DeLong et al.,
1989; Kemp et al., 1993; Kerkhof and Ward, 1993; Lee and Kemp,
1994), with dormant and dead cells having few to no ribosomes
present (Davis et al., 1986; Fegatella et al., 1998). The shallow
sediments may have more dormant or dead cells, elevating the
cell counts while not increasing the transcript abundance. The
potential for geochemical flux in the shallow sediments may be
the driver for this community composition, while geochemical
conditions in the deeper sediments would remain more stable.
These data suggest the deeper subsurface environments may select
for fewer dormant populations and may effectively recycle dead
cells. Previous results have made similar observations reporting
predominantly metabolically active populations (Morono et al.,
2011) and a limited of number of dead cells within biomass
calculations (Takano et al., 2010). Further analysis specifically tar-
geting dormant populations should be completed to test the role
these communities play in the environment and diversity of the
community.

Cell and transcript abundances in the SMTZ (19 mbsf) and
the deeper horizon (57 mbsf) were similar, suggesting that abun-
dance of active bacterial populations below the SMTZ decreases
less rapidly than above the SMTZ in these sediments. The obser-
vation of a similar trend in transcript abundance indicates that
the fraction of active microbial population is positively related to
the total cell abundance. Therefore, the decrease of SSU rRNA
gene abundance in subseafloor sediments may be attributed to
decreasing cell abundance. The bacterial SSU rRNA transcript
abundance in this study were four to seven orders of magnitude
lower than that of marine estuarine sedimentary environments
(Smith et al., 2006), which was expected given lower organic car-
bon concentrations. While the results of this study indicate that
the metabolic activity levels within the subseafloor sedimentary

habitats were substantially less than other shallow, higher organic
carbon environments, it is important to note that a metabolically
active population was detected at all depths selected.

Sequences were grouped into OTUs based on 95% sequence
similarity to obtain a genus-level clustering of the metabolically
active bacterial community. For the purpose of this study, the
designation of genus will be used as a descriptor of relative tax-
onomic level but may not reflect a true genus-level classification
despite the use of 95% sequence similarity in other studies (Zhang
et al., 2010). The sequencing capacity required to reach the depth
of phylogenetic analyses presented here is unique for the char-
acterization of subseafloor microbial communities. In addition,
the V1–V3 regions were selected based on the overall volume
of sequences available for comparison and the widely accepted
and used primer sets available. As deep subsurface sediments have
not been well characterized for primer optimization (Teske and
Sørensen, 2008), this initial study provides a resource for future
primer development efforts.

The bacterial diversity observed in sediments at 1 mbsf was
similar to that found in other marine sedimentary environments
considered to host diverse active microbial communities, such as
near-shore sediments (Reese et al., 2012). The level of diversity
determined in this study indicated that this system was more com-
plex than anticipated. It is important to note that a majority of the
genera observed comprised less than 1% of the total population.
This is supported by high Shannon index values indicating species
richness. The identification of these populations was possible as
a result of the high-throughput sequencing efforts and may still
play important roles in the overall community function. However,
many of these genera have not been physiologically characterized
in marine systems. To enhance the descriptive nature of mole-
cular datasets, additional effort is required in cultivation-based
molecular ecological and biogeochemical studies.

A limited number of shared OTUs at each depth indicated that
the observed metabolically active populations were unique from
each other. Although the samples had similar phyla characteri-
zation and similar abundance of genera at both 19 and 57 mbsf,
they only shared 24% of their OTUs. Statistical data including
rarefaction and Chao1 estimates suggested that a majority of the
active microbial community was likely characterized at 19 and
57 mbsf. While these communities are both deep in the subsur-
face, the different community structure can be in part attributed
to local variations in geochemistry, such as proximity to the SMTZ.
Previous studies have shown that geological variability can sup-
port differences in microbial population diversity in subseafloor
sediments (Inagaki et al., 2006; Hoshino et al., 2011). A broad
study describing the horizontal spatial variability of microbial
populations in marine subseafloor has yet to be compiled.

The OTU abundance was significantly at 19 and 57 mbsf com-
pared to the community at 1 mbsf. These data supported a reduc-
tion in diversity with increasing sediment depth in subseafloor
microbial populations. A similar loss of diversity with increasing
depth below surface was previously shown in subseafloor micro-
bial communities using bacterial SSU rRNA gene targets (Parkes
et al., 2005; Biddle et al., 2008). Increased sampling resolution
should be performed in future studies to determine the level of
heterogeneity within the subseafloor biosphere. It is interesting
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to note that the diversity at the phylum level observed in this
study was greater than previous subseafloor microbial charac-
terizations despite using RNA to target the metabolically active
fraction of the total population. Furthermore, the total diversity
in these sediments are predicted to be higher than indicated by
an RNA-based analysis, as only a fraction of the total diversity
would be active. These results suggest that previous studies have
underestimated the total diversity of the subseafloor microbial
community and that more robust techniques should be routinely
applied. The combination of extraction method and pyrosequenc-
ing techniques may have produced a higher nucleic acid yield and
deeper sequencing effort, yielding the increased diversity obser-
vations. Therefore, the Nankai sediments may support increased
diversity compared to other subsurface locations or these results
represent an advancement of the procedures used to characterize
microbial populations. Such uncertainty stresses the need for stan-
dardizing molecular methods between laboratories working on the
subseafloor biosphere as well as expanding characterizations using
RNA targets.

PREDICTED BIOGEOCHEMICAL INTERACTIONS
Combined biologic and geochemical comparisons provide a more
complete understanding of the subseafloor biosphere. Geochemi-
cal profiles indicated that the SMTZ was at approximately 20 mbsf.
Multiple microbial processes are predicted as being metabolically
active within this zone including: sulfate reduction, methane oxi-
dation, methanogenesis, and potentially metal reduction. These
processes, along with fermentation are considered dominant
metabolic processes throughout anaerobic subsurface sediments
(D’Hondt et al., 2002, 2004), however geochemical analysis is used
to predict stratification of the microbial process and thus popu-
lations. Presence and abundance of active genera were examined
to determine potential changes in the overall metabolic function
of the community corresponding to depth and local geochemi-
cal conditions. As previously noted, the authors acknowledge the
limitation of using SSU rRNA for functional characterization of
microbial communities.

Thermodynamically predicted processes
Thermodynamics predicts that microbial populations in the
marine subseafloor will be stratified based on the potential energy
gain available from the oxidation and reduction reactions of elec-
tron donors and acceptors (Froelich et al., 1979; Orcutt et al.,
2011). Molecular data from this study support metabolically active
subseafloor microbial populations can be linked to the predicted
geochemical conditions, though anomalies do occur as discussed
below. Previous studies have predicted that shallow subsurface sed-
iments with high sulfate concentrations and low electron donor
concentrations would support a wide zone of sulfate reduction
and with a majority of the microbial population using sulfur
metabolism (D’Hondt et al., 2002). Ship-based geochemical analy-
sis indicated a gradual loss of sulfate from the surface to the top of
the SMTZ followed by a more rapidly decrease in concentration
through the SMTZ. These data support microbial sulfate reduction
occurring above and within the SMTZ. Correspondingly, RNA-
based molecular analysis identified metabolically active organ-
isms capable of sulfate reduction in the 1- and 19-mbsf samples.

Additionally, there were organisms capable of oxidizing sulfides
generated in the 1-mbsf sample to completely cycle sulfur species
at the surface. A shift to sulfur reduction was observed at 19 mbsf
with over 12% of the sequences related to Helicobacteraceae. This
lineage, also detected at 57 mbsf but not detected in the active frac-
tion at 1 mbsf, has the potential to utilize the products of reduced
sulfate to produce the hydrogen sulfide detected in geochemical
analysis. The localization of this lineage within and below the
SMTZ is supported by the inferred physiology and may provide a
critical linkage to the complete reduction of sulfate to hydrogen
sulfide. Members of this family have been noted as being under-
studied while frequently detected in marine systems (Campbell
et al., 2006). Additional sequence analysis of the V1–V3 region will
be completed to determine if detection of this lineage is biased in
NCBI Blast results, and does not recognize the sequence similarity
to other, sediment-associated Helicobacteraceae.

Processes other than sulfate reduction may contribute to the
overall community metabolic function at 1 mbsf despite low
organic carbon concentrations donors. Approximately 2.7% of
the total population observed at the 1-mbsf was capable of iron
oxidation and reduction, indicating that complete cycling of iron
species is also possible in shallow subseafloor sediments. Addition-
ally 30.9% of the total population observed in the sample at 1 mbsf
is potentially associated with nitrogen cycling. Nitrogen cycling in
these shallow sediments may play a substantial role in the overall
microbial ecology despite previous predictions of a sulfate domi-
nated environment (D’Hondt et al., 2002). However, recent reports
suggest that sulfate reduction can be coupled to ammonium oxi-
dation, providing a link between the two pathways in the shallow
subsurface (Schrum et al., 2009). These results stress the need to
couple geochemical analysis with molecular characterization of
microbial populations. Studies limited to one of these procedures
would result in inaccurate interpretations of the microbial ecology.

Lineages detected outside of thermodynamically predicted zones
Multiple lineages capable of nitrogen and iron reduction were
detected as metabolically active outside of thermodynamically pre-
dicted zones, i.e., above the SMTZ (Froelich et al., 1979). Sequence
data indicated lineages capable of iron reduction comprised 2.7
and 1.4% of the total sequences at 19 and 57 mbsf, respectively.
A slight increase of dissolved iron [Fe(II)] concentration corre-
sponding to a decrease of iron sulfides (CRS) potentially explains
the observation of iron reducers below the SMTZ (Figure 1). It is
important to note that since the increase of Fe(II) is small, it might
be attributed to procedural biases associated with the determina-
tion of Fe(II) concentration. However, corresponding molecular
evidence supports the geochemical result corroborating this as
natural variability. As a result of the dissolution of the metal
sulfide compounds, Fe(III) may be produced at depth through
chemical reactions with fermentation products including hydro-
gen peroxide (Brooijmans et al., 2009). Iron reducers active at
depth, as suggested by molecular results at 57 mbsf, would reduce
the Fe(III) upon formation. Future research in this area would
provide a more defined link between the products of fermentation
and the oxidation of reduced substrates at depth.

Active iron and nitrogen cycling below the SMTZ may indicate
the presence of geochemically cryptic cycles at depth. In addition
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to iron reduction, nitrogen-reducing lineages were detected within
(23.5% of the total sequences) and below (43.7% of the total
sequences) the SMTZ. Oxidizing populations were metabolically
active at depth although they were less than 1% of the total
sequences obtained. For example, the genus Dyella was detected
at 19 and 57 mbsf and has species capable of both iron oxida-
tion and iron reduction (Lu et al., 2010). Lineages at 57 mbsf
included sulfur-oxidizing Thioalkalispira, and the Mn(II) oxida-
tion genus Leptothrix (Boogerd and Devrind, 1987). Detection of
these lineages being metabolically active supports the presence of
complex interactions between microbial communities within the
marine subseafloor that may not be solely directed geochemically.
The co-occurrence of populations with the capacity to conduct
both oxidative and reductive processes recently described as cryp-
tic biogeochemical cycling (Holmkvist et al., 2011; Orcutt et al.,
2011). The nature of the redox pairs would result in a lack of
detectable geochemical end products at the standard resolution
of analysis, keeping one half of the process geochemically unde-
tectable. However the low abundance of oxidizers and the presence
of reduced compounds suggest oxidizing processes may be the
limiting component.

Further investigations into the active metabolisms of the pop-
ulations found at various depths using culture assays is essen-
tial to gain a better understanding of how these organisms
survive in marine subseafloor environments. Cultivation-based
characterizations of lineages isolated from the subsurface are

currently ongoing in the Mills laboratory and will be used to sup-
port community characterizations. Future research will focus on
combining molecular techniques including the isolation of func-
tional gene targets, metatranscriptomic, and proteomic analyses.
In addition, increasing sequence resolution in these environments
will provide a better characterization of genera detected at low
frequency. Description of the rare biosphere is important to under-
stand the extent of total diversity in the subseafloor biosphere.
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